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Multi-Time Evolution Models in
Deep Learning Dynamics

Masximiliano Ferrara

Abatract

This paper extends the multi-time optimal comtral theory to deep learming
frameworks, developing a mathematical foundation for understanding neural nerworl
bradning as a process evolving across mnltiple time seales, We formulate nearal
network optimizarion as a mnlti-rime evolution problem where different components
of the network evolve ot difforent rates, This perspoctive yields two nowvel theoromse:
the first estahlishes conditions for path-independent convergemes in multi-time
gracdient descent, while the second provides a fraomework for analveing the Interplay
between feature extraction and classification layers in deep networks. Experimontal
vabidation on synthetic data demonstrates the practical impliensions of our theoretical
frnmework, showing Improved convergence propertios and enabling adaptive learning
rote scheduling based on mulli-time priociples. Ouor approach opens new avenoes
for understanding the dynamics of deep learning svstems and suggests practical
improvements Lo optimization algorit s,

Keywords: Multi-time dynamics: Deep learning Optimization; Multi-time Learning
Algorithm (MTAG)
MSC(2020): 35821, 40Nxx, 34A26, 63107

1 Introduction

Dreep learning optimization has traditionally been viewsd throngh the lens of temporal
evelution along a single thme dimension, where network parameters are updated sequentially
bagad on pradient information. While this approach has led o rermarkable suceesses; it
fails to eapture the multi-scale nature of learning in hierarchienl neural networks, where
different network compononts may operate at different timescales and learning dynamics.

The coneept of multi-time evolution, originally developed in physics and economic
modeling [1], provides a promising framework for understanding and improving neural
network training. In multi-time systems, evolution occurs across multiple time dimensions
simultanconsly, subject to consistency conditions that ensure well-defined frajectories.
This perspective i particularly relevant to deep learning, where networks comprize diverse
components with potentially different lenrning dy namics,

Recont work has begun exploring multi-seale approaches to deep learning, including
lver-wise learning rates [11] and block-wise optimization strategies [7]. However, these
approaches lack o formal mathematieal framework that connects them to the rich theory of
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nulti-time optimization. Cur work bridges this gap by developing a rigorous mathematical
fomndation for mlti-tine learning dynsmies in nearal networks,

Drawing inspivation from multi-Hime optimal control theory, we formulate nenral
nitwork training as a multi-time optimization problem. This formmdation leads to novel
ingights into the conditions for path-independent learning trajectories and enables the
development of optimization strategies that exploit the muiti-scale structure of deep
networks, Our theoretical results have practical implications for improving convergence
properties and designing adaptive learning rate schedules,

2 Related Work
2.1 Multi-Time Optimization Theory

The mathematical foundations of nmlt-time aptimdzation were established in the context
of variational caloulns and optimal control theory. Udrdste and Ferrara [1] developed a
frammework for mmlti-time optimal seonomic growth, fsemalating the controllability prolilem
for multiple mtegral functionals subject to multi-time evolution constraints. This work
extended single-time optimal control theary to systems evalving scross muoltiple time
dimensions, establishing conditions for well-defined evolutionary trajectories.

Further developments in multi-time optimization incluode the work of Udriste and
Tevy [2]; who explored Euler-Lagrangs-Hamilton theory in the multi-time setting, and
Udriste [3], who developed multi-time wasdmum principles analogous to Poutrvegin's max-
imum principle in classical control theory, These contributions provide the mathematical
foundation for our application of multi-time principles to deep lenrning dyoamics.

2.2 Optimization in Deep Learning

Deep learning optimization has evolved significantly bevond basic stochastic sradient
descent, Adaptive methods like Adam [4] and RMSprop [3] dynamically adjust learning
rabes bosed on gracicnt statistics, However, these methods eypioally apply anilorm apdate
rilles aeross the entive network, lznoring the molti-scale nature of deep architectures.

Several rescarchers hove escplored Inver-specific optimizalion sirategies, Singh aod
Singh [6] proposed layer-wise adaptive learning rates based on pradient magnitudes, while
You ot al. [7] developed LAMB, an optimizer that normalizes sradients Inyor-wise to
npeove teaining of lorge batch sizes These appronches implicitly reeognize the mulii-scale
nature of deap learning but lack a formal connection boomulti-time optimization theory.

Mere clsely related to our work, Wang et al, 8] explorsd path-dependent, and path-
independent lenrning dynamics in nenral networks, demonstrating that certain network
architectures and loss funetions lead to approsimately consermbive gradient felds, However,
their analysis did not explicitly consider mnlti-time formolations or derive conditions for
path independence inomualti-seale leirning dynamies.

2.3 Multi-Scale Dynamics in Neural Networks

The hierarchical structure of deep networks naturally induces multi-seals dynamics during
trafming. Several studies have observed that different lavers learmn at different rates and
pley different roles in the overall learning process. Haglu et al. [0] showed that lower
layers typleally converge faster than higher layers, while Li et al. [10] demonstrated that
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different lnyers capture features at different [evels of abstraction and exhibit different
sansitivity to perturbations.

DBuilding on these observations, researchers have developed methods to exploit the
rltissenle natnre of deep petworks. Smith et al, [11] proposed a cyelical learning rae
schedule that periodically varies the learning rate to escape local minima, Kusupati et al.
[12] introduced adaptive gradlent clipping based on laver-wise gradient statistics, effectively
implementing a form of multi-scale aptimization.

Despite: these advinees, nocomprebensive mathematical fnmework conneeting Lhese
empirical ohservations to multi-time optimizacion theory has been lacking. Our work
addeesses Lhis gap by developing a formal malti-time famework for wederstanding and
improving deeps learning dynanics.

3 Multi-Time Framework for Neural Network Opti-
mization

We develop o mnthetatiesl fraunework for wolti-time evolution o aewrsl nesworks, laving
the fomndation for the theoretioal resules and practical algorithms presented in subseguent
soctions.

3.1 Preliminaries

Let & = (67, ...,60™) represent the parameters of a neural network, where each 8
cortesponds tooa distinet subset of parnmeters (e.g., weights and biases of different lavers).
The standard learning problem seeks to minimize & loss function L{O) by iteratively
updating parameters based on gradient mformation:

Hk_'| =9;.—T}‘E"L[B'k:l I:.'I'}

where ¢ 15 the leamning rate and VLS, is the gradient of the loss function with
respect to the parameters,

In the multi-time framework, we view each subset of parameters & as evolving along
its gwn time dimension £, The parameter update then becomes o multi-time evolution;

af-rl -

5~ 581) (2)
whisre X} represents tha evalution ol paramester snbset & aloopg time dimession . For

these dynamics to be well-defined. the vector fields X} must satisfy certain consistency

conditions analogous to the complete integrability conditions m multi-time control theory.,

3.2 Multi-Time Gradient Descent

In the context of gradient-hased optimization, we define the multi-time gradient descent
dynumics as:

o aL
7 = s (4

where 1, represents the learning rate for paramerer subset # along time dimension j.
When ¢ = 7, this corresponds to updating parameters basad on their own gradieuts, When
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i % 4, this captures crogs-parameter interactions, where the evolution of one parameter
stthsot influences the evolution of ancther.

For multi-time gradient descent to e well-defined, the update dynamies must satisfy
the following conststency condition:

a faey o [or :
o\ | =~ av \ o W)

This condition ensures that the evoluticn of prrameters s independent of the particular
pesth takenn in the ooalti=tome spaee, analogons Lo the path independencs of conseramtive
vector Aelds in plysics,

3.3 Path Independence in Multi-Time Learning

A key guestion in mmlti-tie learning i whether the final state of the network depends on
the particular sequence of updares or onky on the initial and final points i the multi-time
spaee. This property, known as path independence, bas fmportant implications for training
stability and convergenge,

We -:I-Ihw a path in wlti-time space as s conbinnons mapping v < [0, 1] = B™ with
() = (0, ....0] and +(1) = (T, ..., T™), where each T* represents the total amount of
evuluti.uu J:IrJug thme dimension | T}.'I.E! evirlution of network parameters nlong this path s
given by:

a84dy,
(:w_eumfgd&ﬁﬂd (5)

The learning process is path-independent if the Gual stale ©8{4(1)} is the same for all

paths 5 with the same endpoings.

4 Theoretical Results

In this section, we preseut two novel theorems that establish key properties of multi-time
learning dynamics in neural networks,

4.1 Path Independence in Multi-Time Gradient Descent

Theorem 1 (Path Independence Conditions). Let LIB) be a tuice continuonsly diffes-
entiable lows furction for o wewmal netword with porometers @ = (§4§% _dm™). The
menli-time grdient deseent dynamics % = —r;.jﬁ wield path-independent pavameter
trajectories if and ondy if the learning rafe matriz 5 = [y, satisfies:

L # I

i pgigae — T gk g ©

fer aild, g, k,

Proof. For the multi-time gradient descent dynamics to be path-independent,; they must
satisly the consistency condition:

g (o @ ;
&"('ﬁ")‘ﬁ"(ﬁ?) (n
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Substituting the gradient descent update rule, we get:

i gLy @& Al ()
o\ e ) e \ T e
Using the chain rule:
= L o n gL o
= g Do —’**?:3, O )

Substituting the gradient descent update rule again:
mo@L oL 2oL al
T P Tk = Tk Y e i ]
Yo aniae T = aian ™ o
For this to hold for arbitrary gradients, we must have:

&L L
‘i'h:wmﬁe = HJEWTM
When mee = my (e, when the learning rate for a parameter depends only oo the
parameter itsell), this simplifies to:

(100]

(11)

L BL
o — ™ Baron
For this to hold for all possible Hessian matrices, we must have ny; = gu for all 7, &,
which mesns that the learndng mate for 4 paremeter must be the saine along all time
dimensions. This essentially Teduces nmiti-time gradient descent to standard (single-time)
gradient, descent.
However, if we allow the Hessian to have a spocifie structure, move general learning rate
matrices become possible, To particular, iF the Hessian is symmetrie and block-dingonal,
with hloclks corresponding to the parameter subsets &, then the condition becomes;

2L PL
i g — M ek
which can be satisfied with nos-uniform learning rales aceoss parameter sulsets. O

(12)

(13]

Corollary 1. For neurn! networks unth block-dingonal Hesstan structure, path-independent
rlti=-time gradiend descent {5 possible wilh loyer-apectfic learning rotes o, where 1y, = o

Jor all 3.

This corollary provides theoretioal justifiention for layer-wise leaming rate adaptation,
a technigue that has shown empirical suceess in deep learning practice,

4.2 Feature Extraction and Classification Dynamics

Muny deep learning architectures zafurally decompese into feature extraction layers [typi-
cally convolutional or recurrent layers) and classification layers (typically fully connected
layers). Qur second theorem characterizes the interaction between these components in
the multi-time framesork,
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Theorem 2 (Feature-Classifier Co-evolution), Consider a newral nefwork with porameters
B = (87.87), where 87 represents feature extraction layers and 87 represents classification
lajpers, Let L(B) be o twice continuously differentioble loss function, [f the network is
traened wsintg madli-fme gredient desoent with dynarics:
anr _ gL e . il 14
giF = TggFe gE = MWgge (14)
them the optimal mbia of learning mtes £ that minimizes convergence lime wlhile
maintaining stability is given by:

"'?I o -JlmIn'[Hf.-T'.]

He: ‘lli ‘}lm{HFF}I

tikere My and Hee are the Hesstun submatrices corresponding to feature and elassi-
fieation porameters, and Ay, and Ay, dencfe the minimum and marimum eigentalues,

respectively,

Proaf. The comvergence of pradient descent is governad by the condition mianber of the
Hessian matrix, For s block-stroctured Hessian:

H= [Hf'r Hpq

(15)

16
Hor Hee (16)
LA i1, il aiy
where Hpp = 7T T Hip = TROCTAGET 3 and Hee = HC.F = W
When nsing distinct learning rates for feature and classification parameters. the effective
Hesaing beenmes:

~ arHer neHee
Hip= Lk.‘HL'F’ T.I'r'Hr-‘c'] (17}

For optimal convergence, wa want to aplninibee the condition pnmber of Hg. When
Heeoand Hep are amall (e, when featore and classification parameters are approsimately
decoupled), the condition muomber i approximately:

e e e e

q 18
W Hu) & windnp Al Hee ) e dmn| Hee )} 18)
To minimize this condition number, we want:
Hrdmaxl Hre) = tedmad Hee) (18]
anel
LT | HJ-‘ F,I' =1 "]Hulu{HJ'-'f‘] [20)

These two conditions cannot be shomltanecusly sarisfied in general.  However, a
reasonable compromise 15 to equalize the geometric means:

0y y"r-’imjn{HF:-'}-’ﬁnux[Hn'} =iz \f"lf"-um.lfff:f'}-"hm (Heeo) [21)
This leads tor
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(22

H_F' - J'-nu]n[ HE:E'-JJ"nmJe{HtTI'-'}
’i'f' J'lu.‘ln {HFF':IATILEI{HFF-]

For stahility, we typically need to ensure that the maxinmm effective elgenvalue is
bounded, which leads ta:

rdm Hrr) €0 and gl (Heoe) < a [24)
for some stability threshold o. To maximize convergence speed while maintaining
stability, we set hoth terms equal oo, which gives:

Ne _ AmalHee)

e J'-r.||r||a|'{-F-'rJ'I F}

Clombining this stability comstraint with the condition oumber minimization, se areive
at:

(24)

me | SuinlHec)

e\ A Hpr)

This provides an optimal balanee between convergonee speesl and stability Tor the
multi-time gradient descent dynamics. O

[23)

Corollary 2. [n deep neuwral networks where clossification layers typically have larmer
Hessinn etgenvalues than feature extroction layers. the oplimal learning mite for fealure
ertroction layers is generally lovger than for clossification loyers.

This corollary provides theoretical justification for the common practice of using smaller
leaming rates for output lavers compared to feature extraction layers in transfer learning
and fine tuning scenarios,

5 Multi-Time Learning Algorithm

Based on our theoretionl resalts, we propose s multi-time learning algorithin that adaptively
adjnsts learning rates for different network components based on estimated Hessian
properties,

5.1  Algorithm Description
The Multi-Time Adaptive Gradient (MTAG) algorithm operates as follows:

Algorithm 1 Malti-Time Adaplive Gradieot (MTAG)
Partition the network parameters nto m subsets {8'. 8%, .., 8™} Tuitislize learning
rates #; for each parameter subset each training itevation Compute gradients %— for
each parameter subset iteration % estimation_period == 0 Estimate Hessinn diagonal

Blocks Hyy Update lenrning rates: g = ;i‘f%‘—'ﬂg{q’ﬂ% Update parameters: # +— f}{-r,l,-g;—;

The algorithm implements multi-time gradient descent with lenming roees that adapt
to the loeal curvature eof the less landscape for ench parameter subset, i accordance with
the theoretical optimal ratio decived in Thesem 2,
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5.2 Computational Considerations

Exnet computation of Hessian cigenvalues is computationally expensive for largs networks.
In practice, we can use effickent approximaticons:

» Hutchingon's method for estimating the trace of the Hessian {which provides an
ostimate of the snm of cigenvalues),

« Power iteration for gstimating the larpest sigenvalue of each Hessian block,

o Diagonal appreximation of the Hessian, which assumes that the Hessian i dominased
by ils dingonasl elements.

These approsimations allow for computationally efficient implementation of the MTAG
algorithm without significant overhead compared to standard gradient descent, et hods,

6 Experimental Validation

We validate cur theoretical results and the proposed MTAG algorithin through experiments
on synthetic data, demonstraring the advaniages of multi-time learning dynamics in
practice,
6.1 Dxperimental Setup
Wi comstruet a synthetic learping problem desipned (o exhibit multi-seals behavior:

1. We generate a dataset of 10,000 samples in B, partitioned into 10 clusters,

2, Each sample consists of features at three seales: plobal features (dimensions 1-20),
chuster-specilic features (dimensions 21-600, wd nobse fentures (dimensions G1-100).

3. We desizgnea neural network with three components! a feature extraction module (2
tavers), o transformation wodule (3 lavers). and a classilication wodule (2 lnvers),

4. The ground truth dars is pensrated such thar global features chanps slowly, clustar
fentures change at a moderate pate; and noize features change rapidly.

We compare four optimization methods;

+ Stancdard SGD with a uniform learning rate [SGTY)

o Adam optimizer (Adam)

« Layerwise pdaptive learning rates (Layer-Adaptive)
« Our Multi-Time Adaptive Gradient method (MTAG)

For each method, we train the network for 100 epochs and measure training loss, vali-
dation aceuracy, and the distance of each network component from its optimal parameters,
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6.2 Results and Discussion
6.2.1 Convergence Propertics

Figure 1 shows the training loss curves for the four optimization methods. MTAG achieves
faster convergence compared to the other methods, partieularly in the early stages of
training. This advantage stems from the optimal learning rate ratios derived in Theorem
2, whicti allow different network components to evolve at their natural timescales,

'—  SGD

g [ — Adam
] —— Laver-Adaptive
i \ — MTAG (Ours)
g
3 1
e

[

]E]

Epnchis

Figure 1: Training loss curves for different optimization methods. MTAG (our method |
shows faster convergence, particularly in early training stages.

The layer-wise adaptive method also shows improved eonvergence compared to standard
SGO and Adam, but oot 1o the same extent as MTAG, This suggests that simply haviog
different learning rates for different layers is beneficial, but the principled spproach of
MTAG based on Hessian eigenvalue ratios provides additional advantages,

6.2.2 Parameter Trajectory Analysis

To validate Theerem 1 on path independence, we analyze the trajectories of network
parameters during training, We train the sames vetwork multiple times with different
random initinlizations and compare the fnal parameters,

For networks trained with standard SGD), we observe significant variation in the final
parameters across different runs, indicsting path-dependent behavior, 1o contrast, notworks
trafned with MTAG show more consistent. final parameters, with variations primarily in
directions that do not affect the network’s function (i.e., along Hat divections in the loss
landscape].

This confirms that MTAG promeotes more path-independent learning dynamics, as
predicted by Theorem 1. The improved path independence leads to more rolmst tradning
outeomes and roduess sensitivity to initialization,

(.2.3 Feature-Classifier Co-evolution

T validate Theormn 2 on festure-classifier co-evolution, we analves the learning dynninies
of the feature extraction and classification components separately. Fignre 2 shows the
distanes of each component from fis optimal paramsters over time,
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~=~ 8GD - Fentures
— 8GD - Classifier
< Adam - Features
— Adam - Classifer
MTAG - Features
—— MTAG - Classificr

o m ———t

—

nl : : .
0 10 20 30 40 50 60 0 S0 90 100

Epochs

Distance from Optimal Parameters

Figure 2 Distanes of feature extraction and classification components from their optimal
parameters during training. MTAG maintains better balanee between feature learming
and classifier adaptation.

We ohserve that with standard SGD and Adam, the classification compenent initially
leprns Faster but tlien plideans, while the foabioe extrction component continnes Lo
fprove gradually. This leads 4o suboptimal co-evolution. where the classifier adapts to
snboptimal features early in training.

In contrase, MTAG mamtains a better balance hetween feature learming and classiber
adaptation thronghont training. The feature extraction and classification components
evolve at compatible rates, leading to more efficient overall leamning. This confirms
thee predictions of Theorem 2 regacding the optimal Jearning ente mtio between feature
extraction and classification components,

6.2.4 Sensitivity to Hyperparameters

Wi evaluate the ssnsitivity of cach method to its hyperpammetors by varviog Uhe base
learning rate over two orders of magnitude. Figore 3 shows the final salidation asenracy
for ench method peross ditferent leaming rate vidhies,
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. 101

&

= =

& ——y
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= B

5 - Adam

E il —i— Layer-Adaptive

ﬁ —— MTAC [Du.n.}l
1n=4 -+ o= 10-1

Learmung Hate (log scale)

Figuira & Final salidation aceurney for different optimizsation methods across varying base
learning rates, MTAG demonstrates reduced sensitivity to the base learning rate.

MTAG demonstrates significantly less sensitivity to the hase learning rate compared to
the other methods. Even with suboptimal base leaming sates, MTAG maintains rensonalile
perfarmance due to its adaptive adjustment of learning rates based on local curvature.

This reduced sensitivily 1o hyperpamimetens is a waluable practical sdvantage of the
mtlti-time approach, as it simplifies the byperparameter tuning process and males the
method more mobust in practioe.

7 Conclusion and Future Work

In this paper, we have developed s oult-tme framework for understanding aod improving
perd] network optimization dynmumies. By viewing nearal notwork training as a process
evolving neross mualtiple tome dinensions, we bave derived povel theoretical resulls on path
independence and feature-classifier co-evolution. These results provide insights fnto the
malti-stale nature of deep learming aud snggest practical improvements to optimization
algorithms.

O proposed Muolti-Thne Adaptive Gradient (MTAG) algovithin implewieurs these
theoretical ingights, adaptively adjuating learning rates for differenr network coniponents
Bsed onn estimeted Hessinn properties. Experimeemtal results on syothetic data demonstoe
the advantages of the multi-time approach, including faster comvergenee, improved path
independence, and better feature-classifier co-evalution.

The mmlti-time framework opens up several promising divections for future research:

1. Multi-time second-order methods: Extending the multi-time framework to
second-order optimization methods like Newton's method and patural gradient

descont.

2. Architectural implications: Designing tetwork architectores that valurally sap-
port path-independent multi-time learning dynamics.

4, Theoretical connections: Exploring connections between aomlbi-thme leaming aod
other theoretical frameworks in deep Fearning, such as information gecmetry and
dvnamieal systems theory.
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4. Application to specific domains: Applving multi-time optimization 1o domnins
with inherent mubti-scale structure, such as hierarchical reinforcement learning and
niltEresolubion image processing.

We believe that the multi-time perspective provides & valuable new lens for understand-
ing and improving deep learning svstems. complementing existing theoretical frameworks
ol leading to practicn] advanees in optimizntion algovithms,
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1. InTRODUCTION

There are several generalizations of open sets of fopological spaces (X, 7
e.g., semi-open sets [9, Leving], pre-open sets [10, Mashhour et al.] which
are also called locally dense sets by Corson and Michael [2]. Csdszdr [8]
introduced and studied y-open sels a5 & common generallzation of such geu-
eralived sets of open sets in X, The q-open sets fually leads to introduce
and study the generalized topolozy on X,

Let exp(X) be the power set of the nonempty set X. A subcollection u
of exp(X) is called a generalized topology [7] on X if § € u and the union
of arbitrary number of elements of ¢ is again a member of g, A general-
ized topological space [7] is a nonempty set X endowed with a generalized
topalegy @ and it is denoted by (X, ). We write GT' (resp. GT space) to
denote the generalized topology poon X (resp. generalized topological space
(X, 1)), An element of g is ealled o p-open set of (X, ). The complement
of a p-open set is called a p-closed set of (X, p). A GT poon X is called
quasi-topology [4] if g is closed under finite intersection. A generalized topo-
logical space (X, p) is called strong [6] (also called p-space by Noiri [14]) if
X £ p. For brevity, we retain the term u-space due to Noiri [14] to mean
the strongly peneralized topologieal space (X, u) as well,

For a subset A of a GT space X, the intersection of all p-closed sets
containing A is the generalized closure [3] of A and is denoted by e,(A).
Also for a subset A of a GT space X, the union of all p-open sets contained
in A is the generslized interior [5] of A and is denoted by i,(A), IL is easy to
see that a subset A of X is p-open (resp. p-cloged) if and only if 4 = i,(4)
(resp. A =e,(A)). Also for asubset A of X, we have o, (A) = X —i, (X - A).
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Throughout the paper, N denotes the set of patural numbers and the
elements of N are denoted by om0, & ete. We also write “nbd’ to mean
‘neighbourhood” of a point > & X.

2. u-PARACOMPACT SPACES

Firstly, we recall below some concepts and results for follow easily the rest
of our present work easily.

Definition 2.1 (Csdszdr [5]). A subset A of X is called p-preopen if 4 C
inlcu(A)).

It is easy to see that A C X is p-preopen if and only if there exists a
p-open set G such that A C G C ¢, (A4).

Definition 2.2 (Sarsak [16]). A subset A of X is called p-regularly closed
if 4 = eu(i,(A)). The complement of a p-regularly closed set is called a
pr-regularly open set. S0 a subset A of a GT space 8 p-regularly open if
A =iy (eu(A)).

We see that i, (e,(G)) is p-regularly open in X if G is p-open in X.

We agree to write ‘p-open collection and *pe-preapen collection' to denote a
collection consisting of nonemply p-open sets and p-precpen sets respectively
of a GT space, According to existing convention, a ‘g-open cover’ of X is a
propen collection % of X such that |0/ = X, We see that if X is not
p-open in a GT space (X, p), then the union of even all p-open sets of X is
not equal to X e, in such case, there exist no p-open cover of X, So such
a definition of p-open covers of GT spaces become void. Tt instigates us to
change the existing ideas of covering of GT spaces as follows,

We write X, = g, G. It is then clear that X, is p-open in X and
XN, =X Xisapspace. A collection ¥ of nonempty subsets of X is called
a cover of X 130 if [Jg0G = Xuo A p-open collection (resp. j-preopen
collection] % of X i amd to be a p-open (resp. p-preopen) cover of X if
Ugee G = X,

Let % and ¥ be two covers of X. The cover ¥ is called a refinement |7,
p. 144 of the cover % i for each V € ¥, there exists a [ € 9% such that
V o U7 Let ‘% be a g-open cover of X. If ¥ is a cover of X by p-open sets
of X, then ¥ is called a p-open refinement of % [1]. In the same fashion,
if ¥ is & cover of X by p-preopen sets of X, then ¥ is called a p-preopen
refinement [13] of 4.

Again let (X, y) be a GT space such that X € g and % be a collection of
subsets of X, Then for any r € X — X,, there exist no p-open set U such
that & & [T and so there arise no question of existing a g-open set U7 in X
such that U intersects finitely many members of ¥. Hence in the present
study, we consider slightly modified versions of the notions like p-locally
finiteness {Definition 2.3}, p-paracompactness (Definition 2.5) in contrary
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to the concern notions intreduced by Deb Ray and Bhowmick [3], and Arar
[1]-
Definition 2.3 (Mukharjee and Roy [13]). A eollection % of subsets of X

is called p-locally finite if for each x € X, there exists a p-open set UV with
2 € IV mecting only finitely many members of @& .

Erample 2.4. Let M be the set of natural numbers and E & M be the set of all

even natural numbers, We define g = {#1U{T | 7 is an infinite subset of E}.

Obviously, p i a GT on M such that M ¢ u. In the GT space (M, u). we
consider the collection % = {{2,4.6},{4.6,8}, {6.8,10},...}. We see that
for any o € E, a p-open set U7 with = € [ may Lnleraed.s finitely many
members of €. So ¥ is a p-locally finite collection in the GT space (T, u).

We observe that for any A € %, M — £ C e,(A) and c,(4) = 2,46} U
{H —E} when A4 = {2.4,6}.

Definition 2.5 [Mukharjee and Roy [13]). A GT space X is called p-
paracompact if each p-open cover of X has a p-locally finite p-open re-
finement.

Definition 2.6 (Mukharjee and Roy [13]). A p-preopen set G in a GT space
X is called capped by & p-open set if there exists a p-open set W osuch that
GCc W cUnV whenever U,V are p-open sets in X containing .

Definition 2.7 (Min [11]). A GT space (X, u) is called y-Hausdorff if for
any pair of distinct z,y € X, there exist j-open sets [,V in X such that
seElliyeVand UNV =0

Definition 2.8 (Min [12]). A GT space (X, ) is called p-regular if for any
x € X, and any p-closed set F' in X not containing o there exist p-open
sets U Vin X suchthatre UL FNX, cVand UNV =0,

It is shown that the GI' space X is g-regular if and only if for any » £ X,
and any popen set U7 with » € 7 there exists a p-open set V osuch that
geVocelVIinX,cl.

Lemma 2.9. If F is a p-closed set in o GT space X, then

(i) F=(FNX,)u(X —X,),

(i) X =F =X, =F and X, = F is tr-open in X.

Froof. Both the results follows easily from the facts that X = X, 0(X - X))
and X — X, C F. ||

Theorem 2.10. A GT space X is p-regular if and only of for any v € X,
and any p-closed set F' in X with = ¢ F N X, there exist p-open sets UV
X such thetz e U FN X, CVandUNV =0

FProof, Necessity: Suppose that @ € X, and F is a p-closed set in X such
that s ¢ FNX, Asz e X, o & X — X Hence we find that « € F by
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Lemmea 2.9(i). By the g-regularity of X, we obtain y-open sets [T,V in X
suchthat re U, FN X, CcVand UNV = .

Sufficiency: Let » € X, and F be a p-closed set in X not containing ».
Then obviously, we have .L ¢ Fn X, Hence we obtain p-open sets U,V in
Xsuchthat ze U, FNX,CVandlUNV =40 [

Theorem 2.11 (Mukharjee and Roy [13]). Let p-preopen sets in a GT space
X are capped by p-open sets of X. The GT space X 1s p-paracompact if and
onfy &f each p-open covers of X has o p=locally finile p-preopen refinement,

Theorem 2.12. Let p-preopen sets in a generalized topological space X
are capped by p-open sets in X, The generalized topological space X 15 p-
paracompact if each p-preopen cover of X has a p-locally finite ju-preopen
refinement,

Froaf. The results follows by Theorem 2.11 from the fact that a g-open cover
of X is also & p-preopen cover of X. [

Theorem 2.13. Let X be a p-Hausdorff p-paracompact space and p-preopen
sets i X are capped by p-open sets in X, Then for @ € X and o u-closed
st E with ¢ ¢ E, there exisl a subsel G of X and o p-preopen set H in X
such that t € G, EN X, C H and pe,(G)NH =0.

FProof. Let E be a p-closed set in X and » € X, such that » ¢ E. Since
E=(EnX,)U(X—X,} by Lemma 29, r £ X, whenever & € X and
@ & E, For each y € EN X, there exist g-open sets U, V,, in X such that
zelyyeV,and U,NV, =0 as r#yand X is g-Hansdorff. We write
Y ={Vy |y X,NE} Then % =¥ U{X — E} is a p-open cover of X.
By Theorem 2.11 on p-paracompactness of X, we obtain a p-locally finite -
preopen refinement & of %, Putting H = | {U | U e ¥, Un(ENX,) # 0},
we see that BN X, C H. Since @ is p-locally finite, there exists a p-open
set W oin X with ¢ € W intersecting finitely many members of %. Let
the finite collection of members of 4 intersecting W be %, As % is a
pr-preopen refinement of 9, there may exists finitely many W, € %, &k €
{1,2,...,n} such that Wi ¢ V.V, € ¥ and Vj, N(ENX,) # § for each
k€ {1.2,...,n}. We put G =W N (iU ). Toshow GNH =P, we
suppose that st e GO H. Then : e Wand : e Uy, forall k€ {1,2,...,n}.
Also z € U for some 7 € F with TN (En X,) # 0. So this [ is equal to
Wy for some k € {1,2,...,n}. Hence we get Uiy, MV, # @ which gives a
contradiction to Uy, NV, =0 As H is p-preopen and & 1 H =4, we have
pou(G)NH =40 O

Remark 2.14. Let E be a p-closed set in X, We see that for x & _-Y'“
x ¢ ENX, whenever x £ E. Hence Theorem 2.13 alzo hold if we choose
x ¢ Einstead of x ¢ EN X, in the statement of the theorem.
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Theorem 2.15. Lot X be a p-Housdorff p-parecompact space. If ¥ € X
and E is p-closed in X with ¢ ¢ E, then there erist a sulset G of X and a
p-open set H in X such that 2 € G, X, NE C H and ¢,(G)NH = .

Proaf. Similar to that of Theorem 2.13. O
Deb Roy and Bhowmick (3], defined ~,-closure operator on a GT space

{ X, i) and showed that the 5,,-closure operator gave rise to a topology p* on
X, It is also seen here that g = p* if g is topology on X. We note that if u
is a QT on X, there exist a topology .7, namely exp(X) such that u C 7.

Noiri and Roy [15] initiated the study of unification of generalized open
sets on topological spaces and two placed below,

Definition 2.16 (cf. Noiri and Roy [15]). Let g be a GT on a topological
space (X, 57), The topological space (X, 7] is called F-regular if for each
x € X, and each closed set F' on X with = ¢ F there exist disjoint p-open
sets [0V such that z e L FC V.

Henceforth we write, X is F,-regular to mean 7 regularity of the topo-
logical space (X, ) with respect to & GT g on X as defined in Definition
2.16.

Theorem 2.17 (ef. Noiri and Rov [15]). Let p be a GT on a tapologieal
apace (X, F). The topological space (X, 7)) is F,-reqular if and only if for
eech x € X and each F-open set U with x € U7, there ensts a p-open set V
such thal z e V C e (V)N X, C U,

The observations recorded above due to Deb Roy and Bhowmick [3] and
MNoiri and Roy [15] instigated us to consider a topology .7 on a GT space
{A, p) to get some characterizations on the p-local finiteness,

Definition 2.18. A collection % of subsets of X is called 7,-locally finite
il for each & € X, there exists a F-open set U with r € U meeting only
finitely many members of % .

A F-open set 7 in (X, ) with ¢ € [/ always exists as there have a
pr=open set (7 in (X, g) such that » € G and p < 5,

Theorem 2.19. Let X be F, -regular. If {U, | a € A} 15 @ F},-locally finite
cover of X then {e,(U,) N X, | o € A} s a p-locally finite cover of X,

Proof. Since {U, | a € A} is 7),-locally finite, for each z € X, there exists
a F-open set U7 in X eontaining x such that I7, N &G # @ for finitely many
a € A Let U, NG #Qfor ke {1,2,... ,m},m e M. It means that
U, MG = 0 whenever o € A — {ay,03,...,0n}. By Theorem 2.17 there
exists a p-open sel H such that x € H C q,(H)NX, € G. As H C G,
UanH = U whenever o € A—{aq, 04, ..., 6 }. Thus we have e, (U, )NH =0
whenever o € A — {ay, 02, ...y 0m b 50 {6, ) | o € A} is prlocally finite.
Since ¢, (Us) N X, C eu(ly) for each a0 € 4, {eu(Uu) N X, | @ € A} iz also
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p-locally finite. Apain for any » € X, there exists an « € A such that
x el C e,(l/y). Hence {¢,(l/s) N X, | a € A} is a cover of X. O

Theorem 2.20. Let X be a G space. If % = {U, | o € A} is u T, -locally
frmate p-open cover of X then Uu'EAn"{U“:I =tu I[UEEAU,,}.

Proof. We only need to show |, 46,(Us) 2 6u (U,c4l%). Suppose that
T OE €y I:U“EA Uy), fx € X — X, then there exist no p-open set in
X countaining x. Hence x € ¢,(U,) for each o € 4. So in this case,
Uaeatulls) 2 e (Uoealn) hold. Now we suppose that z € X,,. By 7.
liseal finiteness of %, there exists a S -open nbd I7 of o such thatl U inlersects
finitely many members Uy, Uq,, ... Uy of #. Asx € ¢, [I__Jm_.___ﬂ_Uu}. each
p-open nhd Voof @ intersects | J,,c (U, Since p € 7, V is also a F-open set
which in turns implies that U0V s a 5 -open nbd of 2, Since % is a cover of
X, (UnV)n(UL, Us,) # @ which gives V(|2 U,,) # @since UNnV C V.,
It means that = € g, [J.U:f:lﬂm} = r:‘n{f.-""]] Weu{Uag) Lo Wenlh ) C
UneaculUa) o
Corollary 2.21. fet X be a GT space. If % = {U, | a € A} 4s a F,-locally
finite p-open cover of X then | J,c 4(eu{Ua) N Xu) = 4 (Uneala) N X,

Proof. Since |, 4(eu(Ua) N X)) = (Upeatu(Ua)) N Xy, the result follows
by Theorem 2,20, O

Lemma 2.22. Let p be a GT on the topological space (X, F) and p C T,
Then 7, -reqularity of X implies the jp-regularity of the G'T space (X, p).

Proof. Easy to proof and hence omitted. O

Theorem 2.23. Lel p be o GT on the lopological space (X, ) such that
p C F and let X be a Z-reqular space.  Then each p-open cover & of
X has a p-locally finite refinement F = {F, N X, | 7 € T} of % where
{Fy |7 T} s a collection of p-closed sets in X if each p-open cover of X
has a Fy-locally finite refinement.

Proof. Let @ = {G | v+ € I'} be & p-open cover of X. For each x €
Xy, there exists a y(x) € I such that x € G, ;). As F-regular space
is p-regular also by Lemma 2.22, there exists a p-open set V. snch that
x € Ve C (V)N X, € Gyz)- The p-open cover ¥ = {V, | z € X}
has a F-locally finite refinement % = {U, | £ € X,}. By Lemma 2.19,
{e U NX, | £ e X, } i a p-locally finite cover of X. As U7, € V for each
2 € Xy eu(Uc) N X, C eu(Va) N Xy © Gogyyyia) € T for cach 2 € X,
Hence {c,(Uy) N X, |z € X} is also a refinement of . |
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GENERALIZED TOTALLY POSITIVE
Thatmi, 8. | FUNCTIONS AND GENERALIZED
Jayusri, € | TOTALLY BOUNDED FUNCTIONS
IN A PARTICULAR ECT-5PACE

Abstract

In this paper, we ghve an example of o generalized totally positive function
and nogeneralized totally bounded function in the BECT - space generated by
i i

B P TR
AMS 2020 Snbject Classifeation:41ADS, 63005

Keywords: Extended complete Tchebyeheff spaces, Generalized Lagrange interpolants,
Generalized totally positive functions, Geperalized totally bounded functions,

1 Introduction

Totally positive functions and totally bounded funetions on [—1,1] have been intro-
duced and studied v Alan L. Horwitz and Lee A Rubel in [2]. A generalization of thess
fusictions wsing seneralized Lagrange interpolants is introduced in [6, 7] and some prop-
eerties of these funeticns are also studied theee, T this paper, we give examples of these
generalized functions in a particolar ECT-space.

2 Preliminaries

The chapters 2 and 8 of |5 are chielly referred for the definitions and resolts given in
this section and these results are necessary bo prove onr main theorem in the fourth
section, In the first two sections of this paper, [ denotes the closed bounded interval
e, ] of {—oc, o).

Definition 2.1. Lef wy. wa, .2, ty, B venl valued functions defined on T = |n.b] and
fed oy <o < .0 <oy b poinds in . The collocation matrie essoctated with {u )P

Am i vy BpyeTs  ebmy 3
and {1 45 denated by M’( A A J and s defined by

Mis awny  MagaTs Oy

where di = N{j 14 < i, &5 = ), i = 1,2,...m, provided the d" derivative of u;
emista at the points oy, 1,40 =1, 2, .., m and N{A) deaotes the nuwmber of alemends
in the set A.
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Definition 2.2, fn Definition 2.1, if all the points comeide |, that 15, if 31 = 50 =
<o = Ly all equal to zy(say), then the determinant of the collocation matriz is called
the Wronskian and ts denofed by Wiug g, oot ) o). That 15

tog [ dn ) e u:n_j [-Tu]' T | 0]
W i ,um]{.-r.;] e Tl||:_ILI} i um-:ﬂmu} umf_zu]
™ M ag) e uf,.,m__ln{;mj ()

Definition 2.3. Let U, = {w}m, be any eollection of functions in C™I], the
space of all (m — 1)-times continuously differentiable functions on T, I, 8 enlled an
extended Teliehyoheff systern (K osysten) on 1 i the determinunts associated with the

i . Ty ey Dgmeti Tm i W
collocation matrices Al o it B are posttive forall zy <<, .. <
Tt I

Let Ly, tta, oo} be any finite or infinite sequence of functions in L. [f for each k,
{tig, o ug} forms an ET-syslem on @, then {w, g, o} s called an extended complite

Tehebycheff system [ECT-system) on I,

Remark 2.1, The Determinent associated with the matriz M ( P i Pl S )

Uiy =evq Umeds Ui

. PR Lot L
i denoted by D x o= s
My, ey Umely T

artsing from an BECT-syatemn Uy, = {uy,us, .o }ois denoted by Dy, (rpom oo am).

). The determanant of the colfocation matne

Definition 2.4. A subspace of (1), finite or infinite dimenstonal, is eolled an Er-
tended pomplete Tehebyoheff spuce [ECT-2pace) if it hos an ordered bozis which 19 an
ECT-system.

Blements of an ECT-space are colled generchized polyromials,

Definition 2.5. Let [T, = {uy, ua,.. tin} be an BCT-system on I, and let [ be &
sufficiently differcntiable function defiried on [, Associeted with any m points ), T,
vany By W T, nol pecessarily distinct, we define a funcon on I as follews:

[l L. i) f ()

D i T | MU g WAL S
alf ey Lol P

wilr) .. (o) fle)

where d; = N{j:j < i, ;= z;}, i = L.2,...m, provided the d,"* derwative of u;
cxests al the potnls z 6.0 =1, 2, 0.0 e

Remark 2.2. If U, = {wy e, ot g} dw an BCTosystern om 1 = [0, 8], then
the function m Definition 2.5 with f replaced by v, is denoted by Dy (e, .0 2gw)



GENERALIZED TOTALLY POSITIVE FUNCTIOMNS_..

Example 1. A well-knoun cxample of an infinite ECT-system on any mterval T =
st 8 P = {1,507 .0} For each n, Py = {I,;ﬁ_.,..,;r.'"'l} i an BCT-systen
Jorming o basis for Py, the space of all pelynominks of degroe atmost n — 1,

Remark 2.3 {¢f. 5], p.30) When o, o000 g are distinet pointa in {, the Vandermonde
determinant, Dp (1, ..., 7a), hos the following value:

L]
Dp (g, 22,..0,0,) = H {2y = xy)
|;_'|}-1I

An egquivalent condition for a set of functions to form an BCT-svstem s given in
the next reésnlt.

Theorem 2.1 {cE[5], p.363). A 3¢t of functions uy, tig, ... ty, m ™ V] form an
ECT-system if and only of thetr Wranshian deferminants are positive for ell 2 £ 1.
That s, Wiy, ta, ... ) >0 forallzel, k=1,2 ..., n

Definition 2.6. Suppase [T, = {uy, 4y, ...y} i an BECT—system in I. Given any
sufficiently differentiable function § defined on 1, its (re— 11th ovder divided difference

with vespect fo U, is defined by
D ( B i T TR )
e | el )

[r'h ey T—1y 5'1nr|]r,rm j =
0 L persy Lm—ly Em
Ml e Ume]y Uy

where #) < rq <, .. <y, are given points i f

If i, is on ECT-space on { = [a.b] and if x; < .., < =, are prescribed points in
I, then for any given function [ defined on I, there eorresponds a unigue generalized
polynomdal in I, which interpolates to f ul the points = < ... < o, (cf [5]). In
[2], we hawe derived an explicit oxpression for this unigue generalized polvoomial p,,
in 4y, and also an expression for the error [ = p,.

Theorem 2.2 (cf (8]). Lef i, be an ECT-gpace on & = |o.b) and let 2y, ®a, ..,
Ty be distinct ponts wm £ Led [ obe any function defined on §, which = sufficiently
differentieble.

(i) Then an explicit expression for the unigue genernfized polymomied po, o if,
salisfying he conditions

iz =flm) {=13,...,m.
i grivesn by

Dy, [aq1x)
By (xq)
2T € TO. S

Pmlx) = [21]er, £ D () + |21, Taes, f-

....+;!T,...-vr' |I-rlllf' A
[ 1 T ﬂr.’m—|{iﬂh---1:"'i|a-ivr"'m--l}

where Uy = g, tig, oo U} #8 an ECT system forming a basis for M, and
Ve ={us, e .,m). k=1,2,....m
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{1i) The error @ qmven by

o . B o2 mnya)
'ﬂﬂl leli‘-]' [ﬂ'h-"1jm+m]v”“!- ﬂ'{n..':rh L

where Unpr = U thaes oo W, s b1 an ECT system on I contuining U,

3 Generalizations and associated results

Thraughout this section, I denotes an infinite dimensional ECT-space on T = [a,}]
with an ordercd basis U = {u), ¢y, ...} which is an EC-system on {. For each m., U,
is the ECT-ypace spanned by Uy, = {uq, 0,000 00 b

Definition 3.1. Let F be a real valied function defined on [ A genembized polynomial
p 14 eadled o generalized Logronge interpolunt do § from U if for some w, there arists
distinet points x, 2y, ... 2, i such that p is the weigue generalized polynomial
in W, interpolating fo f at 2y, 2, ..., 2y . We denofe this generalized Lagrange
imberpolant to [ o L. .. .50 f)

The coliectron of all generalized Lagrange inferpolants to f from I 18 denoted by
GLulf).

Definition 3.2, Let f be o suffictently differentinble function defined on 1. A gener
ilezed podymorial g 28 called o gesierabized Toglor srderpolont to [ from M if for some
e, there emnsts o poid g tn [ such that g 15 the wnigue generulized polyromial m
interpolating to f and s m — | demvatives of 2.

The collection of all genevalized Tuyplor interpolants to [ from U & denoted by

GTulr).

Definition 3.3. A funcbion [ defined on ] s satd to be goacralized lotally positive on

ifp=0onl forallpe GLulF).
The collection of all generalized tofally positive functions on d s denoted by GT By

Definition 3.4. 4 real valued function [ defined on § s sard to be generalized totaily
bonnded on I if there extsts an M such that

|plz)l < M

forall pe GLy( ) and for alf z £ 1.
The collection of all generalized totally bownded functions on d i denoted by GT B

4 Main Results

Let I = [a,b] be any sub interval of [0, 00) and 16t 0 < 5y < 53 < -0 < 5, < -+ he an
infinite segquence of roal nombers, Consider the function wlr) = --- — fori= l ! N
defined on I This 1 a collection of infinitely differentiable ﬁmuhumi arising from
the Caucly kernel and therefme forms & mmplﬂte Tehebyeheff system on 1. (ef. 4],
pno.11). First we will show that the collection of functions {u, } forms an ECT-gystem
on I
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Proposition 4.1. Let { = |, b] and lef 0 < &5 < sp-< -+ < 5, be an increas-
ing sequence of real numbers. Let wir) = == fori = 1L.2....n. Then U, =
{uy, s, oo uq b form an ECT-system on 1.

Progf. First we will show that the wronskian determinants Wy wa, oo g (e are
positive for all 2 in £ and for #=1,2....n. Fix r & I. Also fix k.
Now

£ 7 e I 1

l|_-||-: l:-l]: K .l*'ll-l
W g, " }[1’} dit {ai+d Cantayd i (o Ft)
FER B .= = . * o
f=1j* -1”‘—1]! (=1 r":.lﬁ' L 1 (=T ;it—I}r
[ [axte}® e (g tan¥
_ {1yttt k=10
{.'EI| { ;r.'l:lﬂ'ﬁz 3 I)...{ﬁ]. +x)
1 1 . |
= i 1
e o Ag—I e 24T
1 1 I
L T T o L R [T o< Lal ]

1 L e
o g - SO ¢ T 1 [ TR SRR T
- I{ﬁ| + 1)1 # ‘I-.'E}---':ﬂk"-'l?-':' :
el S

where y, = - :: Uiv using the value of the Yandermonde determinant given in Hemark
2.3, wa have
L=t ke=-1 fr
Wty tegs oo e, mp)lm) = Y P i ﬂliﬂi o)
'EY)
Mo

1 b =l
si+r  si+a (s+o)s+r)

h—=w=
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Thus

(=) F ke (e — 1)l

(514 2o +u).. (8 +2)
: 85—
lr_;[ (8 + 2) (8¢ + )

W (a3, i3 - i) () = (1)1 bl Std

(=R =), e o =%
— {_l] 'E {H.“l‘ﬁ'}{ﬁ;"‘i‘xj

Lo fe— 1) -
- ) H o I
1.5:1+::| Aoe 4+ 1) e {b,-l—.L]{H_..-I‘-J}
ixf
Therefore, by Theorem 2.1, {uy, uy, ... 0, } forms an ECT-system on {,

o

From here onwards, in this section, we will restrict our discussion m J=[0,1].
From the previous theorem, the collection of functions {1, 7=, ... ==} form an
ECT-system on ..

MNotation 1. Wt wsr Ha.r notation B to denote the BCT-space on J = [0, 1] spanmed

by B = {1+;r' Fir s i) Alse the notation R} is used to denote the ECT-space
spanned by B = T, ... ==} on .

{I-i-::' Btxt

We next consider the fuuction f, defived on [0, 1] by

!
T+s

filz) = {4.1)
For this function (o be well defined on [0, 1] it is necessary and sufficient that s is a
real nnmber outside the interval [=1,0]. Hers we first obtain an expression for the
errar function

IJ- = pu

where p, is the unique generalized polvnomial in R, interpolating to f at n distinct
points £y, Ta, oo a0 [0, 1] For this we need the value of Cauchy determinant which
it given by the following lemma(ef.[3]).

Lemma 4.1 ([3]. p.268). {fa, +5,£0 fore, j=1,2, ..., n and if

N I —L
i sy a7 my iy
o, = : ; ;
1 1 L
I oag+hy  ap=ly 777 agdis
then i
D = Hi;;_jl:u'f_f"':}['!"l'_f":}

Hr!_ {as + 1)
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Proposition 4.2, For any reel number 5, 5 nol in |1, hee defined on [0 1]
as it equadion 4.0, Letpg be the unique generalized polymomial in R interpolating to
foat n distinet points @1, @, ..., @y e J=[0.1]. Then for all x in [0, 1],

- IL(e —0) (s = k) 1
B —mle) = P G TR * 5

Proaf, Given that g, is the generalized polynomial in R interpolating to f, at the
points @q, £, ..., 2y in [0, 1] 0 By (i) of Theorem 2.2, the error of interpolation is

given by
ZI R :I:u: £
u(u; ey s .f)

filx) — palr} = .
.1’.}( Ll avesy L=l T )

w o v Hpoge Uy
—t ki
141 oy A $1+8
. -
det 1 i i
l -Fu.it-ﬂ B s
E o T = i
r1+l i+
clot, :
|
:“-1 R A Y

Az =—mle —xg). i fx—ap) (a—1) . (8—n) 1
{ry+ sz +8) . (ea+s) (z+1)...(a+n)r+a

_ Myl = w) Ty (s = 4] 1
[JFENE Y | R EE R

We now prove that f; € G17' Bg. whenever s < —2 or s = L.
Theorem 4.1. The function f, has the followdng properties.
(i) fo belongs to GTBe. ,ifs 21 ors < =2,
fii) f. belongs to GTPg. , ifa > 1

Proof. Let xp, ... , 3, be any n distinct points in [0. 1] and let p, be the unique
generalized polynomial in B interpolating to f, at #, ..., #,, Then by Proposition
4.2, for all x in [0, 1],

B T ) ) bl 1
Jalz) — i) = nﬁ:ll{.rk i ]‘h_l[r | .I: s

For any = € [0, 1]
fr—a| €1 and |c+k|l=x+k=kh
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Consenuently,
e 2 — 7 gtk ok
[Tim be+ A&~ [Tk al

Therefore, for 0 <« <1,
1 ]_T;:] |&— k| 1

E'm,” e + 8] + 8|

We now consider the cases 5 = 1 and & < —2 zeparately.

Cagefi] 1 s > 1

|fn{£] _Pﬂ.[w}l i':

Then
let+rpl =s+x =5
Therefore,
HE:J+:L'*E25“
fes
From inequalities 4.2 and 4.3,
1T s — & 1
WlE] = palt) = — = i
|fule) — pal)] - e e
_ﬁ]a—.ﬂ 1
el |z + 3|
L - |1 1|
|I—5|'E J.._'_E|

1 1
<1l (k=1
[ ( m)
and so
il
P { -[P
k=1 k
Consequeent by, I .
5 < -
|flz) — pul)| g
That is,
1 1
= <
T +3 Pl )‘{.r+s' lsrsl
Equivalently, for 0 < & < 1,
1 L

{.-_._

1 1
—pofr) = ——  and @) - h
e %)) Bl e S

s

T

Therefore, for ) < ¢ < 1,

2
0=mn, o —— = 2
P[E} L oS

42)



GENERALIZED TOTALLY POSITIVE FUNCTIOMNS_..

Sinee py, = an arbitrary generalived Larganpe interpolant to £, from B2, 60 follows thai
F i generalized totally positive and generalized totally hounded with respect to R®,
if > 1. That is,
LLEGTPg. . H w21 (4.4)
anl
LEGTBR , I s21 {4.5)
Caselii) : &< =2
Now s = —2 implies |s| = 2. Choose a positive integer m such that m < |s| < m+1
Thus for k=1, 2, oo n, [a— k| = |¢| + & < m+ 1+ k. Therefore,

i Tl
[Tls=# < JJtm+1+4)
=l =1

=(m+2Ym+3) ... m+14+n)
_(m+n+1)

{ru | 1]! {4'6}
Again,
[T lzie+sl = [J(s] =2} 2 T (Ist — 2", {4.7)
=1 k=1 =1
Henes, from inequalitios 4.2, 4.6 and 4,7, sinee 0 < o < 1, wi have
L mtn4 1) 1 1
|fol) — pul}] < W m+1) (s —1r+s
_[mint P 1 ™ g
m+1 {a|—1) =+=
w1 1 frs
n ( 41 ) (I[ﬂ| — l]) (4:8)
Mow

(R o () ()

T herefore,

m+n+I N i];_'}m-l.n-l
m+1 | m

B

., E,ﬂl o E"“l & L
= (’H| 5 A% (4.9
From inequalities 4.8 aned 4.9

1x) = (o) < (5 )‘ (.Sl) T
( 1)

<K (E{M——li) (4.10)

310
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where i = (]fl"—lﬁ)m“. Sinee [s] = 2, we have

Il

—_— = |,
2(]s| = 1)

Theretore, from mequality 4.10, we see that

m+1
) = pulg) €K, where K= ( :lﬁt ) .

|s| —2
Thie
- 1 ;
w(E} < | fuls = —
)| < | fulr)] + K ey + K
1 .
_|3|——I+H 1+ K
pale)| <14 K, for all ze[01] (4.11)

Estimate 4,11 holds for all generalized Lagrange interpolants to f,. Therefore,
L et6TBg , for s<-2 (4.12)
Thus f, e TPy, i 521 or 5<—2 Farther, we have seen that
fL€GTPg-, if 521

The proof of Theorem 4.1 is now complets,

Now we will prove the converse of the above theorem.

Theorem 4.2. A necessary condition for f, to belomg to GT Bgnois thet s lies oufside
the imterval (—2.1).

Proaf. Now [—2.1) i& the union of the intervals (0, 1), [—1.0] and [—2, -1}, We prove
separately that iF & is in any of these intervods, then £, does not belong to G By-
Casge (i)} @ &8 in (0,1),
In this case consider the generalized Lagrange interpolant 5, to f, from GT'Bg.
interpolating to f, at the n points o, = k=1,2.. ., n By Proposition 1.2, for
all = in [0, 1],

&
(1)1

_ Iz —a) sl =%) 1
fu{l':l P‘n{:?:] = ﬂj.=1|:-r+i} -1_[:=1I::EH+S].JI+3-

Therefore,
H::i“ xi) I'I:=||:’J k) 1

Fil)=pll)y= o A+ &) Tl (e +8) 248
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Sinee 0 < & <1, in this cass,
[T (1_ [ ) I ik—s5) 1
{m+1)! T (e +8) 1+s

fl—m—i.y) fn—1)l 1
= I+ sk ghiml48

(1) =puil]] =

Now
(1-_1 )“z (L)"z_l 5
(n+1) n—+1 (1+4)" " e
s [rn—1)! _ 1 s RS
n+1L{1+s nin+1)l+s) " 2n*
Therefore,

| ]
2 n (#+=5)"

Lfe1) = pa(1)] >

Chocse &y, 3 sueh thal s < &) <sp < L Sinee 0 < 8 = | 8+ == < 4 for all lnege n.

Therefora, for large n,

1't+]

1
ﬂ!a[ |- m] < ﬂﬂ'm < g,

sinee 05 <3 1 as n — oo, Thersfore, for large n,
‘.rr(l} pall)| = Blfﬂlg -+ 20 BE Y00

It follows that | in this case,
Ju @ G1'Bg-.
Case (if) ¢+ 2isin [—1,0).
I this case, f, is not even defined on [0, 1], Henee trivially, for =1 < s < 0

fu & GT'Bg-.

Case {iii): —2<s< -1
Tus this case, consider the generalized Lagrange interpolant g, to f, from B* inter-
polating to f, at the points

, 1 k:
;t_m—l—m, k—l.ﬂ.---,ﬂ.

Then, using Propesition 4.2,

[F—;lril ]._.[_,IE 1|5_k1 1
nJr vk Ih e +sl |'ij

I T 1
H“‘"}H = (n-i—l) “O+Dr e

b=l

|.fa-{'”‘.|' o ';I'nl:u] s

MNow
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Alsa since s is negative, s—k < 0 Thus [s— k| = —s+k = |sl +k > | + &, since
1< |a| £ 2. Therefore,

I,"n + 1 1 |
l0) = gt > 22 e
nl TR+ 35 + il 2
ginee |s| < 2. Now
i k Ti i I n+1
< S - =1,
'F.L-1-l_|_1:1'1—|—1}5‘"'1'“J.Tl—|_1'_:|'1+1]12 n+l  (n4+1)?
Also s < —1. Therefore,
&4 s + § < 0
n+1 (n+1)? ’
Henee
o B B N o
nd+l ' (n+1)2] 1l (n+ 1)
B |5| n .\ I
N n+1l [(n+l)7
1 k
= {lsl - 1}+ {n+1:|
<8l — L+L
n+1
Consegquent v,
r-t 1 g
£.(0) — guf0)] > L ( 1)
1'1+1 i
; <
( ﬂ-l-l) , sinee |s|—1=1
n i l
I: rvM-]lri
+1 1 oat+l
3 F“'_ _2#2 =00 nd o=+ 0d.

Thus f, € GT 5. m this case also, From cases (i), (ii) and (i1), it follows that
[ GrBg., if s€[-2.1)

Equivalently,
Fi € GTBr. = s &[-2,1).

Combining the above two theorems, we get the following theorem,

Theorem 4.3, [, belongs to GT Br. of and ondy o 5 @5 0 read number sol beloriging
to [-2,1).

Froaf, From part (i} of Theorem 4.1 and Theorem 4.2, it follows that
fieGTBg. &= s¢[-2,1).
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COEFFICIENT ESTIMATES FOR A CERTAIN
SUBCLASS OF ANALYTIC AND BI UNIVALENT
Ronjan & Khoiu | FUUNCTIONS DEFINED USING AN OPERATOR
ASSOCIATED WITH GENERALIZED
MITTAG-LEFFLER FUNCTION

ARSTRALTT, 'n||h]m|ml' it |L|.-.'||.'L\' tlefiensd ml]x]&ﬂ-ufmm[tl L au] bl denvnlent
functions within the uois dise & = (£ C:s) = L} The sabclass i= construoted
uming, an operador wesocinbed with U generadized 5ittag-Lefflor funetion. Furtler-
muaore, the initial cooffirdent bownds for fumetbons in this sobelass are estimated,

Koy words © Taylos-Meclaurin series expansionn, Anslytic function, Univelont
funétion, Bomivalent fowction, confficient bounds, Mittag:Teffler fiosction
Mathomutics Subject Classibcathon: 30045, 30080

L. INTRODUCTION

Lt A be the class of soslytic functions defined on an open uoit dise A= [z € T
izl < 1) and which are in the form

bt
{1.1) hiz) =E+Zu_,.:" [z A

=2
Further, & is the set of all univalent functicms in A, Here, the Koeha One-Cluarter
theorem 5] plays an boportant sole and it days that the image of A onder b £ 8
contains o dise of mdios 1/4.
Clearly, for each function h £ 5, ' exists and it is defined aa

iihzl=% =2€A

and
(M) =w, < ey il > 1/4
whisre

(L2 gluy=Aa" W) =wu — g + (203 — ay)ut — (5:1:35 — Bagag + ogw! -,

If hoth functions & £ 5 and A~! are univalent in A, then & is said to he hi-univalent
in A . Here we denote the sel of all such bicunivalentd funetions by 2. The study of
siihelagses of bi-univalent fonetions and their coefficient hounds i an interesting topic
of researcly and it was first 2badied by Lewin [7] and e proved that Jaq| < 151, Later,
Netoaynhu 9] showed that roeejus| = 4/8. Fucther, Branwin aud Clusie [3] conjec-
tured thot, for 3 |og| < \.frﬁ Brununn and Talu [4] introdoeed very interesting
two subelnsses of the class bi-univalent funetions X, the class of startlike functions
5430 and the elass K[F) of comnvex fimetions of order 32 € [(K1]) m & (see 0]}
Later, S'E () (the class of bi-staclike lunction of order #) wod K- {8} (the clis of bi-
copvex functions of order ) were introdueed on A, Many resenrchers worked on these
clasaes and ahtained initial coefficient bounds and later on many congrnent snhelassss
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were introdiced by mathematicians and chtained the cosficient bounds for diversified
subelasses of bi-univalent finetions(see]1], [10], [6}).

In 1903, Goata Mittag-Leffler [8] introduced the following function

&0 2::
1.3 Bzl = —
(1.3) =) ;'E:ﬂ" T{L + jou)

where o 2 [, = € C and Uis) is a gamma funetion,
Mareover, Srivastave and Tomovaki [12] introduced the function

}'ka
(1.4) Evkie) = (ki
u JZ“ I+ ja)j!
where 5, 0,0 € CiRelk) = 0 Be{a) > mae{l Relk) — 1} and (7); T& Pochhammer
symbal defined as

T I'li+)

™=

il ks visloe i 17 = 0 aod s vdueds vy + 1) {544 - 1) IF 2 ML
Using operator {1.4), Attiya [2] defined the operator H::.H.k[h] Al = A by

(L5 H aultidz) =@ 4 ls) e Mz) (s A)
where

. T(8+0a) f oy 1 .
Qu.ﬂ,j{z-] {":f] (En,,j'{*v]’ T[S} |:‘ = ﬁ".:l'
where v, 5, & £ C; Be(k] > 0; Bela) > mas{0, Be(k) — L} Belo) = 0 when Re(k) = 1,
A0 and the symbol(®] denctes the convolution (or Hadamard praduet ).
It can be epsily obaerved that

= Dk + )08 4 &
(L6) Hoaalh)z) =« +%‘ l{{kJ+’r‘JF;{J;+Jﬂ].]JI' e

aid

(1m = (H::IHI*[ﬁ]{:J) = (":k) (HLtn)) - (H"ﬁu.{ﬁﬂ[ ))-

Maotivate by the work (especially [1d| 1 end wsing the operator defined in (1.5), we
introduce & new snbelass .l"l.u”'“'" A of analytie fonetion class AL

Definition 1.1. Let b £ A, g he an extension of A~ on A and we: A — © he
fionetions sich thst min{R{uls)), Rivz)}] = 0 (= £ A) with 20} = o{0] = 1. Then
we say that b€ N5 (A} If following conditions are satisfied.

z{ﬂg‘ﬂ*h{:})!
Az (H::rr..ﬂ.th{::l} + (1= AU 5 k(=)

(L8} heEx, guld) {(hed)ized)

ud
w (3 sa0()
o (M gon)) + (1= 9 0)

(1.9) cu{A) (A0, 1)weA)
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where =, f,a € Cifeth] = 0 Relo) > maz{0, Be(k] — 1}; Helto) = 8 when Re(k) =1
and ## 0.

For particular values of v o,k and for differest choiees of functions » end v, the
class AT T () reduces to many well known classes of holomorphic and bi-univalent

functions as follows.

Remark 1.2, (1) For 5 = Lo = 0 and & = 1, the class N 5E(A) reduces to the
class .ME"[.-".] steedied by Yamini J [13].
(2] For & = Loov = 0,k = 1 and by setting wlz) = (J'”:]Tr and vz) = ("‘)Tr

-z {EX]
(where 5 € (0,1];2 € A), the class MJHLU(A) reduces to the class 852y, )
intraducad by Murngusindaramoortiy ec al [11].
{3) For 4 = Lo =0,k = 1 and by sstting u(s) = DU=202 gng g(z) = 1=li—2n

e
iwhere 5 € [0.1):z £ A), the class .-"'u':;j{}.} reduces to the class S {y, )
imtrodiuced by Murmgusundaramoortiy et al [11].

{4) By setting A = 0 in the cliusses 5850 A} and Sgin, AL, we get the clasies
intraduced by Hrannan and 'Faha [4).

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS N:I';:':{AJ

In this seetion, T derive initlal confBeient bounds of the functions from the class
MTRA

Theorem 2.1. If i € B given by (1.1) and if is o member of the closs N::jj'f_h}, ihen

{21}
e 2 E
Yol vk \j; (IW10IP-+ 0 e ‘Eir‘” 20)| [l (0)] + (0]
L 1—A k40| L8 +a) | 27|
s
(2.2}
lag] < 0] 4+ [e*(0)) | Tk -I—ﬂ‘ ‘T{ﬁ+'.1.‘nj
il -2 C|T{k+4)| | T +a)
ey B[ (M + [0 | Dk +) P03+ 2a)* (0] + [o"(0)]
(I=AF T+ |TE+a | ° 27
wliere

) (.:.L 1) (rmH -f})ﬂ (rr_rs+a1 )‘-’ 2(1-X) T{3k+7) T(F+a)
U7 J\TEr /) \Te+z 8 Tik+7) T(d+3a)
and 5, 300 € 05 Re(k) > 0 Reda} = maa{lh, Belk) — 14 Beln) = 0 when Re(k) = 1

and F 0,
Proof. Let b€ ACU(X), Then from (18} and (1.4), we met

z ('H::,,,-,ﬁh( cj)r

(2.3} .
Az (H:-..u.&ﬁli}') + (1= MH] ;A=)

=ufz) (A= 1l)zeA)
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u [:H;ﬂ.,l,..g[urj)“

i (H;.ﬂ#ﬂ“'})j + (1 —AYH i)

where v and v are functions which satisfy the conditions of Definition 1.1. 30, Taylor-
Maclaurin series of woand @ can be weitten as follows,

ulzl =1+ oz + ozt + -

(2.4) =wlw) {[A€[0L)jweA)

anid
vlwd =14 g+ van 4o
123 5 Whio)’
Asl D ) AR, hle

Now, equating the coefficients of with coefficient of ulz],

we et the following equations,
P(2k+4) Fi8+a) ag "
Tik+) TiA+2 2 ™

(25) (Y

anid
{E-m @ 2.3 s .
2= 1) (I‘{Ek+~r_]) (T{ﬂﬂ-i‘.‘:j) ai+2{1_.a]1"{3k+1-] ClA+n6) ty

Tik+7) T(B+3a)/) 4 Tik+v) T(F+3a) 31

o x ; Mg )| : :
Now, equating the coefficients of pY P U TSy with eaefficient of o (w),

we get the following equations.
T2k 4+v) T{F4a] w

@7 W=Dy T W
and
(2.8)

1= AN F(3k+4) TE+a) .. N1\ [T2k+1\* [ T(E+a) V2.
( 7 )'r[bw}'rcﬂmn}‘?“é‘““]*( i )'(F[k+~f}) '(F{.-i+-ij) 4

Trom (2.5) and (2.7), we get

(2.9) ==
e

i 5 v 4 iy ; B I'l2
() () ke
Now from {2.6) and (2.8), we get
(2.11)

13 = dutih,

T (r{zk i 1})=(P[H i u})“ﬁJu A) T8k +7) T(84n)
Lk +5) [Mi+2)) 47 3 "Tk+4) T(F+3a)

From (2.107 and (2.11), we can eosily obtala

; 2 2ot +ud) ([‘{k+ﬁ} ’(I‘{_ﬁ+2¢r})’
(212) b I‘{Ek+-r]) (7 +a)
ol

(2.13) @:M

|7

= W,
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where

] oyl B & k. 1
1_=(::Fb L)_(nzkrﬂ) _(r{;j F u;) +2{13 A) Pi3k ++) Tlod8)

: k=) (g +2a) "Tik+4) Tlda+d)
By using the fact u(z) € uld) and ww) & v A); we get
o = 2{u(0)) 4+ WO | Tk 4+ o) P08+ 20)
{2.14) Jay|™ = A7 ‘l{ﬂr-ﬂ--—;] I3 + o)
T
(2.15) laalf < | {00 + |u" ID}II

2r|

simg these inegunditios. we get the desire estimate on (o] stated in [2.1).

MNew to obtain the bound on oy, wo subtract (28] fromm (2.6) aod we get,

201 — 2} T3k ++) T8+ a] =allyu
3 Tlk+-) L(#43a ]

Now, by substituting the values of ug from (212} and {2.13) in (2.16), we have

(2.17)

_ e 4 o) (F{k 7] )“ (F{ﬁ 2 i*n})” | g — v} T(k+5) T4 3a)

(2.14) = ghs — 1y

am

YT AE T2k + ) I{d+a) 21 —A) T{3k=4) T[A+a)
il
" (gt} | S(pn—am) Tlk+4) I +3a)
(218 METT T T Al-A) T +) T(F+a)
respectively,
By using the fact wiz) € uld) and e(w) € v[A), we g6t
(2.1
g < 2UEOP4 WON?) | Pk +3) 708 + 20" S0"(O)1 + (O] | Tl ) | (TS +30)
Gt (L—a)? T2k A4 )| | DL+ | 4(1 - X} NEEk+ )| | DA+ e)
and
"0} + [v"(0)] _ 3{ju"{0)) + (O} | Tk 430 | |E(8+ 3a)|
(@20 laa| = =50 T | Ttk +) ‘ T@+a) |
Henee we get (2.2) and it completes the proof. E|

3. COROLLARIES AND CONSEQUENCES

For particular valoes of v, 0.k and for different chotees of funetions u oamd «, in
Theovem 2.1, we gel mony well known results a2 0 corollares of our résult as foliows.

By setting o = 0,7 = 1 and k=1 in Theorem 2.1, we geb the resull sbinined by
Yamini J [14].

Corollary 3.1. [f h € ¥ i a function given by (1.1), is in the closs No"(A) (7 =
[ 1) 4 € |0,1)) then

|u..|{m,-ﬂ{ )] + [ett0)]® /(00 + [ (0)] }

I TTESYE 21— )
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I T T T e T (1 e e N O (D e N ) }

|“"'|£”'£“'{ &I—2) 2A1i—aF (1= A2

By setbing o = 0,5 = Lk = | and by considering functions u(z) = {}i—'f)lr and
vz} = {ﬁ)” (e (01, 2e A) ln Theovem 1, we get Lhe following corollury,
Corollary 3.2. If h € 8850, A) i the function given by (L1), then

. ] o Ay
leea| Emm{l_x ] _J'.}

Eﬁj ,?2 4‘!}2
[I=AP"1-2a * [1 ;'m'ﬂ}‘

amnd
ey = rniu{

If we set o0 = 0oy = 1,k = 1 and choose the functions wiz] = l—ﬂ;_;f’lguud
piz) = S22 2 0,19, 2.€ A) in Theorem 2.1, we get the following corollary.

143
Corollary #.3. [fh & SEin Al & the function gieen by (8.1}, then
21 —n) A1 - n}}

- 1
. i
|u-;|_rr1tr|.{ Y=4 ¢ kK

R 1B Y i W T 1 B
{ualfmm{fl—h}?’l—}. [1—4#}‘

i
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Abstract

One such rudimentary issue in ey theory of groups i 10 count abundant fizey subgroups
(FSCes). Several inveatigators have noteworthy arguments in contemporary times for the boom of
the subject matter. It is always infinite when we try to find out the momber of FSGs
independently. To study the equivalence of FSG, some researchers have used the concept of an
equivalence relation in fuzey st (FS) The tssees of reckoning an abundant distinet FSGs of a
finite group can always be obtained corresponding to the equivalence relation chosen by us, The
total count of FSG of a specific proup be different and will depend on the choice of the
cquivalence relation chosen, For computing the number of FSGs in our case, we have followed
the approach similar to Sulaiman & Ahmad [10], The sole aim of this paper i to follow the
approach somewhat similar 1 that in the cited paper for enumerating the number of FSG of D =
Cy. For reckoning the number in this paricular case, we will make use of the katice subgroups
graphic.

2020 Mathematical Sciences Classification: 03E72, 0BAT2, 20N25
Keywords: Fuzey Set. Fuzzy subgroups, Equivalence relation, Chain, Subgroup Lattice

1 Introduction

Zadeh [1] propounded the conception of FS. The literature on FS theory and its application has
been profiferating rapidly across many disciplines of human knowledge. In 1971, Asriel
Rosenfzld [2] initiated FS in the domain of group theory and coined the notion of FSGs of the
group. Afterwards, the research in the corresponding branch grew. To make a dent in reckoning
the abundant FSGs of the group covered by the equivalence relation. In this regard, the work of
Sulaiman & Ahmad [10] is of worth. Our sole purpose in this article s 10 enumerate abundant
FSGs of Iy x 3 following an approach stmilar to that of Sulaimzn and athers, Recently, Dhirg) Kumar
and M. K. Singh [15,16] caleulated the agzregates of F8Gs of Dy, s and 02 using this relation. In
this work, we have reckoned the aggregates of FSGs of Dy= Ca,

We have divided this paper into four sections, We've provided an introduction in the first section.
Section two covers a prefiminary outline by Sulaiman & Ahmad. Section three discussed the

effects of locating aggregates of FSGsE of Des Tz At last, we have discussed the conclusion and
fisture research,
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2. Preliminaries

Deefinition 2.1 {|1]). Assume that W < @. Suppose P: W — [0, 1] is & mapping designated as FS
of W,

Definition 2.2 {[2]). Any FS pgof W ois referred to as a FSG of W il for all a8 € W, the
succeeding axioms are fulfilled:

(i) ulaf) =z minfpla) u(B)iva g ew
(ipla~ ) zpla) vaew

Theorem 2.0, |9 A FS p of M is 2 FSG of W T 3 a sequence of subgroups of M, Ny(p) =
Na() oo Np{) = W osuch that p can be expressed as:

a, xE N ()
#(1'} o H! XE '“"zf#] - Hlﬁ.t:}l
E;|:l XE Np{lu.} = Np—lf#}

Definition 2.3, |9] Suppose that . ¥ be FSG of W ofthe form

2y xXEPR
)= Eliz xEP—PF
é,l TER — Py
and
[ xE M,

y(x) = 4’3? TEM,— M

[ xE M, — M.,

MNow, one can say that g is equivalent to y and we denote it as p~y, ift
{fiim=n

(i) Pyu) = My (y), viefl2, .., n)

3. Number of FSGs of Dg x C:

Wehave Ds=< a,b:a* =b* = Lab=ba' >

Clearly Dy = {1,a, a*, &', b, ab,a*b, a’b}

and C1={1,x} where x® = 1
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Then, we have
Dy Ca = {(1,1), (a, 1), (a®, 1), (e?, 1), (B, 1), (ab, 1), (a*h, 1), (a*b, 1),
(1,x).(a,x), (a® x), (a® x), (b, x), (ab, x), (a®h, x), (a®b, x) }

Subgroup lattice diagram of De=Cs is as shown below

We have 31 subgroups of Dy« Cs; those are 1= {(1,130,Pv=4(1,1), (b, 1))

324
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P:= {[ 1,1 }- {"Tz &, x}} Pi= {(1-1.}- {b} X }]' Pa= {El. 1}.1 (ﬂ Ebj 1)}

Pe={{1,1), (a?, %)} Pi=((1,1), (@2, 1)}P={(1,1), (1,20} Ps=((1,1), (ab, x)} Pe={(1,1), (a®h, x}}
Pio-{(1,1), (ab, 1)} Pri~{(1,1), (@®b, 1)}

Hi={(1,1}, (a3, x), (b, 1){(a%b, x)}

Hz={(1.1), (a®, x), (b, x){(a*b, 1)}

Hi={(1.1}, (a®, 1), (b, x){(a*b. %)}

Ha={(1,1}, (a2, 1), (b, 1){(a%h, 1)}

H={(1,1), (a,x), (a*, 1){(a”, x}]
He={(1,1), (¢, 1), (1, 2/ (o, 2)}

H=[(1,1),(a, 1), (@ 1)((a*, 1}]
Hy={(1,1}, (a® 1), (ab, x ) (a*b, x)}

Ha={{1,1}, (a® 1), (ab, 1){(a®b, 1)} Hie=[(1,1), (&%, x), (ab, x).((ab, 1}}
My ={(1,1), (a?,x), (ab,1),((a’h, x)}

Mi={(1,1), (a% 1), (b, 1), (a®b, 1), (1, %), (a*, x), (b, x), (a*b,x)]
M:={(1,1), (a, x), (a? 1), (a®,x), (b, x), (ab, 1), (a®h, x},(a’b, 1)}

Ma=[(1,1), (@ x). (e®, 1), (. x), (b, 1), (ab,x), (a®h, 1), (e*b, x)]

Ma={(1.1), (a, 1), (a?, 1), (@* 1), (1,x),{a, x), (a*.x), (@ x)}

Ms={(1.1): (a, 1), (a? 1), (a?, 1), (b, x), (ah, x),{(@*h, x}, (a*b, x)}

Ms={(1,1),(a, 1), (a?, 1), (a%, 1), (b, 1), (ab, 1), (a*b, 1), (a%h, 1)}

Mo=[(1,1), (a?, 1), (ab, 1), (a®b, 1), (1, %), (a?, x), (ab, ¥), (a* b, x)} and Z=Dy=C; itself,
We have the fallowing chains

Ny G=2M <EM<ZM<ZM<ZMi<ZMy<ZM<=Z

Total chains=8

(O H, <M <ZH<Z Hy <My <ZH <ZHy<M <Z Hy<ZI Hy<M,<Z H;<
Me<Z My M <Z N <ZH<M;<ZH <Me<ZH; <M <Z Hy<Z Hg<My<
IHe =My <2 Hg <M, < Hi < ZHg= My <Z Hy oMy <Z Hy < My <2, Hy <
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LM< Z Hy <My <d Hg=<My<ZMag<ZHg<Mi<ZHg<My<Z Ho<M;=<
EZHy < ZHg < Mg <E g <My <EHpp <My <E Hypg<Z Hpy <My<Z Hyy =78

Total chains = 36

ik <H <M <ZP<H<ZP<M<ZP<ZP<H <M<ZP<H <
My<ZBh<ly<Mg<ZPi<Hy<ZP<Mi<ZP<Mg<Z

{JHP:I_{HI_{M; {z‘le{H‘l {E,PE{H!{E,FE{Z_FZ {HH{Ml{EJFE{HE{
Py =M, <2 P<M<ZP<<H <M <ZP,<M;<Z

NPy H <M <Z PRt <iPh<M <2 P<ib<H;<M<EEP<H <
E Py Hy <My CEZ Py <My I Py Hy <My <Z Py < Mg

v <l <M <ZP<H, <ZP<M<ZP<iP<H <M <EZIP <H <
LB <H, <M< P<My <l Py<H <M <ZP<M <2

WiPeecHi <M <ZPcH<ZPhaM<ZP<IPo<Hy<M<ZP<H,<
ZPi<H, <M <ZP,<H<ZPi<H,<My<ZPi<M <ZP;<H,<M,<
P <M, <ZP.<Ho<M <ZP.<H,<ZP.<H,<M<ZP.<H, <Z

Wil =My <My <Z P <H <ZP <M <ZP=<ZP<H;<M=<ZIPF <H <
P M =8 PosHs My <Z PpaMy<ZPo<sHi<M<Z.Po<sH <M <
Gl Wy <E M <8 Py <M<l P<H <M <EZF<H <M<
P Hy<Z Pea iy My <ZT Py Mo I Pec Hy s My < Z P < Hy <
S H <M <Z P M < P Hy <My <2 P <M< Z Ps<Hy<M: =

L Py B P s Hyc M, < Z P M, SE P, <Hy <My <Z P, <Hy <M<
IR cHy T P Hy s My < P < Hg =My <2 P < Hy =My <2 P <H; < M; <
&

(i AE<H, <M <ZP<H<ZPh<M<EZP<ZPh<H<My<ZP<M;<
I He M, <2 P M, <2

(vili) Pp= Mg =My <Z PNy <Z PpsM <Z,Pg <l Py<Hg < Mg <Z,P<M;<=
ER<Hy<M <ZPp<M;y<ZPi<Hy<My<ZP<Hy<Z

() Py < Hyy <My < E P Hy S ZPa My Z Py L, Py Hy < My <« Z Pas My <
2P Hy s M Pps M, < Z Py Hy s M. <2 P M < Z, Py Hy <2

(%) Pig < Hyy < Me <Z,Pg<Hy <ZPp<M<ZPp<ZPp<Hy<sM,<ZPy=<
Mz {E.Pm{ffq*:z.ﬁu ":HI} {M{. ":.z.F“}{Mh{Z.P]”{Hq{M?{z.P!" {M'.l '::z

(b Py sHy =My < Z P € Hy < Z Py <M, <Z P <Z Py <Hy =M <20 =
Mg <Z P <H <M, <ZP, <M, <ZP,<Hy<M,<Z P,<H,<Z
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Total chains =10+ 10+ [0+ 10+ 16 +36+ 8+ 10+ 11+ 11+ 0=142
Total chains im (1) + (2} + (3 =8+ 36+ 142 =186

Henee, the number of FSGs correspending to the above chaing is 186,

14) As a consequence of P1(g) = [(1,1)}], we have 186 fuzzy subgroups.

Therefare, the overall number of FSGs of De= C2 152 = 1B =372
4. Conclusion and Future Research

We use the equivalence relation introduced by R. Sulniman and Abd. Ghafur to obtain the
number of furzy subgroups of Dy » C: This method can further be applied (o count fizey
subgroups of s0me more abelian and non-abelian groups,
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SOME DISTANCE-BASED TOPOLOGICAL
INDICES OF DOUBLE STARBARBELL
GRAPH AND PETERSENBARBELL GRAPH

Abstract : A topological index is an analytically derived numerical
index for the graph structure. In this paper, wo study some distance-
hased topological indices, such as, Wiener index (W), hyper-Wiener
index (WW), Harary index (H), Reciprocal Complementary Wiener
index (RC'W), Wiener Polarity index (Wp), Terminal Wiener index
(TW), Reverse Wiener index (A) and Reciprocal Reverse Wicner index
(R) of Double starbarbell graph BSB,, ;. and Petersenbarbell
graph PBy,, ;...

..... "mdm

MBSC : 05C0Y, 05012, 05076

Keywords: Topological indices. Wiener index, Double Star graph.
Double Starbarbell graph, Petersenbarbell graph,

1 Introduction

In this paper, we consider only finite, undirected, connected and
simple graphs. For a graph ¢ = (V| E'), the number of vertices and
edges will be denoted by | V(@) | and | E(G) | respectively. If w.v €
ViG], length of the shortest distance between y and v in G is denoted
by dg;(w, v) and we simply denote it by d{u, v) if there is no ambiguity
in the graph under consideration. The eccentricity of a vertex u in
a graph 7 is efu) = maz {d{u.v) : v € V(G)}}. The radius (resp.
diameter) of G is r = rad(G) = min{e(v) : v € V(G)} (résp. d =
diam(G) = mazx {e(v) : v € V(G}}). In a graph, a vertex of degree
1 is known as a pendent vertex or terminal node or leaf node or leaf.
Definitiong which are not seen here can be referred in [4] and [5).

A topological index is an analytically derived mumerical index for
the graph structure. Indices are graph invariants used to study graph
structure. Graph techniques have many applications in various fields



Sivassnkar § and Babysuganya K

such as Chemistry, Physies. Biology, Computer science, ete. The
Wiener index is the distance based topological index introduced by
the chemist Harry Wiener in 1947 [26] and also known as the “Wiener
number” (7, 9]. Wiener index is widely used based on the chemical ap-
plications of graph theory which counts the number of bonds between
pairs of atoms and sum the distances between all pairs by generating
a distance matrix [20], The Wiener index is defined by the sum of
distances between all unordered pairs of vertices of a graph G,

WG = > du,v).

wes V(G

The hyper-Wiener index is the generalization of the Wiener index
introduced by Milan Randié¢ in 1993 |23] and is defined as follows :

=é D [dlu,v) + du,v)*].

T

WWI(G)

In [22] Plav&ié et. al, and in [16] Ivanecine et. al., independently
mtroduced the Harary index, in honor of Frank Harary, For the graph
G, the Harary index is defined as the reciprocal of the Wiener index,
and denoted by

1
HG) = Y PTOWTE

eVl

Tn [15, 17] Ivancine et. al.. introduced the Reciprocal Complemen-
tary Wiener index, denoted by RCW () and given by

I
RCW(G)= d+1—d{uv)’

wre V(G

where d is the diameter of a graph (.

The Wiener Polarity index Wp of a graph G, introduced by Wiener
in 1947 [8], is the number of unordered pairs of vertices of G such that
the distance between u and v is 3,

Wp(G) =|{{u,v) | dlu,v) = 3,u,v e V(G)}|.
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The Terminal Wiener index of a graph & is defined by Gutman
et.al., in [14], as the sum of distances between all pairs of pendent
vertices of (7.

TW(G) = Y dlu,v)
V]
deg|u)=degiv}=1

The Reverse Wiener index was proposed by Balaban ef. al., in 2000
[2] and is defined as follows

Mmzn{n;l}d

where n = |V(G}| and d is the diameter of .

In [18], the Reciprocal Reverse Wiener (RRW) index R A () of a
connected graph G is defined as

RA(G) = {Zm.-evm:, aﬁm o for 0 < dlu,v) < d,

WiG),

0, otherwise.

where d is the diameter of a graph G.

In this paper we caleulate W(G). WW(G), H(G), RCW(Q), Wp(G),

TW(C). AMG) and R A (G) of a Double starbarbell and Petersenbar-
bell graphs. We mention some concepts and results below, which
are required for proving the theorems.Various indices are referred in
[10, 11, 12]

A complete graph on n vertices is denoted by K. 5, denotes the
star on n vertices in which one vertex is adjacent to all the other
vertices, See Figure 1.1 for 5;. Also 5, = K, _.

(1]

1 sy U Yy

Star graph S5
Figure 1.1

B
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A double star is a graph obtained by inserting an edge joining the
eenters of K, and K, for n,m = 2 and it is denoted by B, .
If n = m in the double star graph, it is called as bistar graph and
denoted by B, ., See Figure 1.2 for By 5.

Ui
Ly
i T
iy
Double star graph £, 5
Figure 1.2

Lemma 1.1. [1] Let K, and S, be the complete and star graphs of
order n, respectively. Then
(i) forn = 1, W(K,) = (3)
(ii) forn = 1, W(S,) = (n — 1)* O

Lemma 1.2, [1] Let K, and S, be the complete and star graphs of
order n, respectively. Then

(i) forn > 1, WW(K,) = in(n—1)

(i) forn > 1, WW(S,) = 1(n—1)(3n —4). O

Lemma 1.3. 25] Let K, and S, be the complete and star graphs of
arder n, respectively. Then

(i) forn>1, H(K,) = {[;}
(i) forn = 1, H(S,) = j(n—1)(n + 2). W
Lemma 1.4. [21] Let K, and S, be the complete and star graphs of
order i, respectively. Tth

(i) forn > 1. ROW(K,) = (})

(ii) forn = 1, RC 'WI[S“} = §ln— 1% (W

Lemma 1.5. [8] Let K, and S, be the complete and star graphs of
order n, respectively. Then Wp(K,) = Wp(5;,) = 1. Bal
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Lemma 1.6, [13, 14] Let K, and S,, be the complete and star graphs
of order n, respectively. Then TW(K,) = 0 and TW(S,) = (n —
L)(n—2). O

Lemma 1.7. [6] Let K, and S, be the complele and star graphs of
order n, respectively, Then

(i) forn =1, A(K,) =10

(ii) forn = 1, A(5,) = (n— 1), O

Lemma 1.8. [27] Let K, and S, be the complete and star graphs of
order n, respectively. Then
(i) form=1 BRA(K,) =0
(ii) forn =1, RA(S.) = (n—1). ]

2 Indices of a Double Star Graph

In this section. we calculate some results for distance-based topo-
logical indices W(G), WWI(G), H(G), RCWI(G), Wp(G), TW(G),
AG) and KA (G), where G is a double star graph as in [19].

Theorem 2.1. For the double stor graph G udth m,n = 2, then

(i) W(G) = n(fn +2) +m(m + 2) + (3mn + 1).
(ii) WW(G) = [n{'&n+ 5)+m(3m + 3) + 2(6mn + 1)].
(iii) H(G) = Ll3n(n+ 5) + 3mim +5) + 4(mn + 3)].

(iv) RCW(G) = f[ In+T)+m(3m—=+T)+4(3mn + 1)|.

Proof. Let ( = B,,, be the double star graph with m.n = 2. Let
V(G) =WV UV, where V] = {u, 4y, tg, ..., up} and Vo = {uv, vy, vg,. .., v}
Fori,j=1,2,...;nand k. £ =1,2,...,m the distances hetween any
two vertices in & are given by
div.v) = dluww) = dlvnw) =1,
du, vx) = d{y,v) =2,
d(us, u;) = dlvg, ) =2.1# 7 and k # ¢,

1‘3!{'7!.” '?}*.] =3

Here diam(G) = 3 and the distance between any pair of vertices varies
from 1.2,... . diam(G).

The number of 1 distance, pair of vertices is n 4+ m + 1.
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The number of 2 distance, pair of vertices is (3) + (%) +n + m.

The number of 3 distance, pair of vertices 15 mn.
By using these we derive the following

(i) W(G) ={n+m+1j1+[(z) + (?) +n+m|24 (mn)3
=n{n+2)+mim+2) 4+ (3mn+1).

(i) WW(G) = %[{-n +mA 1)1 4+ 1%) + [(g) | (’;) +n+m](2 + 2%)

+ (mn)(3 + 3%
- l[n (3n 4+ 5) + m(3m + 5) + 2(6mn + 1)]

i) HG) =(n+m+1)s +1() (?)Jﬂhm]%*(mn]%

= é[anqﬂ +3) + 3m{m+ 3) + 4(mn + 3)].

(iv) ROW(G) = (n+m + 1}% e [G) + C’;) +n+m ]% < (mn) }

= Il-i[n(ﬂn +7) 4+ m(3m+ 7) + 4(3mn + 1)]. O

Remark 2.1. In Theorem 2.1, whenm=n=1, G &2 B, the diame-
ter of graph G is 3. Hence W(G), WW(G), H(G) and RCW(G) are
valid. O

Corollary 2.2. For the double star graph G with m,.n = 1, Wp(G) =
T,

Proof. The number of 3 distance pair of vertices is mn by Theorem
2.1. So, Wp(G) = mn. 0

Corollary 2.3. For the double star graph G with m.n = 1, TW(G) =
nin — 1)+ mim — 1) + 3mn.

Proof. For m = n = 1 in Theorem 2.1, G 2 Py. s0 TW(G)
TW(Py). For m.n > 2 in Theorem 2.1, TW(G) = (D)2 + (7)2 +
(mn)3 =n(n—1)+m(m — 1) + 3mn.

Lemma 2.4, For the double star graph G with m,n = 1, A(G) =
%}{'m +n+2)m+n+1)—[nln+2) +mim+2) = (3mn+ 1)].

)=k
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Proof. In Theorem 2.1, | V(G) |=m+n+2, d =3 and W(G) =
n{n+2) +m(m—+2)+ (3mn+1). So, A(G) = Hm+n+2)(m+n+
1) — [n(n+2) +m(m~+2)+ (3mn+ 1))]. |

Lemma 2.5. For the double star graph G with m.n = 1, R A (G) =
tmim+2) +n(n+2)+1].

Proof. Here d = 3, from Theorem 2.1 and the distance between
any pair of vertices varies (0 < d(u.v) < d.
The number of 1 distance pair of vertices is n + m 4 1.
The number of 2 distance pair of vertices is (g} + {?) + 1+ .
By using these we derive the following,

1 T m 1
RA(G) = fn+m+1}§-1- :_(2) + (2) +-n.+m]I

= %[m(m+2}+ﬂ|{n—|— 2) + 1]. |

3 Indices of a Double Starbarbell Graph

In this seetion, we introduce double starbarbell graph BSB. ., ..
which is similar to starbarbell graph [24] and derive some results for
distance-based topological indices W(G), WW(&), H(G), RCW(G),
Wp(G), TW(G), A(G) and B A (G), where 7 is a double starbarbell
graph.

Definition 3.1. The double starbarbell graph BSB, ., r.... 5 o graph
obtained from double star graph By ond m 4+ n complele graph I,

by merging one vertex from each K, and the i leaf of By, where
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1.2

Uy Uy 4

24 M

Lo g Uz o

tgn

Double Starbarbell graph BS B4 4.4.4.4
wherey;, =4, i=1.2 ... m3+n

Figure 3.1

Theorem 3.2. For m,n = 1 and r =2 2 the double starbarbell graph
G, in which all the complete graphs are of the same ovder. Then
(i) W(G) =1+""(r"+9r —4)+ mnr(5r —2)
+r(2r— 1)|n(n — 1) + m{m — 1)].
(ii) WW(G) = 52+ (m+n)(r* +17r — 10)
+In(n— 1) +m(m — 1))(10r* — 8r+ 1)
+ 2mn(15r% — 10r + 1)].
(i) H(G) =1+ 22(3r? + 2r + 4) + Z2(6r* + 3r + 1)
+ giln(n — 1) + m{m — 1)](3r* + 2r + 1).
(iv) RCW(G) = § + T=0(6r* + 20r — B) + 55(3r — 3r + 1)
+ a5ln{n — 1) + m(m — 1)](6r° — 4r — 1).

Proof. Let G = BSB,, ;, . r... bethe double starbarbell graph where
each complete graph has the same order with v, 2 2, 1 €1 € m+
nand mn = 1. Letrm =71, i = 12,....m+n. Let V() =

{”-: L T £ T R 1 I £ 0 L R 1 0 SR L7 L P e U U114
Vi s Uy Wy oy e Wpy vn oy W 1a Ty B0 000 ﬂm.r}* Tilﬁﬂ I'IEG} =
hulhbu-- Ul ViU U--- UV, U{u, v} where U; = {u,y,
Wigso oo Wipy and Vi = {5 st 1€<i<nand 1 £ 5 €< m:

Fori,j=12....nand pg=12,....mand k. £ =2,3,....r the
distances between any two vertices in (¢ are given hy
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dlu, v} = d(,ui) = duin, wig) = dug, wig) = 1, for k # £,

d(v, v ) = d(vpy, tox) = d(vy g, vpp) = 1, for k£ £

dlu, vp1) =d{uwg.v) =2

d(wiy, wi1) = d(Vp1,91) =2, for i £ j and p s ¢

(i3, uzx) = d(vp1,vy0) = 3, for i £ j and p £ ¢

d(u, vpr) =d{ugg,v) =3,

d'{ui,iv ﬂﬂ,k} - d{u}'.k- Uq.]} = 4!

d( i, tpr) = 5.

Here diam () = 5 and the distance between any pair of vertices varies
from 1,2, ..., diam(G).

The number of 1 distance, pair of vertices is 1+ n+n(3) +m+m().
The number of 2 distance, pair of vertices is n(r — 1) +m{r — 1) +
)+ (%) +n+m.

The number of 3 distance, pair of vertices is m(r — 1) +2(r — 1)(}) +
n(r— 1) +2(r—1)("y) + mn,

The number of 4 distance, pair of vertices is (r—1)(}) 4+ (r—1)*(%) +
2(r — L)ymnn.

The number of 5 distance pair of vertices is mn(r — 1)%

By using these we derive the following

2 2

+ (g) + (?;F) +n+mj2+ [mr— 1)+ 2(r — ”(;)

+nlr—1) +2(r - 1}(”;) +mn]3 4 [(r— 1) (‘;)

4 (r— 1}2@) + 2(r — 1)ymnald + [mn(r — 1)%5

(i) W@ =[1+n+ n(r) +m+ m(r)]l + [n(r—1) +m(r—1)

e mT"L”{rf +9r — 4) + mnr(5r — 2)
+r(2r = 1)[n(n = 1) + m(m - 1)].

r

(i) WW(G) = %[11 +n +-n(2) +m+ m(;)]l:l + %)+ [n(r—1)

+mir—1}+ (;) + (?) +n+m]2+2%) +[mir-1)
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+2(r— 1}(’;) +nlr = 1) +2(r - 1}(’;‘) + mn](3 + 32)

i - 1}“(;) +(r— 1}1(’;) +20r — 1)mnj{4 + 42)
+ [mn(r — 1)%(5 4 5%)]
= %[2 + {m + r)(r® + 17r — 10) + 2mn(15r* = 10r + 1)

+ [n(n — 1) + mim — 1)](10+* — 8 + 1)].

(iii) H(G) =[I—|—n.—|—n(g) +m+m(;)]%
+nfr—1)+mir—1) + (2) o+ (r;r) + 1 +-mj%

+ [mlr — 1) +2(r — 1}(2) +n{r—1)4+2r—1} (T) +mn]%
. afn afm ) ST 1
+[(r—1) (?) +({r—1) (2) +2(r — ljmn]E + [mn(r — l}z]g
m—+n T
6 30
+%[n{n—1}—:—m|{m— 1)](3r% +2r +1).

=1+ (3 = 2r +4) + ——(6r" + 3r + 1)

(iv) RCW(GQ) =1 + n+n G) fma+m G)]é +In(r=1) +mr = 1)

+ (;) + (r;) +n +m]~li + [mir — 1) +2(r — 1}(;)
=0+ 2= 1)y ) +milg + = 02(;)

R o 1 ot
+(r—1) (2)+2{r I}mn]2+[mn{v ]]-]1
_1 (i T N o T
- El+ 20 (6" 4 20r h:l+—3

1 i a [ -
+ﬁ[ﬂ.{n — 1)+ m(m — 1)](6r* — 4r — 1). O

(3 —3r+1)



SOME DISTANCE-BASED TOPOLOGICAL. .

Remark 3.1. In Theorem 3.2, whenm=n=r =1, G = Py, here
the diameter of graph G is 3, hence ROW(G) is invalid but W(G),
WWI(G) and H(G) are valid. |

Remark 3.2. In Theorem 3.2, whenmn =2 andr =1, G = B, .
liere the dvameter of graph G 183, hence RCW(G) is invalid but W(G),
WWI(G) and H(G) are valid. O

Corollary 3.3. For the double starbarbell graph G with m,n,r = 1,
Wp(G) =(r=1)[(m+n) +nln—=1) + m(m —1)] +mn.

Proof. The number of 3 distance pair of vertices is m(r — 1) +
2(r — 1)(3) +nlr — 1) + 2(r — 1)(%) + mn by Theorem 3.2. So,
Wp(G) = (r—1){(m+n)+n(n—1)+m{m— 1) + mn. O

Corollary 3.4. For the double starbarbell graph G with m,n = 1,

TR = - A e
2n(n—1)+m(m—1)]+ 5mn, if r=2
Proof, In Theorem 3.2, when v = 1, G = B, ;, hence TW(G) =
TW(Bym) and same as in Corollary 2.3, In Theorem 3.2, when r = 2,
hence TW(G) = [(5)+(5)]4+5mn = 2[n(n—1)+m{m—1)|+5mn. O

Lemma 3.5. For the double starbarbell graph G with wva,n = 1 and
r=2 AG)=3(m+n)r+2|[(m+n)r+1]—[1+ 252+ 9r—4) +
r(2r — 1)[n(n — 1) + m{m — 1)| + mnr(5r — 2],

Proof. In Theorem 3.2, | V(G) |= (m4n)r+ 2, d =5 and W(G) =
14 f%{-rz +9r —4) 4+ r(2r — D[n(n— 1)+ m{m — 1)] + mnar(5r — 2).
So, AG) = g[[m +njr+2[(m+n)r+1] =1+ ﬂ‘-‘é‘-"—*(rﬂ +9r—4) +
r(2r — 1)[n{n — 1) + m{m — 1}] + mnr(5r — 2)]. d

Lemma 3.6. For the double starbarbell graph G with m.n = 1 and
r>2, RA(G) = 11+ 2mn(4r - 3)] + (32 + 17r — 6)
+ #n{n — 1) + m(m — 1)](3r* — 3r + 1).

Proof. Here d = 5, from Theorem 3.2 and the distance between
any pair of vertices satisfies 00 < d{u.v) < d.

339
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The number of 1 distance pair of vertices is 1 +n +n(}) +m +m(}).
The number of 2 distance, pair of vertices is n{r — 1) + m{r — 1) +
() + () +n+m.

The number of 3 distance, pair of vertices is m(r— 1) +2(r — 1)(3) +
n(r — 1) + 2(r — 1)(§) + mn.

The number of 4 distance, pair of vertices is (r—1)*(3) + (r

2(r — 1)ymn.

By using these we derive the following

RA(G)=[1+nH n(g) 3 m(ﬂ) 1
+[nlr— 1) + m[r—1}+() (”‘)Jrﬂ¢m]}

[m{*.r—l)—i—ﬂ{r—l’}( )—1— (r—1)+ E'f'r—lj(m)—I—*.rmti

2 "2
+[(r = 1}2( ) - 1} (2 —|—2|[r—l]ri"e.'ﬂ}ll

ft

11[1 + 2mn(4r — 3)] + ’{3 4+ 17r—6)

+é1n{n—]]+m(m— l}]{dr —3r+1). U

4 Indices of Petersen Graph

In this section, we caleulate some results for distance-based topologieal
indices W(G), WWI(G), H(G). RCW(G), Wp(G), TW(G), A(G) and
I n (), where G is a Pelersen graph.

Theorem 4.1. For the Petersen graph (<,
(i) W({@) = 5(n+5).
(ii) WW(G) =T7(n + 5).
(iii) H(G) = 2(n +5).
(iv) RCW(G) = 5(n +5).

Proof. Let G be a Petersen graph. (See Figure 4.1).
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Petersen graph G
Figure 4.1

Let V(G) = {v,v95...,05 1,4, .., v}, For 4,4 = 1,2,...,5 the
distances between any ‘rwq vertices in (& are given by
divi,v)) = 1,
d{vi, i) = 1, for i + 1 taken addition modulo 5
d(wy, vl 4a) = 1, for 1 + 2 taken addition modulo 5
5

v, wiyn) = 2. for i + 2 taken addition modulo 5
dviv) = 20
Here diam () = 2 and the distance between any pair of vertices varies
from 1,2, ....diam(().
The number of 1 distance, pair of vertices is n + 5
The munber of 2 distance, pair of vertices is 2(n + 5).
By using these we derive the following

E
[
(vi,v0,,) = 2, for i 4 1 taken addition modulo !
(
(

(i) W(G) = [n+ 5|1+ [2(n +5)]2

= H(n+ 5).
(i) WW(C) = 3[ln+5](1 + 12) + [2(n + 5)](2 + 2%)]
= T(n+5).
(iii) H(G) = [n+ 5]} + [2(n + 5)]3
= 2(n 4+ 5).
(iv) ROW(G) = [n +5]3 + [2(n +5)]¢

= 3n+5). [
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Corollary 4.2. For the Petersen graph G, We(G) =10,

Proof. In Theorem 4.1, here d = 2, the number of 3 distance pair of
vertices is (. So, Wp(G) = (. 0

Corollary 4.3, For the Pelersen graph G, TW(G) =0

Proof. In Theorem 4.1, there is no pendent vertex, so TW(({)
[.}1

(I

Lemma 4.4. For the Petersen graph G, AMG) = n® — 6n — 25.

Proof. In Theorem 4.1, | V(G) I=n, d =2 and W(G) = 5(n + 5),
So, A(G) = Y9 _ 5(n+5) =n2—6n— 25 0

Lemma 4.5. For the Petersen graph G, R A (G) =n + 5.

Proof. Here d = 2, from Theorem 4.1 and the distance between any
pair of vertices satisfies 0 < d{w.v) < d. The number of 1 distance
pair of vertices is m 4+ 5, hence R A (G) =n + 5, O

5 Indices of Petersenbarbell Graph

In this Section, we introduce petersenbarbell graph PBy oy me
which is similar to wheelbarbell graph [3] and also derive some re-
sults for distance-hased topalogical indices W((), WW({), H(G),
RCWI(G), Wp(G), TW(G), AlG) and R A (G), where G is petersen-
barbell graph.

Definition 5.1. The petersenbarbell graph PBp i, m, 5 & graph
obtained from Pelersen graph and complete graph K., by merging one
vertex from each K, and the outer 5 vertices of Petersen graph, where
m; = 2, See Figure 5.1 for PBy y...ame-
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V5.3 (R

Petersenbarbell graph P15y 4 444
where m; =4, i1 =1,2,....5

Figure 5.1

Theorem 5.2. Form = 2 and n = 10 the petersenbarbell graph &, in
which each complete graph is of the uniform order. Then
(i) W(G) =5(n+5)+3(m—1)[(n— 5)(m+48) + 70(m — 1)].
(ii) WW(G) = 3[14(n+5)+ (m—1)1{n—5)(m~+90) +160(m — 1)]].
(iii) H(G) = 2(n +5) + 55(m — 1)[6(n —5)(m + 7} + 35(m — 1)].
(iv) RCW(G) = B (n45) + L(m— 1)[(n —3)(m +32) + 60(m — 1)].

Proof. Let G = PBy, m,, ..m be the petersenbarbell graph, where
each complete graph is of the uniform order withm; = 2and1 <i < 5.

Let my=m,t=1, Q! R\ Let VLG} — {”Li:‘ Up 2y oo o Vg, V21,
V0 sy Wihamis o s B Ul o U Uy Uiy vt} Then V(G) = Vi L
Val, ... UV UV, where V, = {v;, v0.... ., %imb 1 <i<band V| =

{vi,vh,.ccovt) Ford,j=1,2....,5and k, £ = 2. 3,.. ., m the distance
hetween any two vertices in (G are given by

d(vig, vig) = d(va,v) = dlvigviy) =1, for k # £

divi, vl ,) =1, for i 4+ 2 taken addition modulo 5

d{viq, ti411) = 1, for i +1 taken addition modulo 5.

343
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(v g, 1-‘:} = d‘{”i.lu“}} = 2,i# 7],

di{vg ), vips) = 2, for 1 4+ 2 taken addition modulo 5,

divi,vl.,) =2, for i+ 1 can taken addition modulo 5.

d{vi 1, vigi ) = 2, for i 4 1 taken addition module 5,

(v g, ie16) = 3, for 4 4+ 1 taken addition modulo 5,

d{v; 1, v ) = 3, for i 4 2 taken addition modulo 5,

Ao ) =314},

d(vi g, Ujanp) =4, for i + 2 taken addition modulo 5.

Here diam(G) = 4 and the distance between any pair of vertices varies
from 1.2,..., diam(G).

The number of 1 distance, pair of vertices is (n +35) +(n — 5}(’:’;].
The number of 2 distance, pair of vertices is 2(n+5)+3(n—>5)(m—1).
The number of 3 distance, pair of vertices is 6(n—5)(m—1)+5(m—1)%
The number of 4 distance, pair of vertices is 5(m — 1)%.

By using these we derive the following

(i) W(G)=[(n+5)+ (n—35) (Z"’)]l + [2(n+ B5) + 3(n — 5)(m — 1)]2

+[6{n = 5)(m — 1) + 5(m — 1)%]3 + [5(m — 1)%}4
= 5(n+8) + o (m — D)[(n— 5)(m + 48) + T0(m — 1]

(i) WW(G) = %[[{n +5)+ (n —5) (’;)][1 +1%) + [2(n + 5)

+3(n—5)(m—1)](24+2%) + [6(n—5)(m—1) +5(m — 1)°|(3
+3) + [5(m — 1)%](4 + 4%)]

= —[14{n+u}+ — 1)[(rn — 5)(m + 90} + 160(m — 1}]].

(i) H(G)=[n+5)+(n—5) (””)]% +[2(n+5) + 3(n— 5)(m — 1}]%

+ 1600 = 5)(m — 1)+ 5(m — 1))3 + [5m — 1

=2(n+3)+ —1)[6(n — 5)(m + T) + 35(m — 1}].

12(
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(iv) ROW(G) = [(n+5) + (n—5 (m)] +[2(n +5) + 3(n— 5)(m — 1::]—
+ [6(n = 5)(m — 1) +5(m — 1)2]§+[5{m - 1}“]1-

-é{m — 1){[(n — 5)(rn + 32) + 60(m — 1)]. O
Remark 5.1. In Theorem 5.2, when m = 1, G = Petersen graph,
here the diameter of graph G is 2 henee RCW(G) is tnvalid but W(G),
WWI(G) and H(G) are valid and same as in Theorem 4.1. O

11
- "l*'j-{?'".'. + 5:| =

Corollary 5.3. For the petersenbarbell graph G with m > 2 and n =
10, Wp(G) = (m — 1)(bm + 6n — 35) .

Proof. The number of 3 distance pair of vertices is 6(n—>5)(m—1)+
5(m —1)* by Theorem 5.2. So, Wp(G) = (m —1)(5m+6n —35). O

Corollary 5.4. For the petersenbarbell graph G with m = 2 and n =
10, TW(G) = 35

Proof. In Theorem 5.2, when m = 2, hence TW(G) = [5(m —
1)23 + [5(m — 1)%4 = 35(m — 1)* = 35. ]

Lemma 5.5. For the petersenbarbell graph G with m = 2 and n = 10,
AG) = 2[(n+5m—5)(n+5m—6)] — [5(n+5)+1(m—1)[(n—3)(m+
48) 4 70(m —1)|].

Proof. In Thmrﬂm 5.2, | V(G) |_ n+53m-—1).d=4 and
W(G)=5(n+5)+ [m — 1)[(n = 5)(m + 48) + 70(m — 1)].
Then A(G) =2[(n + Em —B){(n+ 5m — 6)] — [5(n +5)
+ 2(m = 1)[(n — 5)(m + 48) + 70(m — 1)]): O

Lemma 5.6. For the pet’.m senbarbell graph G with m = 2 and n = 10,
RA(G)= “{n +5)+ {m +9)m—1)(n—3)+(m —1){dm+ tn — 35).

Proof. Here d = 4, from Theorem 5.2 and the distance between
any pair of vertices satisfies 0 < d{u, v) < d-
The number of 1 distance, pair of vertices is (n+5) + (n—3)(7).
The number of 2 distance, pair of vertices is 2(n+5)+3(n—>5)(m—1).
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The nnmber of 3 distance, pair of vertices is 6(n—5)(m—1)+5(m—1)
By using these we derive the following

B A fG} — [l{n t 5) | [ﬂ. - 5'; ('T;')]% 1 [2{1'?. + -5) + 3(?1 5:|f'm- l);
+ [6(n — 5)(m — 1) + 5(m — I}QJ%

= %[n—k&} - é{m + 9 m—1)n—=>5)+ (m— 1){dm+6n— 35).
]
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Abstract: This munuseripl extends the concepl of graph topology o neutrosophic graph lopo-
logical spaces by incorporating uncertainty and indeterminacy into graph topological structures.
Building on existing work in graph topologics, we introduce neutrosophic components that
utilize truth membership (1), indeterminacy (1), and falsity membership (F) values to handle
incomplete and contradictory information.  We establish foundational definitions and exam-
ine important wpological properties including neutrosophic connecledness, separation axioms
(T Ty, Tyl Several theorems are presented with complete prools, including the equivalence
of neutresophic connectedness conditions and the hierarchical relationship between separation
axioms, The framework is demonstrated through a practical cybersecurity application, where
neutrosophic graph topology is used to model SCADA network vulnerabilities, identify secure
zones, and analyze potential attack vectors in power grid systems.

Keywords: Newtrosophic graph topology, neutrosophic connectedness, nestrosophic sepa-
ration, network sccurity, SCADA systems.
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1. Intreduction

Neutrosophic theory, introduced by Smarandache [U], extends classical logic by incorporating
indetermingcy alongside truth and folsity, enabling uncertainty quantification. Building on this,
Aniyan and Naduvath [ 1] established graph topological frameworks for analyzing spatial prop-
erties in discrete structeres, focusing on transformations and connectivity, Broumi and Smaran-
dache [4] further advanced the field by defining neutrosophic graph structures, which mode|

uncertainty in vertex and edge relationships. Ye [13] developed correlation-based decision-
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making metheds in neutrosophic environments, aiding multi-criteria analysis under incomplete
information,

In eybersecurity, Stouffer eval, [10] outlined SCADA system security protocols, addressing
infrastructure vulnerabilities. Zhu et al. [15] proposed o taxonomy of cyber attacks on SCADA
networks, enabling systematic threat assessment in uncertain environments, Mohanapriva Ba-
jagobal and Durgadevi Shanmugasundaram proposed o mathernatical framework integrating
neutrosophic theory with graph topology for cybersecurity analysis by estublishing key prop-
erties such as connectedness and separation axioms and applying the model 1o SCADA power

grid systems.

2. Neutrosophic Graph Topology
Delinition 1.1 Let NG = (V) B be o neutrosophic graph. A newtrosophic graph topology +
on N s o colleetion of neutrosophie subgraphs of NG satisfying the following conditions:

I, NKy € 7and NG £ 1, where VA denotes the nevtrosophic null graph.
2, The union of any number of elements in = is 8lso in .

3. The imtersection of any finite number of elements in 7 is also in o«
The combination { NG, ) forms a Newrrosophic Graph Tepological Space(NGTS),
Example 1.1: For the neutrosophic graph NG with vertex set {1, B, . D}, the collection of

subgraph yields the neutrosophic graph topology

r = {NKo. {A. B}, {B,C}.{A.C, D}, NG)
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Figure 1: Neutrosophic Graph NG
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Figure 2: Meutrosophic Graph Topology Induced by Collection of Subgraph

Diefinition 1.2: A nentrosophic empty graph is 2 neutrosophic graph with a non-emply vertex
st but an emply edge set.

Definition 1.3: A newtrosophic aull graph, denoted by N Ay, is a neutrosophic graph with
emply vertex and edgoe sels,

Definition 1.4: A newrrosophic subgraph NIT of N7 is said 1o be newtrosophically open il

NHEeT,

Definition 1.5: A newrrosophic subgraph N H of Ni&is said w0 be neutrasophically closed IF

its neutrosophic complement, denoted by N, 15 nenrrosophically open.
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3. Neutrosophic Connectedness in NGTS

This section presents definition and theorems on Connectedness in NGTS.
Definition 3.1 In a2 newtrosophic graph topological space (NG, 1), & neutrorophic separalion
ol the graph VG s defined as d pair of non-empey seulrosephic subgraphs NG and VG such
that Vi UNE = NG, NI NN, = NK,, and both N, and N1 are neutrosophically
oper.,
Theorem X1 Let (NG, 1) be a peutrosophic graph topological space. NG is newrrosophi-
cetlly connected it and only if it connot be expressed as the union of two non-empty disjoint
neutrosophic open subgraphs.

Propl: Suppose NG is neutrosophically connected. 1T NG could be expressed as the union
of two non-empty disjoinl neutrosaphic open subgraphs VH; and VA, such that NV, 0
NHy = NK, this would constitute a separation of VG, contradicting the assumption of
connectedness.

Conversely, assume N7 cannot be expressed as the union of two non-empty disjoint neu-
trosophic open subgraphs. Then no neutrosephic separation exists, and hence N must be

neutrosophically connected. |

Definition 3.2 A neutrosophic graph NG s said 1o be nentrosophically path-connecred i for
any two vertices (r, p{r). olr), w{r)) and (=, p(s). o{&), (=)} in NG, there exists 4 neutro-
sophic path from (7, glr), o), wlr)) w (= pls) o), wieh)
Theorem 3.2 Tn o neutrosophic graph topological space (NG 1), 17 NG 15 neutrosophically
path-connected, then N is neutrosophically connected.
Progl: Assume N7 is neutrosaphically peth-connected. Then For any two vertices (v plr ), olrl wir))

andl (&, pla), ais), wis)) in NG, there exists a neutrisophic path connecting them,
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Suppose. for contradiction, that A5 is not neatrosophically connected. Then it can be
written as the union of twoe disjoint neutrosophic open subgraphs AN H and N Ay sech that
Ny M NHy = N Ko, Pick vertices (v plr) o olr) wir)) € NHy and (5 0{8), 7(8),205)) €
N fls. Since a neutrosophic path connects them, and NVITy and Ny ore disjoint, the path
must cross from Y o Ny, contmdicting the defimition of disjoint open subgraphs in o
neutrosophic selling where the nedtrosophic identity is preserved, Therefore, VG must be

neutrosophically connected. O

4. Neutrosophic Separation Axioms in NGTS

This section presents definition and thecrems on separation in NGTS.

Definition 4.1: A neutrosophic graph tepelogical spoce (NG, 7 is sald to be & netmsaphic
1y apace if for any two distinet vertices (v, p{r), o{r] wir)) and (s, pl#), o), wi=)) in NG,
there exists a neutrosophic open subgraph v H such that either (v, plr]. olr), wlv]) © N H and
(sl (o) wla) ) & WH or (s, p0a), olahiwts)) € N and (r,plrh alelow(r)) & NHL
Definition 4.2: A neutrosophic graph wopological space (V& ) is said (o be a newtrasaphic
Ty sparce if for any two distinet vertices [r, plr), oir), wir}) and (8, pls), ols), w{s)). there ex-
ist neutrosophic open subgraphs N and NH; sech that {r, plv ), efr)wiv)) € NH, and
(wpls).o(s) wis)) & NHy, and (4, pfs), o{s)w(s)) & NHy ond (r, plr) o(e)wir)) ¢
NHy

Definition 4.3: A neutrosophic graph topological space [ NG ) 85 said (o be & pewdmsophie
1% space if for any two distinel vertiees (v pled, ale),wle)) and (8, pls), a=) wls)), there
exisl nevtrosophic open subgraphs NHy and NHy such that (v plrl alr) wir)] € NH;.
(5, pls), o8], wis)) & NHeoand NH; 0 NHy= NKy

Theorem 4.4: In a nentrosophic 1) graph topological space. every singleton vertex set is neo-
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trosophically elosed,

Prooft Let (v, plr), a(v) w{r]] # (4, pls), efs), w{s)). By the neotrosophic T property, for

exch such vertex (v, plr], er(r), wir]), there exists o nearosophic open subgraph N o ew0

such that (r, p(r), a(r}),w(r)) € NHi e otrwoy and (s, o(s), o(s), w(8)) # NHe qryomaie
Mow consider the union of all such neutrosophic open subgraphs over all (v, p{r ), #(r), w(r)} #

(=, plal ola), wix], given by NH = | NH ooy ateiwiry- This

el el i@ apla)atshala b
union includes all vertices except (s, pls). #ls), wls)). Since the union of neutrosophic open
subgraphs 15 newtrosophicelly open, N is nestrosophically open. Therefore, the complement

NGO {(=, pls), o). wis]) } is neutrozophically open, implying that the singleton { (s, gls). o(2), w{g]] ]
is meutrosophically closed, ]
Theorem 4.5: Every neutrosophic T, graph topelogical space is neutrasophic 7.

Progl Let (NG 7) be o nentrosophic 1 graph topological space, For any two distinet vertices

(o plr) etvd o w{r)) and (s, pla), mi&), wls)), by the T: property, there exist neutrosophic open
subgraphs N A, and N He such that (v, p{r)yo(r)wle) ) € N Hy (s plalo(a) wls)) € N Hg,

and NH; N Hy = N K. It follows that (=, o(s), o{s).(s)) & NHypand (v, plr) oie), wir)) &

NHy. Hence, there exists a neulrosophic open subgraph containing one vertex but not the other,

and vice versa, which satisties the condition for neutrosophic 7). Therelore, every neutrosophic

Ty space is also peatrozophic T}, O

5. Application of Neutrosophic Network Security Algorithms

A power prid operator needs 1o assess cybersecuriny vulnershilities in their SCADA systéms,
Using neutrosophic graph topology, the network is modeled with servers A through £, repre-
senting control centers, substations, and remote terminals, Each vértex répresents a system and

is assigned o neutrosophic value (T, 1, F'). Each edge represents a communication link between
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svstems, associated with neutrosophic valoes that similarly refiect communication security.

Figure 3: Meotrosophic SCADA Network Graph

The tasks are as follows: identify secure network zoncs using thresholds T, = (060,
Towee = 00, and F . = UAE determine all polential attack paths from the internet-facing
edge node 17 1o the critical main control server A: and identily the most vulnerable attack vector
among these paths which requires immediare security hardening,

1. Secore Network Zones Identification Algorithm

Step 1: Define Security Thresholds

Thresholds are T, = 060, 1. = L3R, and Flu, = 0.20.

Step 2: Create the Security Subgraph

Nodes meeting thresholds: Server A, Server B, Server C.

Connections meeting thresholds; 4 <0 B8, A4 ¢ O, B 0 O

Step 3: Identify Connected Components

The secure network subgraph is [, B. O} with edges A-B, A-C, B-C, forming a single con-
nected secure zone,

Step 4: Calcolate Zone Security Metrics

_ B0 4+ 075 4 D60 (10 4 D220 40,250

Avernge T = 3 3

(1054

=75 Awrnge/=——" =020, Average F=—
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Result: Secure zone [ A, B, 7} identified with strong security melrics,
2, Attack Vector Analysis Algorithms
Step 1: Create Attack Susceptibility Graph

Security resistance weights are;

g =1 — 0BS) £ 0154005 =085 wae = (1 = 0.70) + 0,25 +0.10 = (.65
wpe = (1 — 065) + 020 + 015 =070,  wpe = (1— 0.55) + 0,30 + 0.25 = L.00
wop = (1—045) 4+ 040+ 030 = 1.25,  wpp=[1— (L35) + 0.45 + (.55 = 166

wr = (1 — 0.30) + 0.50 + 0.60 = 1.80

Step 2: Tdentify High-Risk Nodes and Critical Assets
High-risk node: Server F (1 = (0.65), Critical asset: Server A (' = (L0900 £ = .05).

Step 3: Find Potential Attack Paths from F o A

Path I: §F — 0 = A =165+ 1.25 4+ 0.65 = 3.55

Path: F+E—+ B -4 =1380+100+035=23.15

Step 4: Rank Attack Vectors
The most volnerable attack vector s F' — £ — 8 — 4 with toral attack weight 3.15. This

path regquires immediste priority in sceurity hardening efforts.

6. Conclusion and Future Work

This paper extends: graph topology o nestrosophic graph wpological spaces, introducing fun-
damental definitions and establishing key properties related to neutrosophic connectedness and

separation axioms. By incorporating neutrosophic components, these structures effectively
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handle uncertainty ond indeterminacy, making them ideal for real-workd applications with in-
complete or contradictory information.  Future research directions include developing algo-
rithms for computing neutrasophic topological properties, exploring applications in computer
networks ond poattern recognition, investigating relationships with other neetrosophic struc-
tures, extending the concept to directed neurosophic graphs and hypergraphs, and studying

fixed point thecrems in these spaces.
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Sworvepe Reeti N C7 RESTRAINED PENDANT
B. Shanmutha’ | DOMINATION IN GRAPHS

Abstract: In ohis article we iitlste the sy of 0 vorstion of standaed dominaion, namely
restrained pendiant dontination. Let 6 = (i€} be any graph. A dominsting set 5 in & & called 2
pendant dominating set i < 5 > comains &t least one pendant node. The minimam cardinaliny of the
penidant dominating =et in G s called the pendant domination rumber of &, denoted by po06). A
restrained pendant dominating set 15 a ser 5§ © U owhere every node in ¥V — 5 s adjacent 1o & node i 5
&5 well as another pode in ¥ — 5. The restmined pendant domination member of G, denated by . 5
the minamum corchinality of a restrained pendont dominsiing sel of G, We determing besl possible
upper und lower bounds for (6] and alie caleuloed the exact value for some sundard families

grapls
Mathematical Subject Classification (2000) Na: 05050, 05069,

Keywords and Phrases: Dominating Set, Kestruined Dominating Set, Pendant
[Jominating Set, Kestrained Pendant Dominating Set, Pendant Domination Number

1 Introduction

A posdible application for minimal restrained domingling seld s any siluation in
which one group needs to supervise a subordinate group using the minimal number of
supervisors possible, butl ot the same time ensure the supervisors are held accountable
hy never allowing a supervisor 1o be alone with subordinate, Hawingh pives an
example of this relasionship in terms of guards and prisoners, The nodes in 5 are the
guards, while the nodes in ¥ — 5 are the prisoners, In this way, 2 guard can supervise
every prisomer, but every prisoner is also in view of another prisoner [5]. In
applicotion way of restrained pendant domineting set we pssign a back up to af least
ane prisoner. A possible application for independent restruined dominating sees is the
loeation of product distibution centers o hospitals where 8 cerfain level of
redundancy s desired. In this cose, nodes could represent cities, Vertices im 5
represent cities with a distribution center and edees represent ransportation routes
between cities. Selecting the cities in which to place distribution centers using an
independent  restruined dominoling set gpuarontees thol every clly without o
distribution center is at least nesct (o a city with one. [ also guarantees that every city
without & distribution cemter has o neighbor that also lacks a distribution centér. In
case of shortages at one distribution center, every citv has access 1o 4 different center
by poing through ong of its neighbors, The helm H,; is the graph abtained from wheel
W by ataching a pendant edaz w each rim node, The closed helm CH,, is the graph
obtained from helm f, by joining each pendant node (o form a cyole: The web graph
WL, n) is the gruph obtained by joining the pendant nodes of o helm o fom o cyele
anil then adding s single pendant edpe 1o each node of this outer cyele. W({t, n) is the
generalized web with ¢ eyeles each of order n. A firreeracker graph £, 5 is formed by
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concatenation of n & —stars by linking one pendant node of a star to pendant node of
next star, Fy . 15 isomorphic to centepede graph k& =2

A dominating set S in 7 is called a pendant dominating set if < 8§ > containg st least
one pendant node. The minimum cardinality of the pendant dominating set in & is
called the pendant domination numbet of &, deneted by y,, (G). A restrained pendant
dominating set isa set § © V where every node in V¥ — ¥ is adjacent to a node in 5 as
well as another node in ¥ — 8. The restrained pendant domination nomber ol G,
denoted by yrpe 15 the minimum cardinality of o restrained pendant dominating set of

{r, For more details about pendant domination parameter refer [6,7,8]

Foran examplein Figure 1, 5 = {o, b} is a minimum pendant dominating set and the
set § is itself a restrained pendant dominating set. Fence ¥y, (G) = Z.

d [

Figure 1: Cyele Graph
Proposition 1.1, [6] Let & be a cvele or a path with n vertices. Then
T
—+1, if n = 0(mod3);

3
YuelG) = E] if n = 1imod3);

rz—l]-ﬂ. if n = 2(mod3);
Proposition 1.2, For the wheel W, form 2 3y (W) = 1,

Proposition 1.3. [fn = 3 is a positive integer, then ypp.(Ky) = 2.
Proposition 1.4. Ifn = 3, then yppe (K ) =1

Proposition 1.5, 173 and n are integers such that m,n = 2 then Yrpa (K nd = 2.
Theorem 1.1, Let B, be a path onn nodes fern > 4 and & = 1 be an integer. Then

5 _{k+3. ifn=7,
VepelFud = k+2 IfFi=3kn=3k+1or3k+2

Proof. Let V(R = v, vs,...,1%;]) be a sct of nodes of the path graph. Note that the
se1 5§ = {1y, tha, Vs, Uy, ] will be the restrained pendant dominating st of path graph
Pr. Therefore, yrpe(Pr) = k + 3.

Suppose no= 3k, Note that § = {wy, vy 0= = k—1}U [py]) i3 8 minimum
restrained pendant dominating set with k + 2 clements. Thus yp.(F) = k+ 2. Let
5 be anmy minimum restrained pendant dominating sef of B, Then 5 must be & pendant
dominating set. Mote that each node in § can dominate a maximum of 3 nodes. Thus
to dominate 3k + 1 nodes, § must have &+ 1 nodes. Henee to dominate the
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remaining one node of £, § must have one more node and so | 5|2 B4 2
Therefore yppe(Fy) =k + 2.

Theorem 1.2. Lt €, bea ¢cyele with n = 4 nodes. Then

g iz if n = 0(mod3);

?"mr{cn} = = E] v 'Ef“
n— EI if n= 2(mod3);

It

1{mod3) ;

Hiustration: The helm graph Hy is shown in figure below where the set of solid
nodes is its restrained pendant dominating set of minimum cardinality

"
.

Figure 2. Helm Graph H,

Theorem L3, Let ¢ = H, bea helm graph with n = 3, then yp(G) = n+1

Proof. Let (v, 5, vq,..., 0,1 bethe nodes of degree one, [y, ty,..., Uy} Be the rim
noddes and 7 be the apex node of maximum degree 7 of helm graph ¢ with | V(A,) |
= 2n + 1. The pendant v, vy, ..., ¥, ore mutually non-adjacent which must be in
every restrned pendant dominating sel. Further the pendant nodes vy, vy,..., 1, of
H, are dominate the rim nodes wy, ;... u; of Hy A restrained pendant
dominating set § should contain pendant nodes vy, va,..., ¥, and the rim node w; of
Hy. If ey E 8§ the induced subgraph of M, dossnot contain the pendant node.
Therefore, u; € § which implies that | § 1=n + 1. Note that § = {vy, va,.o 7y, 0 }
is & restrained pendant dominating set with minimum cardinality because removal of
any one of the nodes from set § will not dominate all the nodes of By, Moreover each
node V — 5 is adjacent to node in S and to 0 node in V — 5, Hence Y (Hy) =n + 1

Thearem L4, For the closed helm graph Off, forn = 3
3 ifn=4

= { [
Vrpa(CHy} [.il +1, ifF n=3k +1or3k+2

Mustration: The closed helm graph with ©Hg a5 shown below
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Figure 3. Closed Helm Graph CHy

Proof. The closed helm CH, contains whell graph W), and outer cvele . Let v
indicate the apex of wheal. Also g, by, .., 1, ave the rim nodes of wheel W, of CH,
and w4, vg,..., 1 be the corresponding adjacent nodes of outer cvele of CH,. So
|VICH,) |I=2n+ 1, For n=4, A(CH) =4 and | VICH,) I=9. It follows that
minimum three nodes are required to dominate all the nodes of CH,. IF S S V{CH,)
is restrained pendant dominating set and induced subgraph of 5 contains a pendant
node, then | 5 1= 3, which is minimum. Therelore prpe (CHy) = 3.

For m=4, A(CH ) =mn and | ¥{CH,) |=n and by proposition 1.1. apex node
dominates all the nodes of W, If 5 £ V(CH,,) is a restrained pendant dominating set
then the sel must contain a apex node v, Due to pendant node in induced subgraph of
5 and adjpcency nature of nodes vy, vy, ... vy, of outer cycle with comesponding
nodes Uy, g, of WL By proposition. 1.2, al lesst  nodes are reguired to
dominate all the remaining nodes of outer cyele of CH,. T follows that | § | = EI +

1

If possible suppose 5° is a restrained pendant dominating set such that | $° 1= | §' | =
Fﬂ < | 5| Now A(CH,) =n and in order o attain the least cardinality, §° can not

conttin the nodes where each node among them can dominate distinet 7 nodes of
CHy. Therefore 8 can not be a restrained pendant dominating set of CH,. This
implies that § is a restrained pendant dominating set with minimum cardinality for

CHy, Henee ypo(CH) =15 1= [2] + 1.
Theorem L5, If &7 is the Firecracker graph F,, ., then

-+ 1 ifk=2
TI'FI.'U;] 4 {ﬂ{k l}, !.lrl ﬂ..k =2

Proof. We prove the theorem by following two cascs

Case 1. K = 2. The firecracker praph is isomorphic to centepede graph, which has n
pendant nodes. The sét § = [vy, ¥s,..., 1) forms o minimum dominating set and
henee (6] =n. Clearly }r,.F.El:G} = n. But the suhgraph induced by § doesn't
contains pendant node. Therefore the restrained pendant dominating set of © is
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obtained by taking the neighbor of the node v, or w, along with the dominating set.
Henee yipa(G) =1 51 +N{p) or N(v,)=n+ L

m L Fa e |
i—I—I ------ I~L_.
iy tig 3 uy

LUTTSS o Wi dyy Wae-w gy Wy Ugeem Wia Ny Maie-3) by g
T ; U
'J“““
L
Figure 5. Firecracker Ciraph

Casel W =2

The total number of pendant nodes of G is n(k = 2). Then v.-p._.I[G] = nlk—=2) Lt
A={uy ug,. . ey / 1= { = n) be the set of pendant nodes of the graph &
and B = {u .tz ..., 1y ] be the central nodes of the star. Clearly the set B is a
dominating s&t with minimum cardinality but not & pendant dominating set, Deling
£=AUE. forms a minimum pendant dominating set and hence y.(6) = n{k —
2} + n. Therefore ¥, (G} = nik — 1), But the subgraph induced by € contains o
pendant node and every node in V = € is adjacent to a node in € as well as another
node in V—C. Henee, € is restrained pendart dominating set also.Therelore
Frpe(6) =0l = 1),

Thenrem 1.6, Let & he a sunflower graph 5, (n = 3), then yp (S =n+ 1

Proof. Let the node v be the apex node of the 5f, and vy vy, .. vy for (=
1,2,3..., i be the nides of degree one in sunflower graph 5, with | 5f, 1= 3n 4+ 1.
The apex node v of sunflower praph dominates 2n distinct nodes and nodes of degree
one are mutually adjacent. lts is easy to see that any restrained pendant dominating
set contain the apex node and pendani nodes and induced subgraph of & contains a
pendant node, Therefore | §i=n+1, which is the least cardinality. Hence
Yrep(Sf) =n+ L
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Mustration: The sunflower 5f; iz shown in the below figure where the set of solid
nodes {v, vg, vy, vy, vg} is its restrained pendant dominating set with least cardinality,

@ ® Vs

vy vy Vs

Figure 6. Sunflower Graph 5,

Proposition 1.6, Let G be o connected graph of order i, Then yp {6} = n if and
only if & 15 a star.

Proofl. If (7 15 a connected graph of onder n and & is not o star then pp, = n— 2.

Recall that a leal in a graph is a node of degree one, while astem is a node adjacent 1o
aleaf, The next pwo resulis will show for which graphs this upper bound is attained,

Thearem 1.7. 7T isa tree of order it = 4 1hen e (T) =n— 2 il and only if T is
obuained from P; B or Py by adding zere or more leaves to the stems of the path,

Proof. It is casy to verify that it 7" is obtained from Py or Py, then y(G) = n — 2. If
digm(T) = 8, the T contains an inducsd path Py, sav vy, ... P Bul then
V(T — frrq, v, v} B8 a restrained pendant dominating set of size n— 3. which is a
contradiction. Thus diam(T) = 7. Furthesmore T s nol a star and star are the only
trees having diameter 2, Consider the following cases,

Case 1. diom({T) = 4. Then T hos an induced Ps, say {wm, v, vy, vy, 9} The set
8= {vy,v5) 15 dominating set of path graph P5 but the set 5 05 not a restraned
pendant dominating set because the neighbor of the node v, cannot have any other
neighbor in ¥ — & and the induced subgraph of § doesn'l contain the pendan node.
Therefore the restrained pendant dominating set is obtlained by taking the leal of the
node vz Hence g () =n — 2,

Case 2. diam(T) =5 Then T has an induced Pi. say [y, v v 0, 05,0,
Certainly the nodes v, and vy can have leaves attached o them. The set § = v, 0]
15 & dominating st of Py, but the indoced subgraph of 5 doesn't contain any pendant
niode and the neighbors of the nodes v, and vy are not adjacent in any one node in
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V¥ = &, Therefore the restrained pendant dominating set is obtained taking the leaves
attached to nodes v; and vs, Hence, prpe(T) =0 — 2

Case 3. diam(T) = 6. Then T has an induced Py, say {vy, v, v, vy, 75, 1, v7 ) I the
seb 5 = [y, v, 1y, 1%, U+ ] I5 8 restrained pendant dominating set with size n = 2. if
we remove any ong leaves attached o the nodes vo and vy the nodes vy oand v,
doesn't have any neighbors not on the path. Therefore the set S is the minimum
restrained pendant dominating set with minimum cardinality. Hence yp (T} =n—12

Theorem 1. 8. For any graph &, we have %.(6) S ¥ (G) and 3, (6) = prse (G).

Proof. Since every restrained pendant dominating set of & s also 8 restramed
dominating set of G, we have 3.(G) < ype(65). Since every restrained pendant
dommating se1 of € 15 alse 4 pendant dominating set of &, we have r,,,{f.?]l =
YrpelG).

Theorem 1.9, The pendant nodes of a graph & belongs 1o the restrained pendant
dominating set

Proof. Let & be a connected graph and 5 be the restrained pendant dominating set. By
the definition of restrained pendant dominating set if cach node not in 8, then it
should be adjacent to a node in 5 and to a node In ¥ — 5. But each pendam nodes
doesn't belong to the set §, then the nedes are in ¥ = § and that nodes doesn't having
any neighbor in ¥ — 5. Therefore the pendant nodes belong to restrained pendant
dominating set 5.

Theorem 1.10. Let & connected graph of order n, Then y,,.(G) + AMG) = Zn—1

Proof. For any connected graph &, A{G) £ n— 1. The upper bound of ¥, (&) is
found to be n. Therefore ¥, +AG) =S n—14+n =2n-1L

Theorem 1,11, Let & be a connected graph order m = 3 with no leaves. Then
Yepe(G) = 2 iFand only if there exists a nodes of degree n—1,

Proof. Assume (hat e (6) = 2. Let {1, v5] be the restrained pendant dominaling
set of G, Then the node vy, {or ;) dominates all the other nodes implies that degree
of {n}, {or v;)is maximum. Clearly the maximum degree of a graph & s n— 1.
Thus there exit a node of degree n — 1,

Conversely, assume that there exit o nodes of degree n— 1. Let uy or (uy) be the
nodes which id of degree i — 1. Suppose that the set § = {uy, s, ug ) 15 Lthe restrained
pendant dominating set, where uy is any node of 6. Now degluy) =n — 1 implics
Uy dominates V(G) but the induced subgraph of § doesn't contain the node of degree
one. Therefore the set § doesn't satisfving the condition of restrained pendant
domimating sel. Hemce the set §' = {uy,u3) is a minimum restrained  pendant
dominating set . This implies ¥pe(F) =I 51=2

365
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N LTIX

LEn iy i [t

Theorem 1,13, Let 6 belonges 1o any one of the graphs Gy, Gg, ., Gy o onder 7 = 4,
Then ¥rpelG) + ¥rpe(G) =5 or 6,a0d Y16 (G): Frpe(G) = 607 9

Proof. (i) Ve (61) = 3. Then y,,(6;) =2
we get ¥pe(G1) + Fipe(G1) = Sand ¥ (Ga) Frpel(Gi) = 6
(i1} Vrpe(Gz) = 2. Then yp,,(67) = 2.
We et Frpe(Ga) + ¥rpelGa) = 5 and §ypu(G2) - ¥ipe (G2) = 6.
(3i§) YrpelGs) = 3. Then yrpe(Ba) = 3.
WE Zel ¥rpe(Ga) + ¥ipelGa) = Gand ¥ (Ga)  ¥rpe(G3) = 9.
(v} ¥rpeGa) = 3, Then rm{ff.{} =3
we gt Vrpel(Ge) + Vrpe(Gy) = 6 and ¥ 0 (G4 - Vipe (Gy) = 9.
(V) ¥rpe(Gs) = 3. Then prpalGs) = 3.
we 20t Yrpe (G5) + Frpe(Gs) = 680d YrpelGs)  Frpe(Gs) = 9.
(vi) Vrpa(Gs) = 2. Then yp (G5) = 3.
we g8t Vel Ge) + Vrpe(Ge) = 5 and ype (B) ¥rpe(Ge) = 6.
(i) Ve (G2) = 3. Then y,.(G7) = 3.
we 20t Yrpe(G7) 4 Vrpe(Gz) = 6 and e (67) 7 (G3) = 9.

Refrences

l. JABondy, US.R Murty, Graph theory with application, Elsevier science
Publishing Co, Sixth printing, 1984

2. LW, Haynes, 8.1, Hedemiemi and P.J. Slater, Domination in Grophs:
Advanced Topics Marce| Dekker, Mew York, 1998,

3. T.W.Iaynes, 5.T.Hedetmemi, PLSlater, Fundamentalzs of Domination in
Graphs, Marcel Dekker, New york, 1998,



RESTRAINED PENDANT DOMINATION IN GRAPHS

. 5.T Hedetniemi and R.C. Laskar, Topics on Domination, Discrete Math, 86
1994,

. Johannes H.Hattingh Some Recent Resultson Restrained Domination. The
23rd Mini eonlerence on Diserete Mathematies and Algorithms, Georgia State
Uiniversity, Atlanta A, 1JSA 2008,

. Mavaka S.R, Pottaswamy and Purashothama 5, Pendant Domination in
Graphs, The Joumal of Combinatorial Mathematics and Combinatorial
computing. pp. 219-230 (2020).

. Mavaka S5.R, Puttaswamy and Purushothama S, Pendant Domination in Some
Creneralized CGraphs, Intemational Journal of Scientific Engineering and
Science, Volume 1, lssue 7, (2017), pp. 13-15,

. Purushothama 8, Puttaswamy and Nayaka SR. Pendant Domination in
Double Graphs. Proceedings of the Jangjeon Mathematical Society Volume
23(2), 2020,

'ﬂepan.m'm af Mothematics, (Received, Jamuary 29, 2025)
Crovernment College{Autonmmous),
Mancdva University, Mandya-57 140/

email: swanil I4dhilgmoil com

"Department of Mathematics,
PES Colleye of Engincering,
Mundya-571401

e=muil: drfwkyhan(iyohoo.com

asT



Joumnal of indian Acad. Math ISSN: 0970-5120
Vol 47, No. 2 (2025) pp. 368-380

MODULO TWO SQUARE MEAN LABELING

oo *::_ OF HURDLE GRAPIHS, COMB GRAPIIS
| AND F(P) GRAPHS AND ITS ALGORITHMS

Abstract: A graph is said to be modulo two sguare mean labeling, if there is a function @ from
the vertex set o G o {1,2....n o the edge set of G 1o {1 where@ {up) = [M-:-LEEI mod 2, A

graph that admits madulo two square mesn labeling is called modulo two square mean graphs, Tn
this paper we provethat hurdie graphs, comb graphs and F({F, )graphs are modulo two square
mean labeling and its algorithms,

Key words: MeanLabeling, Root Mean Square Labeling, Hurdbe graph, comb graph,
Mathematics Subject Classification 2020 : 05C T8and 05C85,

1 Imtroduetion

Lets [V, E) be a graph with p vertices and g edges. A graph labeling is an assipnment of integers
ti the vertices or edpes, or bathusubject w certain conditions. Most graph kbeling methods trace
their orgin W one introduced by Rosa [7] in 1967, or one given by Graham and Sleane [2] in
1980, Risa | 7] called a function Fa B-valuation of a graph G with g edges if [is an injection from
the verlices of G 1o the set {0,1 ... q] such that, when each edge xy is assigned the tabel |f(x) —
Fi¥}] the resulting edge labels are distinet. Variouslabeling methods have been introduced by
Acharvo, Arumugam and Rosa [1].

The concept of mean labeling has been introduced by 5. Somasundaram and R.Ponraj[5] in 2004,
A graph G with p vertices and g edges is called a mean graph if there is an injective function t
from the vertices of G to {0, 1,2,..., g} such that when each edge uv is labeled with (f{u) +
FLe/20F fluw) + F(w) is even, and (F(w)+ f(2) + 1)/2 0f f(u) + f(¥) is odd, then the
resulting edge labels are distinet,

V. Ramachandran and C,Sekar 6] introduced the concept of one modulo N graceful where N is
any positive integer. In the case of N =2, the labeling is odd graceful and In the case of N = 2the
labeling is graceful. Motivated by (- Edge Magic Labeling [4] and 1- Edge Magic Labeling [3]
we introduce modulo two square mean labeling of hurdle graphs, comb graphs and F{F,) graphs
and its algorithms,
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Definitiond. 1: A walk in which &y, wa .. tt,are distinet @5 called a path, A path on n vertices is
denoted by B,
Definition1.2: The graph abtained by joining a single pendent edge ro each vertex of a path is
called azs Comb,
Definition].3:A graph & = (V, £ with p vertices and g edges is said to be a Root Square Mean
graph if it is possible to label the vertices x € V¥ with distinct elements fix) from 1.2, .. .q +

1in such away thal when each edge e = uv s labeled with (e = uv) = I M or

I Fm then the resulting edge labels are distinct. In this casef is called a Root Square

Mean labeling of G.

Definition 1.4 A graph obtained from a path B, by attaching a pendant edge 1o every intermal
vertexof the path is called Hurdle graph. It is denoted by Hd,, and has n— 2 hurdles.

Definition 1.5A Y tree is a graph obtained from a path by appending an edge to a vertex of a
path adjscent 1o an end pomt and is denoted by, where i is the number of vertices in the tree,
Definitions 1.6A F-tree F({F,) is a graph obtained from a path onn = 3 vertices by appending
two pendent edges one to an initial vertex and other vertex is adjacent to adjacent to initial

Ve,

2 Main Resulis

Thesrem 2.1 The Hurdle Graph Hd; is a modulo two square mean labeling,
Froof:

Lel f = Hdy, be a graph with novertices and n-1 edges.

Mow We Define The Vertices Of & is as follow asuy niguy, ... be the vertices of path F,, and
letry, vo.vy,... be the vertices of pendant edges attached tw the pathF,.
LetViGl={uplsk=nluf{rn:1=k=n-=2}and
Elty={upug,:l=k=n—-13ufe w,1<k<n-2}

Then & has 2n — 2 vertices and 2n — 3 edges.

Drefine f:V(G) = (1,23, ....2n — 2}as follows

flugl=2k—-1, 1=sk=n—-1

fluy)=2n-2
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floed =2k, 1=k=n-2
Mow we define edge function as follows.
2 3
Flugug,,) = [MM] mod2,1=sk=n—1

flugtg, ) = Iwﬂi mod21=<k=n-2

Thus, the graph G has a modulo two square mesan [abeling,

Example 2.2 medulo two square mean labeling of Hurdle Graph Hds 15 shown in Fig 2.1

1
4

Figore 2.1

2.3, Algorithm Deseription
Problem Statement:
Development of a C++ algorithm for hurdle graphs using modulo-2 square mean labeling
Input:
»  The Number of Vertices
Output:
« The Labeling of Vertices of path are u(1), w{2},...... and Labeling afVertices of pendant
edges are v 1), v(2%......
= The Labeling of edgese(1), 2(2)............ and its Modulo of edges of e(1)=1, e2}=1l...cccccce.
Development Process
The C++ algorithm for Hordle graphs emplovs modulo-2 square mean labeling
Code Implementation:

#incude <iostream:>
findude =cmath>
int maini)
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{

It n,i;

vt w| 100, [ 100);

imt &1[100],22[100],.3{100],=4]100);

std::cout=< "Enter the Mumber of Vertices=";
std:cinz=n;

for {l=1;ic=n-1;i++}

{

L[if=2*1-1;

stdicoutee ™ \m The Number of Vertices of u ("<<ice®) = cauli];
|

uln]=2*n-2:

std:ieouts< "\n The Number of Vertices of u ("=<n=<") ="=<u[n];
shefiooutas "\n":

for {i=1;ic=n-2;i++}

{

vlil=2"i;

std:cout<<” \n The Number of Vertices of v ("exbee") ="<ay(l];
|

std:coutes "\n";

for {i=1; =n-2; i+#]

{

elfil=tull*ulili+ulli+1)] *ulli+1)])

e2li]= ceil] float (e1[ii]/2);

std:cout<<"\n Edges of e {"<<ice”) ="22e2]i] «<"\t";
std:cout<<"\t Edges of e {"<<ia") ="<<pd]i] %2\t

}

el[n-1]={u[n] *u[n]}+{ul{n-1)] *ul{r-1)]);

€2[n-1]= ceil{ Aoat {elln-1])/2);

stdicout=<"in Edges of e ("ocice™) ="<apZ[n-1] <=t
stdicout=<"\t Edges of e ("<=izc®) ="<zp2[n-1] %2=="\t";
for {I=1; f<=n-2; i++]

{

e3[fi=iv{il*w [T+ {ull+L o+ 211);

e4[il= celll float (e3[i])/2);

std:coute<"\n Edges of e(®ceitn-1=<"|="cepd]i] <<"\1";
st coutee"\t Edges of e "e<itn-1c<”)="<ced[i] %2 "\t";
}

return ;
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Output: The Output of Hurdle Graph Hdshas a moduloe two square mean labeling,

Enter the Number of Vertices

The Number
The Humirer
The Humber
The Number
The Humber

The Number
The Number
The Number

Edges of
Edges of
Edges of

2
e
e
Edges of ¢

of
of
af
of
af

of
of
of

13
£2)
(32
L4}

Vertices
Vertices
vertices
Vertices
Vertices

Vertices
vertices
Yertices

L]

=17
=37
=57

Edges of e(531=7
Edges of afa)=21
Edges of 2(7)=43

Code Execution Successtul

Explanation:

The algorthm begins by initializing two sets of vertices: ong representing the path and the other
corresponding 1o the pendant edpes. which together form the labeling structure of the hurdle
graph. The output includes the ebeled edpes of the hurdle praph and its modulo resull are equal
to 1. This labeling approach ensures grester efficiency and consistency compared 1o traditional

methods.

Thenrem 2.4 The comb Graph (B, (O Ky is 8 modulo two square mean labeling,

Proof;

Let & = F O K, be a graph with novertices and n edges.

of
of
af
of
of

£°'EE E &£

of v

af
of

= 5

{1}
)
{3}
{43
{5}

L&)
(2
(3;

Edges of
Edges of
Edges of
Edges of
Edgex of
Edges of
Edges of

-1
=3
=3
=F
-5

=3
-2
=5

(13
]
(32
(4
e{5)=1
e{6i=1
&{Ti=1

g
-
e
e

=1
=

=1

Mow We Define the Vertices of V(G) is as follow as

Clear

arz
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Wyaldo g, ... 85 the vertices of pathF,, and let vy, 05, 0%,... be the vertices of K;attached to the
pathf,.
Lea Vi) =fugl=k=nluivel <k =n}and
E(G) = {wpthyrl sk sn—1} 0 inauy il <k = n—1},
Then 6 has 2n vertices and 2 — | cdizes.
Define f:V(F) = (1,23, ....2n}as follows
flgl=2k-1, 1sk=n
flo) =2k, 1=k=n
Mow we deline edge function as ollows.
Flugugen) = [L42 000 o2, 15k S n -1,

. .
flopn,) = IM’”— mod21 <k <n

Hence, thecomb Graph (£, © K, ) admits modulotwosguare mean labeling.

Example 2.5 modulo two square mean laheling of comb Graph (P; (& K, ) is shown in Fig 2.2

2 & 8 10
1 1 1 1 \ 1
1 1 3 1 5 1 7 1 @
Figure 2.2

2.6. Algorithm Deseription
Problem Statement:
Development of T+ Algorithm [oreomb Graph (B, & K, ) using modulo-2 square mean
labelng
Input:
»  The Mumber of Vertices
Output:
s The Labeling of Vertices of path are u(1), u(2),...... and Labeling ofVertices of pendant

edges are v 1), v(2),.....
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»  The Labeling of edgesel 1), 8(2)....uwe. and its Modulo of edges of e{1)=1, el2}=1..oiee

Development Process
The CH Algorithm forcomb Graph (F, (0 K, ) employs modube-2 square mean labeling.

Coule Implementation:

#indude <igstream>

findude <cmath=

i maing)

{

It m,i;

I w1007, u] 100];

int e1[100],e2[100],e3[100),4{100];

std:cout<< "Enter the Mumber of Viertices = *;
std:cin>>n;

for {i=1;l<=n;i++)

{

ulil=2%-1;

std::coute< * \m The Mumber of Vertices of u {"<<i<<®) ="caufi];
|

std::cout<< "yn";

for {i=1l<=ni++}

{

wli]=2"i;

std:cowts<" \n The Number of Vertices of v("s<i<<")="<v(i];
i

stdicoutes "in";

stdcout=<"\n";

for {I=1; l==n-1; 1+#]

{

elfif={uliT* ulilj+{ulfi+1)] *ulli+1i])

e2[ij= ceil] Tloat (e1[i])/2);

st icoute<"\n Edges of e [u"c=izc") ="2cpd](] <=\

sl icout=<"\t Edges of e (u"<<i=<") =Moeed[i] F2e<"\t";

i

for {i=1; ic=n; i++]

{

3= [ (TR ul ]l

edfi]= ceil| float (e3[i])/2);

std:cout<<"\n Edges of e [v"<<i+n-1<<") ="<<ad|i] <<™1":
stdcoute<"\t Edges of & [y"<<ivn-1<<") s"<zad[i] H2<="\1":
]
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return O;
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Output; The Gutput of the comb Graph (P, &) Ky )has 2 modulo two square mean labeling,

Chutput

Ent=r the Number of YWartices = &

The Bumber
The NumGer
The Nusbsr
The Number
The Nunbar
The. Nusber

The hunder
The Numoer
Tha humssr
The Musibers
The Number
The hunber

of
af
of
of
ef
ef

of
et
of
ef
oT
of

Vertices
Versices
Vertices
Vertices
Verticss
Vertices

Verticed
WerTices
Vereicas
Vertices
Vercices
Vertices

Edges of = (ul1} =5
Edges of @ (ud) =17
Edges of & [uld] =37
Edges of & {ud) -&5
Fdges of & {(uf) «101
Edges of & [vB] a3
Edges of & i¥7) =13
Edgez of & I(vE] =31
Eages of & fvS) =57
Edges of & (v1D) =81
Edges of & (v11) =133
—ne Cocte Faroution Shoc
Explanation:

ar-d iy =1

of w (2) =

af-u (3} =5

of uw (4] =7

of u[5) =@

of u (&8} =11

of wilj=2

af widj=4

af Wil )jud

ef widj=d

of wis)=1g

of widjaiX
Eoges of
Edges of
Edgex of
Eagex of
Edgex of
¥dles ot
Soges of
Eoger =t
Eoges of
Eoges of
Eoges of

Ll ful ==

LR |

Ao ioE s W

futy =1
[uzy =1
fuSy =1
(wd) =1
futy &1
(waY =1
(wT} =1
w8y =1
(w3} =1
Cwig) =1
w1} =1

The alporithm begins by initializing two sets of vertices: one representing the path and the other
corresponding 1o the pendant edges, which together form the labeling structure of the comb
Graph (P, & Kq). The output includes the labeled edges of the comb Graph (P, & Ky ) and
its modulo result are equal to 1. This labeling approach ensures greater efficiency and

consistency compared to traditional methods.

Theorem 2.7The F-Tree F{#,) hasa modulotwo square mean labeling.

Proof: Let G = F(F,) be a graph.

V(G ={w 1=k =njUfuw}hand
E(G) = {(vavpsd: 1 = k = n— LU JU{ (W)}
Sa. V(G =n+2& |E(G) =n+1
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Define £ V{(G) = [1,2.3,....n + 2Jas follows

Now flr,) =1

flo)=4

flogel=4+k 1=k=n-2

flu) =2

flw) =3

MNow we detine edge function as follows
r z z

flvwved = fen) +zﬁ-“'k”] ]Mﬂd 2, 1=k=n-1
r 2 z

flryu) = w Maod 2
F o 2 2 Ffwy2

]F{VEW.! = M;M Maod 2

Hence F(R, ) hasa moduls two square mean labeling,

Example 2.8 modulo two square mean labeling of F-Tree F(P) is shown in Fig 2.3

1

1 2
& =]
1
! i _o
3
5 @
1
6@
1
7@

Figure 2.3

are
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2.9, Algorithm Deseription
Problem Statement:
Development of C4— Algorithm for F-Tree F(8, Jusing modulo-2 square mean labeling

Input:
+  The Mumber of Verlices
Cuipui:
+ The Labeling of Vartices of v 1).v(2), are assign asv(11=2.v(27=3, and Labeling
ofVertices of path edges are w1, w2h,......
+  The Labeling of edgese{1}, e(Z)u i and its Modulo of edges of e{1)=1, 2[2)=1...e
Development Process

The C++ Algorithm forl-Tree F{F, Jemploys modulo-2 square mean labeling,

Code Tmplementation:

#include <iostream=

#include <cmath=

ink maing )

!

ing n,i;

int v[100],u[100];

incel [100],€2[100];

ul1]-1;

ul2]=4;

vil=2;

¥[2]=3;

std::cout<< "Enter the Number of Vertices ="

st sein>on:

st seout==< " \n The Number of Vertices of'y (1} ="<<v[1];
st seout<< ™ \nThe Number of Vertices ol v (2) ~"=<v[2];
ste:zeoul== " \n The Number of Vertices ofu (1) ="==u|1];
std;cowt== " ‘n The Mumber of Vertices of u (2) ="==u|2];
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for (=li<=n=2;11++)
i
u[ -] i+ 4y

sldzomut=< " \n The Number of Vertices of w {"<<2-j=<") ===y 2+i];

H

std:oout==""n";

el[1=(ul L IFul 1D = (D

e2[1]= ceill float (el[1])2)

std:roout<<'"in Edpes of e { 1) ="<<e2[1] =<t
std::eout=<"t Edges of e (1) ="<<e2[1] %a2=="4y",
el [Z}={u[2] uf2](viE23] *vI(23]:

e2[2]~ ceill float (e1[2]W2);

std:zoout<<"n Edges of ¢ {2} ="<<e2[2] =<"4";
std;scomt==" Edges of & {2) ="<=¢2]2] %l=="4";
for (i=1; i==n-1; i++)

i

el [H+2]=ufi]*ul i ul G+ D) * a1

e2[i+2]= ceill foat (e1[i+2]N2Y

std::eout=<"\n Edges of e ("~ Q=) ="ogd[{H-2] =",

std:eout==<"t Bdges ole ("=<i2<=") ="<=e2[i+2] Bo2=<"u";

!
retum (0

H

ars
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OUTPUT: The Output of F-Tree F{Pg)has o modulo two sqoare mean labeling.

Dhitput

Enter The Nusber of Vertices = 8§

The Nusber of Yertices of w{1}=2
The Nusber of Vertices of v(Fj=3
The Number of Yertices of u(i)=1
The Number of Vertices of w{l)=d4
The Kusber of Yertices of wf{3)=5
The Numbsr of Vertices @F u(d)=6
The humber of Vertices of u{5)=7
The Mumber of dertices of wis)=8
The Nunber of Yertices of u{7Ti=8
, The husber of YVertices of w(@)=10

Edges of o(1)a3 Edges of &(1)=]
Edges of 8{2}=13 Edges of e[2)=1
Edges of e{3)=3 Edges of e(3)=1
Eages of 2{4)=21 Edges of e(dj=l
Edges of =(5)=31 Edges of &{3)=1
Edges of s(f)=43 Edges of e(&)=1
Edges of e[7)=37 Edges of e(T)=1
Edges of &({8)=73 Edges of e(§)=1
Edges of ={9%)=51 Edpes af a{3)=1
=== [ode Execution Suceesztul --4
Explanation:

The algorithm begins by initializing two sets of vertices: one representing the path and the other
corresponding 1o the pendant edges, which together form the labeling structure of the F-Tree
F{£). The output inchodes the labeled edges of the F-Tree F(P,) and its modulo result are equal
to |. This labeling approach ensures greater efficiency and consistency compared to traditional
methads,

I Conclusion

In this paper we have investigated some pathrelated graphslike Hurdle Graph, comb graph{ B, (&
Ky, F-Tree F(B,). We have provided C- algorithm for the theprems,
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Keerti Acharye’, | ANOVEL TECHNIC USING
Rinku ¥erms'. | COMPLETE GRAPH LABELING
Pranjali Kekre' | AN ASCII REPRESENTATION

ABSTRACT. In this paper, we presenl @ novel eneryplion lechnique thal uses complete graph
labeling and ASCI code mapping to improve data security, The method encodes plaintext charaeters
as labeled vertices in a complete graph, with edges representing distingt relationships based on
enprvplivn rules derived from graph theory principles. By combining ASCI values with graph
labeling schemes, we create a structured but complex ciphertext thal is resisiant W common
cryptanalvsis techniques. The proposed approach ensures secure communication while remaining
compulationally efficient, Results are veriled using Matlah soflware,

2020 Mathematical Seience Clasgification: 11A07, 44410, 94460, 11T71

Keyvwords and Phrases: Network security, cipher text, complete graph, extended ASCIT code,
1. INTRODUCTION

With the exponential growth of digital communication and data exchange, ensuring sceure
transmission of sensitive information has become a paramount concem.

Secured data transfer is always a matter of discussion, several techniques are already developed and o
number of them are still in pipeline. Main motto of Crvptography is information security such as data
integrity, entity authentication and data origin authentication. Cryptography is a set of techniques to
provide information security. While designing a ervptography scheme, cryptogropher always kept in
mind that the designed algorithm is not very trivial 1o understand, replicate and therefore easily
cracked, To secure the data from hackers i1 needs 1o be encrypled with high level of security,

It helps 1o store sensitive infomation, ransmil it across msecure networks like intemet so that it can’t
be read by anyone except the intended receiver.

Analysis of ervptographic security leads to using theoretical eomputer science especially complexity
theory.

Ciraph theory, o mathematical discipline concerned with the study of graphs and their properties, has
found applications in numerous felds, including network security and cryvplography.
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Vanous crvplographic methods have been developed and refined over the vears (o meet a wide range
of security needs. Rivest etal. [1] developed the RSA algorithm, a game-changing advancement in
public-key cryptography that laid the groundwork for secure digital communications. In addition o
public-key encryvplion, symmetric encryplion schemes such as the Advanced Eneryplion Standard
(AFS) havee gained popularity in both commercial and academic scltings, as discussed by Kate and
Lindell [2]. However, as cryptographic algorithms have advaneed, challenges such as computational
overhead, scalability, and performance have emerged, panticularly when securing larpe datasets and
ensuring cfficient eneryption in real-time communications.

Data security requirements have become even more compléx with the growth of distributed svstems
and the Internet of Things {loT). According to Bashir and Hussain |15], lightweight cryptography is
essential, particularly in settings with limited resources when energy efficiency and processing power
are eritical. Hybrid cryprographic algorithms have been developed to combine the advantages of
several enceyplion techniques while reducing their respective drawbacks for applications where
protection is required for both data in transit and data st rest Srinivas and  Manjunath, [12]. These
algorithms are perfect for situations where secure data transmission without noticeable delay 13 erucial
singe they are made to provide a balance between performance, security, and resource usage.

Another urgent concern in contemporary cyber security is database securily, specifically with regard
b ddadar in tramsil and at rest. Database enervotion methods must retain accentable performance levels

while offering high levels of protection, claims Sullivan [L6], Effective encryption techniques ave
cruclal tor reducing potential vulnerabilities and guaranteeing that data is safe from malevolent actors
since dotabases contain and handle vast amounts of sensitive data.

In order to protect unencrypted database files while they are in trnsit and at rest, this study altempts
to propose @ versatile and reasonably priced cryptographic enervption algorithm, The suggesied
solution aims 1o combine stae-of-the-art enceyption technigues with  realistic implementation
strategics, providing o balunced approach o protecting  sensilive  database  information  in
contemporary technological landscapes, It does this by drawing on the principles deseribed in
foundational ervpeography texts like those by Paar and Pelzl [3] and Bench and Shoup [14].

This study aims to suggest a flexible and affordable crvptographic encryption solution to safesuard
unprotected database fles both in transit and al rest. The proposed method seeks o provide a balanced
approsch o safepuarding sensitive database data in loday's technology environments by fusing
cutting-edgze encryption algorithms with practical implementation strategics,

In order 1o improve data sceurity, Mathur[5] presented a symmetric key eneryption algorithm tha
makes use af ASCII character values,

Kumar et al|13| used a modified affine cipher to encrypt data by combining encryption and
decryption procedures with graph plotting techniques,

Geena and Gupta [20] presented a novel method of improving data security through the combination
of svmmetriec key eryvptography and graph theory.

The improvement of data sccurity in electronic communication systems is the subject of "A Triple
Hill Cipher Algorithm Proposed to Increase the Security of Encrypred Binary Data and its
Implementation Using FPGA" by As Khalal et al. |9].
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To increase the security of text data, Rajput et al. |7] published o cryptographic technique that
employs double encryption, A key aggregate searchable encryption (KASE) technigue was presented
by Goutham et al, [10] w facilitate safe and effective cloud dota sharing, The method offered o safe
way {0 share datn in cloud-based settings by enabling wsers to search encrvpted data in the cloud
without sacrificing privacy. Sampathkumar [11] tlked sbout attribute-based enervption (ABE) and
how it may be used to secure queries. He also supgested a way 1o organize queries such that ABE
systems perform betler, particularly in large-scale setings. In order to improve the secorily and
elfectiveness of image encryplion while lowering the amount of data needed [or transmission or
stormge, Mahmood and Shehab [6] developed a method for image enervption and compresaion hased
on compressive sensing and chaos theory, Gorabasl and  Manjaiah [8] presented a new image
encryption approach 1o address security concerns related to image dota. The method involved both
spatial and frequency domain transformations to achieve high security levels for image transmission.

A method for identifving crvptographic algorithms by examining characteristics present in cipherlexts
has been presented by Li, 1 et al. [21]. In order to choose the encryption technique, the suggested
scheme made use of statistical charscteristics and patterns found in encrypled data.

Bing et al.[4] presented intriguing fndings about spanning trees in graph theory. They investigated
important properties and proposed new theorems that add 1o our understanding of spanning trew
structures, These findings had direet implications for both theoretical combinatorics research and
proctical applications in arcas such as network reliability. circuit design, and data structure
optimizatiom,

Shaik and Matarajan K [17] proposed a flexible and cost-effective eryptographic encryption algorithm

that is specifically designed to secure unencrypted database files at rest and in transit. The algorithm
focuses on providing strong security while reducing computntional costs and complexity, making it an
excellent choice for modern database systems that require scalable, real-time encryplion without
sacrificing petformance. Verma e al[ 18] proposed an enervption algorithm based on modular
arithmetic and Laplace transform. Chen, Y., el al.[19] proposed a Graph based algorithm for the
cncryphion algorithm, Based on all these wie have proposed a encryplion algorithm based on the
concept of graph theory and modular arithmetie.

1. PRELIMINARIES

2.1 Plain text: It significs 8 message that can be imdersteod by the sender, the recipient and also by

anyone else who ety AGlss Lo that MEasaEe,
2.2, Cipher text: When a plain text messape is codified using any suitable scheme, the resulting
message is called as cipher lext.

2.3. Encryption and Decryption: Encryption transforms a plain text message into cipher text,
whereas decryption transforms a cipher text message back into plain text.

2.4 Complete Graph : A simple graph G is said to be complete if each veriex is joined to every
ather vertex by means of an edge.

2.5 Minimum Spanning Tree: A subgraph of o connected graph G which is a tree and contains all
the vertices G i3 said (0 be spanning tree of G, A spanmng trée with minimum weight s called
minimum spanning free.
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3. ALGORITHM

Pseudo Algorithm for encryplion and decryption is a proposed Algorithm based on the concept of
complete graph labelling vechnigue, a minimum spanning tree used to find seeret key and basic
matrix theory to find eipher text and to decode it to get plain Text again,

Step |: Input the message and take the length of message as' L',

Step 2: Represent the message as vertices of complete Graph 'K, ' as set | {u.0,.———.u, | and edges
LiL- I}J
T )

asfe e, ——— e, . where V= [
Step 3: Label the vertices as

+

f(ii:r‘,}=L—E;ﬂ£J£l[L—2_1]

iy =MEI5.K%]J.

Step 4:Label the & =<, v>as

flen =]_,r'{u}—f[vj|+Ma.rU'{uLﬂ ).
Step 5: Create the welghted adjscency Matrix A for the labeled 'K, "

Step 6 Obtain the extended ASCII code for the each charter of inputmessage.

Step T: Create the weighled adjacency Matrix £ of the outer cyele of 'K, ", and [l the diagonal
entries of Matrix # with the obtnined extended ASCI code of the text to be encrypted.

Step 8: Create N = Ax8,

Step 9: Find out the minimum Spanning tree of labeled complete graph ‘K ' and let the length of
minimum spanning tree be 'S

Step 9: Consider public key matrix M with all upper triangular entries as one and other as zero,

Bep 1 Create Code matrix

C= MM
C, =mad(C, 5)
= Curioren{(C, 5,
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Step 11: Pass (C,,C,, 4 )as Cipher text amd 'S as Seeret key 1o the Decode
Step 12 Decrypt (. C,, A pwith '5"as follows
Create D=8C,+C,.
N = DM ' (where M is the Public Key)
B=A"N.

Diagonal entries of matrix B gives the extended ASCIH code of input plain text and retrieved from
the table.

Hiustrative examples:
Plain Text "T Will"
L=6;

Ciraph K is created and labeled as mentioned n algorithm, shown in figure 1.
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Weightes adjacency matrix for the graph

= -

011 710 8 9
110 ¢ 3 7 5
B 9 08 % 7
N w0380 6 4
7T 6 6 0O 5

| 9 5 % % % 9

Welghtes adjacency matrix for the outer eyele of graph

g 1mn o0 0 0
n o % 0 0
]
&
0
3

=
= = @ 9
(=R — - -~
& Th o o4

-
0
0
0
5
{'I-.

Updated B with diagonal entries as extended ASCIH code of message letiers

73011 0 0 0 9]
329 6 0 0
9 87 & 0 0
0 B 105 6 D
{
i

o

0 6 108 3
D 0 5 108

" = e =

Resultant & = AxH As



ANOVEL TECHNIC USING COMPLETE GRAPH ABELING

202 415 788 1154 964 1012
B4% 202 807 429 799 674
673 365 145 576 731 B4Q

N = 7oL 278 723 100 H68 552

706 366 633 678 &l 612

Ti2 332 HEG Sk S04 106

Public key matrix

= | =

=
2 SR e =
LT e

= — I — L
oD = = = =

Length of minimum spanning (ree:5=215
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202 617 1405 2550 3528 4540 ]
848 1050 1857 2286 3085 3759
673 1038 1183 2059 2790 3639
= 799 1077 1800 1900 2568 3120
706 1072 1705 2383 2444 3086
712 1034 1720 1226 2790 2E9A

C; = mod{C", 5]
Ax

175 9 3 15]
23 00 7 11 10 9
23 13 ® 9 15 M4
4 2 0 0 18 20
6 22 5 B 19 &
12 9 20 1 15 21]

C, = Qutionen|C, §),
B 24 S6 102 141 181 ]
33 42 T4 91 123 150
26 41 47 82 101 143
31 043 72 76 102 124
28 42 68 95 97 122
28 41 6B 89 111 115

Pass (T, 0y, 4 )as Cipher text and 'S 'as Sceret key Lo the Decoder
Now obtained

D=5C,1C,
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Ly

202
B4R
673
790
706
712

617
1050
1038
177
172
1034

1405
1857
1183
1304
1705
1720

N =DM ' (where M is the Public Key)

s
i 202 415 TRE
BB 202 ®O7
N = 673 365 145
799 78 723
06 66 #33
L T2 32 686
B=A4"N.
as
TT3.0000 110000 (L0000
11,0000 32,0000 9.0000
B=
L B0000 00000 00000
with digonal entries

73 32 87105 108

108

2359 3528
2286 3085
2059 2TH)

1900 2568

2383 2444

22246 279
1154 69

429 99

H476 73
100 668

678 6l

506 564

U000 00000

L0000 D.0000 (L0000
0.0000  9.0000 87.0000 80000 00000 0.0000
D00 00000 BOOGO 1050000 G000 CLOH)

0 00000 00000 6.0000 080N
0 30000 1080000

4540 |
1759
1639
3120
3056
2896 |

10127
674
§49
552
62

90000

30000

character equivalent of these extended ASCH code is the Decoded message

TWir

CONCLUSION

In this study, we have provided a novel cryptographic dechnigue that combines the division

algorithm with graph theoretical features to produce a reliable and extremely secure means of
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sending secret data. The method gives a new layer of encryption that greatly improves data security

and confidentiality in communication networks by combining these two different mathematical ideas.
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SUMS INVOLVING A FAMILY OF
Thomas Koxhy | GIBONACCT POLYNOMIAL SQUARES:
GRAPH-THEORETIC CONFIEMATIONS

Abstract

W conliay n geasevalieod s of & iy of gilsmas polyombal sguares asiog gopli-Ueosethe
teedimdouesy o (8 eragde Ulmsoretle and Pall conserpiemees,

Key worids: (iibonacel Polvaomief, Fibonaeci Polynomial Petl Pofynomials,
Lukay Polynomial, Bemet Formula Crraph- theoretic Confirmation.
MEC2020: Frimary [TH37, HB3Y, [1C0X

1 INTRODUCTION

Fatended gilumaret polgnomisls =, (x) are defined by the recnmence s, 0lr] = alels, (7)) +
Mmhzloh, whers = i an arbiceary integer vardahle; alx), 8], s0ad, and =y (s} are arbitrary In-
teger polynomials; sl 2 = 0

Suppose afr) = & and bz = 1. When sylz) = 0 and iz} = 1, z4{x) = fule), the nth
Febanars polynomtel; and when zg(z) = 2and z0(x) = o, 2gde) = L), the nth Lucas polyromial
They can aleo he defined by the Bimet-fike formulas, Clearky, fi01) = Fi, the ath Fibonaeed
nmmner and L0 1) = Ly, the nth Lucas momber (1, 3,

Pell polymomants poix) and Peli-fucns polgmomiels g () wee defined by pela) = f(%0) and
iy l] = by 2w}, respectivaly [2]:

In the interest of bravity, elarity, and comvenience, we omit the srgument o the funetionsl
notation, when there B wo ambignity; so =, will mean 5, (=), Inoaddision, we ot g, = f o
Loohe = py ne g A= 27+ 4 B0 =r+A |d6].

It follows by the Hinet-like formilas that Jm

=tOand him T _ o,

My P

1.1  Fundamental Gibonacel Identities
Gibenars polynomials satisfy the following properties |2, 8,4, 5, 6]

] [_1]"+E+IIE| if,qll=.fﬂ
Saipkia-b — Wy = ) (1)
(—1" AT otherwlse

(=1 ik, W= Ju
Gl fin=b = Gn ik par = A ¢ (2
(-1MTRASE fa, otherwise
whiere e ol e pesitive integors, Tliese praperties san be ccafivmed sy Che Binet-Tike larunoins:
Tt followes feoan e Cwo identities s

i—I}'*_!f:;.- if M= fu

&
(LAt fh,  otherwise &

»
B e dd e e Uplh T Hopmte-gpk = {
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[,_l}ﬁq-l-ff-lrw' lig,, - -rrl
FizpretibrrM2pnrt-2ptk = Gizpnitiedizpwe-2piher < WAz A {4}
(=17 A2 Fr fopg,  otherwise,

where k, p, v, and ¢ are pogitive integers and ¢ < 2p.

2 A TELESCOPING GIBONACCI SUM

Using recursion, we estahlished the following telescoping gibonacei smm in [6]. In the interest of

brevity, we omit its proof here.

Lemma 1.  Let kb pord, and A be posstioe snfegers, where < 2p, Then

: 2
i [H-I?E;m+r—!£p]k+r B Frzpn+t1h+r] A ﬂﬁ,,,., e (5

63 % = . '
n=t L gmt-gpib Sz e

3 A FAMILY OF GIBONACCI SUMS

Using identities [3) el (4], Lemmn 1 with A = 1 played s major robe in the development of the
following theorent. To this end, In the nterest of brevity, we ley [6):

L ifge=fu . L ifan=1/Is
o= . and 7 =
AL otheruiise; —1. otherutisze.
Thess tools served s building blocks of the discourse, as the theorem shows [6].

Theorem 1. Lei kopor, and £ be pesition tniegers, where § < 2pe Then

= (0% fofo ke s {6}

¥ ' ot ]
lL-lg[hff-iJI#_l:_l}ﬁw _J'Ii itk
The ohjective of our discourse is to confirm this result using graph-theoretio technigues. T
thiz end, firat we present the needed tonls,

4 GRAPH-THEORETIC TOOLS

Consider the Fikonaecd digraph in Figure 1 with vertices vy and vy, where a weight 5 assigned to

1
ench edge [2, 5. It follows fron its wesghted adjecenoy moelriz § = ” ] bl

1
no— el .Ifrl
Q [.ﬁn .f:'l.-l]I
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Figure |;: Weighted Fibonace Digraph

where n > 1 [2, 3, 4, 8], We extend the exponent e to 0, which iz consistent with the Cessfi-like
Jormuda fusifaey — J2 = (=1)" 12, 5],

A walk from vertex ¢ to veriex ¥ I8 8 SeqUELOR €Ly ~~Uj=1~Cf=1 - of vertices vy and
edges ey, whore edge o is incident with vertices vy, aod ey The walk is closed if 1y = vy mnd
apen, otherwise. The length of & walk is the number of edges in the walk, The weigh! of & walk is
the product of Lhe weights of the edges slong the walk.

The dfth eotey of G gives the swn of the welghts of all walls of bength o from o W ey o the
welghted digroph, where 1< 4, < n |2, 3, 4. Consequently, the sum of the weights of closed walks
of length » originating at vy in the digrph is fr.; snd that of those originating ot v is S, S0,
the sum of the weights of all closed walks of length o in the digraph is fop 4+ fum =1, (2 8L

Lot A and B donote seis ol walls of varving lengths origineting ot o vertox oo Then the sam
of the weights of the elements (@ b) o the product st A x B is defined vy the product of the
suins of welghts from each component |3, 4}, This definition can be extended to any Goite moober
of component =ets, In particular, Tet A, B, O, and D denote the sets of walks of varving lengths
oviginnting st b vertex v, respectively, Then the sum of the weights of the elements (o b, . d) in
the product set A = B = x Disthe prudui:‘l of the sumns of u'u'lght.u from each componenl [3_. 4]_

We wow ke an ioteresting obseovation, Lot A = {u} aod B = {v}, where u denotes the
closed] walk vi=vy and v denotes the closed walle vyepgeey.  The weight of the edement (u, u) in
AxAisz? and that in Bx Bis 1. Cousequently, the sum w of the weights of the eleinents in
={Ax Au{BxBYU(Bx B)U(Bx B U(E = B} isgiven by w= " +4=A%

These toals play a major role in the discounse. With them at eur finger tips, we are now ready
for pursuing the graph-theoretic confinmmtion,
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5 GRAPH-THEORETIC CONFIRMATION

Lot T denote the sot of closed walks of lengeh r in the dipraph orfginating at o, and I7) the
st of all closed walks of the same length noin the digraph. Correspondingly, et T}, denote the
snm of the weights of all elements in T, and U that of those in U7, Clearly, Ty = fusq and
Uy = fuon+ oo =1 (205 With this brief backgrovmd, we now begin the proof of the gibonace
snin (6 o cases, whero koporot = 1 and £ < 25,

Froof. Clase I, Buppore g, = fu. The sum of the weights of the elements in the product =st 'T':_I =
T;;-l—l s T Tope1 = frfopy: the sumeof thase in TE'FH-!-P!*"J b :\I:EFN-'”_F:IJ!"'!- 5 T?ﬂpn—l—p;k--l =
-"Ff"-pnﬂ—p:l#: and that of those in T, , < T8, , = T;?E—i = ff,,;.

Combining the bwo parts, we pow lod

s E_le—l
f T?ﬂpn-i-l:—p]k = {_I}MT;&' =
.fr.lf'hu'l:

—flglﬂpu-rt—p] k— {_kafkl
Uaing identities {3) and (4), and the lemma, this yields

(=1)* S fag

Jitigara it St — b ie — Jympm i i Sodm Lo

f&mﬂ-ml - [-l]’*fﬁ,, - Seggm 0yt S o200
- (= 1" £ Foye = = [Siapwint-zpibsr .rl._ﬂ‘puﬂ'rk+r]
sl f&mﬂ_?’]k = {_1 ]:k'fla' eI f['!rm'—[— 2k fl::.{nml-l-l]k
.Ir&i+1- r
= —— —n'. {7
JrrL- ]

Nomw, wi turn to the fip side.
Clase & Lot oy, = 0, Hecall that the sum w of the weights of the elements in £ = (A4 = A) U (B =
BYyU (B« B) U= B)u{l = B) is given by w = 2% - 4 = A?, and that of the elements in the
product get, C* x T = T3 o 38 given by wTe Ty = }ljf,.‘fg-'&. The s of the weights of

the elemsmts in the prodoct set I'r['ﬂ]mﬂ--pji 1 Ulrﬁj‘ﬂl&f"p}l 15 Ul?ﬂm-wwr'li = i'f?‘m‘”_"w; nnd that of
those in T, T = Ti,l._, = fi.*
As abowve, wo now fot
g = w1 Tapk—1
n oo o 5 .
ek F (=1)Fwird,
= ﬁlfr.flpl.'
S ] kAD i
It thim follows by bdentitios {3} and (43, and Che Tomnoma bt
(=L LARE _ Aapninrtizpnt-gpitee = Ut tiberlmi-ayie
ipsaeippe T I—1HAI L gy baybd {2t 0 —2pil
= (1) AZT £y, = i’: [I;g_mﬂ—u;-:k—r s ;lh-l-l]k-w-r]
o I?':W'!‘T—Pi* + {_lltk-a?f:i.- e !fhmﬂ'—ﬁp‘m 'Ei'!pﬂ+r}'l.
_ A ar (8}

ﬁ#
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This equation, coupled with equation (T), yields Theorem 1. as desired. a

For the corious-minded, we now add that equation (6) can be rewritten in terme of graph-
thearetic toola. To this end. we define T, =1, U =2 W, =T, ar Uy,
1 IJ"H,,:T,, 1, ';.fHdr=T1r 1, ‘.IEI=T|1|
B =

i and ¥ =
@ wtherwise: =1, ‘otheruise; 0, obheruise.

M

With these new tools, and integers &, p, e, and ¢ oas before, we now present the graph-theoretic
wergion of eqpeation [E:J:

a0

(— 1)t T, —1 Tk = Hiktr—u — @)
T Hngioppies — (— 1™t To Hiye

Mext, we turn o the Pall implications of the graph-theoretio techmioques,

6 PELL CONSEQUENCE

With the gihonseei-Poll relationship by, (7) = gq{%x). we can construct the graph-thearetic proof of
the Pell version of Theorem 1 independontly by changiog the weight of the loop at o from = to
L. We eneonrage Fibonace] enthustasta to oxplore this route,
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Meghial Malli', | ORDER LINEAR SHIFT DIFFERENTIAL
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AWSINACT, After appbying shift, we Jook st the complas ascillation solutione of the o™ oeder
Hnsar differential equation and demonsteate by @ ooniter example that the conclusion of the
paclier result docs pot bold, We alwo establish the esult for the shift ditferentind equation
with s supporting o exomple
Key words and phrases: Fuotire function, mersmorphie mnction. prowth, linesr diffes-
entind equation, shift differentinl equation. Mathematical Subject Classification 2020:
SAMIT0, 00335,

1, INTRODUCTION

The standard definitions und notabions of Nevanlbomn value distribution theory are adopted
in this paper. For further information, see [0], [11], [14], (15} As for example p{f) denote the
order of & meromorphic function f, The growth of the solution of complex linear differentisl
equation aud difference cguation heve been studied by mooy munerons researchiers sinee 1960,
Biasind on the Wevonlinns volue distribution theory, some resull on Uee srowth of oll (rapscen-
dental entive selutiond s beew G e 2 Nevaulinns value distrilation theory and e
At modulus principle bave Been wsed tooeouanine the soro problems of secowd order al-
gebraie differential equations with mermnorphic coefficients in [13]. The fundamental theorem
of Mevanlinna has been used to explore the problems of certain kinds of complex differentisl
epuutions [10.

T thes yenr 1956 Ennr.:l.r:jr' llﬂ] comaidler the differential eqguation

(3]

[L.1) Sl dem N e Qe f =0

amd ohtained the followinge results,
Theorom A. [12] Let 62{2) be s non-constant polynominl, Then all nen-trivial solutions

of gapuation (1.1) have infinite order, where A 8 any non-zero oonstant.

!"GNI'I'HIHIII.“I'I[', Ak
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Cmuderson [7] estallished the following for the sitastion when O =} s a transcendental entive
Funetion,
Theorem B. [7]Consider o trapscendental eotize fupetion 624z) with ooder p (G # 1, then

every mog-gero =olution of the equatioo
It!l + E'r:’]r“'-l + uf_zjf -0

has infinire order,
Using the previously mentioned coneept, Chen [ takes a look ab the differential eguation

af the form
{1.2) F9 L 4 (e P 4 Ay ()™ =0

and got the ollowing results.

Theorem C. [3] Let 4;(z) (£ 0)(f=0,1) be entire functions with p(4;) < 1, o.b se
complex constants sach thot ab # 0 and @ = cb (e > 1), then every non-zero solution of
eqqiuntion {1.2) L infinite order

Theorem D. [3] Tet Ay {z}{#£ 0}, D;{z} be entire functions with g (45} < L p(D) < 1,
a, bare complex constants such that b # O and arga # arglor e = eb (0 < 0 <= 1), then every

tom-ern selution of equation
S (A () e+ D) Y+ (Ao (he®™ + D) f=0

has infinite order,
1o the recent venr 2028, He and Gao [10] consider 1 — i oeder differential equation instend

of second order differential equation of the form
U_:‘.] Jrl:rr:- + A“ _qE™ 'Hm_fh"_”—: -l AlEdlszl:’J LR Ar_l\'-""*mfzﬂ

aed mproved the resudl of Chen (3] a8 Gollows

Theorem B, [10|Let A (2107 = 01, (n— 1)) are meromorphic fimctions and a, sre
eomplex constants such that p(A;) <m (v f =0, 1, (n —1)}. Then all the non-zero solutions
of equation (18] hiave infinite order.

The shift yersion of Nevanliuna theary was fnvestipated by Holburd-Korhonen [5], Chiang-

Feng [5] and nomerons other researchers and prodoce some remarkable reanlis,
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Mo, o watieei] guestion scbes: "Ts the conchision of Theorem £ 00 valid iF we apply shifl
ou Ll copution (L3 Applving skt the eoguation (L3) takes the foem

(L) F (g )+ An T BT o £ ) b+ A (s 5) =0

where £,(2 0) (i=0,1,...n) are comploceonstants and & (2) [{=0,1,.., (v — 1)) ace the paly-
aomial of degroo m > 1 with p(4;) <m (¥ =01, ..., (h = 1))
Unfortunately, the answor to tho above question s oo.  The following countor-cxample

Supports it elain.
Example L. The function f{z)= et sittzfies the eyuation

S (e 1) 4 Age™ 2 (e 1) e Y ) 4 Al r i) =0
e

Ag(s) = —3st L9 Pz =6
As () —5d2? 1082 4+ 542, Pls) =32 +30 +62—i+1

Ap (=)

]

S0dz% — 2703 — 56727 — 1622 + 61, Pyls) = —3is? £ 827 4 Bz 444+ 1

But g 1 =3, which i finite,

We now present the maim resnls of our paper,

Theorem L. Let A, (2] (F =01, .., [0 — L)} are secrvmorplie functions, £(# 0] (1 =0, L,...,n)
are compler conslants and Py (2] (F=0,1, .. (n - 1)) are the polmomiol of degree i 2 1 saeh
that plA;) < wm (¥ j=0,1,.0(n—1)). Them cvery non-zern solutions | of equation (1.4)
satiify plf) = m+ 1

Remark 1. The conclusion of the above theerem may not be drue of we relex the condilion

plA = m ¥ J =000 n— 1)), To support s et v conseder the fallowing example,

Example 2. The oquation

S (= 20+ AP F U (2 1 d) 4 Age™ P f (x4 1) =0



Pratap Saha, Samien Tamang, Meghlal Mallik, and Sanjib Kumar Datta

is antisfied by the function (3] = £, when

4 (2) (—Azje =52 p (o) =2 iz —

Ap () (Bliz +60) = Birlie=d g — 320 (54 3] 25— 7.

Heve we see that p{dy) = pldy) = 2 wd deg (F5) = 2 j=0.1}. Which does nol sabisfy
the condition of the above theorem, o the conclusion of the abeve theorem i nof frue o8
plfil=222+1

2. LEMMAS

Severnl lomues Lot will be reguived Inter are presented o ihis seelion.

Lemma 2. [3]Lel Plz) = (o +if) "+ la+if) 2" "o Hoa+if)z+la + i), o, 3 £ B such
that o] + |4 £ 0, is a polynamial of degree n and A (z) is a meromorphic function of arder less
tan . Then for the funcbion giz) = A(z)e™2), 2 el ${P0) = coosnll = Ssmnd), ther
erist gels Hy © [0,2%) that has Feear measure 2o and Hy = {806 [0, 2r); 6 (F @) = 0} anid
B =1 such thal for al |2 =v> R and for all = [0,22)0 {H U H3 ], we o

) exp{{l—g)d(PEIr"Y < g(re®)<exp{{l+&)8 (P8}, when §(F8) >0
imidd
(f) exp{(1+e}d (P A"} < glre®) cexp{(1 —g)d(FE1r"), when 4(F8) < 0.
Lemma 3. [B)Let f{2) be a imnscendental meromorphic function of finite onder p and 2 =10

be i pbven constont. Then, there axdat o subsetl B C (1, 20) thet s firite lgarithmic mecsure,

sl eat for all = spbisfying |2 =v € [0,1| W E, ond for all k.5, 0= § < &, we hove

™ (=)
‘f"’] (=]

< plE=ilp=1te),

Lemma 4. [4]Let £ 2) be o mproinorphic funefion of findfe onder poond 22 0 be any givén con-
atant. Then, there erist o subset £ C (1, 0c) thet hos finite lineer measnre or finite togarithmie
arecinsury:, stck thal

phTE

Ifiz) =€

halds for all = safigfying 2| =r @ [0, U E a5 r — o0
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Lemuma 5. [0 Lef 1,00 be bwo arbitrary compler constond and let F{2) b o memomorphiz
fumeticn of finile order g and & >0 be o given conatend. Then, there erist o subset B C (1,00}
that has finite logorithmde messure, sueh that for all = safisfytng 5] = v ¢ 0,1 U E, the
follearing double inequality holds

s L GEEmY| e

‘ = fEtma|

A PHoOF o THEGHREM

We will proof the theorein by comtradiotion.

Let ns psswme that all che solotion of the equation (1.4) are trnscendental meromorphic
functlon of oeder 0 < p <k + 1, Let @o i) = (qg+i80) 8™+ (g +ddad 3™+ o+ (v + 80
be the polynomial ameng Py () = {a; +id,) 2™ + (o +48,) =™ + oo+ oy +i8,), 5 =
1,2, ....,n — 1, which satisfics

8 (g, 8] = 111:.151 d (P 8), 2 = ppt,

-1

Then twe cases may arise.
Case-1 3 Lot aqg+i8y snd 5, + 8y sabisfy argiog = 5,0 # arg (7 + édn ) - Then there exdist

= 0and a vay argz = 0 sach that for il @2 0,270 {E, U, U L),
d{Fn,d) =0and 6 (5,8 <0, brall j=1,2,..,n =1,

Whare E; U H. U Hy hes linear mensure 2ero with Ep © (1, 00),
Hy = [#¢0,2x%8(0Q0.8) =0} aud Hy = {# € [0,2¢): 8 { Py, #) = 0} . Thorelore by Lewmn 2,

wir b

(3.1) A (20 6™ < exp (1 — ) A (PO r™}, k=12, m— 1
and

(3.2) |Autsﬁc”"-“' Zexp ({1~ £} d (Po, #)r"™)}
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Mow from equation (1.4},

|“"u{zlﬂ”‘"'

1A

-

Pl R E6) o A
et e | |2 Tt (e

‘f"{:+fn1f:a—-en1
Flz+£,) Fla+8)

a—l rp =
et Fiz46) oPuls)
2 TeTe) Ferb) )

MNow using Lemma 3, Lemma § and (3.1) we have,

‘1_-': f‘“t'ﬁ_ 1+2} Er.lp-- (e8] + i [m—1 “ =141 E'..I n=+e)

Ap [2) g0t exp (1 — ) F(Pasy 8)F™H+

Ap—14sh |

e it exp {{1 - &8 (P & r™}
(5:3) < petie- 14.-5@»-'“"“'" exp{(1 = £} 5 (Qu, ) r™ ).
Hemee from (3.2} and (3.39) we have,

exp ({1 — ) § (R, 8) e} e g {1 — ) Q. 8) ™}

1A

ar, (1 —gfd{F,fArm < 'Iogn+n{p—J.+f.'}10gi'+f“""1"ﬂ+{:l—EJJ{Qu,H]r"”

logn nip—14e)logr plr—14s
e P 1 P

or, (1 —=)}6(Py, &) : F{1—g)d(Q0.0)

1

Which conlendiot tho feet What 8 (5 ) = 0, i the arbileagy chosen ¢ € (0,1).,
Case-2 ;. Let ag + 68 and ~ + idg salisfy (v + 08g) = ¢ {ag + i8) s whire 0 < ¢ < 1, Then
obvionsly & (6n. 8) = e [ Fy, @) and theee et ray arg = = @ [or which

Gl #) = ed (Fa.8) =0
haolds, Therefore by Lemma 2, we have
(3.4) |,4E (2| < exp (1 42 6(P0)r™}, k=0,1,2,0m 1
Henee from equation (1.4}, nsing (3.2) and {3.4), we get

axp{(L — ) § (P, 0)¥™} <

zluﬂtw]| < nr’“‘"'1‘”:""'"H"ﬂi}l flL+ ) 5 (0. &)™)

which s & comtradiction if we choose arbitrary 2 = l—;j e e [h1).

We now claim that any sohition of equation {1,4) with finite order can not have polynomial
structure, If possible let ) be a salution of equation (1,4), which i a palymomial of degres

. Tn this case two the following possibilities msy arise:



GROWTH OF THE SOLUTIONS OF N® ORDER LINEAR SITUFT DIFFERENTIAL 403
Cainé-3 ¢ Foe'a diven Tategear & A 1, ther thisr it 8 vy a0p's = 0 far whish
S(PE =0, forall j=0,1in-1,
Therafors by Lemma 2, we have
(3:5) |40 2 exp ({1~ €} 8 (B, 8) 5"}
Now equation {14} wan be written as,

Aee™B ) (rhg)) = [F™ {z+£,) HAnae™ Bl g, )
oot Apog P T (2 g ) A Pl (oL )

(3.6) oo+ A (28]
Henwn conbining (3.4, (3.05) and (6], we got

exp {{(1 —&) S (P B)r™ bt < UM exp ({1 )8 (P, By rm bt gy
tenp {(1+)8 (Bh 0)r™ ) rIM, g

{3.7} = grfexp [(1 < 2) 4 (P 8] LE:JI::{_%L::“IAI.-.

where 8{F,0) = §(P.0) =  max  §(F8) s a specilied constant with regard e Che
Eisn- 1 g8

polynomial coclliciont,
Miw chisaing 0 < ¢ < }{%_ﬁf; .r:a y we e i conbradiction with (3.7) ts r oo,
Caze-4 1 For n given integer ¢, iF d < £, then there exish noray arg 2 = 6 for which

G (Fy.0) > 0und (P, @) <0, forall j=1,2,...mn=1

holds,

Mote that in this case squatiom (1.4} ran he written as,
AgePE LU (2 8 g) s+ e (2 £) 5 Ape TS (2 4 ) = 0.
Mo wstug the same method disenss above, we can get
rlexp {(1—2}d (B, 8] r™} Moo < drfexp{(1+2) 8 (Qu, &) r™} fmaz M.

whied mive s o contendiction i we choose @ <€ < %%H!‘—Lﬁ.
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Therefon: wie cnn conclude that £ (2) connol be o polyoominl. Henee all noo-sero sololioons

S ool epuation (1.4) satisty g(f) = m | L
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LINEAR AND NON-LINEAR STUDY OF MAGNETO-
Suman Sindhwani | DIFFUSIVE CONVECTION IN DUFOUR-
SORET INDUCED NANOFLUID LAYER

The present paper elma ot analytical sisdy of Hoear and unsteady non-linear Raylelgh Benard imply diffusdve
magnete convectlon i Maxwell annofuid layer with Dufour -Soret effeczs. The effecss of Dufour parmmeber,
Soret parameter, magnetic field, Lewis mumber, Modified diffusivity ratio, Concentration Rayleigh-Darcy umber
and Solutnl Rayleigh number on the stebility of the svstem have been investignred, Dufoar parnmerer which was
ohserved b hove stnhilizing behnviour in absence of magnetic field shows dinl nnbure bere in preseoce of magnetic
field. The thermal Nussel number here decreases with merease n magnetic field resulting m decrease of heat
tranidporl. Tlis behaviour i3 same 235 was observied for Mewtonion Nusds.

2010 Mathematics Subject Classification: T6EOG, T6E23, TGRS0, BOALS, 80421,
Keypwanrily - Nanofluid, Mugmetic field, Doubls diffussen, Dufour-Sored porametes,

1. Introduction

Heai transfer mechanium b heen impmv\e:l h-rv r=|1|.n.|:irm micrn sired |'|.u.rt'u;[=. with mano soeed pqrti!;|n- m
comventional fuids. The term nanoflukl was firsd coned by Chot [5] e described the fulire und hope of the
application of namstechnabey, Kurur o ol [ 7] esmbliged the wility of a portieular nomofuid for its hesl tranafis
spplication. Wong and Leon [ 18] focussed on the broad rnge of preseol and luiure apphications of nanolluids.
The problem of thermal convectson for a Newtonian flud layer was discussed by drasekhar [4] taking
virying assurmptions of hydro-dytamics and hydro-magnetia,

Mhimwell nanedluld taking min wecount thermepheresis and Browmian diffusion was studied by Jadmala et al [6].
The sudy of magretic field effects on the onsel of convection has impodanl applicsiions 0 physdes: omsd
engirvering, In meal costing and 0 cooling systems of electrunio devices, mognetic feld offecls ore of great
importnsee. The nanofluid con be taken as a working medium in order to get effective heat performance of such
devices. Rayiebgh Berard Magnerto-convection arsed due o combined effect of buoyaney foree and magaetis
field [nduced Lorentz farce. A non-dimensional parameter called Chandrasekbar number gets introduced due 1o
Lorentz farce.

Sheikbloleshunl o al [11] investigated about the effect of radistion on nisoflisd free eomvective heat trarsfer in
presence of magnetic feld The combined wffect of o vertienl mmgnetie field snd the boundires on the onse of
convection i an elecrically nanoftuid laver heated from below wes investigased by Agrawal et al. [1]. Efect of
magnatic ficld considering lnbernal heating after filling the space between plates with nanofluld was also studied
v Yadav etal. [17]. Men-linear Rayleigh-Benasd magneroconveetion In temperanene sensitive Newtonian lquids
was gludied by Aruna [2] demonstrating the diminishing lseat ransport and stabilization of system with the
increasing strength of the magietlc fald.

In Ausd Mow problems, the phemomenon of gencration of the concentration flux by lempariure gradicot s sermed
2 Sorct offoct and the energy flus coused by & composition gredient is called the Dufowr or diffission thermo
effeet. Swmidy on the Soret induced conveetive instability of o regular Newtonian fluid suturated in s porous medium
has been done by mamy rescarchers: Wang and Tan [ 15] analysed the conveetive instability in Bennrd cells in a
non-blewtonian fluid incorporating Soret factor. The impact of Sorvet parameter induced by the tempeorators
aredient was stodied by Singh et al. [13]. Bahbowl et al, [3] ad Mansour o2 al. [8] also hay e much reseanch work on
Saret effect in different Torms of fuid lavers. Postelnicu [9] and Bogput ond Shareel [10] also studied the consbined
etfect of mngnetic fiekl and Sonet parnmeter. Recently tniple diffusive convection with Soret-Dufour efects in g Mol
narediugd satarnted i Darey porous medinm was studied by Singh ot ol [ 14] demonstrting the effects of different
parameders on heat mansfer

Dauble diffasive magneto convestion in nanofhuid layers incarporating Soref factor was studied by the author [17]
and the offects of all pammeters on stability of sysiem wese investignted snalytically as well as graphically, The
Itteratire survey indicales thot no study hos investigated the effect of magnetic field on iriple diffssive convection
i & panefuid bayer with Pufeur-Soret fnctor The present stusly exmmines the effect of vertical mognetic field on
Dufour-Sored induced triple ditfusive convection in @ nanofluid leyer. To find the behaviour of different porameters
in presence of magnetic field, n comparison has been made with Singh et al, [14] and Aruna [2].

1. Muthematical Formulotions
W consider a kyer of nanofhiid confined between two infinive horizoniol surfoces separatesd by o distanes o, with

#-miks vertically upward. Lower surfoce B maindsised st highe lemperaiure ﬂ' e upper surfice b ruintzined

attemperature 77, A uniform vertical magnetic figid M = (0,0, M} ) is.applied (See Fig. 1)
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Fig. 1: Physical configurstion of the problem

The poverning equations for conservation of mass, momentum, energy and concentrstion of salt and nanoparticles
in non-dimanionl form on defiming

{’ﬁrﬂ"‘w”;d}”! p K v

(rrz)=t2o2), o ta ()=
@ L

a“" #ﬂr\' 4:";#
My MuM;) o 8-8 . '~ . ia . B
MMM, )= M) Sat—Shiral =, a=fG gy 520
(MMM, ) M ey T A= Su—S,m s
fustbawe:
Vg=0, i
i=0+2 0 Vo ré,—Rype,+ RTE + Pose e Boop (vam)san., @
f?fjr H L i £ i s Lﬂ 2z I':. o
gﬂv-‘?}?"=‘F’T+ﬂ?ur,vr+-Mvr.vr+m_vls. (3}
&t Le Le
i£+lq? =L?!S+N‘.?:T . o
ad € Ln g
Ly 1 _ A i N ;
e +E{ﬂ'-?]iﬂ Le"i’ ur+Lﬂ'\'r'T. (5)
| aM | | | A
e .? M=‘-fﬂ.‘f. +—L-"F‘M H &)
o &t Ew } E i B (
gfika(T, -1 ~p)vs ol
Here R,.[=w}, &{:L‘?P_EEEE}I R, (=LY ot - JgKa,
HeE, pile e,
AR
Ri= %‘l—']]m thermal, concentration, basic density and solutal Ravleigh Darey number respectividy,
el
] ] My at .
Pi=—"—yud p (=" are Prodil pumbers, (N=~——) is Magoetic Chundrasekhar number,
e, g dapn

S -1
D, (= fT’ i5 Drey number, N‘fl=ﬁ}hmmwﬂmﬁﬁ Nil=

B -7 pe) e
= -'~L'-:+-}}an M= {-}A} are modified diffusivity ratio end modified particle density ingrement
Bn'Tr 0 {.F'E]}-'

5.(5/-80)

" - i mr L]
. (T "Tr}] is Dufour pammeler

N

[

respectively, Lef= ‘;—“}and Ln =S_n ere Lewis numbers for nonofluid and salt respectively, The boundary conditions
o o

TS EIYET 45
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aT
ap. 1=l 5=t Won T gz 7
¢ az " "az
g=0, T=0, S=0, Z;'+~ %_um:r] (8}

O the basie stule, we seperimpose perdurbitions i the fomm

Let g=g". p=p,+p'. T=T, +T" §=85_+8" w=w, +y' and M=¢,+M",

where the primes denote infinitesimal small quantities, lgnoning the products of primed quantities and therr derivatives,
follewing linesrised form of equations 15 ebtnined:

18 B Ad : f .ﬁ'u
____? ?Ir (l+——][ ?+T|__R1:;'I l+_|_l;,r J 1+__ _|_ J'g;;l.'-‘ '
[u’ﬁ.r P, ][ ca )\l RV g o E e B
%
ar' e NN AT N, G¢ 3
M _gt=pipl e e St MR N e {10
& Le 0Z Le 0Z
1 a8 Hj | S 2
—— = VIR N T, (i
o E Ln "
| e’ 1 N
AT N =—Vipgs—2viT', (12
a-a.a+ & }"‘” Ja=m VY
,_-;=-:|_',r"=n_3'=0, = +N E_Z—nmz =0und £=1 {13)
A Linear Study
Following the lincar stability theory by Chandrasckher [4], the perwrbations are taken of the form
(4 T2, §7) = [RZ), X Z), A Z), P(Z) | (14

where Land & are dimensionless wave numbers in ¢ and F directions respectively. On substituting the above values
und employing Gelerkin method to solve equations (%14 12) together with the boundary condition (13} mnd toking first
estimation as N=1, we have {l= A sinxZ , @=B sinaZ , @ =-N C sinzZ W =D sin7Z Tuking the
determinant of ebove mntrix equation as zero, the following Rayleigh number is obtained
I E_a'l)_i saNmdy’ +axmp +aledy +anly'is N =l}=a]

—.ﬂ_?ﬁ'_a: (di+ ol Ara+ e+ iyl y' e +Le)+ xle) = _z';'l.l'_f.ucrl] + L 0]

| reizorslaly araledy valday + Br y o« A v iy Vg o slaly + 0= ' NN Lno

@ oy & velne -3’ N LocHay' +slellis+ ol Ay o +a)

(15)
where, 4A=—"1 h B=0— 5 B
Pl. im
Tuking 5=0 in equation [ 15),
R = Pley +0D - InN N Y-R N e’ e +Le— LN _(1+ LeN  \} - R e’ (l-e N_)

¥ a{e —LnN )

=r+ra’

(18]
Froam equation { L6}, the mimimum Bayleigh number i5 given ot eritical wave number

& =x[l+gﬂ‘—)l
E

Ins mbsence of magnetic feld, result s same oy obimined by Siagh o1 al, [ 14],
Taking 5= f in esguation (15, we get oscillatory Rayleigh Mumber,
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4. Monlinear Stability Analysis

T predict the amplitude of eonvective motion and rete of heat trensfer, we discuss the nonlimear swhifity theory, For
simplicity, we consider the case of two-dimensional rolls, sssuming ail physical entities to be dependent of v. Introducing
stream function - and magnetic potentizl function @ such that

u=£¢t.w= a‘v e —U# o __EB_#_
oz

ax’ 87’ ax
Dimensioniess equatkons are
i £ 05 fa® Fed 3 R Ad ono
vr+n+——}un—T SE_p B, BUT Cvlel=ils = Ql; =J(Viht#) (17)
r

ar Ilpa¥ Taxy P. o2

L L

2y _vap, Nodw NN BT _ ST

L-virs 2 L R e I NTS (1%

]EP—“_;—N V’?'—L——W.h=—?l%§-+c.ﬂ 8) (19)

%g-%v r-f;vfw = -§%+;_Jtr.m (20)
ﬁ'z E':

wi'l:r:?f:-ﬁ?!--r:-?.

We :u-'lw E-q:u {17 p ko (21 subjecting them o bowndary condifions:

r0.2r _or=5-022_ 02 N _4 (22)
"7 2z P

nt &= anad z=1

We take the following Fourter series expression for ¢ T, 8¢ as
¥=d, (1) sin e X sinxZ

T=8,{t)cosaXsingZ + B, sin2x?Z

=N (theospe XsinaZ ~ N C (r)sin 227

=D (NeosaXsingZ + D (f)sin2xZ

g=E (rsincX cosxZ+ L, (1)sin2aX

Putting in above equations we get

R, d!:l, I | R af} B
A, =— z[R B,,+ D R NG, +— m ‘+R N d.-“ = ”H F:. "
P dE dF dE
i Dk, -=0D x Pl e ST J_J_g 4ot = [ E, R e T8
Qﬂ.. 1 Q P d #{_Pm 11{ w4 ot P ﬂ‘IJ
%c—(mﬂ,+;‘B|,+Jrfx,1”.ﬁ'm+_rlﬂl,h"h}l

%__"mﬂrlﬂn 877 By, - 827D N, )

!
Lot Tty (0~ )+ A )
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% = i[m"fucl I _%{Cﬂ —8y)]

By o™ 4D+ 24,4 L D PN B)
DBy 22 40,82 Cr 5,
%=%W&. - 3 eE..%d ard, E,)

ii* =_;_E(a’f-‘f=|Ei| +Ba’ 'E_PLEJ“}

5, Heat, Salt and Nanoparticles cancentration transport

The thermal Musselt numiber, solutal concentration Nussell nuimber and nesoparticle concentistion Nusselt numbes are
Riven as

Nt =1-278,(n

N(O=1=27D, (04N _ (| =2z,

N (1) =1+ 27(B,, (1) Cule))

6. Results and Discussinn

6.1 Limear Stability Analysis

The effects of varions parameters on the stabiliny of the system for stationary convection snd oscillatory convection were
stuched in a skmilar way as done by the author in [12]. lowas found that the desiabilizing behaviour of Soret parameter in
absence of magnetwe Deld [14] does mol persist here in presence of magnetic field and converts o the stabilizing sgent,
wherens Dufour perameter still hos o stobilicing behoviour os it was observisd in absence of magnetic feld [14].

Paramelers I3 €, Lnond O have been proved 1o be siabilizing agent in oscillaiory convection wherens £e ane N,

proved to advance the onset of convection. The dual hehaviour of A and & was observed and Soret parameter proved
fo e 0 stnbilizing ngent wherens in absence of mognetic feld iis dual neture wis observed [14]. Dufour parnmeter hos
been proved 1o hove fts dual effect on oscillitory convecton whereas its dusl behaviour does not persist v absence of
magnetic fizld | 14].

6.2 Nonlinear Stability Analysis

Fig. 2.3.4 depict the trmsient nature of thermal Mosselt number N (£} . concentration Nuzselt number & (£} and solute
Musseli mumber J"r'F{.f] respectively with respect 1o time in the unsteady sinte of mation. B is evident from all plets that
in an initial sute the transfer mte of heat, sall and mass is very high and & ststionary state s approached after vigorous
oscillations, 11 ks chear from fg. 2 that none of the parameters except D, €, Ln, ¥ und () have o significant effiect on

heat transfer. Figure 3 states that the sale transfer 15 decreased on increase in each parmmetsr except the Dutfour pprameter
N Initilly an ingrease in N, couses inereade in sald transfir bul after o certain time the effect gets reversed. Fle.Xi)
and 3(i) states that on mereasing magnetic field there s retardation in hest wansfer as well as salt tronsfer.

7. Conclusion
This paper presents an anabytical study of lincar and unsteady non-linear Rayleigh Benard wiply diffesive
magnetoconveetion in a Mawwell nanofluid layer with Soret-Dufour effects, We reach at the following eonclusions:
= For the stationary mode the Sorct parameter, Dutour parnmeter and magnetic ficld have a stabilizing offect.
#  For the cecillntory mode the Soret parnmeter which scis as destabilizing agent in abzence of magnetic field
hes been proved o have stabilize the convection gnd the Dutour parameter which was observed to have
stabilizing behaviour in absence of magnetic feld | 14], shows dual nature here in presence of magnetic
field.
= The thermul Musselt number here decreases with increase in magnetic ficld resulting in deercase of heat
transport. This behavieur is same ns was observed for Newtonian fluids [2].
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®  The time-effect on transfer of heat, salt and nonoparticle concentration 18 found to be oscillatory when tas
wery small. But all the thres Musselt numbers approach a steady value when t has o very large value.
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and P Vimala Devi' | DIOPHANTINE EQUATIONS

Abstract : An exponential Diophantine equation is a particalar form of Diophan-
tine egnations.  Hers, we solved the Hve different representations of exponential
Dioplantine equations such as 7° 4+ 47 = o7, p* + (p+ 400 = =4, 7" + 168 = =2,
T4 28 = 2 pnd 19012% + 19 = * where p,p 4+ 460 are primes with p = 7
and #, 9,2 € E7. This paper containg the actual solution sets for thess equations,
towetler with the prool aond pyilon progeammisg is provided.
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1 Introduction

An exponential Diophantine equation 2 a sart of Diophantine equation in wlich the
varinbles are in the cxponent, Thers ace severn] sways Lo solve the exponentiol Dios-
phanting problem, such as the modulo arithmetie approsch, the factoring method,
method of congruences as in [12,13), There has been some interesting study effort
on these equations so far [1-67,

Especially, the Diophantine equation 77 + ™ = ! was examined by Manju
Somanath et.al B, William Sobredo Gayo,. Jr. et.al [13] solved the Diophantine
veuation of the form M7 (M 1) = 22 with My and M + 1 are mersenne primes.
In |7, Mahalskshmiet.al. worked on the exponential Diophantine eguation over
triangulor nmmbers,

This paper has divided into six sections. Section(2) discusses the salvahility of
the Diophantine equation 7 + 47% = 2%, It is proved that it has no solation on the
positive integers 2, y, =. Tn the following seetion (3], the equation p* = (p-A0)¥ = =2
where p > 7 and p o+ 40 ace primes bas po pesitive integer solutions. In section (4},
the two forms of Diophantine equations; namely 7 4 168 = z° and 75 + 2527 =
7% are solved for all .y, 2 € £ . The interesting fact is that the Diophaotine
equation T4+ 282¢ = =* has exactly one solution and 7* 4 168% = 2? has exactly two
solutions. Tu the loal section(5), some theorems are diseussed about the solvabllity
of the Diophantine equation 19127 + 19 = = One only solution exists for this
DAsglnntine equation is the oblained msall.

2 The Exponential Diophantine equation 77+47% =

This section gives various theorems for the solvability of the Diophantine eguation
T4 47% = 2* over positive integers.
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Lemma 2.1. {Mihailescu’s Theorem) (13 (a,x by) = (3, 2,2,3) 15 the unique
aoltition for the exponenticl Diaphontine equation a® — 8 = 1, where a,be, 4 € &
such that minfa, b ey} = 2,

Theorem 2.1. The DHophantine equation 75 + 47 = 2% has no solution in positive
indegers z,y and = with x and y are of same parity,

Proof, Here 78 and 47 are odd then 7+ 47% is even which implies 22 is even.

Case {i] Buppeose r and 3 are even. Let & = 2%, and y = 2o, where £ = 1.5 =1
Thew, 75 4-47¢ = 2 (mod 4) implies 2 = 2 {mod 4) which s & contra-
dlidtion.

Chase (i) Suppose r and y are odd Let 2 = 8k 4+ 1 and = Qe+ 1, ks = 0,
TE 447 = -2 {mod 4). We get 22 = —2 (mod 4] Again we get a
contradiction. Henee 77 4+ 479 = 22 hos no selution in positive integers =
ancd y of same parity.

i

Theorem 2.2, The Diophantine equation 7547 = =¥ has wo selubion Yo, g,z € £
with @ and g oof different parity.

Proof. Consider the equation 75 + 47 = 2° Now a is even and y is odd., Take
=2k 2 1land y =25+ 15 = (& The equation 7 +47% = 2% becomes
T 4 47 — 22 i it changes into {z — 7)(z 4+ 7%) = 47, Then there exist a
non-negative positive integer a, 8 such that 47" = = — 7 and 479 = = + 7% whewe
= Jand ot =254 1, Now 27% = 477 — 47° = 47 (475 — 1) which implics
er = 0. Then we get 275 = 47 — 1. For s =0, this is imposgible, and for 5 > 1,
wi liave 7% = 23475 L4774 = 44T+ 1) which is an impossible, Suppose r is odid
and y iz even and choose r = 3k 41,k = 0 and y = 28,5 = 1. The given eguaticn
becomes T4 = (2 4 47%)(z — 47"}, Then there exists o, § € 2 U {0} such that
TM=r=dT and P =z 4+ 47 withn < fand o+ F=2k+1. Now 247" =7 =T
becomes 247" = 71 — 1. The above equality Tails for & = 0 and for & > 1, the
equality 247" = 7%+ changes into 47* = 3(7% + 72! L ... £ 74 1) which is not
posstble, The given Diophantines equation has no solution for @y, 2 8 21 |

3 The Exponential Diophantine equation p* + (p -
400 = 22

This section diseusses the solvability of the special fonn of the Disphantine oquation
P e (kA0 = 2? where p(> 7) and p =+ 40 are primes.

Theorem 3.1. The Diophantine cquation p* + (p+ 400 = =¥ where p > 7 and
P40 are primes, has no solulien in pesitive indegers =,y and = with & and y are
of opposile parify.
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Proof. Buppose x is even (x = 2k > 1) ond y is odd {y = 25 - 1,5 = 0},
Then §= + (p + 400 = 27 is equivalent to (p+ 4024 = [z + p*)} s —p*). Thus
there exists non-negative integers o ond 3 such that (p + 40)" = (= — p*) and
(p+d"y = (= 4+ p*) where ¢ = 4 and o + 3 = 25+ 1. By solving, the above
two equations becomes 2pF = (p +401°[(p+ 400" — 1]. This implies a = 0 and
therefore 20 = (p+ 4012 — |, When s =0, p+39 = 2" = pl2p*1-1) =139,
we obtain p = 39 and & = 1, which i5 & contradiction ss p is prime. For =2 = 1,
2t = (p+A00* —1 = (p+39) [(p+407 +- -+ {p+40)+1]. Here p+39 = 2p', where
Jj 15 an integer such that 0 < j < k. For j = U, p—39 = ! which is an absiract one.
Forl = 3 < &, p+39 = 2p' and 5o p(2p"1 = 1) = 39, which is not possible. Suppose
rigodd and yis ovender = 2k4 1k > 0and y = 26,8 = 1, then pf 4 (ppA0)¥ = 2
ig equiivalent to P2 = (24 (pdD) )z = (p 4 400%). Az same in the shove case we
obtain 2(p+40)" = p*(p? " — 1], which implies i = 0. Thus 2(p+40)" = p* ! — 1.
Now for i =0, 2ip+40)* = p—1 = [Zp+40}*|+ 4] = p+ 40 which iz an
impossible (s > 1) Now & = 1, 2(p +40)" = (p = 1}p*™* + p™ ' +-- -+ p+ 1}, sinee
{p— 1) is an even positive divisor of 2(p +40). Take p—1 = 2p+40¥, j & Z
such that ) < § < 2 when j =0, Then value of p = 3 < 7 not possible, Thevefore
1< § < & and =0 we obtain 2(p 4 400 4 41 = (p+40) and § > 1 This is again an
nbeurd one,

O

Theorem 3.2, The Dicphantine equation p° + (p + 40\ = =% where p > 7 and
40 wre primees, fus no solulion @ posilive infegers &y end 2.
Froof. Consider the equation §* + (p + 40)Y = 7% Here §* + (p + 40)" are primes
and even and p = 7. We bave two choiess of p, bep = 1 (mod 4) ar p =3 (mod 4)
Case I; If p=1 (mod 4), by the above lemma, it has no solution.
Case 2: [fp=—1 (med 4), then we have different cases.
Subease 1 Buppoess e and gareeven, then o = 2558 = 1and gy = 25,5 = 1.
The equaticm 2 implies p* + (p+ 400 = 2 (mod 4). We get a
contradiction.
Sub-case 2: Suppose o and yoave odd | then & =2k 4+ 1.8 > O and 4 =

2o+ 1a = 0, The given equation leads to @™ 4 (p + 40Y = 2
fmod 4), Azain this is contradiction. Henee it hss no solution,
Subecnse 3: 16 x is odd aod s even, By theorem {31}, the sub-case fails.
Sub-ease 4 If =15 even and y is odd, sgain by theorem{3.1) this iz not
possible,

O

4 The Exponential Diophantine equations 7'+ 168" =
z? and 7" + 282V = 22

Here we analvse the two variants of the Diophantine equation; one is 7 + 168 = 22
pud the other s 78 + 282% = 25 A few of the lemmas and theorems were shown,

420
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and Python code for the eorresponding equations was also given. .

Lemma 4.1. The Diophandine equation 7% + 1 = 22 has no won negetive ileger
solutions.

Progf. Snppose that there are non negative integers r and = such that 7+ 1= 22
IFz =0, the £ = 2 which iz an impossible ove. IF 2 > 1, then by Milmileseo's
theorom, we got @ = |, which is not possilile. |

Lemma 4.2, {y,z) = (1, 13) is the unigue solution for the Diophonting equation
1+ 1688 — 2% =0 where y, 2 are non fegetive integers,

Proof, Buppose there are non negative integers 3, = such that 14+ 1680 = 22 iy =10,
then #* = 2 which is impessible. ¢ = 1, then = = 13 and y > 1 implies » > 13
NMow, we eonsider the equation, 2* — 168 = 1 By Mihailesou's theorem, » = 2 which
is impossible: (1,13} is a unigque solution [y, z) for the equation 1 4 168¢ = =* [

Lemma 4.3, The Nophatitine squation 1 4+ 282¢ — = 0 has ne non negalive
integer solutions.

Proaf. For g = 0, it has no solution. For g > 1, then = > 18 By using theorem
(2.1), we obtain z = 3. This is not possible as » = 18, |

4.1 For the Diophantine equation 7" + 168" = 2*

In this subsection, we provided the Pythen progeamming and the solutions o the
Diophantine equation 7 + 168" = =,

Theorem 4.1. The Diophantine equation 7° + 168Y = =* has eractly two solutions
it non negative integers (2,9, =) € {(0,1,13),(4,2,175)}.

Proof. Let &,y and = be non negative integers such that 7 + 168 = 2%,

Case br =10 and By Lemma (4.2),we get (x4, z) = (0,1, 13)

Cose 20 When g i8 even and 2 > 1, then there exists o positive teger [ such that
y = 20 Now the equation becomes 7% 4 168% = 22 and we get = — 168 =
™, (=4 168") = 7" with r > Zu. Now, 7"% - 7" = 2 x 168 implies
TP —1)=2x 168, Forl=1, T7* % — 1) =2 % 24 x 7. Therefore
u=1and 7 ?—1=48 = r=4d, Hence (z,y z) = (4. 2,175).

Case 3 When y is odd and & > 1. For & positive inleger 1osuch that g = 20 4 1.
Now the equation becomes 7 — (1687 = (= — 13(168)) [z~ 13(168)"). Lat
{z — 13{168)") = 1| and 2z + 13{168) = 7 — [168)%. On solving this we
obtain (168)26 + (168)] = 7* — 1 which implies | = 0 and 7* = 26. This
is not possible,

|
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The oceurrence of the Diophantine equation’s solution, 7 + 168" = o
as illustrated below:

4For the squatlon 1+ 188
lkport Ean
ief diophantime{}:
peEiet " zh\tyiex ')
for 'z in renge{Q,m+l}:
[or ¥ lin renge {0, n+1):
for £ in range (B,n+1]):
f Teex+lf@nnymmzual
primt e, PR IR L )
pe i mint{input ("Enter the maximum Tanga:®))
P 1g the mEEimiA FAREA

diophantine (]
Coding 1: Caleulating the solution for 7 + 1689 = »*

Enter the maximum rangs:500
" Y z

L] 1 13

4 ] 175

Ili:l'l

Figure 1: Outpot: Coding 1

4.2 For the Diophantine equation 7%+ 282¢ = :*#

The theorem and Python code for the Diophantine equation 7 + 282V = ¥ are
provided in this subsection.

Theorem 4.2. The Diophontine squation 77+ 282% = 2 hos exactly fwo non neg-
ative integer solution (x,y,2) = (1, 1,17}, (3,1, 25)

Proaf. Let vy und = be non negative integers such that 70 4 282¢ = 2# The
Diophantine squation 75 4+ 289" = =% has no solution on putting & = 0 amd y = 0
(Using lemms (4.3) and {4.1}). When g is odd (ie,p = 2+ 1.1 € MU {0}),
Forl =0, then y = 1. fx = ¢ = 1, thenm we have z = 17. For [ = 0 and
u > 1, then the Diophantine cquation becomes 77 — 7(282)% = =¥ — 289(282)%. Let
=—17(282)" = 1 and =+ 17(282)! = 7 — 7(282)%, This implies =+ 17(282)") = (=
17{282)") = 7" — T(282)" — 1. On solving this we get (28234 + T(282) | =7 -1
and this fmplies { = 0 which is an dmpossihle one. Inoother way we can solve
T+ 282" = z? and it becomes 7T — 204{282)% = % — 24%2821". Now choose
2 —24{282) = | and =+ 24{282)" = 7F — 204(282)¥, Now the equation reduces to
28248 + (206)(282)'] = T* — 1 and this implies | = 0,z = 3 and # = 25. Now,
the solution is (2, g, 2) = (3,1.25). Suppose y is even (ie, 2 [ € EF U {0}), then
cquation 77 4 28290 = =T peduess Lo 7T = 24— (24272, Choose = — 282 = 7% and
24 3BT = 7= then it beeomes TH(T 3 = 1) = 20282). For [ = 1, we get
u=I = 7" =560, This is not possible. L]
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Python programming validates the preceding theorem’s solution, which
is provided as:
,ﬁ_;,-..-.T,..m;};. i1 e+ JTHT" Y 2
dif diophantine {J:
print (reNoyhte")

T dn --'|E:-{Q‘n+l}:
for ¥y In range €0,m#i):
for & in Tangs (0, n+1):

if TesxslEdesymmgewd
print Ex. AN i T ey V)

o wipt{iapat("Enter the maximus raoge:"))

#0 18 LhE MEXITUR TAODZE

. diophantine (]

Coding 2: Caleulating the solution for 7% 4 2820 = *

LS T
Enter the maximum Tange: 10
x ¥
1 i 17
3 i 23

3>

Fipure 2: Chrtput: Coding 2

5 The Exponential Diophantine equation 19.12* +
19% = 22

This section displayed certain lemmas and theorems that were required to obtain
the positive integer solutions of the Diophantine equation 19,12 4+ 19¢ = 2%,

Lemma 5.1, (x,z) = [1,20) is the only solation for he Diophantine squation
19.21° + 1 — * = 0 where 1, = are non negatrie integers.

FProaf, Consider the equation
10217 = 2% =1 {1)

Fromm thas, we have either 19 divides z — 1 orz+ 1 IF 19]{z— 1}, then there exists a
positive inkeger r < @ sach that z — 1 = 19217 and z 4+ | = 19.21" 4+ 2. The equation
(1) becomes

217" =10.217 4+ 2, {2)
When # =10, we gt o = 1. Henee (5, 2) = (1, 200, When v =0, we hive & — v =0,
Now 21" = 0 [mod 21) implies 21777 = 0 (mod 3). Alse 19:217 = 0 (mod 3)
wnd by using the eguation (2) we pet o contradiction, 11 1%z + 1 and 19 does oot
divices 2 — 1, then there exists positive integers r ond = such that 2+ 1 = 19,217
and z —1 =217, where v+ 5 = @, On solving this we obtain

g=1831"-2" 3]
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Un Substituting s = 0, it becomes 3 = 19.21" which is an impeossible one. Similarly
for ¥ = (. we get an impossible vne. If & ¢ = 0 then 19.217 — 21* = 0 {mod 3).
From the eguation (3) we get contradiction, O

Lemma 5.2, Lel b be o positive ivfeger such that b= 5 (mod 40). Ther the Dio-
phantine equation | + 8 = r* has no non mteger solufion.

Proaf, Suppose that there are non negative integers v amd = such that 1 <+ =
=%, This contradicts when y = 0. Fory =1, weget b =2 — 1, Since b = 5
(mod A1) = b= (mod 4). Then 22 =2 (mod 1), The case fails for g > 1, using
theorem(2,1), 0

Lemma 5.3. Let b be o positive infeger sueh thol b= 8 (mod A0). Then (g, 2) =
(1. 45+ I] represent the non negative mieger soluftons of the [hophantine equation
1+ =2, where vB+ 1 is an integer,

Proof, Let yand 2 be pon pegative integers sueh thot 140 = 2% There s nesolution
for the equation when y = 0 and y > I{By theorem({2.1), Suppose y = 1, then we
get 2 = T and henee the solation for the Diophantine oquation is {1, v+ 1). O

5.1 For the Diophantine equation 19.217 4 19V = »?

The Diophanting equation 19217 4 19% — =* jg solved heve using the thesry and
Pyithon progrannming.

Theorem 5.1. (r,y, 2] = (1.0,20] is the unigue solubion to the Disphantine equa-
tiom 10917 4 100 = =* wlere 2,9, = arn nonnegefioe infegers.

Proof. Let r,y, + be non-negative integers such that 19.21° +— 19" = +*, We consider
the follewing cases,

Case 1: For r =y = (b, we have 22 = 20 which is impossible;
Case 2; For =0 and y > 0, we bave I(1 - 10%-1) = 2% When y =1, it has no

solution, If g = 1, then 1922 There is some positive integer k such that
z =10k and it becomes 19067 — 19*°2) = 1, This is not possible.

Case 3 For v > 0 and i = 0, we obtain 19217 + 1 = 2% By lemma (5.1}, the only
salution is (x4, 31 = (1,0,20).

Case 48 When @ = 0 and g = 0. the equation 19.21% + 19¢ = 2 implies 19}z
Therefore = = 10k and it beeomes

217+ 19 = 19k (4]

- When g = 1, we get &% = 2 (mod 4) {which impossible). When y > 1,
from equation{4d), 217 =0 (mod 19) which s not possible,

=
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Here, the python programming is provided for the existence of the so-
lution of the exponential Dicphantine equation 19,217 +19 = »* as shown:
BFar the squation 10#2]esys]Ossyapes]
taport meth
inf diophantize ()

prienf'shtyvez')
for % ino ranga (Q,a+l):
tor iy in renge (0, mFL)4
for & in Tange (O, n+l1):
Lf 192 ekl PRdymngind
prim e NET e NE T

s =intfinpot ll:-'E'.n'.u.r the maxdimum rangs:"3}

#o ip the meximur Tange

diophantine (]

Coding 3 Calculating the solution for 19,217 + 19 == 27

Enter the maximun ranpge:200
] ¥ - |
1 a Z0

5

Figure 3: Outpmt; Coding 3

6 Conclusion

Finally, we sobvead and established the existence of the positive mteger solutions to
the miscellaneous Dhophantine equations with the Python programming, One can
trv to solve for any alternative forms of the Diophantine equation.
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Abstract: With the increasing sophistication of cyber threats, web spplications are prime
targets for attackers seeking to exploit vulnerabilities. Traditional signature-based security
solutions struggle to detect novel and evolving attock patterns, This paper presents an anomaly
detection approach for web attack detection and mitigation by analyzing web access logs.
ising machine learning techniques, we identify deviations from normal traffic patterns that
may indicate potential threats such as SOL injection, cross-site scripting (X55), and Local File
Inclusion (LED and Directory Traversal amacks.

We conducted a study on a real-world dataset comprising 20 million HTTP requests collected
over three months from a real world web application platform. By leveraging an unsuperyised
machine leaming model, we detected 5% anomalous requests, of which $3% were confirmed
as actual anacks through manual verificalion and cross-referencing with intrusion detection
aystem (105} togs, Motably, our model identified previovsly undetected zero-day  threats,
including 400+ directory traversal attacks, 156 stealthy SOQL injection attempls and 150 bot-
driven credential stuffing incidents. The proposed svstem enhances real-time threat detection
and response, improving weh security by proactively identifving and mitigating attacks before
they cause significant damage, Experimentnl results demonstrate $7% precision, 92% recall
and 93.94% accuracy in detecting anomalics, offering a scalable and adaptive solution for
midermn weh security challenges.

Kevwords: Web Artack, Machine Learning, Ancmaly detection, weh log
Mathematic Subject Classification (2020) No.: 68M23, 68M 11, 68M10.
1. Introduction

The rapid expansion of web applications and online services has made them prime targets for
evber-attacks, ranging from SQL injection (SOQLi}, cross-site senpiing (X55), Loeal File
Inclusion (LF[), Directory Traversal and credential stuffing sttacks. Traditional security
mensures, such as sipnature-based intrusion detection svstems ([DS) and firewalls, offen
struggle to detect evolving and zero-day threats, as thev rely on predefined mles and known
attack putterns. Consequently, there is a growing need for more adaptive and intelligent security
mechanisms that can proactively detect malicious activities before they compromise web
SYSIEmS,

Anomaly detection has emerped as o powerful technigue for identifving suspicious behaviour
in metwork traffic and web access logs. Instead of relying on predefined attack signatures,
anomaly detection models lear normal usage pattems and fag devistions tht may indicals
potential threats. This paper presents a machine leaming-based approach to web amack
detoction and mitigation using anomaly detection lechnigues on web server access logs, By
analyzing request parimeters, respanse codes, talfic patterns, and other features, our system
can effectively distinguish between normal and malicious activity.

We conducted o real-world case study on o web application platform, snalyzing 30 million
HTTP requests over a three-month peried. Our proposed anomaly detection model successfully
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identified 5% anomalous requests, of which B5% were confirmed as actual attacks through
cross-verfication with traditional [0S logs. The system detected over 400+ directory traversal
attacks, 156 stealthy SOL injection attempts and 150 credential stuffing attacks that were
previously unnoticed, demonstraling its eTectiveness in identilving novel threats.

The contributions of this paper are as follows:

1. Unsupervised Anomaly Detection for Web Security -~ We develop a machine learning
model Isolation Forest (1F) algorithm that detects web-based aitacks without relying on
labelled attack data.

2. Real-Time Detection and Adaplive Security = The system provides real-time threat
detection capabilitics, adapting to new and evolying attack patterns,

3. Experimental Validation on Large-Scale Data — We validate our approach using real-
world web traffic data and measure its effectiveness with precision, recall, and F1-
SCOTE,

The rest of this paper is organized as follows: Seetion 2 provides an overview of related work
in web attack detection, Section 3 describes problem  statement, Section 4 explains
mathematical model of the sysiem, and Section 5 describes our proposed anomaly detection
methodology. Section 6 discosses results and comparative analysis and Section T concludes
the paper with future research directions.

2. Related Work

Web attack detection has been an sctive arca of research, with various approaches proposed 1o
enhance cyber security. Traditional methods rely on signature-based intrusion detection
syatems (ID5) and rule-based firewalls, but thesé techniques struggle with zero-day attacks and
evolving attack patterns. Hecent advancements in machine learning and anomaly detection
have provided more adaptive and intelligent solutions for web security,

Traditional Signature-Based and Rule-Based Intrusion web security mechanisms such as Snort
[1] and Suricata [2] rely on predefined atack signatures to detect malicious traffic. While these
systems are cffective against known attacks, they require continuows updates and cannot detect
new, unknown threats. Studies have shown that signarure-based 1DS have low detection rofes
for emerging threats due to their reliance on static rules (3] Recent studies on Machine
l.eaming hased web attack detection have explored the use of supervised machine leaming for
web attack detection. Cunali et al. [4] proposed a model using Random Forest and Support
Vector Machines (SYM) te classify HTTP requests as benign or malicions. Similarly, Pan et
al. [5] developed 8 deep Jearning=based web attack detection system using Convolutional
Newral Metworks (CNNs), achieving high accuracy but requiring extensive labelled datasers.
However, supervised leaming approaches suffer from the challenge of label searcity and
require frequent retraining as new attack patterns emerge, Unsupervised leaming methods for
anomaly detection for web security have gained attention for detecting web attacks withowt
labelled data, Shams etal. [6] implemented an Isolation Forest-based anomaly detection model,
achieving 82% accuracy in detecting anomalous HTTP requests. Kriigel et al. [7] applied
clustering techniques to identify abnormal waffic patterns, improving the detection of 0L
injection and XS5 attucks. More recently, decp autoencoders have been used Lo leamn the
distribution of normal web traffic and fag deviations as potential threats [B]. Several real-world
studies highlight the effectiveness of anomaly detection in detecting cyber threais, A case study
on a large-scale e-commerce platform by Ma et al, [9] analyzed 100 million HTTP requests.



identifving previously undetected bot-driven attacks. While anomaly detection technigues
improve detection rates, challenges such as high false positives and computational averhead
remain key concerns [ 11}, A study published by 3. Y, Demirel et al., introduced a novel Zero-
Shot Learning method emploving a Convolutional Neurl Network (CWNN) for web-based
anomaly detection [11]. This approach addresses the challenge of unbalanced data in weh
applications, where malicious requests are signifeantly fewer than benign ones. The proposed
method enhances the detection of previously unscen attacks by leveraging the CHNN's ability to
generalize from limited data, Limitations of this work is it requires labelled data for initial
troining and careful tuning to prevent over fitting and handling of imbalanced data is explicitly
requires to be addressed, Rahul Kale et al, [12] proposed an enhancement to an existing few-
shot weakly-supervised deep leaming anomaly detection framework. This framework
incorporates data augmentation, representation leaming, and ordinal regression 1o improve
detection performance. The study evaluated the framework on benchmark datasets such as
NSL-KDD, CIC-IDS2018, and TON_ToT, demonstrating its effectivencss in scenarios with
limited labelled data. Apparently it has deplovment complexities in real world environment as
it pequires model training & fine-tuning, A comprehensive literagure review published by 5. M,
Rayavarapu et al. [13], examined the application of Generative Adversarial Metworks (GANs)
in cvber security, including their use in anomaly detection. The study highlighted how GANs
are utilized in areas like intrusion monitoring, steganography, cryptography, and password
cracking. The review provided an in-depth examination of the most popular GAN-hasad
methods and their effectiveness in detecting anomalics within cvber seeurity contexts. GAN-
based anomaly detection approach is complex to deploy, computational power intensive,
requires Jarge datasets and difficult to interpret results. A study camied out by Eljon Harlica
[14] focused on anomaly detection of web-based attacks in micro services architectures, The
proposed solution achieved a 91% detection rate with onlv a 0.11% false positive rate by
carefully selecting parameters. This approach underscores the importance of parameter tuning
in enhancing detection performance in complex micro services environments, A study
published by A. [ Katurde ef af, [15], discussed the development of Al/ML-based anomaly
detection lools, emphasizing the pringiples underpinning behaviour-based anomaly detection
systems (HBADS) and their application in real-world scenarins. The research delved into
model selection nuanees, highlighting critical factors influencing the effectivencss of anomaly
detection in cyber security, A systematic review carried out by Sureda et al. [17] examines
various anomaly detection techniques employed to prevent and detect web attacks, providing
a comprehensive analysis of existing methedologies,

The study revealed that signature-based 138 have low detection rates for emerging threats due
Lo their relisnee on statie rules, The existing research demonstrates the effectiveness of machine
learning=based web attack detection. However, most methods either rely on labelled data
{supervised learning) or suffer from high false positives (unsupervised learming) and initial
training and careful tuning to prevent over fitting and handling of imbalanced data is explicitly
requires (o be addressed. Some approaches are complex (o deploy, computational power
intensive, requires large datasets and difficult to interpret resulis. If anomalies are rare and
accuracy 15 92%, il may just be predicting most requests as normal, The Precision (87%) and
Recall (92%) values are more meaningful, as they directly evaluate how well anomalies are
detected, The model with 87% precision and 92% recall is preferable over just using aceuracy,
especially for anomaly detection tasks. Our work builds on these studies by implementing an
unsupervised anomaly deétection model on real-world web logs, addressing key challenges in
accuracy, scalability, and real-time detection.
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3. Problem Statement

With the increasing complexity and frequency of cyber threats, web applications face constant
risks from attzckers exploiting  vulnerabilities. Traditional signature-based  security
mechanisms struggle to detect novel and evolving attack patterns, leaving systems vulnerable
to zero-day exploits. Existing security solutions often generate high false positive rates or fail
Lo adapt 1o sophisticated attack technigques, There 15 a critical need lor an intelligent, adaptive,
and scalable anomaly detection system that can proactively identify and mitgate malicious
activities in real time, This research addresses the challenge by leveraging machine learning-
based anomaly detection on web sceess logs o deteet and respond o web-based attacks,
including SC)L injection, cross-site scripting (X55), Local File Inclusion (LFT), and credential
stuffing, thereby enhancing web security and reducing attack impact.

4. Mathematical Model for Anomaly Detection in Web Attack Detection and Mitigation

The anomaly detection approach can be formalized vsing a mathematical model based on
statistical and machine learming echniques. Below is 8 step-by-step formulation of the model;

4.1 Input Representation

Let X be the sel ol web access log entries, where each request is represented as a feature
vector:
X= x5, X Zaf

where x; is a feature vector representing an HTTP request, such as:

Source [P (A0
Timestamp (£)

HTTP request type ()
Status code (3)
Response size ()
Referer (rafi)
User-Agent { wa)

Thus, each request can be represented as:
_'l.'.--[hj.fr. r.-.s..b,-.rqﬂ.md

The dataset can be written as a matrix:

where d 15 the number of features.

4.2 Feature Transformation and Anomaly Score Computation
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To detect anomalies, we map the feature space into a lower-dimensional representation or
define an anomaly scoring function. Possible technigques include;

4.1.1 Statistical Anomaly Detection {Z-seore)
For cach feature x;, compute the mean y; and standard deviation o;

n -":E = 'Hj
Z"J: = U'i

If'Z;; =1 (where © is a predefined threshold), the request is considered anomalous.
4.2.2 Unsopervised Learning (Autoencoder Reconstruction Error)
Using an autoencoder neural network, the model leamns the mapping and detects anomalies

based om reconstruction error. Low reconstruction error indicates normal request, high
reconstruction error means anomalous request:

fiX—=H=X

where 11 1s a latent representation. The reconstruction error is given by:
Ere =21

A request is Dageed as anomalouws if:
E=48

where £ is a threshold derived from training.

4.2.3 Isolation Forest Anomaly Score

The 1solation Forest algorithm assigns an anomaly score:
Bia) =9 =

where L{h(x}) is the average path length of x in the tree, and ¢fr/ is the average path length
of a random search tree,

4.3 Decision Function and Classification

Define the final anomaly decision function;

T 1, W8(e] =& (Avoualous reguest )
S (3, otherwise (Normal reguest )

where & 15 a threshold derived from training,
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4.4 Evaluation Metrics

T assess the performance of the model, we use precision, recall, and F1 -score:

PRSI =
rucsnn—TP+FP
il =

S = TP FN

Precision * Recall
Precision + Recall

Fl =score=2x

where:

« TP (True Positives)are correctly identified attacks.
« [P iFalse Positives)are incomectly classified normal requests.
= FN (Folse Negatives) are undetected attacks,

5. Methodology for Web Atiack Detection Using Anomaly Detection

The methodology for this work is structured into six key phases, ensuring a systematic
approach to detecting and mitigating web attacks using anomaly detection technigues.

5.1 Daia Collection

Daia: Real-world apache! nging web access logs are gathered for analysis. Additionally
some of publically available datascts c.p. CIC-IDS2018, CSIC 2010, DARPA arc used.
Svithetic data is also collected through simulated anacks in controlled environment for
testing,

Log Format Example (Apache Log Format)

182.1608,1.10 - - [12/Peb 2025:10:15:30 +0000) “GET /index.phprid=1
HTTE/1. 1" 200 512 “=" "Mgozillais. 9%

Features Engineering: Row data is transformed into meaningful features lo improve the
performance of machine learing model, Following are features which we have used in our
work:

= Siwe: Helps o identify suspicious patterns hidden in payload

» | P Address: Source of the request

= Timestamp: Time of the request

= Request Type: Helps to identify unusual behaviour

s URL Length: Helps 1o identify unusual behaviour
=Is_numeric_URL: Helps o identify suspicious URL
sspecial_chars URL: Helps to identify suspicious 1IRL

o Status Code: Can indicate errors or forbidden access aitempis

s Bytes Transferred: Abnormal request sizes may indicate attacks
s Lser-Agent: ldentifies browser, bots, or seripts



5.2 Data Pre-processing

Drata pre-processing is an essential step in the machine learning (ML) pipeline, It involves
preparing and cleaning data {o ensure that it is suitable for training & machine learning
model. It involved following steps:

® Log Parsing: Convert unsiructured text logs into structured tabular format.

* Handling Missing Values: Replace or remove incompleéte log entries,

s Feature Engineering: Convert categorical data (e.g.. User-Agent) into numerical
values using encoding technigues.

= Normalization: Standardize numerical values (o ensure consistency in ML models.

s Removing Noise: Filter out normal bot tralTic (e.g., search engine crawlers).

5.3 Anomaly Detection Maodel

The mode] identify the dats points, events, or observations that deviate significantly from
the rest of the data and are considered unusoal, abnovmal, or outliers using isolation forest
algorithm  of unsupervised maching leaming. The lsolation Forest constructs multiple
decision trees and isolates anomalies based on tree depth. It is efficient for detecting rare
attack patterns and fast, scabable, and eMfective in high dimensional data. The Isolation Score
is calculated as:

Anomaly Score = 27 E(MOO)/cn)
Where:

« E(hix)) is the aversge path length of the instance in the isolation trees.
= c(n} is the normalization factor,

5.4 Attack Classification & Thresholding

The objective of the amack classification is to distinguish between normal data (non-attacks)
and anomalous or attack data. It works 08 a binarv classifier in the context of anomaly
detection because it classifies data points into two categories; normal and anomalous. The
algorithm works by building an ensemble of random rees where each tree isolates a data
point by randemly selecting a feature and then randomly selecting a split value within that
featura’s range. The anomaly score is calculated based on the path length required to isolate
a data point: the shorter the path, the more anomalous the point is considered, and the longer
the path, the more likely it is normal.

5.5 Threat Response & Mitigation

Threat response and mitigation are critical components of any anomaly detection system. It
focuses on detecting, analyzing, and neutralizing threats to prevent or minimize damage 1o
an organization's systems and data. It react 1o detected attacks in real-time, Alerts are
generated for the detected attacks and semt to the security administrators for guick actions
against the threat. Malicious TPs invelved in allacks are cheeked against AbuseTPDE [16].
The IPs having [P reputation score above 41 is blocked in perimeter firewalls by updating
firewall rules to prevent furiher attacks, The attack data is stored for forensic analysis,
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5.6. Continuous Model Optimization & Adaptive Learning

Periodically the model is updated with fresh web logs which is an ongoing process of
refining and improving the model through real-time leaming.  Anomaly threshold is
adjusted based on false positives to support adaptive learning. Feedback looping is carried
out by human analyst to review flagged anomalies to refine model accuracy.

Figure | illustrates work flow of our web attack detection system using anomaly detection

techmigue.
Lpermes

P;;:;:Il:; Ff;é.?- IP Reputation score > 41
Devices i | I = -
.6

Check in AbuselP Database

——

. & 1 Renl Timme HTTP requests  Prodiction !'
Distn — @

l;‘!b | e ), ]

ﬂ_'-. {'E} e .I. ':.I—'i‘I ® a— o

'[r.nlnu:lg A_ul:lmul}l@ Attnck Threat
& Delection  {“lassification response &

l-ﬂll . F“'m Nommalization
Collection — |Il|r_-:jng& Engineering

Clabinng liesting _!;”]'“”“ - nnormalons  Miligation
orost or normal
Sl

Fig. 1; Workflow of our web attack detection using system anomaly detection technigue.
6. Results and Comparative Analysis

The Table 1 provides a comparison of our web attack: detection system with recent related
studies, focusing on methodology, performance, and applicability.

Navelty,
Reference Methodology | Strengths Limitations | Dgnificance
and Impact of
Our Work
Implements and
Systematic evaluates a
NW:I of Provides a | No practical ﬁﬂ:‘:
Sureda et al il broad review of | implementation Y
detection iE detection
[17] 2 existing or maodel :
technigues  for schdaes ikt approach, while
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Table 1: Comparison of our web atiack detection system with recent related siudies,

Figure 2 shows LUIRL length vs. response time plots classify unusual patterns in how users (or
bots) interact with a web server, specifically focusing on the relationship between the length of
the requested LRL and the time it takes for the server to respond. Malicious requests (like SOL
injection, directory traversal, or buffer overflow atimcks) often use abnommally long URLs.
Very long URLs causing short or extremnely long response times. Normal-length URLs causing

abnormal delays (indicating decper issues),
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Fig. 2: Anomaly Detection in web server logs with different datasets.

Figure 3 illustrates comparison of the performance of the web attack detection model against

existing approaches,
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Fig.3: Comparative analysis with different approaches with our model
7. Conclosions and Future work

Web-based artacks, such as SOL injection (S0QLi), cross-site scripiing (X38), Local File
Inclusion (LFI}, Directory Traversal and credential stuffing are incressing due o the
widespread use of web applications. Traditional rule-based security systems struggle to detect
zero-day atlacks and evolving threats, making anomaly deteetion a eritical defense mechanism.
The research work demonsirates the effectiveness of machine learning-based web attack
detection. However, most methods either rely on labelled data using supervised leaming or
suffer from high false positives using unsupervized learning, The presented mathematical
mods] provides a structured approach to anomaly detection by defining: feature extraction from
web logs, statistical and machine learning-based anomaly scoring, classification using a
decision function, evaluation using precision, recall, and Fl-score. The results demonstrate
7% precision, 92% recal| and 93.94% aceuracy in detecting anomalies offering a scalable and
adaptive solution for modemn web seeurity challenges. This model enables real-lime detection
and mitigation of web attacks capable of adapting to evolving threats, Our work contributes a
practical, scalable, and real-world tested anomaly detection famework, Organizations can
deploy this model as part of a Web Application Firewall { WAF) or integrate it with Security
Information and Event Management (SIEM) systems for continuous monitoring and proactive
threat detection. It balances computational efficiency with strong detection capabilities, making
it @ viable solution for real-time web security monitoring. Future enhancements may inlegrate
deep learning-based Zere-Shot Learning or hybrid methods to further improve accuracy and
adaplability, Our work's uselulness extends 1o industries, cyber security professionals, and
rescarchers fooking to improve web security through machine leaming-hased anomaly
detection.
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CONTROLLING INSURGENCY IN NORTHEAST
INDIA BY GENERATION OF EMPLOYMENT AND
AWARENESS: A 5OC1O - MATHEMATICAL STUDY

Dehadatta Adak”, Shekkar Day’,
Bindli Ranjan Chakma’

Ahstract

fnsurgeney s o persivient tssipe in Northeast inefia. This region of India &y a habitar of differemt
tritves with distinet ethmicity and cwlfural diversity, However, dué to the mouniginous and hilly
territary Northeast India not well conrected with the mainlard. Thergfore, 1t fax been deprived of
varions socloeconomic development oppariunities like the rest part of India. This deprivation fused
with secial, polivical and religious prosecutions has many times vesulted in outburst of extremisim
el instrgency in different parts of Northease Indla. It oy cansed unnecessary waste af lfves and a
micifor concers for fow & order. Forelgn powers also nstipate such radical ideologies for their own
vested imterest, Thercfore, eradication af this problem of insurgency from Northeast fndia iv
exsentlafly required nol anly e thiv region but alse for wivde Tndia. Tn thiv article we proposé a
dererministic. marfemiaticad mode! uxing rhe nmonfinear differential equations to estabfish the
inpothesdy thear the fsswe of feorgency in Northeast Trdia can he resolved By adeguete
socioeconomic developments. We convider gewncration of employments and awdreness against
imstrzency theoneh proper education as the vital indicators of sociveconomic development, The
boundednesy and positivity af solutiony hove been studied The existence and stability of the
equilitrivm solutions fave been analyzed analiically as well as numerically. It fas been shown
Hhat even ina society whepre unemploved yvouth ore more prone to ger invelved in exiremisim due io
their sociogconamic frustrations, mswegency can be oradicated &y creating mew fobs in oo
sufficiently  higher rate and penerating ewareness agoing fnswegency  through  approprione
eduwcation. Therefore, our results can be applied while framing varions governmental policies for

Newtireast fndia to resaive the persistent disue of fvurgency in this regrion,

Keywords: Insurgency, Employment. Northeast India, Mathematical model, Stability analysis,
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I Tntroduction

[nsurgency has been one of the major problems that Tndia had 0 encounter in the Mortheast
India since the time of India’s independence. The Magas were the first to raise their voice for a free
Maga homeland and against forceful imposition of India’s rule in the Maga hills. The Naga MNational
Council (NNC) was formed under the leadership of A. Z. Phizo in 1946. The NNC under the
leadership of Phizo declared Naga independence on 14 August 1947 and led an armed insurrection
mervement from early 1930s when their demand for a sovereign Naga state was tumed down. The
problem did not come down even afler the formation of Wagaland in December 1963 due 10 relisal
ol NMNC o recoinize the new stale. A peace accord was signed in 1975 in Shillong bul the stalemate
continued because [ssac Swu and Thuingleng Muivah denounced the accord and they along with §
5 Kaphlang formed the Nationalist Socialist Council of Nagaland (NSCN) en January 31, 1980,
The situation has improved considerably since the time of singing the “Indo-Naga” ceasefire
between NSCN (1-M) and the Government of India on July 1, 1997 {Kotwal, 2000). However, the
problem  still remains unresolved (Karmakar, 2022). Following the footsteps of the Naga
insurgency, the Mizo Mational Front (MNF) under the leadership of Phu Laldenga declared
independence in Mizo hills and began a secessionist movemenl. With the formation of Mizomm
state in 1987, the problem of Mizo insurgency had been resolved (Saikia, 2022), Tripura merged
with the Union of India on September 9, 1949, But, disgruntlement among the tribal communities
continued. The prablem of insurgency turned into a serious law and order problem in Tripura in the
19805 with formation of Tripura National Volunteer (TNV) in 1981, National Liberation Front of
Tripura (NLFT) in 1989 and All Tripura Tiger Foree (ATTF) in 1990 demanding for political
sovereipnly of Tripura (Ghosh, 2003). Similardy, Manipur also menged with the Union of India on
October 15, 1949, However, a section of the Meiteis was unhoppy with the post-merger political
development in Manipur fuelling secessionist tendencies. A number of separalist groups such as
United WNational Liberation Front (UNLF), People's Liberation Army (PLA), People's
Revolmionary Party of Kangleipak (PREPAK) were formed in 1960s and 19705 to achieve
independence through armed struggle (Simgh, 2005; Sundari & Sasikala, 2020) Assam has also been
inflicted by insurgency problem. The insurgent proups like United Liberation Front of Assam
{ULFA), National Demoeratic Front of Bodoland (NDFR), Bodo Territorial Tiger Foree (BTLF)
carried on their subversive activities against India’s security establishment (Bhuvan, 2019).
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1.1 Causes tor the growth of insurgency in the Mortheast Indin

There are different reasons thal cavsed o the growth of insurpency and reasons which Getored Lo
sustain insurgency in the Mortheast Tndin, All these lactors did oot have similar effeet in all the
states and but incited the growth of ethnic nationalism in the entire Northeast.

1.1.1 Ethnicity in the Northeast India

Mortheast India is home of difterent ethnic groups. Majority of these ethnic groups belong 1o
the Sino-Tibetan and ‘Tibeto-Burman groups of people. Therefore, in term of ethnic affiliation, they
have closer proximity with the people of South East Asia than the peoaple of mainland Tndia
{Hazarika, 20013}, The British colonial administration, affeir, exploited the resources of Northeast
India, yet il provided protection to the many Northeast hill nbes from the exploitation of the plain
businessmen by promulgating the Bengal Eastern Frontier Repulations of 1887, The regulations
resricted the entry of ocutsiders without permit obtaining from designated officers and provided
internal autonomy to the hill tribes (Bengal Eastem Frontier Regulations, 2020). Naturally, following
British decision o withdraw from India and India’s attainment of independence, when there was
Jubilation and celebration, many hill tribes looked dejected thinking about their futuree palitical
future, There was conlsion whether they would get similar paditical profection following (heir
integration with India or they would [see cultural assimilation in the process of fndianization (Nag,
1948). Ethnicity, which De Vos defined as subjective, svmbolic or emblematic use to differentiate
themselves from other groups (Brass, 1991) was emploved by many ethnie groups in the Mortheast
to reiterate their distinctive cultural identities and need for a homeland to protect and preserve their
distinctiveness. Their apprehension has been addressed by the Government of India. New states
such as Arunachal Pradesh, Nagaland, Mizoram, Meghalaya were created. Autonomous District
Couneil under Sixth Schedule of the Tndian Constitution were created in Mizoram, Tripurs, Assam
and Meghalaya were formed Lo address the ethnie demands of the small minosity ethnic groups. The
Government of India retained the Inner Line Regulations of the Bengal Eastern Regulations of 1887
in states like Arunachal Pradesh, Magaland, Mizoram and Manipur. The constitution of lndia
aecepted cultural pluralism as symbol of national identity giving importance to the cultural values

of every community in the country (Mohammed, 2016).
1.01.2 Mlegal migration and demographic changes in the Northeast India

Fallowing partition of the Indisn sob-continent and formation of India and Pakistan, there
had been an influx of refugces from East Pakistan (now Bangladesh) im Assam, Tripura and

Meghalava. The situstion of minerities did not improve even after emergence of Bangladesh as an
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independent nation state in 1971, MNortheast Indian states sharing international border with
Bangladesh in the western side continued to experience influx of illegal migeation from Bangladesh.
The influx of refugee and illegal migration from Bangladesh brought a dramatic change in
demographic landscape in the Northeast India particolarly in Tripurs and Assam with the
indigenous peoples converling inte minerity in Tripura. Anti-loreigner agitation in Assam, Tripura
and Meghalaya turned violent threatening law and order situation in the Northeast Indis. Maturally,
the Government of India decided to insert Section 6A in the Citizenship Act defining March 25,
1971 as the prescribed cut-off date for detection and deportation of foreigners in Assam, The
Government of India promulgated several acts such as the Passport (Entry into [ndia) Act, 1920
vegrricting and regulating the entry of the foveigners into India, the Foreigners ( Tribunals) Order of
1964 empowering the district magistrates in all States and Union Territories (o set up tribunals 1o
decide on whether & person stayving llegally is & [oreigner or nol. The illegal Migranis
{Determination by Tribunals) Act, 1983 was enacled lor detection and deportation of all illegal
migrants who entered into India after March 23, 1971 (Singh, 20049).

1.1.3 Lack of economic development and sense of deprivation & exploitation

Ciepgraphically Mortheast India is connected with the mainland [ndia only through the
Jalpaiguri corridor, The region did not witmess much economic development due 10 its geographical
isolation, road and connectivity problem and lack of attention of Government of India in cconomic
development policies cavsed resentment and insceurity amongst the people in the Northeast Tndia.
The economic underdevelopment exacerbated the emplovment problem luring many youths to join
various insurgent groups. The Mizo nationalism which culminated into o secessionist movement
under the umbralla of MNF was a ramification of economic deprivation from the Government ot
Assam during the outbreak of rat famine in the Mizo hills in 1959 (Benjamin, 2022}, The
Government of India convetted the Look Tast Policy into Act East Asia Poliey in 2014, Northeast
India has been projecied as India’s gateway 10 South Fast Asia. Since then, Government of India
has been developing the road and connectivity in the Northeast o aceelerale the process of
ceonomic development in the region. The development of tourism sector is given top priority. The
Government of India is encouraging in entrepreneurship proving raining: to the youths. The Tribal
Welfare Department, the nodal department for tribal development, in every state in the Northeast

India provides short terms loans 1o become entrepreneurs.

The intensity of the insurgency movement has substantially declined in the Northeast Tndia
not only due o some proactive political measures but also largely 1l is because of economic growth

and development that Northeast [ndia has been experiencing in the last two decades. G Kishan
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KReddy, the Union Minister of Development of Mortheast Region said in 2022 in the Parliament that
the notable decline in insurgency in the region was due to CGovernment of India’s apenda of
transforming Northeast India with a new phase of peace and prosperity (Singh, 2022). Therefore, if
the pace of ecconomic development can he accelerated, the problem ol ethnic insurgency can be
contained.

2 Mathematical models to contain the insurgency problem

A thorough inderstinding of the insurgency problem, namely, the causation, propagation,
prevention etc. is essentially required o develop the effective and viable intervention strategies to
mitigate the issues and challenges ol insurgency and associated violenee, In this regard
mathemalical models can provide an impottant insight in this direction, Applications of differential
equations and related mathematical techniques 1o study various socio-economic problems was first
piongered by Lewis F. Richardson (Richardson, 1960). He studied the causes of war, its
propagation, impacts of arms race between countries and the cruption of war using mathematical
models {Richardson, 1935). In recent imes varions mathematical models have been studicd by
various rescarchers to analyize the dynamics of political party growth, the spread of crime ete. {see
for instance Crisosto et al., 2000; Hayward, 1999, Jeffs et al,, 2016; McMillon, Simon & Morenoff,
2014; Mohammad & Roslan, 1870 Perc, Donnay & Helbing, 2013; Romero et al, 2011;
Sooknanan, Bhatt & Comissiong, 2013, 2016 and the references thetein). A comprehensive review
of the mathematical models to study the dynamics of crimes can be found in (DXOrsogna & Perc,
2015 Sooknnan & Comissiong, 2018), Use of compartmental models (o study various sogio-
ceonomic issies such as insurgency, terrorism, fanatic behavior, violence, radicalization ete. can be
found im Camacho (20013), Castillo=Chavez (2003), Galam (2016), Helbing et al. {2015,
MeCluskey (2018), Mathan (2018), Santoprete (20018) and the references therein. Chuang (2018)
studied an age-structured model of radicalization and a bistable model of terrorism {Chuang, 2017
A pame theoretic terrorism model was proposed and analyvzed by Short (2007) A mathematical
study involving terrorist and fanatic was proposed by Camacho (2013). In this study the population
has been divided into core and non-core groups. [n the first model two core populations have been
considered with ne interactions between the subpopulations and both of the core-groups are taken
from the same pgeneral designated population. They have shown that, with increasing
implementation of ¢fforts o reeruit and retain, terrorist groups will be able to influence vulnerable
individunls, They have however, did not consider the impacts of governmental interventions to
combat the terrorism. A deterministic model of incorporating the allocation of optimal human
resaurces o implement counter-lerrorism operations was proposed by Udoh (2019), They studied
possible strategies o allocate counler-lerrorism resources lowards providing a long-tlerm mitigation
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of the terrorism problem. In this article coupled differential equations have been used with system
variables representing the internal and external dynamics of the insurgent organization. [n their
mendel, they have not considered the effect of detentlon/rehabilitation facility. The model proposed
by Castillo-Chaver (2003} was extended by Chenf, et al. (20000 where the authors developed a
mathematical model of insurgency process, They have considered the spread of mdical ideologies,
recruitment of new terrorists, impacts of fanatisms ete. including control of terrorism and
rodicalization process. A deterministic model to study the radicalization process in Kenya is
proposed by MNgari {2016). Authors proposed control of the insurgency problem throuwgh
rvehabilitation centres but did not consider implementation of detention facility. A compartmental
model to analvse the impacts of de-radicalization proprame is studied by Sandler (2014), The
authors have divided the general population in the following four compariments. namely,
Suseeptible (8), Extremists (E), Reeruiters (R), and Under Treatment or deradicalization programs
{T) They however, did not incorporate the possibility of lorce recruitment of the susceptible or
already treated individuals. A five compartmental model including the vaccinated compartment that
incorporates the individuals who have already gone through Countering Violent Extremism (CVE}
programs before being radicals is studied by Santoprete (2019). In this study the authors analysed
the impacts of CVE programs to counter terrorism. Chuang (2019) proposed a mathematical model
with two cross sections o analyse the propagation of insurgency among different sub populations.
The first model exhibits the possibility of an individual o progress from susceptible w moderate
group before becoming a terrorist, Whereas, in the second model authors have considersd twa
radical groups, which emerge from the susceptible before becoming fully radical withoul any
possibility of control strategies, An optimal control model to implement counter-terrorism was
studied by Bayvon et al. (2019} The authors proposed “fire™ and “water” contro| strategies but did
not consider surveillance, detention/rehabilitation, Facilities, force recruitment ete. Applications of
optimal control strategies using Differential Transformation Method (IDTM) is proposed by Akande
{20170 Interestingly their result shows that implementation of the best control strategy does not
alwavs imply optimality but accuracy in resull compared (o other possible control mechanisms.
Lldwadia (2006) developed o dynamical model of temorism incorporating the impacts of direct
governmental interventions through military and police to control the ferrorist population. Their
study concluded that that using military and police actions may reduee the threat of insurgency. A
dynamic mode]l considering suicide bombers and political influence is studicd by Geller (2015),
Their study provided the emphasized and de-emphasized impacts of the forces in controlling the
insurgency problem.
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3 Mathematical models of unemployment

Adequate generation of employment s a vital indicator of economic development
Unemployment is an increasing global concern and according to Global Emplovment Trends 2012
out of a global labor force of 3.3 billion people all over the world almost 200 million people are
unemployed. Tn a ploneering work 1o understand the dynamics of the problem of unemployment
Mikolopoulos (2003) proposed a mathematical model and provided few measures to control
unemployment. Some notable studies in this field have been performed by Misra (2001, 2013).
Mista (2013) assumed a constant rate of increase of the unemployed individuals. Whereas. their
number decreases due to death and emigration, at fixed constant rate proportional to the number of
unemployved individuals They have also considersd that the unemploved people acquire jobs at a
rate proportional o the number of present unemployed persons and the number of available
vacaneics, A delay mathematical model incorporating the job creation delay has been studied by
Misra (2013), According to their unalvsis if the ride of getting emplovment imereases or the number
of newly created vacancies increases then number of unemployed people decreases. Their study
also suggests that creation of new job oppormunities can be a solution of unemployment problem.
Hence, they suppested that povernment must create new jobs parity with the present number of
uncmployed individuals to overcome the uncmployment crisis.

In this article we propose a deterministic mathematical model with an aim to conteal the
issues and challenges of the insurgency problem in Northeast India by generation of adequate
employment opporiunity which is considerad as one of the important indicators of sociceconomic
development, We also meorporate the awarensss against the insurgeney and violence amondg the
people of Northeast India. In fact, proper awareness can be generated only with appropriate
education which can only be sustained with adequate sociveconomic development.

4 Model Formulation

Let, us denote (L), R, TOE), J(2) and E(E) respectively be the densities of unemployed
individuals, recruiters of insurgency groups, insurgents, available jobs and employed individuals at
any time ¢ in any desipnated area. Let & be the constant input of unemployed people, especially
wiouth, who can be exploited hy the insurgent groups, f be the mie at which recruiters interagt with
those unemploved people. However, a fraction of the unemployed people who get convineed by the
reeruiters (o participale in msurgency groups become recruiters and (1 — &) portion becomes
insurgents themselves. Recroiters can become insurgents ot & rate a; and the insurgents can become
recruicrs af a rate @y New jobs are created at o rate ¢ depending on the density of present
unemploved people. Unemploved people get jobs st a rate y. The parameter ¥ also provides a
measurement of the available =kills and training of the unemployved individuals 1o obtain the new
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job opportunities, Various job opportunities are shut down or lapsed at a rate m. The emploved
people lose their jobs and again become unemployed at a rate 8. The removal rate of unemploved
and employed people due o migration, retirement of natural death is considerad o be g, However,
the recrutters and insurgenis expenence some additional death rate due 1o be killed by police/army,
incarcerated in jail ete, Their extra death rate is represented by &. It is importamt o mention that,
even emploved individuals may get influenced by insurgency ideologies. However, in our work we
do not consider that case, as one of the objectives of our study is 1 understand the impacts of
generation of new employments on comtrolling the insurgency. We propose the following schema
diggram to provide a pictorial demonstration of the interactions between different system classes:

Figure 1. Schema dicgram of the interactions hefween system popwlations.,

We propose the following deterministic mathematical model using nonlinear ordinary differential

equations based on the intersctions deseribed In the schema diggram given in Fig. 1

dll
= =8 BUR — yUJ +0E — v,

dR

s affUR — oy R + 03T — (8 + u)R,

i—:: (1= a)fUR + o,R = T = (8 + )T, (1)

df
i ¢l —mf,

E
E—FU}—EE—HE.
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1f the tate of awareness against insurgency increases then insurgency should decrease. Moreover, iff
adeguate job opportunities are generated for people of Northeast India, then their quality of life will
increase through proper socio-ecomomic development. Let, © be the rate of awareness against the
insurgency among the peaple. c € [0, 1], where ¢ = 1 implies 1{{% awareness and ¢ = U signifies
absence of awareness, We thergfore, modify Model Svstem (1) to the following madel
incorporating the effect of awareness against insurgency:

‘:[_‘: —A _%—ﬂ”+ BE — ul,

%?_= 51_"‘153:‘5;'535— R + T = (8 + )R,

%1: L ‘jil;j‘*m R b iR— T~ (4 )T, (2)
-

dE_ i — oK E
dt-PJ F‘

Here a is a constant. We will study this Model System (2) under the initial conditions given by:
U} = 0,R(0) = 0,7T(0) = 0,J(0) > 0,7(0) > 0. (3)

5 Analyrtical results
In ithis section we derive different analytical resulis such as positivity and boundedness of
the solutions of the Model System (20, existence and stability of the equilibrium points ete.
5.1 Positivity and boundedness
Froposition 3.1 Al soluiions of System (2 are positively invariant and aniformily bowsded in T for

all larse t whers,

r={W.RT.LE) R | ucum+ﬂtt}+m}+m}s§ 0 s,-'[tjs%}.

Proaf. First, we show that all the solutions of the System (2) starting with initial conditions (2) are
positive, using a lemma proposed by Nagumo (1952),

Lemma 5.1 Convider a system X = F(X) where F(X) = |F (XL, L F (0] X € B with
initial condition X(0) =X, e B". If for X, =0,i =12, ....n we get Fi{X)|y=0 = 0, then any
solution of X = F(X) with given infrial condiion, say, X(t) = X{& Xp) will be positive ie, X(t) €
Y.
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It can be easily seen from (2) that %’-]u___g,wzﬁ,u =A>O0mdwheny =R=T=]=E=0
ST S (L

dc  dt  dr e

conditions {3) are positive,

Mext, wie establish the boundedness of the solutions of (1) for all large £ Let, Wit) =t 4+

R{t} + T(t) + J(t) + E(r). Differentiating W () along the selutions of (2}, we find

Wity =0) + R +TO+E) =2 WD sA—uW = }iﬂW(t] = E.

= . Henee following Lemma 3.0 all solufions of (2} starting with initial

Therefore, the solutions U(t), R(t), T(t), E(t) of {2} are all hounded above hy E. Again, from the

4™ egquation of (2) one can caleulate that

a 4
Ez—ltﬁﬂ'“mf#-&?

Theretore, tor all large ¢, solutions of System (2} are positively invariant and uniformly bounded in

bl A
+mf 5-;-: }I_{gj'(t}ﬂ e

the region ', Henee the proposition is proved.

5.1 Equilibrium points and their existence conditions
Model System (2) has two equilibrium points, Mamely insurgency free equilibrium point
Fol(Ug, 0,0, 1. Ep) and insurgency equilibriom PT{L°, R°, T, )", E*). The population densities at the

equilibvium Py are given by [; = %,Eu =£'—Uu and Uy is given by the positive roots of the
following quadratic equation:
AR+ A, U+ A4;=0,

where A, =%‘.> G, A=0+u>0.4; =-£WT+E-::{I. Clearly, this eguation has exactly one

pTE—
o : Azt |AI-4u4;
positive root given by: Uy = —————
The equilibrium £y will be feasible iF0 < Uy -':E. (4
Again, at PT(U, R, T ] EY) we have
E*=A(U),
b
I'= g
e By(U) + B, (U + Bs(UT) + B,

ByU" '

_ Bg(U)? + Bo{U™)? + Ba(U”) + By

T
Bygl”
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&
where 4= >0, B, = ¢ (02 -12), B, = (82— L3)am —ug, By = p8—pam, B, =

Aam, B:=pm(l—¢), By= —puBed— (8 +p)B,. By=—puBs—Bal8 +p), By=Buh—
B3(f +p). By = —By(f + ), By = Be(§ + u). The equilibrium density U" is found 1o be the
posilive reots af the following equation;

Dy(U")* + Dy (U + Dy (U*)? + Dy(U*) + D5 = 0,

where,
Di = Bialy By + BeCyBy,
Dt = E:n[flﬂz + HIEEJ + E:—maﬂn*fq + Ezga]-
Dy = B1(B4C; + BuCy) + Bs(C4B: 0, + CaBy).
Dy = Byo(B4C, + ByCy) + Be(CaBaCy + ByCa),
e = BioByla + BelaBala,

&= (luc}ﬂﬁ—-%[ﬁ + ot 4+ ;)
T

= = — am
l‘:a — _a{E ‘l"'ﬁ +’d't}..c-3 ="";"_'.cq. =T.-
However, due to the high parametric complexity of the equilibrium population densities at P* we

will verify its existence numetically,
5.3 Loeal stability analysis of the equilibrium points

First, we discuss the local stability of the equilibrivm point P, using linearization method. The

Jacobian matrix evaluated st Py, is given by

M1y Mg 0 Mie Mg
0 maz myy 0O 1]
w‘l{uﬁrﬂlﬂa jl;li El;l) = f} mS] m33 n n
Migq i} 0 My 0
Mgy ] 1] Tigy Mse
where,
(1-c)pU
Mgy = Yo iy = _T}u—j’-mm =—ylly,my5 =0,

mgg = 8080e _ g, — 8.4 ),y = 0
1—c){1- u
Mzy = Ll +ay mag = —o — (0 + Uyl
I'1+_h|

Mgy = PMgg = =M, Mgy = Vo, Myg = ply, sz = —6 —
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The characteristic equation of the Jacobian matrix Wy is given by
B+t + B+ A+ A+ V=0

where,
Xz X3 Xy Xy X
V, =t Vo=— Vo= W ==, Ve = —, X =R
S L T L 7 R L

Xa=Rse Ka=th+Ri+T Xi=h++T,
Xe=0:+ R +Ty  Xg=0y+Ry 4Ty, 0y =NNo+ Ny,
Oy = NNy + NelNa + NoAL,  Op = NN + NoNy + NoN,

Oy = NeNay Ny =mysmgmag. Np = fiaamyy — Magityy,
Ny = —(my tmgz),  Na=1,  Ny=-—mygmsme,
Ne=mygms,, Ry =00y R = + .0, {5

Ry =0+ Qs + G20, Ry =0y + Q50 + 0y,

Re= 0+ Qs Re= Qe Oy =Py, 22 = P+ Py,
= HP+ Py, Qy=Fs Qs = P Qs=1

Py =megmyy,  Pp=-(megdmy) P=my A=-1

Py = Mygiitay — MaaMyy, Py =—(ma +my), Ty =55,
T =55, + 5,5, Ty= 5, + 5,5, Te =5
8y = — ity Mex; 83 = Mgy Mg, Sz = Mgaiiyy — Mgzl

5y = = (mzz + ma).
Henee, we abtain the following propasition;

Proposition 5.2 [f the inswrgency=free equilibrimm Py exises following (4) then it will be is locally
asympiatically stabie if and only i
V, = 0,V > 0,V Vs > Va Wy (Vo + 15) = VE + V2,
Valalaly + 2ViW Ve + ValaWs > Vi WEVG + VEVE + VVE + 12

where the expresstons of Vi 1= 12,3, 4,5 are given ta (4).
The Jacobian matrix evaluated ot the insurgency equilibrium P is given by,

iy a0 @y ayg
3y Oz G33 dpy
Wb, RS T E' )= fay @32 O35 Ciy 0
2 0 0 a4y 0
agy 0 0 agy  ag

where,
(1) iR . {1-c)Fue {1—-c)fl R i
Ay = =y = gy = =, o, = U, a5 =6,
{1—clafiR’ (1—clafll” (1—clafl*R*
fz; = —aElr oD Jlaz = e yh =@ = (d + p) a3 = a2, daq = _[u +E
(1—c){1—alfir” (1—e){1—a)gu” N
figy = at] gy = at + a3, fay = —ay = (6 + "),

(1—&)(1 —e)ffl*R"
gy == (a+))% ' a4 =,

aq.‘.[U’,H‘,T‘,I‘.E‘:’ ==m, sy =r.||"-
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G54 = y7, ass =—8—p,
The charseteristic equation of W, is given by:
BB+ L2+ +0A+U:=0

where,
_,H2 '_MI .-M" -_Hﬁ :M,5 _ _
U:I_H'[' Uz—Miu UJ—M1J 'Uq.—Fi- Ui Mii M:L—Ln- HE—E-H-

My=Go+l,+L, My=G+0L+L;, M.=6+0+1;

Mg =0y +1 + 1y, ty = KiF; + F5F;, iy = =F Fy + F;F3 — F:F,,

Gy =F — FFy —Fs, Gy = Fy, Fp = —ays05,04, Fy = ay505,,

Fy = 03035 — Oy, Fy =gy + a3, Fi = 85yl 0ay.

Il = HEH'." +.F-‘1H,| jz= _H1H4+ff1H3_ff5H$+HLHj;

ly = —Hyly + N5 — H g, =N Hy = —ayy 853 s, Hy = ayyaq3
Hy = agyazy —agymyy, Hy = —ay,, My = —ayyn,05, Hy = ayqm4,
L-1=K-,r+ﬂ'lﬂ'5. Lz=K1K5+K2R5+Ku, LJ =K1+K;K,,+Kg,

by = Ku + KK + KoKy + Ky, Lz = Ky + Ko, Ly = Ky, Ky =ht

iy =—hh—faf Ky =fofs + s Ky =-—1, K= fa Ks =15, {6)
Hr ’.fﬁu'lan HBTJ'EJU;I +f?.|r9| Hq'*f?hu +fﬂf"arxlnrfﬂ-||m-
Sy = ttgmttygfy =ty + gy, fy =y, fo =itgzttyy — tpattyy,

4 ==lmpy #0335l Jo==mgmagags.  f7 = alog +ay
do=—n Jo = 05,833 — G305, Jin =—yp

Henee, we obtain the following proposition:

Proposition 5.3 If the fnvurgency eguilibrinm P* exisis then it will be ix locally apmpiotically
wtabie ifand only it
= 0,0 = 0,005 = Uy U (U0 + B = U3 + Ui,
WU Ul 4+ 20 W e + Ul = U U + UELT + U U0F + 2

where the expressions of Up i = 1,2, 3,4, 5 are given in ().

6 Numerical simulations
In this section we perform numerical simulations of model System (2} using MATLAB
2015a. First, we consider a society that is highly prone to insurgency activities with the fallowing

characteristics and denote it by Society - X.

CHi. Low rate of awareness against insurgency practices, This basically implics low rate
of the the parameter ¢ that measures the mass awareness against insurgency,

terrorism and violence.



453 Debadottn Adak, Shekhar Das ond Bindu Ranjan Chakma

CH2. High rate of interactions between recruiters of insurgent groups and unemployed
persons, Mamely value of the parameter [, thal represents the rate of interaction
between unemploved individvals and recruiters is considerably high,

CH3. Low employment rate, In this case the rate y ar which unemploved individuals get
emploved is low.

CH4. Low creation rate of new employment opportunities, which implies the rate of

ercation of new jobs (g is low.

Based on the above discussion we consider the following parameter sel lo numerically simulate the
characteristics CH1 w CH4 of Society — X.

A=5f=0056a=05c=03p=00078=015m= 0.2y = 0.005,

7
oy = 0.08, 7, = 0.06, 5§ = 0,002, = 0.1, & = 50. “

For these porameter values one can calculate that Uy = 02232 =0, U = 1143 > 00U — Uy =
0.6653 = 0, U, (VU5 + Us) — (UF + UFU,) = 38772 = 0,0, U, U5 b, + 20, U, U + U U5 U —
(U, USUs + URUE 4+ U,U3 + U2) = 0.,00532 > 0. Hence following Proposition 5.3 we obtain that
the msurgency equilibrium P is locally asymptotically stable. [t signifies that msurgency persists in
a stable condition in the Society - X. The time evolutions of svstem trajectories have been depicted
in Fig. 2. It shows that with lower level of awareness, rate of being employed, rate of new job
creation and higher level of interactions between unemployed people and insurgent recruiters,
insurgency prevails in the Society — X that has the aforementioned charaeweristics given in CH1 -
CH4,

Figure 2. Time evofution of medel Svatem (2) for the parameter values as given in (7).
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Mext, we perform PROC (Partial Rank Correlation Analysis) with p —value < 0,0001 1o identify the
muost sensitive parameters of System (1), The PRCC analysis dingram is shown in Fig. 3. It clearty
shows that the parameters ¢, £,y and ¢ are the most sensitive parameters and act as the major
regulators of the system dynamics and controlling the insurgency, Our objective is o check the
impacts of the aforementiongd four most sensitive parameters (o control and if possible, eradicate
insurzency from the Society — X,

6.1 Joint elfect of ¢ and

First, we study the joint effeet of the parameter ¢ that measores the awareness against
insurgency and 0, the rate of interaction between unemploved individuals with regruiters of the
insurgency organizations. It should be noted that © and £ are interconnected. The basic hypothesis
behind it is that il awarensss against extremism increases then interactions between recruiters of
insurgency groups and unemploved individuals will deerease and vice versa, This will provide 2n
elfective stralegy o conirol insurgency through generation of awarcness. The stability regions of
the equilibrium points Py and P for joint variation of © and 8 are depicted in Fig. 4a,

it} T T T ] ] T I

PROC

A1t

ne- 1. i -l . e L - . | ' 8 i | |

Figure 3. PROC analvsiy with p —valwe < (L0001 af the parameters of System (2).

It clearly conforms to our hypothesis that, by increasing awareness against insurgency practices, the
rate of interactions between unemployed people and insurpency group recruiters can be decreased
and therehy, insurgency can be contained, Now our objective is to free the Society — X from the
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insurgency practices, We have considered f = 0,056 and ¢ = 0.2 1o simulate Society — X, Now
from Fig. 45 one can sce that for these values of § and ¢ Society — X will not be free of insursency
{see Fig. 2). Wow, we increase ¢ from ¢ = 0.3 w ¢ = 0,55 From Fig. 4a we can assert that
insurgency will niot be eradicated, but the population density of insurgents and recruiters in Society
— X will decrease. This case is depicted in Fig. 4b. The decrease in number of insurgents and
recruiters can casily be seen by comparing Fig. 4b with Fig. 2.

ﬂl PR a0 L, ¢o L
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Figure 4. fa) Stability regions of Py and P* for joimt variagtion of © and §. Time evolutionsy of the
Syaterm (2) for different valwes of ¢ wed § (8) § = 0.056,c = 0.55, (¢} § = 0.056,¢c = .75 and (d)
B = 0.1, c = 085, Cther paramiters are as in (75,

However, following Fig. 44 if ¢ is increased o ¢ = 0,75 then insurgent and recruiler population

dies-out. This case is shown in Fiz de. It shows, if we wish (o free Socicly — X from insurgency,
the awareness (o) has to be at leasi 0.75. In this case it is caleulated that Uy = 182,376 < E —
714.2857. Hence, Py exists following (4) and as ¥, = 21781 >0,V =239 = 0, W)l - h =
0.0098 > 0,V (VW + Vo) — (V2 + VEV,) = 0.0734 > 0, W,V W51, + 2V, VaVs + Vsl —

(V VRV, + VRVE + VWE + ¥2) = 11.2541 > 0, following Proposition 5.2 we obtain that £, is
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focally ‘asymptotically stable, Therefore, all system trajectories converge to insurgency-free
equilibrivem £y and insurgency is removed from the Society — X Interestingly, if we can inerease
the awareness against insurgency and extremism to a level higher than ¢ = 0.85 (approximately,
following Fig. 4a) which is basically the critical level of awareness to be generated, then from Fig,
4a one can easily see that even with high rate of inferactions batween unemploved individuals and
recruiters of msurgency groups, the society can be made free of insurgency (Fig, 44d). Hence,
ulilizing Fig. 43 we can determine the level of awareness against insurgency praclices is neeessarily
required 1o free Society — X of insurgency practices, if the rate of interactions between unemploved

individuals and recruiters of insurgency groups is known.

6.2 Joint effect of y and ¢

The combined effect of ¥ and ¢ is an imporant aspect of our study, The parameter ¥
measures the e of new employment of the unemploved individuals, Whereas, the parsmeter ¢
signifies the rate at which new emplovments are created. Evidently effects of these two parameters
are interlinked. We consider the hypothesis that if ¢ increases, then more new jobs will be created
and a5 a result unemployed individuals will be employved sl a higher rate Lo, ¢ owill increase, And as
the unemploved individuals get emploved. their economic condition will develop and they will stay
away from insurgency. It is also important to under stand that mere creation of new jobs does not
always imply less unemployment, as without proper training and skills required for the new jobs,
unemployed will remain unemploved, Therefore, once new job opportunities are created, it is
essential to provide the necessary skill development trainings o the unemploved individuals 1o
increase the rate of employment among them. The stability regions of Py and P* for varying ¢ and
¥ have been drwn in Fig. 5a. This figure provides an important estimate about the level of skill
development and training to be given o the unemployed individuals, iF the rate of new jobs creation
is known, Now as mentioned before we wish o make the Socicty — X free of insurgency. So,
keeping all other parameters fixed at (7), i7 we increase y from p = 0,005 to y = D05, we can see
by comparing Fig, 5hoand Fig 2, that insurgency is nol eradicated, but surely decrensed, Observing
Fig. 5a, if we further inerease ¥ to p = 0,135, then Society — X can be made free of insurgency
(Fig. 5¢c). Therefore, it the rate of new job creation is known, then we can determine the reguired
rate ol emplovment necessarily required wo erndicate insurgency using Fig. 3u, Another interesting
observation thet can be derived from Fig. Sa. that 1f the rate of new job creation ¢¢ is higher than an
upper critical level, in this case il is approximately ¢* = 0.35, then even with low raie of
employment Society — X can be made free of insurgency (Fiz. 3d). However, if ¢ is below a lower

eritical lower level, which is in this case approximately ¢, = 0.55, then even with quite high e of
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employment, say ¥ = 0.2, insurgency will prevail in the Society — X (Fig, 3e), Therefore, to free
Society — X from insurgency, the rate of gensration of new jobs must be higher than a critical value

d..
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Figure 5. (o) Siahility regions of Py and P* for joint variation of y and . Time evolutions of the
System (2) for different values af y and ¢ (5) y = 005,¢ = 0.1, /e ¥y = 0135, 46 =01, fdl y =
0005, ¢ = 0.37 and ie) y = 0.2, 0 = 0.05. Orher paramerers are.as in (7).

6.3 Joint effect of £ and §

We now study the combined effect of awareness against insurgency (c) and the rate of
generation of new jobs (@) to mitigate the issue of insurgency in Soclety — X, I s evident that
creation of new jobs will encourage the unemployed youth not to choose violence over
spciocconomic development. Morcover, this mechanism to control insurgency is directly related to
governmental policies & schemes, It is important to understand that the creation of new jobs is
actually interlinked with the awareness against insurgency practices. [T more new jobs are created
unemployved youth will be more hopeful wowards socioeconomic developments by being employed.
For being emploved they will require skill development traiming and proper educational
qualifications. To acquire that they will go to educational institutes & participate in various
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governmental skill development initiatives like Make in India, Digital India, Self-Heliant India,
Skill India Programs eic. In this way they will get proper education and eventually become aware
against the ways of extremism, Hence their possibility of being brainwashed by the recruiters of

insurgency groups will be low. As a resolt, insurgency will decrease due (o lack of new recruits,
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Figure 6. fa} Swabifiy regions of Py and P* far joint variation of ¢ and . Time evolutions of the
Svstem (2} for different valves af ¢ ond ¢ (b} ¢ =03, =023, {c} ¢ =03, =028, il ¢ =
(L5, ¢ = 043, Other parameters are as in (7).

The stability regions of the eguilibrium points Py and #* for varving ¢ and ¢ have been drawn in
Fig. 6a. It shows a reverse relation between © and ¢, i.e, the level of awareness required to free
Bociety — X from the menace of insurgency will be high if the rate of generation of new jobs is low
amd vice verss, The rate of new employments 0 be generated to make Society — X free of
extremism for & known level of awarcness apainst insurgency, can be decided wvsing Fig, 64, For,
example we consider the case of Society — X where ¢ = (0.3, The density of recruiters of insurgency

groups and insurpents deerease in Society — X if ¢ 18 inereased from 0.1 to 0.23, This claim can
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easily be verified by comparing Fig. 2 and Fig, 6b. Moreover, if ¢ is increased further 1o 0.28, we
can see from Fig, 6¢ that Society — X becomes free of insurgency. Another important observation
can directly be obtained from Fig. éa, that if the rate of generation of new jobs is higher that a
critical level, sav ¢, then even with low awareness against insurgency, Societry — X can be made
free of insurgency, From Fig. 6a we assert that ¢b. = 0,41, The time evolution of System (2) with
= 0.05and ¢ = 0.43 = ¢_ has been drawn in Fig: &d. It shows when ¢ is more than the critical
value ¢, even with low level of ¢ = 0,05, insurgency is cradicated.

T Summary and discussion

In this article we have proposed and analyzed s deterministic mathematical model using
nonlincar differential cquations to establish the hypothesis that the issue of insurgency can be
contained by adequate sociocconomic developments. The problem of insurgency is & persistent
issue in Mortheast India and sociceconomic developments can be a feasible way to mitigate this
problem. For that purpose, we have considered generation of new employment opportunities and
proper awareness against the radical ideclogies through proper education, as the important
indicators of sociveconomic developments, Through our analysis we have shown that a society,
termed as Society — X with high rate of interaction between unemploved individuals & recruiters of
insurgent groups (), low rate of awareness against insurgency (). low rate of new job creation
(b & low rate of employment () is prone (o persistent insurgency activities, Sensiliviny analysis
using PRCC method shows that these four parameters are the major regulawrs to control and if
possible. eradicate insurgemey from the Society — X, These four pamameters can individually
regulate the insurgent population. But their combined effect is much more effective from real time
application point of view, In light of this, we have explored three conteo] mechanisms of insurgency
depending on the combined effects of the parameters that are interconnected from realistic point of
view, The first one is the joint effect of © and £, We have shown that when ¢ and y are fixed, then
eand f are negatively correlated in view of controlling insurgeney, IF fact i ¢ is increased, then
with low level of #, insurgency can be controlled in Society — X, On the other, 1o overcome the
adverse effect of high rate of 7, the level of ¢ has w be increased. And i we can increase © more
than a eritical value ¢ then even with high rate of £ Society — X can be made free of insurgeney.
Another important mechanism o control insurgency in Society — X is w regulate the combined
effect of y and g0 by considering fixed ¢ and . T has been shown that i ¢ increases, then p will
increase. As the unemployed individuals becomes emploved, their cconomic condition will develop
and eventually they will stay away leom Insurgeney. I is dlso proven that i ¢ is higher than an

upper critical level 6%, then even with low y Society — X can be made free of insurgency. However,
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il ¢ i3 below a lower critical lower level b, | then even with guite high rate of y, insurgency will
previil in the Society — X, Therefore, o free Society — X from insurgency, the rate of generation of
new jobs must be higher than a critical value ¢.. Finally, we analyze the combined effect of the
interlinked parmmeters ¢ and ¢ 1L is obiained thal the required mte of ¢ 1o free Society — X from
imsurgency has to be high i the vate of ¢ is low and vice versa. [t has been further derived that if ¢
is higher that a critical level, say b, then even with low rate of ¢, Socicty — X can be made free of
insurgency. Therefore, our study shows that apart from generation of awareness, sufficiently higher
creation rate of new emplovments can also be a useful tactic to control insurgency. If unemployed
vouths get jobs at a higher rate and their quality-of-life increases, they will not opt for insurgency
practices and evenmally the effect of insurgency will decrepse due to lack of new recruits.
Maoreover, the critical values associated with the awareness against insurgency ideologies and the
rate of generation of new employments determined by our study can be applied while framing
various governmental policies Tor Northeast India 1o contain and even eradicaie the porsistent issue

of insurgency in this region.

8 References
Akande, K. B., Moharnmed 1., Application of Differential Transformation
Methed in solving Crptimal Control of Terrorism Model. Jowmal of the Mothematical Association of
Migeria 44, 1, 2017, 127-133,
Bayon, L; Fortuny, P. A, Garcin-Mieto, P.J., Graw, LM, Ruiz, M. M., Optimal Control of Counter-
Terrorism Tactics, Jowrnal of Appiicd Mathematics and Computation, 347, 2019, 477-491
Hengal Eastern Frontier Regulations. Rerfeved: Jamuary 20, 2020, https:joumnalsofindia.comhengal.
Bhuvan, B., State and Insurgency: Studv on Counter Terrorism Strategy in Assam. fnfermational
dewrnal of Hunanities and Sacial Sciences fvention B(6), 1, 200%, 36— 61,
Brass, P, I, Evwicity and Naronaiismay: Theory and Comparizon, Mew Delhic Sage
Publications, 19%].
Camacho, E., The Development and Interaction of Terrorist and Fonatic Groups, Commiamicariony
i Newfinear Seience and Numiricol Stadaifon 18,11, 2013, 3086-3007.
Castille-Chaver, C., Song, B., Models for the fransmrission dysamics of farmatic befaviors,
in: Histerrorisme-Miothematical Modaling Applications in Howeland Secirity. S1AM, Philadelphia,
2003, 1551712,
Cherif, A., Yoshioka, H., Ni, W., Bose, P, Terrarism Mechanism of Redicalization
Process, Control of Coniagion and Counter-Terrorist Measures, arXiv, 0910.5272, 2000, 1-14,
Chuang, Y. L, D' Orsogna, M. R, Chow, T., A bistable belief dynamics mode] for
radicalization within sectarian conflict. 0 Appl. Marh. LXKV, 1, 2017, 17-37.



461 Debadottn Adak, Shekhar Das ond Bindu Ranjan Chakma

Chuang, ¥, L., Chow, T_, 1¥Crsogna, M. R, Age-structured social interactions enhance
radicalization. J, Mark Sociof 42, 3, 2018, 1-24.
Chuang, ¥, L., D'Orsogna, M. R, Mathematical Model of Radicalization und Terrorism,
Pinvsics and Sociely 1903, 0848, 2019, 1-56,
Crispato, ., Kriba-Zaketa, C. M., Castillo-Chivez, C., Wirkus, 8.,
Community resilience in colluborative learning. Discrete Contin, Dun, Svse. Sec. B 14, 1, 2010, 17-
i,
[ Oresogna, M. R., Pere, M., Statistical physiczof crime; a review, Plow. Life Bev, 12, 2005, 1-21,
Cialarm, 5., Javerone, M, AL Modeling radicalization phenomena in hateropencous
populations. Plas Ome 11, 5, 2016, c0155407.
Geller, D, 8., Saperstein, A M., A dynamic model of suicide terrorism and political
mobilization. fmfernational Political Science Review 36, 5, 2015, 562-577.
Ghosh, B., Ethnicity and Insurgency in Tripora, Sociological Swllenin, 52, 2, 2003, 221 - 243,
Gilobal Emploviment Trends, International Labor Office, Geneva. Retrieved an 3 Cher 202
Havward, 1., Mathematical modeling of church growih, J Math, Social, 23, 4, 1999, 255-293,
Holt, B., Building dw state and conceiving the nation: the origing of separslist insurgency in
the Mizo Hills, 1945-61, Contenyporary South Asio 30, 3, 2022, 313 - 330,
Hazarika, M., Prehistoric Cultural Aflinities between Southeast Asia, East Asio and Mortheast
[mecdice: An Exploration, Umearihing Southeast Asia s Post, 1. 2013, 16 - 25,
Helbing, [¥., Brockmann, 13, Chadefaux, T, Donnay, K., Blanke, L., Woolley-Meza, €,
Moniszaid, M., Johansson, A, Kraese, 1, Schurte, 5, Pere, M. Saving
human lives: What complexity soience and information systems can contnbute, S Srae. Pl 158, 3,
2015, 735-T81.
Yeffs, R, Haywand, 1., Rooch, P A, Wybarn, L, Activist model of political party growth, Phes. A St
Mech, Appl. 442, 2006, 359-372,
Karmakar, 8,, 25 vears of ' Indo-MNaga® ceasefire but a solution remains elusive, Decean Herald
Crrwarhurti 03 Angust: 2022,
Kotwal, [3,, The Naga Insurgency: The Pastand the Future. Strategic dmalveis 24, 4, 2000, 751-772.
Moecluskey, C., Smtoprete, M., A bare-bones mathematical model of radicalization. Jf
Dn, Ganeex 5, 2018, 243,
MeMillon, T8, Stmon, C. P, MoerenofT, 1., Modeling the underlving dynamics of the
spread of erime. PIoS One 9, 4, 2014, e8E923,
Misea, A, Singh, A., A mathematical model for unemploviment, Nomlinear Amaf. RFA
2, 2011, 128-136.
Misrn. A Singh. AL A Delay Mathematical Model for the Control of Unemplovment.
Differ. Equ. Iyn Syse 21,3, 2013, 291-307,



CONTROLLING INSURGENCY IN NORTHEAST INDIABY ..

Mohammad, F_ Roshan, L M., Analvsis on the crime model using dynamical
Approach, In: Proceadings af the AP Canference, AT Publishing, 2007, 040467,
Mohamimed, K., Coultural Pluralism b Tndial Prosecting o Symibol of Nattenal Tdentity,
Revamping lndian Socigly in the Era of Modgrnization, fssues and Dilenmas. Fatiala: Twenty First
Century Publications, 2016,
Wag, 8., fndfia and Northeant India: Minds, Politics and the Process of Infegration 1 946-F 050 New
Belhi: Hegeaoy Publications, 1549,
Maguma, M., Uber die Lage der Integralkurven gewdhnlicher Differentialgleichungen, Proc. Pins,
Math, Soc. Jon. 24, 1942, 551,
mathan, O, Lawi, (3., MNthiiri, 1., Modeiling the dynamics of radicalization with
sovernment intervention, Mewrad Paralle! Soient. Compat, 26, 2018, 211-224.
Mgari, C. G., Modelling Kenya Domestic Radicalization like 8 Dizease Incorporating
Rehabilitation Centers. Academic Journal of Applied Mathemarical Sciences 2,4, 2016, 27-39,
Nikolopoulos, C. V., Tzanetis, D, E., A model for housing allocation of a homeless population due to
a niatural disaster, Nowlinear Aned. RWA 4, 2003, 561-579,
Pere, M., Donnay, K., Helhing, 13, Understanding recurrent crime as system-immanent
callectivie behavior, PlaS Cne B (10), 2013, eTeda3.
Richardson, L. F., Mathematical paychology of war, Natwree 136, 3452, 1935, 1023,
Richardson, L. F. Arms amd Tasecueity: Moshematioo! Sty of the Canses wnd Oviging of War,
Boxwood Press, 1560,
Romero, 13, Kribs-£alets, C,, Mubayi, A., Orbe, C., An epidemiclogical approach
to the spread of political third parties, Discrete Cont. Dyn, Syar. Ser. B (DCDS-B) 15, 3, 2011, 707-
T3k,
Saikig, 1., 36 years of Mizoram Accond: A historic Move that ended two decades of Mizo
Insurgency, Firsgpass 01 July: 2022,
Sandler, T., The anulytical study of terrorism: Taking stock. Jonwrnal af Pegce Reseqreh 51, 2, 2014, 257-
271,
Suntoprete, M., Xu, F., Global stability in a mothematical model of derudicalizstion. Phys. 4
Srar, Mech Appd, 509, 20018, 151-161,
Suntoprete, M., Countering violent extremism: A muthematical model, dppiied Mathenarics
and Computation 358, 2019, 314-329,
Short, M. B, McCally, 5. G, I'Orsogna, M. B, Modelling radicalization: how small
siolent ringe sects develop inte large indoctrinated secieties. & Sec, Oper Sce. 4, 8, 2017, 170678,
Singh, B., Notable decline in insurgency related incidents in Northeost India, The Economic
Times, Retrieved: March 23, 2022,
Singh. .. Problems of Insurgency: A Holistic Understanding from Manipur, India, Jourmal of
Newvheast India Studies 5, 1, 2015, 30 - 34,

462



453 Debadottn Adak, Shekhar Das ond Bindu Ranjan Chakma

Smgh, 5. B, What are the laws in place (o tackle illegal non-citizens, The §fimdu 24
Movemher, 2009,
Sookrwinan, I, Bhatt, B, Cotiissiong, D., Catching a gang-a mathematical model
of the spread of gangs in a populstion treated as an infectious discase, fnt, S Pure Appd. Mash, 83, 1,
2013, 2543,
Sooknanan, I, Bhatw, B, Comissiong, D, A modified predator—prey mode| for the
imteraction of police and ganga. & Soc. Olpan Sci 3,9, 2006, THOES,
Sooknanan, )., Comissiong, )., A mathematical model for the reatment of delinguent
behaviowr, Socio-Econ. Mlana, Sci. 63, 2018, o0-649.
Sundari, M. 5., Sasikala, K., History of Insurgency in Manipur. The Internations! Sl
uf Amatvtical and Experimental Modal Anatysis 11, 12, 2020, 2888-2891.
Udaoh, 1., Cladejo, M. O, Optimal Human Besources Allocation in Counter Terrorism
Operation, A Mathemarical Deterministic Model, frtermariona! Journal of ddvances v Scientific
Research and Engimeering 5, 1, 2019, 98-115.
Udwadia, F., Leitmann, (., Lambertini, .., A Dynamical Madel of Terorism, Diserere
Dhynamtics in Mature and Socleny, Vol 2006: hitpss! dodorg 10,1 153 T0NS 2653, 2006,

" Depariment of Mathematics, Maharggo Sir Stram Umiverxity, {Received, May 16, NI25)

Agrariola, Yripura
FEmni Fd: deviadalk mathV3 32 5 etgmail. comr

Email T shelbor 200 Sagtitgmail omm
"Despartment of Polditical Science, Moehargia Sir Biram Liniversity,

Aporieda, Trpera
Emgul B b chok il rediffmard_com



Joumnal of Indian Acad. Math ISSN: 0970-5120
Vol. 47, No. 2 (2025) pp. 464-469

Pramod Shinde. | STUDY OF FRAME STEWART
Aditi . Phadke’, | NUMBERS OF THE MULTI-PEG TOWER
Samina Baxwala’ | OF HANOI PROBLEM

AbsTrACT. T this pepeer we i stodied the set ol bost kaowen sslukbons
{ealled TFrame Stewart Numbors) obtaimesd so far, for the multipeg, Tower of
Hanoi problem for r rings, © > 1 and p pegs, p = &, These solutions obtatned
nsing the Frame Stewnrt algorithm are denoted by Tr, p). Some interesting
obeervitions of the set T = [P{r.pllr = Lp = 3] have beom made. In this
sty wie hinve proved Ul Ui set of all oid sstural nosiliors mad e s T
are erqual, For w figed @ we definn Ty = AT (mp) | v 21} We have provesd
that .-rP g 'T,H.]_. A eoinbanatorial Ilh-:utH.y lor i ipm'i{'h'. walie of © l!l.-.in-htlhu{
on p hos been proved, Three comjectures aboot the sct Ty hwee bron made.
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Key words: Multi-peg Tower of Hunol Problem: Frame Stewart, Algorithon Frame Stew-
nrt, Numbwrs,

1. INTRODUCTION

The Tower of Hunol problem wis proposed over s lindreed years sgo by Loeas [1, in
which, a player i given 3 pegs and A certabn mmber v of vings of distined sizes. The
player is required to teansfer the rings from one peg to another. Initially all vings
are stacked (composing a tower) on the first peg (the soures) ordered monotomically
by stee, with the smadlest b the top and the largest at the bottom. The goal is
to transter them to the thivd peg (the destination), while ebservizg the following
rutles;

(1) at each step only one ring can he moved;

{‘2} 1.!,w. I||u'md ﬂ.ug 1St L b Hpmost. oney

(3} ab auy mowent, o ring canonot reside on o smaller ooe.
The well-known recurzive algorithm that aceotplishes this task requires 2" — 1
steps, and is the unique optimal algorithm for the Tower of Hanot problem [,
Omne natural generalizntion is the nultipeg case with (p = 4) pegs, P Py B
This generalization was first proposed by Luncas in 1889, Later, it was mevived
by Stewart (2], 10 has heen shown Wist seven differant, approsches, ineluding those
Ly Frame and Stewart, to tha popeg tower of Hanal problem s all equivadent Le
achieve the same mumber of moves, though their optimality has not vet been proved
M. Thus the optimality of the solotion stands ne an Interesting and challenging
open problem (4], Lot T(r, p) deoote the minimom owmber of (legal ) moves requived
Lo =olve e Tower of Hanol problem with » = 1 dogs and p =3 pegs nsing the
Frame Stewart algorithim,. The minimal soluticn obtained using FPrame Stewart
Alporithm for different values of + and p are called as Frame Stewart nombers in
literatare: [58].

Dater May 28, 2025,
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Section 2 deseribes the Frame Stewart alporithm. In section 3, Table 1, we have
obtained the values of T(r.p) for 3,4, ...,10 pegs for 1 < ¢ < 30 . Observing table
L. we have demoted the size of & block for p = 3 pegs by By(k) for k& = 0, with the
comdition that the comsecutive entries of T{r.p) in the &' block for pepegs differ
by 2%, Table 2 gives the sizes of different blocks for different valios of v and p. In
Table 3, we have calealaved the Frame Stewart numbors when the hlock describid
above is of full shee,

Tu sechion 4, some inberesting observations of the set T = {T{r. pl|lr = L p = 3}
bave Leen made.  In this study we have proved that the set of all odd natoral
nimpbers and the set 7' are équal. For a fixed p, we define T, = {T(r, p}|r = 1}.
We have proved that T, Z 1oy A combinatorial identity [or specific value of »
depending on p has been proved. Three conjectures about the set T, have been
nadde,

2 THE FRAME STEWARD ALGORITHM
The Frame Stewart alporithm is deseribed as follows:
Forp = 4. the transfer of riogs rom Py oto B, may be carvied ol usiog the following
Blis:

(1} Move optimally the topmost ¢ [smallest) rings from Py, tosome intermediate
pee, using all the pegs, o 778 p) oumber of moves,

{2} Transfor the remaining (r —1) lorgest rings from &y to F,, using the {(p—1)
pegs available (the intermediate peg cannot be used by the condition of the
problem) in an optimal way in (v — &,p — 1) munber of moves.

{3} Shift optireally the ¢ dugs from the intermediate peg to Py, using all the g
pegs, again in 1'(t, p) mumber of moves,

Themw, ¢ is to be determined so as to minimize the total mmber of minimum moves
in the above three steps,

For the d-peg Tower of Hanoi problem, Wood [6] has shown that the policy leading
o bhe pecarrenee relation is incdesd optinmm, The reenrsive solotion deseribing the
above steps is given by the following cquation:

il . — T —‘,-‘ | o 10 4 S b ' =4,
vy ) ﬂf:_tslHll_”{‘zf[-‘..p] Mr—=t,p=1hr=1lp=4
T.p)=0,T(1,p) =1, ¥p =3
Forr=1,p 24,
II'| = [
(r,p) S
T, =041p=1¥p=d

The values of Ty, p) for ¢ = 1 rings and p > 34 pegs obtaimed using the above
recnrsive algoritlon are ealled Frame Stewart. mumbera

{20, p) + Tlr — t.p— 1)}

3, TABLES USING FRAME STEWART ALCORITHM

The values tabalated below have been obtaine] nsing the Prame Stewart Algo-
rithm. Some of the values for 1'(r, p) have been obtained in [3]. In this section,
nsing the Prame Stewart Algorithm we find the mumber of moves peqguired to move
rorings for 3,4, ., 10 pegs where 1 <0 < 3.
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TABLE 1 : Tir, p)

T

Let us denote the size of a block for p = 3 pegs by Bplk) for & = 0, with the
comdition that the conseentive entries of T{r,p) in the & block for gpegs differ
by 2%, Note that B,(0) = 1, ¥p > 3. For a fixed p these are precisely the cells with

the same eolonr ns shown in TABLE 1.
Using Frame Stewart algovithm, we get

B, (k) = (’”i_a),
1

Mote that By(k) is the coefficient of #* in the expansion of m
This gives the [ollowing generating function for 8,(k).
1 o ] i
{1 ,r]F_3 W) + Bo(l)e + By (2)2? + .+ Byl - Net~t 4 B (LE +
We enumerate the values of the blocks B, (k) in the table given below for 3 < p < 10
aud 0 < k<12,

TABLE 2: B, (k)

phk|D 2 5 1 o £ T ] ] ) 11 12

] 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 2 & 4 il fi T H 8 11l 11 12 1

b I 3 0 10 L5 21 i 3 45 if Fith TR 4l

G 1 4 10 20 35 5Hik Bl 12 165 2 285 Ad 455

T (1 5 15 95 70 126 210 80 495 71h 1001 1466 1520

b 1 6 21 A6 126 252 462 TUd Q28T BNZ  H003 4368 HiEH

B I 7 28 84 210 462 924 1TI4 3003 5005 BD0S 12376 18564

1a I B 36 120 330 TH2 1716 3432 04356 11440 19448 31824 GO38R

Using a standard combinatorial identity we get,
Bysa{l) = By(0) + Byl1) + Byp(2) + ... + By{l).

This can also be observed in the above table,
TABLE 2 gives the sizes of Blocks for different values of » and p. The table below

shows the Frame Stewart mombers for varions block-ends or when the block is of
full size. The Frame Stewsart oumber for the case when » = 6435 and p = 0 is

T Bus1(8),9) = T(6485,9) = LO66195,
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TABLE 3: T(Bpe1 (k) p)

py k[0 1 2 3 ] ] fi T N

3 (1 8 T 18 41 tiid 127 255 51l

[ 1 &5 17 49 129 321 Thi 1793 1097
5 |1 7 a1 111 351 1023 2815 7423 18043
6 |1 9 4B 200 76D 2561 7137 23297  Goadv
T |1 11 71 351 1471 5h0d 18043 61183 IR7903
8 1 13 97 5dn 2561 10625 40193 141660 471041
g |1 1h 127 7499 4150 1A043 78079 2497727 1066495
10 [T 17 T61 T30 6401 31745 141560 580065 222823

The results and notation of this section can be found in [100]
1. OBSERVATIONS ABOUT THE FRAME STEWART NIIMBERS

Observing TARLE 1, TABLE 2 and TABLE 3, we arrive al few observations related
b fhe Fraome Stewart, nombers of the molid-peg Tower of Hanod problem.

Proposition 4.1, a) T(r 4 1, 8] — T p) is some non-negative integral power of
£
b) For v satisfying
p+i—3 . p+li-2
P =< ()
-1 -1
T(r,p) =3 By(k)2* + {1" —Eﬂp{k}} ot
b=ty k={)

For a proof of the above theorem refor to [7),

Lemama 4.2, (v, p) fo ahooys ol for v 2 1 and p = 3.

_ 9
FProof. For r satisfving (?J :-_!] :1) <r< (‘;H-: -),

i—1 -1
Firp) =3 Bulk)2* 4 {3 Bytk) 3 2.

=i} k=il
Sinee B, (0) = 1, the licst terim on the right is 1 oand the renmining feoms aee al]
multiples of 2. Thus the right hand side is odd. =

Theorem 4.3, The sel T = {Tir,p)|r = 1,p = 3} and the set of all odd positive
itegers ere eqiaal

Proaf. Using Lemima 4.2, 0 88 claar thal 77 05 Che subset of odd positive nlegers.
Comarsely, lot 7t be an odd posithve integer. Clearty n= 1 € T, Let n > 1 where
n=2q + 1 for some g > 1. Tuke p =g + 2, Thus p > 3. Consider T{ B, (1).p) =
TB0)+8,(1)2,p) = 1+ (7172 = 142(p—2) = -3 = 2Aq+2)-3 =+l =n.
Therefore for all cdd n e M, n e T

Thus the set T and the set of all odd poesitive integers are equal, [

For a fixed p, lot T, = {T{r,p}|r = 1}, the set of Frame Stewart numbers of the
milti-pog Tower of Hanol problem for p-pegs,

Theorem 4.4. T, & T,y for anyp = 3.
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Proaf, Forany p > 3, take n = 14+ 28,(1} + 4, Cleady n € T, Note that n —2 =
1 +28,4,(1) € T,ey and is the last number in the block of size 1. Therefore
n—24+3=n¢ T O

From the TABLES 1, 3 amd using Mathematioa we have computed values of Frame
Stewart numbers for the end of the block for 3 < p < 150 and observed that:

(1) T'(Busaip—2),p+2) =T{Bysi(p— 1),p)-

(2) T(Byyal(2p—4).p+2) = T(Byy1(2p -2}, p).
We prove the first observation using the identity By a(p—2) = Boya(0)+ B, a(1)+
Byea(2) 4.+ Bypalp—2) = Ef;; By pglt) Bollowed by a combinatorial argument.

Theorem 4.5. T(By alp—2),p +2)=T(Bprilp—1}.php = 4
Proaf. We begin with the LHS,
T'(Bpialp—2).p+2)
=R N+ B )+ 2B () 4. ..+ 27 B (-9

_anfp—1 i [P afp+1 | gl p—3

..2( 8 )+2 (l)+2“( 2 )+ L (p—i)'
Now RHS = T(By(p — 1), 9)

— 2YB,(0) + 2B, (1) + 2B, () +... 4+ 2" By (p—1)

_oaifp—3 (fP—2\  afp—1 L aperf2p—4
-2(5°)+2 (77 #2002 ) wrr (00)

W thus need Lo prove

(f)_'_zl(p;l)_'_____'_zp. 3(3;-_—;) _ (p;ﬂ) _'_El(p;l) ++F(9§_‘f)

By using Pascal's identity and simnplitying, the problem reduces to proviog

S R T o)-

gpa( 2~ 4Y

p—1
Ttight hand side is the mumber of sequences of length 2p — 4 with eéxactly p— 1 a's
ancd either b or e in the ronsiniog p — 3 places:
We shall now charscterize all thess sequences with the ccearrence of the rightmost
a or ¢ and followed by all b=,
For the first sequence, place @ in the first p— 1 places and & in all the remaining
P — i places. This can be done n 1 way,
The gecond cype of sequence can be formed by placing a in the fiest p— | places,
¢ in the g place and b in the remaining p — 4 places. Uhis can be done in {"EI}
WHYH,
Next we fix a o the p® posttion followed by nll b's and in one position out of the
first p— | places we place either b or &, This can be done in El:;"i ':] WHYE,
Next we count the mumber of sequences with rightmast ¢ in the (p+ 1" position
followed by all e Awwong the fiest g positions, we chioose o Gl exectly one place
with either b or ¢ and the remaining with a’s. This can be done in 2 (7) ways. We
place & in the remaining p— 5 places, We then count the momber of sequences with
the rightmost a in the (p+ 11" position. Out of the first p places, we have to place
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a's i p— 2 places and two places need to be filled with either & or oo This can be
done in 22 {{;:I wayvs. We continue this process.

MNow the last place is Alled with either @ or e If it is Alled with ¢ then out the st
2p— 5 places we need to Gl (p— 1) places with o's and remaining p— 4 places with
b or ¢, This can be done in 204 [f’_’:} ways. If the last place i= filled with a then
among the frat 2p — 5 places we have to place (p— 2) a's and p — 3 places have to
b filled with either b or ¢. This can be done in 27 -* {:';f__:} WAy

Thus all the strings are completsly characterized by the oecurrence of the rightmost
a or ¢ which are followed by b at all remaining places, if any, This proves the
identity. 0

Ohbservation 2:
T(Bpya(2p—4),p+ 2) = T(By41(2p — 2), p).

Observing the values of Tir.p) in TABLES 1, 2 and 3: we propose the following
thres conjectures,

Conjecture 4.6. T, C T4 forany p = 3.
Conjecture 4.7. T(B,(2).p— 1) +4 & LT, for any p > 4.

Conjecture 4.8. There does nol ecist ann € N such that UL_g T, 15 equal to the
set of all odd secburad sivivbers,

The proof of the first conjecture will lead to many combinatorial identities related
Lo bl Frame Stewart munobers of the wnalti-peg Tower of Hanai peoldem,
Acknowlegement: We thank Prof. 5. AL Katre, Bhaskaracharva Pratishthang,
Pune for meaningiul dizenssions during this research work,
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Abstract. The present article investigates prev-predator interactions by incorpo-
cating not only the classical predation dyoandes but also mfighting among preys
and retaliation against predators framed within the context of herd behaviour in
prey populations. The study presents a thorough analysis that includes both stabil-
ity and bifureation assessments supported by detailed numerical simalations, The
excistence of transeritical and Hopl bifurcations is established and analyeed.
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1. INTRODUCTION

The study of popualtion dynamics, powadays, hos become o prime topic in the
arenn of applied mathematics. The seed of the topic was planted by Lotka [9] and
Volterra [14] by improving the theory of Malthus [12]. In the recent decndes the
theory has been [urther developed by several nuthors in several perspectives. For
instance, we refer the works in [3, 4. 8, 13, 15] among many others, Very recently, in
[10], the present authors with Mondal have studied prey-predator model in the light
of Smith growth dynamics and established several significant results of population
biology,

The mumber of preys attacked by a predator in certain time is known s funetional
response. C. 5. Holling [5] introduced three kind of functional responses which have
become a lucrative field of nop-linear analysis in view of their ecological siznificance,

A fundamental feature of the behaviour of the forest dwelling animals such as
buffaloes, sheep, deer is that they roam in groups in forests. Such hehaviours are
also exhibited by birds and Bshes, When the animals move in herd the attack Ty
predators are possible only from a boundary of the herd. o Savana remon movement
of prevs and predators in groups are well known and established fact. Considering
upon this phenomenon Ajraldi et al [1] proposed the herd behaviour model in
population system. In order to develop the analytical aspects of such situations,
they introduced square root functional response. But a laruna of the square root
model is that it needs eritical analysis near the origin since a square root function
is not differentiabile at the ongin and due to this fact 10 prevents the linearization
of the model, Some minute aspects of this model was critically analyzed by DBraza
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[2] considering square root and Holling type 11 functional responses in a common
framework. In spite of this lmitation sguare root models are being considered by
several authors 4] due to its realistic nature. Square root models with ecombination
of other lunetional cesponses are prime topics of study in the feld of wathematical
ecology. Retaliation towards predators by prevs is a common fact in Savana region
wild lives. In [11], the present authors studied retaliation behaviours but they did
not consider the infighting of prevs.

The intra or infighting among populations is a common phenomenon. In [6], Koo
studied the dynamics of a predator-prey system where predators fight for captured
prey besides searching and handling of preys, In real situation, it is seen that not
only the predators exhibit infighting beliaviours, Sometimes the preyvs also invalve
with infighting due to their intrinsic behaviour. For example, wild buffaloes show
infighting behaviour. In addition wild buffaloes also defend in groups if they are
attacked by wild animals like tiger. They take revenge or retaliation. In this paper
we wonld like to analyze such situations i.e., we consider prey-predator model where
prevs move in groups, show infighting and also take revenge or retaliation towards
to the predators.

The present article is organized as follows: After the introduction, the model is
formulated in Section 2. Section 3 and Section 4 contain the analysis of stability
and bifureation respectively. The final ssction provides numerical sirnulations with
graphical represontations,

2. DERIVATION OF PREDATOR-PREY MODEL WITH HERD AND INFICHTING
BEHAVIOUR IN PREYS AND RETALIATION TOWARDS PREDATORS

It is known that the predator-prey model with logistic growth in the prey and
Holling type II functional response 5| is given by

dx X XY
L ek L

_ 2.1
di ¥ I+ iax (B:d)
ay XY
B R 2.
& 2T hex 23]

Here X(t) and ¥(t) denote the prey population and predator population respec-
tively. r 18 the growth rate of the prey population and N is its carrying capacity.
In absence of prey population the death rate of the predator is & The search coelli-
cient of ¥ for X is a. ¢ being biomass conversion or consumption rate. The average
handling time of ¥ for X is {;,. Suppose T' indicate the total time that each ¥ takes
to collect food from X, T, Is the time taken by each ¥ looking for X and the time
ts that each ¥ takes handling X. Modifying the above model, Braza [2], developed
prev-predator models as follows that have the interaction term as the square root
of the prey population.

dX X XY
SR YO R . (2.3)
et N 1+ X
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dY y 4 ey XY (2,4)
— = —3 e —zz ;
et 1= t;,fxu"T

Now, here we develop n model where the preys are involved with inbra species
fighting due to their intrinsic behaviour. Assume (7 is the rate of death of prevs due
to the infighting and the death rate for the predator s v due to retaliation of the
preys towards the predators, In that case the above model reduces to

d X X oy XY

—=rX{l-=) - ——— — 8X7, 2.5

it e 4“'!';' L +tpay’X a 25)
4y _ —ayry,  BOVERE vAY ~Y, (2.6)
dt 1+t X

Here X(0) > 0 and ¥{0) = 0.

3. STABILITY ANALYSIS OF PREDATOR-PREY MODEL WITH HERD AND
INFIGHTING BEHAVIOUR IN PHEYS AND RETALIATION TOWARDS PREDATORS

3.1. Positivity and boundedness of the model: Let us investigate the posi-
tivity and boundedness of the system of equations (2.5) and (2.G). The right hand
sides of (2.5) and (2.3) are contimons functions of the dependent variahles X and
Y. Integrating both sides of the equations of the svstem. we have

X{t) = X(0)exp [f ( (1 = %) % -jx) :|
, .}h
=Y(0)exp [f ( 1 va‘ X T) dx]

In view of the above expressions of X {t) and Y'(f) it can be inferred that X () and
Y'(t) remain non-negative for the infinite time, if they starts from an interior point
of

R = {{X{1),Y (1)) e B%: X(1) > 0,¥(t) > 0}.
Thus K is positively invariant for the system considered.

Regarding the uniform boundedness, let us prove the folllowing

Theorem 3.1. The solutions of the system of equations (2.5) and (2.6) consist-
ing the model with non-negalive wnitial conditions (X(0), Y (01) staritng from the
interior of B2 are uniformly bounded,

Proof. Let
Wit) = X(t) + ]f {t]. (3.1)
Henee, slong the solution trajectories of the mudc*l
AW’ . X i
]1 =rX '[i 'ﬁ.f} {H f - :\H" {32}

472
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By virtue of (3.1} and [3.2)
aw % b
Choosing # such that 0 < # < s, we have fmm above
r+ow < (r+0X—£X° i

I I i e 1 ol N4y

= JJ? Flr’ 2 ( [Ir ol "}:) )

< Ml
Thus from above dW

- FOW <P, (3.3)

where P = YU view of differential inequality from (3.3), one obtains
0 W) < (1 —e™)+ W(0)e™

Ast — oo, weinfer 0 < W(t) < %+f for 0 < &= W(0). Henee, in view of positivity
of X(t) and ¥{t), we conclude that all solutions initiating in RS are restricted
in the region D = {(X(1).Y(#)) € R*: X(t)+ %]“'{f] = %—FE.E = !]} . Thus the
:aulu:cémss of the syatem are unilormly bounded, Henee Lhe model 18 biologically well
posed.

3.2. Equlibrinm points and their stability: Using, MAPLE we find the equi-

librium points of the above maodel are

() X=0Y =0
(i) X = gl ¥ = 0.
(i} X = [a47)0 V= it sl refl o (w)
JA =St L T @enb e e T N et
The Jacobian of the system is
ri— i a¥ - ol ¥y, ;Y- o rlﬂz
N J\r"_{hthnw X7 Albtaay XE S04 Lt tany X ]
o} ol VXY mC‘L
BRIy E1+!hquE 5+ Tex 7

4.3. Loeal stability for case (i). ln this subsection, we discuss the nature of
gtability for X = and ¥ = 0. Sinee 'i’ is indeterminate for X = 0 and the square
ool function i ool diferentiable at X = 0, the stability of this case cannot be
determined by simply evaluating the Jacobian matrix at X =0and ¥ =0, So let
us consider a deleted neighbourhood of (0,0), say {£,0), where ¢ is arbitrarily small
and tends to zero. At that peint the Jacobian matrix is of the form

) g
{l T !
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where ay = r = i,fr‘- — 28 oy = —1—:,5?5:7;. Az = —5+ ¥ _ o~ Thus the

1oy
eigenvalues are r — 2F — 23¢ and —s + t%:‘& — . It is seen that in such a case the
vitlues of v, 2 and v are very crucial to determine the stability, “T'he above disoussion
leads us to state the following:

Theorem 3.2. A defeted neyghbourhood (L) of the tromal equilibriom pomt 1w
tocally stable if v < ‘% + 2de and 5+ = %T.:EE

3.4 Local stability for case (ii). In this subsection, we investigate the nature
of stability for X = 2V = 0. and prove the following:

Nigrpt

Theorem 3.3. The equilibrium point X = 350 ¥ = 0 s locally stable 1 > 1
and § 4+ 5 > i”.—nm;

14 2
LERd

Piroof, The Jacobian matrix for case (i) s of the form
@y iz
ﬂg] Hﬂ .

r e 23Nr
ap =—1{l - N Ny T
Niai+r Ng+r Ng+r

. MNr
N Naer
e T
| "|"T.';,,ﬂ1.l '\f_a":_r

where

ag = [
oY o
ey = —8— ¥+ T-&%%
The eigenvalues are —p(1 — =) — gh — 200 g 5 — 4 E/{f,_*— Both the
cigenvalues will be negative if 1 > i and s 5 > n:{_ 4;&% |

4.5. Local stability for case (iii). [n this subsection, we investigate the nature

agE PR - o = f T - d .
of stability fﬂrx=;m-_{f—;{-{1{!|_—_ﬁf_¢.} Zﬁﬁ(%—?%) and es-
tablish the following:
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Theorem 3.4. The equilibrivwm poind
(s +7)° . e(s+) r—3 r (8+4=)*
= — — and ¥ = - —
a?(e —tyfs + 7)) aflc—tals + )P\ of  Nlc—tals+7))?
is locally asymptotically stable if
o {5+
N o=t

P — ,_i

rafs + ) (4re — alc — (s + 7)) ) +{r—B}N(e—1t {3"'7]}
= ANt e — 1.!.[3""“}:'

Proaf, The Jacobian matrix for case (ii) is of the form

2y M3
Gy 02 |

where
Y rols +)* (4'1".: —afle—ty{s+ ‘,r]}:] +(r—AIN{e—tuls+ 7))
LS ' 2Natrele — tyla + 7)) .
i+
iy — — "

1 fr—2 g+~)*
oy = ('i"' gﬁ_lr [.+|:| ).

2\ a7 Nie—tls+7)F°
g = (],
|
The eigenvalues A of the above Jacobian 18 given by
M= BA+ Ba=1,
where B = ayq +age and By = aypae — qoetay. Assume
pogn Gl (3.4)

N (o= tals + 7))

Then aye = 0, @42 < 0 and oy >0, So the determinant of the Jacobian for this case

is positive. Consequently, Hs = 0. Henee, by Routh Hurwitz eriterion theorem [15],

the selution will be asymptotically stable if ay; + 04 < 0. Now, aq; = 0. Hence, the

solution will be asymptotically stable if a;y < 0., Le.,

ra(s + ) (4re — alc — tuls + 7)) + (r — 8)Nlc — tals + ‘r}}"‘
INaYre(e —tiuls +7))*°

Combining (J3.4) and (3.5), we get the result.

r—gc< (3.3]
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4. BisrUARCATION ANALYSIS:

I the present section, we shall analvee some aspects of local bilurcation analysis
of the model. The nature of solutions depend upon some changes of the associated
parameters, The value of a parameter for which the nature of the solution struc
turally changes is known as eritical value and the changiog phenomenon 15 known
as bifureation. [n the following we exhibit the presence of transcritical and Hopf
bifurcation in the svstem.

In the previous section, we have seen that the point (1), ) is asymptotically stable
if r < 2420 and 5+ > ,—m:}’% Now if we change » such that r > J—.%" + 29
without changing the other parameters, then the point becomes nnstable and axial
equilibrium arises, If 1 > ==, then the axial equilibrium point is stable, Hence
the point [0, €) exchanges its stability with the axial equilibrium. If we change r
again such that 1 < 7=, the axial equilibrium point becomes unstable. Now, we
are in a position to state the following:

Theorem 4.1. The equilibraom pont (0, ¢) undergoes hrough franseritteal bifur-
cation for r = %{—' + 20¢, ond the avtal equilibrinm poind undergoes: transcritical
bifurcation for v satisfying w5 = | with certamn specific conditions.

Now we prove the following result related to opf bifurcation.
Theorem 4.2, Ab the equilibrivm point

(a+7)? Yo e(g+9) (J' i (a4 4)? )
:I‘IIE.! ﬂﬂ

T o e—tals )P allo—tale+ N

Nilce—tle+7)
forr—3 > %‘u'h_l;-_rﬁ:i]}’- the system undergoes Hopf bifurcation with respect to
al st (-i'.rc—nl:r-—n.llﬁ'r}]} )

the parameter 3 for the crificel value 3, = v (.1 = s

Froof. Congider the Jacobian matrix

iy 1
ity g |

of the system for X = (a-d) ¥ = Haty) (""“’ r Lﬁ'}g—,) . For

o=t a1 ao=ti ey A af N [e=filasT)

alaty]? (dre—a(e—talaa)))
1 = N{e—kpl2+7h"

ag; > 0. Again agz = (. In this case the characteristic equation of the Jacobian

matrix is A* = ajgay < 0, Thus the cigenvalues are purely imaginary. Verify-

g the transversality condition, one can conclude that the model nndergoes Hopf

ofe E-‘rﬂ'—rr[r:—hlfu+".‘;|:|} ) ]

1—.\'I'r'—h| (&) :I=1

. I rexd w47 [
1= > Sro—epiooy and fo=r|1

, gy <= 0 and

bifureation st the considered point for J=r (l -
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3 NUMERICAL SIMULATIONS

Theoretical resulis are better understood whenever they are supplemented by
graphical representations as graphs are nice mathematical tools that provide quick
concept of any theory. This is why we represent the stability, phase portrait and
the aspects of bifurcation graphically in the subsequent part of the article,

5.1. Nullelines and solution curves. Let us now exhibit the graphs for tne null-
clines and solution curves for different numerical values of the parameters, Figores 1
and 2 show the existence of locally stable interior equilibrium that verifies Theorem
J.4. Figure 3 ensures the stability of the point (0,¢€) in the tune of Theorem 3.2
Figure 4 verilies the existence ol axial equilibrium point and its stability associated

with Theoram 3.3,

5
4
.
"2
1
ﬁ_
nﬂ 0.5 1

X—=
Fig. 1:Nullclines and solution eurve
fore=58s=58r=1N=200«a=
2,y =083 =0.15,t) = 1. The Figure
shows the existence of stable interior
equilibrinm.

5

4

i 0.5 1
¥
Fig. 2:Nullelines and solution curve
i e=584=5r=01N=200a=
1.5.v=1,3=01t, = 1. The Figure
shows the existence of stable interior
equilibrinm.
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5 ' 1 5
4 f 4
1‘3 | | T3
> | >,
1 1 1
o= : o
o 0.5 1 0 05 1
X X

Fig. 3:Nullclines and solution curve Fig., 4iNullelines and solution curve
for e=588=050r=1.N=2a= flre=1Ls=05r=1,N=80a=
1.5, 7=1,8=01#, =1, The hgure 1.5y =1,3= 01,4 = 1. The figure
shows existence of stable trivial shows existence of stable axial
equilibrium, equilibrinm

5.2, Phase portrait and time series. In the following, we plot phase portrait
and time series of the model by using MATLAB for different numerical values of
the associated parameters and verify existence of bifurcation. From Figures 7 and
&, it iz seen that for change of s the asymptotically stable interior equilibrium point
becomes unstable or viee versa which verifies the existence of Hopl bifureation al
interior equilibrium point. Since in the assumed condition of Theorem 4.2, 5 and
g are related, so for change of 3 we must have Hopf bifurcation ac the interior
equilibrivm, Thus the mymerical representation agress with T'heorem 4.2,
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|5:|.I'
Hlm
e
1 i i " i L . i
0 B0 1000 50D 2000 @S0 3000 3500 4000 ASD0 5000

i i i i
a 500 000 51 200

2500 Ao00 8500 4000 aS00 5000
fima

Fig. 5: s=32,c=4,r = 01, N = 200, = 0.9, = 1,7 = 0.444, 3 = 0.001,
The figure establishes Hopf bifurcation.

Fig. 6:
§=32c=4r=01N=200a=
0.98, = 1,7 = 0.444, 3 = 0.001. The
figure establishes Hopf bifurcation,

Phasg-prasil U ¥

] o L L - L) . AL b

Fig. T:
§=32,c=4r=01, N=20,a=
0.9, = 1,7 = 0.444, 3 = 0.001 The
tigure establishes Hopf bifurcation.
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Time series lor X and ¥,

0 500 1000 1500 2000 2500 J0OC G500 4000 4500 000

fima

Fig. B: s=2,c=4,r=.01, N =200, = 0.9, = 1.+ = 0444, 3 = 0.001 The
figure establishes existence of limit oyele.

Fig. 9:
s=2c=4r=0LN=200,a=
0.9t = 1.7 = 0.444, 7 = 0.001 The
figure establishes existence of limit
evele,

e - s .
= "] - L] - \l

Fig, 10;
s=2c=4r=0l,N=20a0=
0.9, = 1,7 = 0.444, 7 = 0.001, The
figure establishes existence of limit
evele,
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5.3. Bifurcation diagrams. In this sub-section. using MATLAB, we plot two bi-
furcation diagrams for different numerical values of the parameters exhibited against

each figure,

1 B 2 a5 ] s 4

Fig. 11: Hopl Bifureation diagram lor
e=4,r=001,N=200,00=09,%, = 1,4 =0.444, 3 = 0.001.

i

B
ik

] \‘~
, ’

5] oY o4 kKoe 008 4 212 014 @ATE Q1 k2P
gamma—3
Fig. 12: Hopl Bifurcation diagram for
e=8b5H=1,r=001a=47,5=1,8=0.001.

Conclusion. The stability and local bifurcations are analyzed for prey predator
system with infighting and herd behaviour in prevs and the preys showing retaliation
behaviour towards the predators. Theoretically the existence of Hopl bifurcations
are shown and graphical representations are done for different numeric values of
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the associated parameters from where the aspects of stability and bifureations are
easily understood.

Future scope of study. [t will be an interesting study if one considers Allee elfect
in preya and Hunting cooperation among predators in the perspective of present
model.

Acknowledgement. The authors are thankful to the referses for his/her sugpees.
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Abstract
The primary ohjective of this etdy 15 to develop the fixed poiot conolnsions fie onmtractiong
ol Bannels, Olintlerfen, wnd Kotnan types within a complietle G meleie spaee hnt utiliees two
grneralized mottice, & and 17, Additlonslly, we provide all the sotficlect condisions wnder which &
Ther] pevind excists when cotsicdesing three geosenlived et & H, and 1, for the corcesposidlog
canfracthons 1o the conclision sectlon. To minforee the ndings, wo oelude Dlustrative eoumples
simil promierical calenlatiom, wiiels nln serve ey motemd eerbnin Chesaverrs G i roeemd literatare

Keywords: (-metric space; fixed pofnt theory; genaralizel metrio space; compheste matric spacs,
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1 Introduction

In 1922, Banach [1] estabisled both the conditions for exdstence and nnigueness of fxed poiots for g
clisss ol cerlain Svpes ol mags oomelcie spaee, This cesull wis o remarkadtde contribukbon due G its wide
theapatieal and wimeriesl applications.  The conceptusilization of spaces or, i perticalar generalization
of metric spaces and studyving properties on them has consiscontly been an engrossing area of maths,
Marsower, studving fised pobul thery o suell spaces has alwavs been an interesting area of work for
mathemnaticians due to ite spplications not only in other aress of mathematics bt slso ima few other
ek plinmes,

Hesnlts refated to fived points in G-metric spacss inwalving two ar more generallzed metrics are a
fasrinnting aren of research within the broonder field of fixed point theory and geseralised metric
RIICTHE Tlhi=k» Ly jics il remiilts H::lnn'nll'r aloiic] l,'.“lﬂ‘ail'!ul Hascal] rm':lll. tlrwieming Lok Sl il e Do
gemwralized than traditional metrie speees, and they hove applications i wardious ficlds, incloding
anelyand, opblobaation, and vven difeaentied egiadions.

Mlistodn mol Sis (2] 02006 owe proposed the Enmework of G et space. Later, sovers] geneealised
fixed poiut cosclusons in G-psetre space were obtioed by (40017, 21] Beeently, many sutloes luve
genralized seversl fixed polnt resuls with two or oo generaliped meceies o eomplety Gepaetrie
space, See, 1,12, L8] For velated resilts and extenstons, Uho G-nwetrie generalizes the classical metric
by consideriig the distance betwoo theee polnts af otce rather than te, wlich allows (o e
mmaneed digtance calrmlations and fized-point thearems.

The introduction of two ar moe generalized. metries o the Gimetrde space odonds the G-matris
comcept rther, providing an even beoader framework.  In this coneexr, instrad of & single mwetric
governing the space. mnlbple metrics ave need. Each of these mwetrics conld capture different distanes
preepenties or dopabogion] stractaroes of Ghe space.

Let ns recall some of the preliminary resnlts on the metric space for ditferent opes of contrantions
ponoly Bamoch, Chat terpa and Konnan oo rictions,

Theorem 1.1. (1] Suppose T 12 o welfl map dofined on o compleie metricapoee (X, p) for which ghere
eriatr o comstent k£ |0,1) with

T, To) < kplu,v) duv e X

Thew, e mrasls .H'b.gfl-. _fj':r:JI ;pmni. nj T:
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Theorem 1.2, [15] Suppose T i o sell prappring on complete metrie spaee (X, g for wldch 35 20, 1y
unth
ol T, Te) = kple, Tul+ ple. Te)| Vu,ee X,

Then, T admats o whigue fred poind,

Theorem 1.3, |16 Suppose T be o self mapping on complete snetrie space (A, @) for afich 38 2 [0, %‘J
it
gl T, Tud < kplu, To) + ofo, Tu)l Yo e X,

Then, there erisle a wingle fived. point of T

In the present, work, we have generalized Banach, Chatterjea, and Kannan type comtractiong in
gpuce cguipped with twe generalieod woteics § and H. For complemwentary and related mesalts, s
U714, Hers, we disenas some of the necessary lemmas and definitions in G-metrie space, which are
reauired 1o prove oor results,. However, for complementary and related information, sce [2,20, 21],

Definition 1.1. Suppose X 2 0 and § - X* — [l oc) 25 0 map., Then' § iz colled o genernlized metrio
on XA e sabisfies the followmy condifuons:

(i) e v w)=0 fu=rv=w
find 0 << Griwi, voar], woithow g ow
(i) G, )= Gl vow], with v+ w
frd Gl v w) = Glu, we) = Gl ww) = Glu,wu) = Glwu,v) = Glw o, u)
i il a ) = Gl w4+ G, we, )
fud) Gluw v w) < Glu, £,€) + Gl& v, w) Jor ang poml £€ X
Then, (X, G) to valled a G-metric spare.

Definition 1.2. Suppose {1, } &5 o sepeenee m G-metrae gpaee (X G) and {u, ) comserges ow e A of
Iﬁ}mﬁiu, U b ) =0, £8, W € =0, 3 No € M such that Gl thy, ) < €0 ¥ nom 2= Np,

Definition 1.3. A sequence () in (X, Q) s enllid o §-Oonchy sequetice on X, & for every ¢ = 0
3 Ny & B osuch that Glugy, a. w) < e, Wmien = Noo IF eoery G-Cauhy sequenes v convergent Hhen
[ G) s complete,

Lemma 1.4, Suppose (X, G) i G-metrie space then Glu, ev) < 900w, v, v), 9u, 0 € XL

Proof. We know that by propeities of O-metreie spaoe G, o) < Gl £ B+ GCE , w) for auv £ & X
Mow Gl v) < Olu, v+ Gleoa, o) for any & AL Therefore Gl w,v) < 260w voe), Yu,v e X, O

Lemma 1.5, Consider (X, 4) &8 a Gomelrie space and {ug} 0 seguence in X, then each of the
Sellousing slatemends implies otfers;

fi) {wy} comverges bo u & X with segpeet bo Gomelsic
(i) Gl W ) <& e = 0 ax Lo 2wy, for aome ng € M.
(i) Gl wet) < o %e >0, av = g, for some ag € B,

fond Gl ) < e.¥e = (0, nad = ny, for some ng = B,



RESULTS ON FIXED MYNTS UTILIZING TWOO OR MORE.. 485

2  DMain Results

Theorem 2.1, (Baoach type coubraetion with two generalized metrics) Seppose A 7 0 omd H.G ¢
— [0, 8¢} are fum mops gach thal A s compleds unth pespect b both H phd @ penerlized metrics
Sappose T 2 A" = X w0 g wuch thet Gla, T, Te) < Hluwoe) oe Blu, Te, Te) < Glue v tmplics

) (T, To, T = n{H{u. T, l']}H[u..v. ]

fe) H{Tu,To.Ty) < u{{f{u. u,u]}lﬁ{u. RO R
here g [0e) — [0, ;j sueh that e sup afs) < i Theen 3 a flaed podie? Jor T alieh ds wnsgue,
s—ct
Frowef, Lot gy €, Let us constret fhe ssquence weyy = T, VI EM,

Wow,  Hwy, Togog, Tup—y ) = Hilug g, ) = 005 B, wgg i )

= H{Tup Tt Toies) = H{vigaowe u) < o Gl vienien) J0n v tir) (20

and G T, T Tl = E(H{Hnn w, ﬂr]}ﬂ'ﬁuup W (2.2)
Then from (2.1) and (2.2] we et
Gfu:+:.M+|1m+1}£tr(H{m+j.u.:.m‘l]tr{ﬁfu;.um,ug-l])ﬁtﬂr.m“,u“.l}

< 20 (H iy ) o (Glusteom ) Jlmar g w), by Gemma 1t |
< Gty ), whore v € [0.1) a3 o [0,20) 5 [0, :'q-}

Similarhy, H{tgea g e b2 f 8 gy g g

Thens Irwrlgl[m g ey ) =10 and h-uH[u[. W ey ) =0

Hiory wasrcro Abst {o} i & Gty s wikh pusissct 4o bt G and I Srippose m > 1,

Gl up, e )= G, st} + G0, W, i)
< Qlang, vy teeger )+ Gt gy tiess) + Gltie, thes, o)
< Qlupwyoiny )+ Gl g g goupg) + oo+ Sl g Wiy )

Now, taking  fipn  om boch Sdes, we obtain

o f=smn

fim Gt ) = 0
=t

Therafore {ug } s a G-Cauchy seouemos with respoct to G, Similarty (g} 35 a G-Canchy somgoemce with
respoct to . Sines A i complote with respect to both @ and 8 =0 3 w,v € X such that

fim G, ) = fim Flw, v v) =0,

Now, wer claim that » = v. Huppose that o & o Then we get Glwoee) # 0, Giv,wn) 5 0 and
Huwer) @ 0, 080, 0 a0 From Lemma L4 and Lemma L5, wo ean eonclude that,
b= hmﬂu{m Trup T = Hiwowyu) = I:mHl:u.ﬂr.u;].

b

Fuir u inrg;r;- integer value of [ we h.aw. Gl Toe, Tl = H(aee, i) therefore from the hypothesis of
the Theorem 2,1 we have,

Gt 1) = 90T T T ) = n‘(ﬁrl:ll. Tigy thy :I)H[h.n.r_.ur:l (2.%)
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H{Tu g g )= H{Tw, Ty, T = ﬂ'{gﬂ li.ﬂ;.ﬂr]}ﬂ{ﬂr“r.ﬂe]'- (2.4)
Taking fim on both sides of (2.4) we gt tm (T 0] = 0. This impliss {u] converges to
Ta, Thus Tu = v, Sunilarly, Te = w0 Now, Glu,u,v) = ‘Iﬂﬁfu'.mn.mg.ﬁ =G Tt e lisr ) =
GITnTui, Th) < u{H{u. . by }}Hl:u. g i) = pj!_i:;u(ﬂcu. ul, ur]}H{u. v, v}, then 3 k€ 0, 1) such
that Glu,u, 0] < ki, 0]
Similarly. 3 & €0 %‘.I anch thiat Hinou o) < EaFlesw o) < 2eaGlo, voule [by Lomma 1.4]

Thos, Gl oue) < b fHlw o) < 2 Bluow o) < SebyGlu o), I Glu won) & 0 then kky = 3
This = eontradiction. Therefove, G, w, o) =0, Henee o = » and Tau = .

Fror wndequeness, bt v and v be two fixed polota of T with « # e, then @0, 0] 7 U and H{w,e0) # 0,
S one of the following inequality halds;

Gl vov) < Hiw e, v} or Hi{u, e o) < O, e, v,

Suppose Glu, To. Te) = Gluw, v) < Hiwvw), then by hypothesis of Theoem 21 we o

FTw Toe, T < rr{H[u.v. tl:l} Hiw v o) and H(Tu, To, Trl<a [G{'u. 1, u}]ﬁtu. o) which implies
Gl e v) < rx{ﬂ'{u. v,t"j}n{ﬂ[u. i u:l] [#1] TRETHE

Thns [ H{w, 0,0 o (Gl ) ) = 1. This is a contradiction. So Glu, v 0] =0 and = o
Exsmple 2.2. Let ¥ = [0,1] and we defins tio metrics G and H o X s,

B ) = el = = = ) i v, ) = (s o, Jo — o =)
Lt T+ %23 X e the map define as,

3o
n*m TR

Now, Gl Te, Te) = u—"Tul=|u— T:- = ﬁl atud H w0, 0) =20 — o and Gl eo0) = u—p.
Therafore we have, @0, T, Tu) < Hia, vow) v e X,

i) Now, §(Tu, To, Te)= [Tu—Tel= 501 + o+ el — vl Flv—vl= S5 v0) Yo, v e [0,1).

it} Agaen, H{Tu, Te, Tov) =2Tu - To|< §iu- o< F0uvv) ¥ uv e 0,1

From thege two of we chonse & funetion a2 [l 20) — H ‘%j then bolh of the conditions of Theomem 220
e Fudtified. Henes, T adimits o fived ppint on X', which i wvigque.

Theorem 2.3. (Chatterjea trpe contrection wicth bwo generalized metrics) Suppose X i @ non-emply
set pgnipped wath tien generadized metrics Goond N oand T X — & such thet X is complefe with respect
fer besth H wnd Gond Glu, T, Te) < Hiu,v,0) or Hin, Te, To) < Glu, o, 0} dmplics

A 9iTe, Te, T = ::{H{u. 1-'..!.:]} Gl o, Tud+ Hia, u, T

(i) W (T To, T =< n(ﬂ'l[:u, !.'.'l':l} [, T} + Glau, T

e o [ o) — 1, 30 st that fim s olt) < ‘—; Then 3 s i fleed pesivd for T, awlick t urgue,
[
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Proof. Loty € X, Construrct the soguenee 4 = Tlu), Vi N

Now, Glupep, Ty, Ty) =@l pg, g i) = 05 B0, )

= G{Tuer T Tue) < D(Hfu:u;ﬁr‘ He]) [l e, Tonaes) + Hiwer sy Tug)]
Therefore, G{T w40 T, Ty < u(ﬂ{m“, ngy ru]l}ﬁ'{uhu:. i)
Gluyia, Ty, Ty ) £ ﬂr{ H (i, uh"i]'} (TR TR TR B+ VR T T |

u(H[uH I umu]}

oz et uiga ) = )g1Ti-I+I-'-H|W:' (2.5]

L tr(H(mﬂ.u;.w}'
aud  H(Turey, Tor, Tae) £ e @yt ) ) [Hlun or, Tuges) G, vie, Tur)]
Therefore, H{Tuey, T, Tur) < oo Gy, vo ) ) B, e, )
H(Turgs, Ty, Tue) < oG oms 1) ) H o e ) + Bt )]

a(#{w-r i uuuﬂ}
—n{ﬁ[ur. SRLTA T

A IR TR P B }H[uu.l-m.u:] [245)

Now, Jiri sup alt) < ¢, for all ¢ € [0,00), I follows thist, h-rn L/ S Sy i Then 3 v, rg €

Fadrd L=rrla} = 3

i ul_|1'flu.-_L.ua.un a -Eihmm.'l.]}
0 47 maud gy e © Moauch that < vl =y, nod < eyl s g

L-.-.{m:n..,. ..,...r:-} J-nr[-ﬁ'[uum..u.]}
1t Foallevars tliat,

Gl gLy, mgy) < J';ﬂ(mq.l-ﬂr.'ﬂi} FITTTH B - TS TR T P i'r':iH[#r“. g ]

IE hmﬂ{ug.,.l.uriur] #= A, then ryp = 1, (his & & contralletion,  Theselor, H'rrIGI[u; Lot gy = 0
sm:ul.n.r]y Iimﬂ'{u;.,.l wp, g =1L By pruent'rhng similarly ns in the proof of 2. | wo ean eonelnde Lt

{u}isa f'anrl'\r seqanice relative to hoth O and M in AL Sinece the given X is complate with respect
to hoth G amd i se J wev £ A such thae hm-l;'fnq tig, ) =l Simdlurky hm Hiw . wg, vl = 0, then

.i:.mH[m ) = Hiwov o] = 0 and hmﬂ[u:r ) =14< hmH{u;, ug,u'll Hiw, v, w). Forsome
lu.rgn wanluw of | we liave, @1, T‘ll:!.,Tllf] 5 H{ﬂ. iy, g b From t.hl_ h].rpnr.lu:ﬂm of Theoree 2.3 we obtain

GiTw T, Tiw) = u{mu. i u.j}[mwk e Toe) + H o, u, T}, (2.7

H{Tw, o, Tor) < o @lom, g, ) ) (T o0, w0 + G(T ) (2.8)
Taking Hmlk ! — o in (28] we et

ﬂr_l;H[‘?‘u.‘Fm.Tu:] = Ffiﬂ;ﬂ(g{ﬂr s I }}‘J_ilr#r: [H 0 g, g ) + G0 g, wy )l
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1£ :.h'mﬂ [To, Ty, Tuh ol then r!l'm ﬁupu{ﬂ{mu‘. lﬂg]} > 1. Therefore, T = 1
L o b
Annlogously, we onn prove thnt To = w

Taking it § —+ 20 o [2.7) wo oblain,
Jiam G, Ty, Tug) < Jim u[:n{u,u,-, u;}]‘?im G, g, Tue) + Hiu,u, T
== G(Tu.uu) < Jima (H[u,u;. iy *.:l Gtw, wn) + Hie ).
Bimrn Jir sup o) < * ther 3 by |, ﬁl such that G{v,w i) < k|Gl ww) + H{vouou)).

I—iad

Therefore. from Lemma 1.1, Olo, u,n) < 1 kjh Hiw ) = 2] ktk Hiar ).
= - i)

Similarly 3 kg = |U. i} snch thit
"“ Gt )

Hw o) £ 5 2 g-;n.m} = Hivv.u) €25

which lmplies G, u, 1) < T‘tt-j-*_"'ig*ﬂ ey ), 16 Gle, won) # 0, then we i -i,-ﬂ-r-‘ﬁi:- = 1, which
contradicts onr nssumplion. I‘I.JIJIIIZ*'.'I Glvyun) =0 nnd vw=v, S0 T ndmits s fxed pUIII.I.

For uoiegueonesg, [t i s o be two fxel points of the moap T owith ¢ @ e Then we have T =

w, Ty = v ood Gluue] # 080w vv] # 06 Hwew) # 08wy # 0 I follows that oithor

E{u tyv) = Gfn, T, Ty < H{uv, v} or Hio.v,v) = H{w, Te, Te) < Glu, v.e). Then o (205) md
DA we et

n{H (28,1, ﬂ]} . i [HE TSN 'r.lj}
Glumn) € —2— 2 I 0] and  Hw e o)< il w
1 —n(H{u.‘t'.L‘]) 1 —u{gw.:-.u]}
Now applyiog the lemm L4 we got,
n(H{uTﬂ, 1]:] n{ﬂﬁu, u,!l:l}

TR e u(mm m.},} e u{g{u.v. 4:})

4G e, e v

i 1H|:IT'|. u} u.[lﬂlud. n].}
-u(.ﬁ'[u rufl 1 u{{]-:ul.-rﬁ

I v, ) £ 0, then ) = ’; whicli ia s conteadiction, Henee dlae0)=10

and u =,
B

Example 2.4. Let A {U.%. 1), define b melrice G end H oo,

i, Ff u=t=1
matli, o) elee

Olu, v, i) = {

il
Hi{w v ) = mene] [ — ), jo— w|, e —ul b

Let Tiu) = £ be oo trpoon & Sinee & w5 0 finile set thorefore; it 48 completn ueth respoet to both ©
and H. Letwn b fuo erfbifrary elemends of X, Therefore,

(1) ifu=00=1 then
G T T(0)) = 5 < W e,0) = § or B (w700, T00)) = & € Glusv,v) = b implies
&[T T (o), Tw) = 5 < o Hlwvv) ) [§ + 5] end
H {00, T TieY) = 4 < a0t o)) + 4
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() i u=04=1 Hén
6 (u, Tk Tivt) = 4 < Bl vew) = 1or B {w T( T(0)) = § < Gluvv) = 1 implies
6Tt T T = § <afHiwvie))[} + ) and
H (Tt (o), T(e)) « § < (Gl vin) 1§+ 4.

fifi) ifu=L 0 =10 hen
G Tloh T()) = 4 < o) = 3 or B T0)T(0)) = § < Gluv,v) = & dmplisa
(T T) T(0) = &5 < a( Wi v.v)) 1 + 3] and
# (T T T = & < alGtu v )1+,

(i) ifu=Lte=1 then
ﬁ(u, Tiv). Tt'l.']) =4 < H{uw,mu)l=4 ar H{u,'r[lrlﬂf[fﬁ]) = f < Glww) =1 inplies
o(Ttu) Tl Tw) =} < e Hlu vl (L + §] wnd
1 (T{), Tt Tiw}) = d < (@t vew)) 15 = 4l

() §f =13 =0 then
6w Tioh Tie)) = 1< H{uyeon) = L or # {w Tlo), The)) = 1< Glu,v.v) = 1 imphics
G(T{u}.T(f;].TEi' ) =i -:}[:H{u.t.l. »])[g+ 1] amd
H (T, Teu) Tie) ) = & < a0 von) J1E = 1,

fii) ifu=10=4% then
g(u, -r.:*.-},-r:;-]) =1 H{uyv,v) =1 fubich is absicrnd cose) but we hive the another condiion
n(u.'r:n}.ﬂ-r}) # < Glu,v,u) ~ 1 which implies
G(Tiu), T). T(w)) = & < o Hiwvoo) [+ ] and
H(T(:-J.THJ?,T(:J}} = &< af0inv))iE 1]

Now if e ehonse funetion o @ [0,06) = [4, }] then all e conditions of Theoreni 20 are satisfind
Henes, we can corclode thel T admils o wnegne feeed gt on X,

Theorem 2.5. [ Kanuan tvpe contraction with two goecralized metrics] Sopgose X i o noncemply
set egrapped with fwo generodized metrics G oand B oeod T 1 X = X mupprmg swel that A i complete
refabive to doth & and B oond Qo To, Tl < Hlwoew) or B, Te, To) < e, o,v) amplies

{t) ST To,Tv) < &{HI{U, v.u]}[ﬁ[u;u,‘ru‘.l + 8 (wyv, )|
() H{Tu, To,Tv) < ol Gl v, v) ) [ (w0, Tu) + G, v, To]l,
nhere s [0 o) = [ 4] aeeh Hhat Hmﬂm alt] < 3. Then o o fived point of T, adich % wnigue,
Mrovef. Loty £ A Let us cobstmeet. the sequenes wpy = Tlw) Wi e M Now,
Glenpr, T, Tay ) =0 = Hieeequp, )
= G T Toae) < e a0 ) (900 gm0 o 1) = G, e o)
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el H(Tupys. T, ) < 0 (Glueromr, ) ) Bl ey, Toeed) = Gl wg, Tug))
then we gt

Gl Twgr. Thir, Tun) < @ [H{m.,u,,w}) 16 i s Ttina )+ B g v T,

o (H{u,;_1 T u;})

Themefore,  Olgpg Ui, e ) <
- ﬂ'(H[hHl Vhlg )

}Hful.m-ﬂrﬂh

& (EEUHLJH- w}J

1= a( Gl ww)

a| H gy gyl --1 Bl moang)
Put afl) = and ) = .

l—rj{”fuuq.lu el L—D(g[h|.|.:|.ir.u|]}

H:“f-k]lﬂrt]ﬂ ”H-l} q_: )gt“h i, uH-l}r

Then we have,  @0wea, Wop 20 ) < [0V H (g, i meg g )= el — 108, g0 )

It it_t"r.«: G e, Wity ) 7 0 theu ‘!imul:!]b[I — 1} = 1, which loads to w contredietion.

= —* D0
Therefore, ]J'iﬂgg{'rq gy, vy ) = (0 Similarky we can prove tha [HmH{'rJ.H. cag g =0,

oy i

By procesding similarly as in the proof of 210, we ean eonclude that {w} s & Canchy sequense
relative o both G aod B in A, By cowplélones of X rolative o @ ood F 3 e,v € A sich Chsd
Iim E{u;. iy ) = k= Iimﬂ{m.u:.ﬂj.
Therofore. hruH[u:;,rq uh = Hii v o) = und hmg{u;,w n)=_f"< !t:m H[u; g, 1) = Hiw, )
Now, qug[lrr.u ul=0< Hiu,en)= IamH"m l.i.!.Tll. Fur soue Lurgy l-'n.'lu: al v L,

Gin, TH‘ Tup) < Hiw up, ), From ||!,r[:|nrimﬁ of Thearem 25 wa get,

Gl Te,Tu) = o (Hfu. iy, 1y l:] [0, v, Taed + H T w, Toig, Towey 11, (2.8

H{Tuw T T = n(ﬁ[u. m.u:]}lﬁ'{u, thy Tt + G T, Ty, T 1. [2.1m

Thking Hmbt as § — 50 on both shdes b (00 we bave, ST, u) < ‘Eima(H{m, u,;.u})y‘[u, au, Tul,
s

IE ST, u) 5= 0, tham rliwm(ﬂ[ug.ul.uj) 2 1. This iz o contradiction. So, Gu. Tu, Tul = 0 and
—
Tu =i Henee T s o figed poinl on

For the wdgqueness poot, let 7 husve bwo fxed goicks @ aod v Then Tiu) = o oamd Tlo) =,
Glu,ww) # 0, Olue,n) # 0, Hluwv) #£ 0, Fuwew) 2 00 I follows that either Glu, voe) <
Hiw v v)or f{u von] < Gluoe, v, Suppose Gl vow) < M (noee), then it implies that @, T, Tl <
Hiuovwl, Then by hypothesis of Theorom 2.5 we get,

GlTu, T, Te) < a(H[u. s vj)iﬁ{u,n. Tl + M T,

HiTw,Te, T £ o (E[u. s ﬂj){h‘{u. 1, T + Gle, v, Tl

Simee, Ginow,Te) = Hive Tv) = Hivoe o) = 0 Theeefore, §(Tu, Te, Te)l < 0, which hoplies
G{Tw, Te, Te) =Gu, v} =1, Henee b= v
O
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Exampla 2.6, Let X = [, 1] and we define two metvied § and 5 on X ds,
Glu, wou] = minef o — v, jo <w|, | = al} end H{ww,w) = Pomc]|u = o, [ir —wf, e =}

Gt T o X = X be the map defined s,

2
Tiuj= TS
Now, G, To, Te] = lu—Ti|= lu— ﬁ and {1, u, 0) = 2| —ul.

Therefore we hove, G, To, Te) < Hiuw, 0w Yu. ek,
(3] New, G0 To, Tl = Hu—vl= & Yue 2010 and
Glu,u, Ta) + H e, 0, Te) = ju— T 42e — Tu|= UWaddie & 4y gy £ [}, 1]
also, G, To, T0) < o B, v, 0) ) (G, m, T+ Hvon To)] ¥ wo € (0.1,
(i) Agesn, H(Tu,To.Te) = Fln—vis & ¥ we e [L1] and
Hiww, Tu)+ Gle, v, Te) = 2u— Tul+Hr — Tuj= 2B < B yye e [0,1]
adeer, H{Tw, To, To) < n{ﬁ(ar. v, :IJ}',H{ﬂL. w, Tl = Gle w0, To)l ¥, v e [L1].
Nog i we choose function o ¢ [oo) = [&. 3] then all the conditions af Fheorem 2.0 are satisfied,

Hewee, we oo conelude that T ks exaetly one fred point m X,

3 Concluding remarks

Tho browdoning of fixed-point Utheory in the setting of G-motric spaees with two or mune geooral-
b mtrivs provides o rich fromesork for excplociog mcre genend types of distsoce and eonsergendce:
properties.  These results not only pomeralize cliesics] Axed-point theorems bat slso have nportant
implicativos for theoretical and applicd mothemntics.

o il wosrk, du Theorean 21 we Love extbendied ehe Banseh contraction priveiple in complobe G-metde
space with two gonenilimed metrics G and . o Theorem 2.0 and Theorem 2.5, we have peneralized
Chatterjea and Bannon type of contreotions, respectively, in & complote G-metric space with two gon-
oralied metrdes G and B, Further, we hove mven suffierenl conditions for an axisting anigque Beed
poisl of Lhe selfmap in the setting of & complete Gemetric space for (e eose of three peneralized
mwtries &, I, and 1 e the contractive classes Banach, Chatterjes, and Kannan contractions,

Lot G H, T be thoee geperalized metrios op complete medric spoee 4, Suppese T 5 A -+ A such
that Glu, Tu, To) < Hlwor, o) or Hiw, Te, Te) < Fluw, o) or e T, Tod <Gl ) implies,

{1} Bannoli-type contrnction with three geaoralized meteics:
{1y glTu,TeTv) < |:r{.H'|:u1 T, u]} Hiw, w0}
(i} H[Tw To,Tol< ﬂ[f[fh i, ﬂ}') it v)
(i) 1T, o Tv) < o (g[u.. v, 1.-));;-31. w1,
whern o [llioc) == [i, é} such thass Hﬂ:fp ofs) = é Then, T has only one fixoed poine,
{2} Chntterion type contraction with theee generalized nwtrics:
{i) GUTw. T Tw) < o H{u, v.0) ) [Gw v Th + H (i, T

(H} H(TsTv,To)< f‘r(F{ﬂ.n.-r.'j)[HI:I:.r-.TuJ S+ Fl T

491
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(i) I(Tu, Te, Tv)< nr[:gl:u. #, u:);m-_ﬂ_ T} + Glu, u. T},
whire o ; (1l 26) — [0, 4) such that ﬁm ip aft) < L, Then, T has s umigne Rxed point.
{4} Rannon tvpe controcbicn with three geoeralized motrics:
(i) G(Tw.To. Te) < af Hiwv,0) ) [Glw., Tu) + Hixv, Te
(i) H (T, To.To) < o T, vy o)) (B, T 4 2, 0. To)

(ti} T Te. Tu)=n (’ﬂ[:v, a, *JJ}_'J'(M, T} 6 e, To)l,

where ;[ oe) — (1,3} auch that Hmosupa(t) = L Then, the fixed paiot of 7 38 exactly ons,
T
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