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1. Introduction 
 
 The rough set theory, initially proposed by Pawlak (1982) [19], has been 
utilized as an effective mathematical tool for modeling and processing incomplete 
information. In recent years, rough sets have been integrated with various 
mathematical theories such as algebra and topology. 
 
 Algebraic structures of rough sets have been studied by several authors, 
including Bonikowaski.   Z, Kuroki.   N, Wang.   PP and Li. Z  et al.  [5, 14, 15, 16]. 
In 1994, Biswas and Nanda [4] introduced the concept of rough group and rough 
subgroups, which are based on upper approximation and are independent of lower 
approximation. Miao et al. [7] have enhanced the definitions of rough group and 
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rough subgroup, and have demonstrated their new properties. Conversely, Kuroki and 
Wang [15] outlined certain properties of lower and upper approximations in relation 
to the normal subgroups in 1996. Bagirmaz et al. [17] proposed the concept of 
topological rough groups, expanding the idea of a topological group to encompass the 
algebraic structures of rough groups. 
 
 In group theory, A group is simple if its only normal subgroups are the identity 
subgroup and the group itself [12]. The notion of a simple group was introduced by 
Galois about 180 years ago. Simple groups are the building blocks of all groups. In 
the concept of topological group, filters provide a powerful tool for understanding the 
topological properties like convergence, continuity, compactness, etc.. 

 
 In this paper, we investigate the key principles of topological simple rough 
groups, which merge the structures of simple group and topological rough group. We give 
some examples to illustrate this concept and discuss the basis of topological simple 
rough group, which forms the foundation for studying their local properties, Also we 
explore the filter of identity neighborhoods, underscoring their role in analyzing the 
structure of topological simple rough groups. 
 
2. Preliminaries 
 

 Definition 2.1 ([7]):  Let U  be a  universe, C  be a family  of subsets of U ,   

1 2{ , ,..., }nC X X X . C is called a classification of U if the following properties are 

satisfied: 
 

 1.  1 2 ...  nX X X U   ; 

 

 2.    ,( )i jX X i j   . 

 

 Definition 2.2 ([7]): Let ( , )K U R  be an approximation space and X be a 

subset of U. The sets 

 

 1. {   }| [ ]RX x x X   ; 

 

 2. }| [ ]{   RX x x X  ; 

 

 3. ( )BN X X X   
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are called upper approximation, lower approximation and boundary region of X in K, 

respectively. 
 

 Definition 2.3 ([7]): Let ( , )K U R  be an approximation space and  be a 

binary operation defined on U. A subset G of universe U is called a rough group if 

the following properties are satisfied: 
 
 

 1. , ,x y G x y G   ; 

 

 2. Association property holds inG ; 
 

 3. e G   such that ,x G x e e x x     ; e is called the rough identity 

     element of rough group G; 

 

4. ,x G y G    such that x y y x e    ; y is called the rough       

inverse element of x in G; 

 

 Definition 2.4 ([7]): A non-empty subset H of rough group G is called its 

rough subgroup, if it is a rough group itself with respect to operation . 
 

 There is only one guaranteed trivial rough subgroup of rough group G, i.e., 

G itself. A necessary and sufficient condition for { }e  to be a trivial rough subgroup 

of rough group G  is e G . 

 
 Definition 2.5 ([7]): A rough group is called a commutative rough group if 

for every x,y G , we have x y y x   . 

 

 Definition 2.6 ([7]): A rough subgroup N of rough group G is called a rough 

invariant subgroup, if ,a G a N N a    . 

 

 Definition 2.7 ([9]): Let G be a rough group andA G . We say that A is 

symmetric if 1A A . 
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 Definition 2.8 ([9]): Let 1 1G U  and 2 2G U  be rough groups. We say 

that 1G  and 2G  be rough homomorphism if there exists a surjection mapping 

1 2:G G  such that the following conditions (1)-(3) hold: 

 

 1.
1

|G  is a surjection mapping from 1G   to 2G ; 

 

 2. For any 1 { },x y G e   , we have 1 2( ) ( ) ( )x y x y     ; 

 

 3. For any subset  H of 1
1 ( ( )),G H H   . 

 

 If a rough homomorphism is a bijection, then we say that 1G  and 2G are 

rough isomorphism. 
 

 Definition 2.9 ([3]): Let G be a topological group. A filter on G is a family   

  of non-empty subsets of G satisfying the two conditions: 

 

 1. If U and V are in   then U V  is also in  ; 

 
 2. If U   and U W G  , then W  . 

 

 Definition 2.10 ([3]): Let G be a topological group. A family   is called an 

open filter on G if there exists a filter   in G such that   is the intersection of 

with the family of all open subsets of G. 

 
 Of course, this definition is equivalent to the following one:   is an open 

filter on G if   is a family of non-empty open subsets of G such that the intersection 

of any finite number of elements of   is also in  , and for each U   and for 

every open subset W of G such that U W , W also belongs to ξ. 

 
 Definition 2.11 ([17]): A topological rough group is a rough group ( ),G   

together with a topology T on G  satisfying the following two properties: 
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1. the mapping :f G G G   defined by ( , )f x y xy  is continuous with 

respect to product topology on G G  and the topology GT  on G  

induced by T ,  

 

2. the inverse mapping :g G G  defined by 1( )g x x   is continuous with 

respect to the topology GT on G induced by T . 

 

 Definition 2.12 ([17]): let G be a topological rough group and let H be a 

subgroup of G. Then, H is called a topological rough subgroup of G if  

 

 1. the mapping :Hf H H H   defined by ( , )Hf x y xy  is continuous 

    where H  carries the topology induced byG , 
 

 2. the inverse mapping :Hg H H  defined by 1( )Hg x x    is continuous. 

 

 Definition 2.13 ([1]): A mapping 1 2:G G  is called a topological rough 

group homomorphism, if   is a rough homomorphism and continuous with respect 

to the topology 2  on 2G  inducing 
2G  on 2G  and the topology 1  on 1G  inducing

1G on 1G . 

 

 Definition 2.14 ([17]): Let G be a topological rough group and let N be a 

normal subgroup of G. Then, N is called a topological rough normal subgroup of G 

if ,a G aN Na  . 

 Throughout this paper, we consider X be the universal set, GR  be a rough 

group with identity e and G �  be the upper rough approximation of G � . 

 
3. Topological Simple Rough Group 
 

 Definition 3.1: A rough group G �  is called a simple rough group if it 

contains no proper non-trivial rough normal subgroups. That is, G �  has only the 

rough normal subgroups are {e} and G � . 
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 Example 3.2: Let {1,2, 3, 4,5, 6}X   be the set all integers with respect to 

the multiplication modulo 7. A classification of X is / {{1,6},{2, 3},{4, 5}}X R  . 

Let {1,2, 4}G � . Then G X�  and G  � . Clearly, G �  is a rough group and 

it has no proper rough normal subgroups, hence G �  is a simple rough group. 

 

 Example 3.3: Let 4  X S be the set of all permutations of {1, 2, 3, 4} with   

the multiplication operation of permutations. Consider a classification of X is

/ { 1, 2, 3, 4}X R C C C C , where 

 

 1C  = {(1), (12), (13), (14), (23), (24), (34)} 

 2C  = {(123), (132), (124), (142), (134), (143), (234), (243)} 

 3C  = {(1234), (1243), (1324), (1342), (1423), (1432)} 

 4C   = {(12)(34), (13)(24), (14)(23)} 

 

 Let 4A  be the set all even permutations of 4S  that is, 4 2 4{(1), , }A C C . 

Then upper approximation of 4A , 4 1 2 4A C C C    and lower approximation of

4A , 4 2 4 A C C  . Hence, 4A is a rough group. 

 

 Also we get some proper rough normal subgroups of 4A , like 

2{( )},{(1), }1 C  and 4{(1), }C . Therefore, 4A  is not a simple rough group. 

 

 Definition 3.4: A topological simple rough group is a simple rough group 

( , )G �  together with a topology   on G �  satisfying the following two properties: 

 

(i)  The mapping  :    f G G G � � �  defined by  ( , )  , ,f x y xy x y G  �        

is continuous with respect to the product topology on G G� �  and the 

topology   on G �  induced by   

 

(ii) The inverse mapping :g G G� �  defined by 1( )g x x  , x G �  is 

continuous with respect to the topology τ on G �  induced by  . 
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 Example 3.5: Let  {[0],[1],[2],[3],[4]}X   be the set of residue classes of 

modulo 5 and   be the binary operation of residue addition. A classification of X is  

/  {{[0],[2]},{[3],[4]}}X R  . Let {[0],[1],[4]}  G � , then   G X�  and G  � . 

Obviously, G �  is a rough group and also G �  has no proper rough normal 

subgroups. Therefore, G �  is a simple rough group. 

 

 Let   { , ,{[0]},{[1],[2],[4]},{[0],[1],[2],[4]}G  � . Then we get the 

induced topology   on G �  is { , , {[0]},{[1],[4]}}G � . Hence, G � is a topological 

simple rough group. 

 Proposition 3.6: Let G � be a topological simple rough group and fix 

 x G � . 

 Then 
 

(i) The map :xL G G� �  defined by ( )xL y xy  is one-to-one and 

continuous, for all y G � ; 

 

(ii) The map :xR G G� �  defined by ( )xR y yx  is one-to-one and   

continuous, for all  y G � ; 

 

(iii) The map  :f G G� �  defined by  1( )f a a  is homeomorphism, for 

all a G � . 

 

 Proof: (i) Let 1 2,  y y G � . Then 1 2( ) ( )x xL Ly y  implies 1 2xy xy .  

Since, G � is a topological simple rough group and 1,x G x G G  � � � . Thus, 

1 1
1 2( ) ( )x xy x xy   which implies 1 2y y . Hence xL  is one-to-one. Now let us 

prove xL  is continuous. Let U  be an open set of xy  in G � . Then there exists open 

sets 1 2,V V  of ,x y  in G �  such that 1 2VV U . Since, 2 1 2xV VV U  , 

2 2( )xL V xV U  . Hence, xL   is continuous on G � . 

 

(ii) The proof of xR  is similar to xL . 
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(iii) Since  G �    is  a  topological  simple  rough  group,  the  inverse  mapping 

:f G G� �  is continuous. Therefore, 1f   is also continuous.  Hence,  

the map f  is homeomorphism of G �  into G � .       

 

 Proposition 3.7: Let G �   be a topological simple rough group. If U G �   

is an open set with e U , then there exists a symmetric open set V of e in G �  such 

that VV U . 

 

 Proof: Since G �  is a topological simple rough group, the mapping 

:   f G G G � � �  is continuous. Then 1 ( )f U   is open in G G� �  and

1 )( , ) (fe e U . Therefore, there exists open sets 1 2,V V  in G �  with 1 2,e V e V   

such that 1 2VV U . Also the inverse mapping :g G G� �  is continuous, so 1
1V   

and 1
2V   are open. Let 3 1 2V V V  . Then 3V  is open in G �  and also 3 3V V U . 

Now we consider 1
3 3V V V    be an open set in G �  and e V . Hence, 1V V   

and 3 3VV V V U  .                                   

 

 Proposition 3.8: Let G �  be a topological simple rough group. Then for 

every open set W of e in G � , there exists a symmetric open set V of e in G �  such 

that VV G W � . 

 

 Proof: Let W be an open set of e in G � . Then there exists an open set U of 

e in G �  such that W U G  � . Since the mapping :f G G G � � �  is 

continuous and the inverse mapping :g G G� �  is homeomorphism, there  

exists an open set V of e in G �   and 1 V V   such that VV U . Hence,

.VV G W �             

 

 Proposition 3.9: Let G �  be a topological simple rough group. If G � , { }e  

are open sets of G � , then { }e is open in G �   and G �   is a discrete space. 

 

 Proof: Since G �  is a topological simple rough group, the mapping 
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:f G G G � � �  is continuous and e G � . Also, { }e  is open in G � . Thus, we 

get  1({ })f e  is open in G G� �  and { }ee e e    which implies { }UV e , 

where U,V are open sets in G �  and ,e U e V  . Suppose { }U e , we get

{ }UU e .  Hence, { }U V e  . Let x G � . Since the mapping 

:f G G G � � �  is continuous at 1( ),x x  , there exists a neighborhood U of 

x G �  such that 1UU e    . So 1  { }UU e  . Hence, { }U x . Hence, G �  is 

discrete.             

 

 Proposition 3.10: Let G �  be a topological simple rough group. If G �  is 

open  in G � , then { : ( )}H U U e    is a topological group. 

 

 Proof: Let ,x y H . Then ,x y U and given ( )U e . Since G �  is a 

topological simple rough group and G �  is open in G � , there exists an open set 

( )V e  such that VV U . Thus, xy VV U  . Therefore, xy H  . Since the 

inverse mapping :f G G� �  is homeomorphism, there exists an open set V of e 

in G �  such that 1 V V  .                       

 

 Theorem 3.11: Let X be a topological group and G �  be a topological 

simple rough group. If  H �  is a topological rough subgroup of G � , then the 

topological closure of  , ( )H cl H� � , in G �   is a topological rough group of G � . 

 

 Proof: Let , ( )x y cl H �  and U be an open set of xy . Then there exists 

open sets 1V  and 2V  of x and y such that 1 2VV U . Since H �  is a topological 

rough subgroup of G � , there exists an elements ,a b H �  such that 1a V H  �  

and 2b V H  � . Thus, we get 1 2ab VV  and  ab H � , that is 1 2ab VV H  � .  

So, 1 2   VV H  �   and  also ( )  U cl H  �  . Hence, ( )xy cl H � . Let W  be an 

open set of 1x   in ( )cl H � . Then there exists an open set V of x such that   

1 V W  . Since, ( )x cl H � , there exists an element a of H �  such that a V . 
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Then  a V H  �   which implies 1 1  a V H   � .  So,   W H  �   and hence,

1  ( )x cl H  � .                                    

 

 Remark 3.12: The topological closure of , ( )H cl H� � , in G �  is also a 

topological rough subgroup in G � . 

 

 Theorem 3.13: Let G �  be a topological simple rough group  and  G �  be an 

open set in G � . If S is a subset of G �  and U is an open set in G � , then the sets 

SU G �  and US G �  are the open sets of S in G � . 

 

 Proof: Let x S .  Then there exists an open set  V U of x in G � such that 

xV xU G  � . Therefore, x S xV SU G    � . Hence, we get SU G �  is 

an open set of S in G � . Likewise, SU G �   is an open set of S in G � .                

 

 Definition 3.14: Let  G �  be a topological simple rough group and   

be a base for  . For x G � , the family { : ,  }x U G U x U     �  

is called a base at x in  . 

 

 Theorem 3.15: Let G �  be a topological simple rough group and G � be an 

open set in G � . Let ße  be the family of base at e in G � . Then, for every x G � , 

 

  {( )  : }x exU G U  � ,           {( )  : }x eUx G U  �   

 

are two families of bases at x in G � . 

 

 Proof: Let eU   . Since G �  is a topological simple rough group and G �  

is an open set in , :G f G G G � � � �  is continuous at ( ),x e .  Then there exists 

an open set eV   such that V U  and xV G � . It is enough to prove that

xU G �  and Ux G �  are open sets in G � . Since the map 1 :xL G G � �  is 
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one-to-one and continuous, 1
1( )

x
L V

  is open in G �  and xV G � . Then we 

get 1
1( )

x
L V xV

  is open in G � . Hence, xV xU and xV G  which implies 

xU G �  is an open set in G � . Similarly, Ux G � is an open set in G � .    

         
4. Filter of Identity Neighborhoods 
 

 In this section, the filter e  be the set of all identity neighborhoods of G � . 

 

 Proposition 4.1: Let G � and H �  be topological simple rough groups. Then 

a rough homomorphism :f G H� �  is a topological rough group 

homomorphism if and only if it is continuous at the identity element. 
 

 Proof: Let ,e e'  be the identity elements in G �  and H �  respectively. 

Suppose f is a topological rough group homomorphism. That is, f is rough 

homomorphism and continuous. Since f is continuous, it is continuous at e in G � . 

Conversely, suppose f  is continuous at e. Let a G �  and V be a neighborhood of 

( )f a  in H � . Let us prove for any neighborhood U  of  a  in , ( )G f U V� . Since f 

is a rough homomorphism, ( ) ( ). ( )f ax f a f x , for all x G � . Since f is continuous 

at e, there exists a neighborhood W of e such that ( )f W V . Then U aW  is an 

open neighborhood of a and ( )f U V .          

 

 Proposition 4.2: Let G �  and H �  be topological simple rough groups and

: f G H� �  be a topological rough group homomorphism. Then the following 

conditions are equivalent: 
 

(i) f  is open 

 

(ii)  For each ( )eW G � , the image  ( )f W  has a nonempty interior 

 

(iii)  There is a basis e  of neighborhood W such that  ( )f W  has a nonempty 

interior 
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(iv)  There is a basis e  of neighborhood W in G �  such that ( )f W  is an 

identity neighborhood in H �   

 

(v) For all ( )eW G �  , we have  ( ) ( )ef W H �  

 

 Proof: (i)   (ii): Let W be an identity neighborhood in G � . Since f  is 

open, ( )f W  is open.  Also, ( )eW G � .  Hence, int( ( )f W   . 

 

(ii)   (iii): Suppose  ( )f W  has a nonempty interior, for each neighborhood W of e in 

G � . Let e  be a basis in G � . Let eW   and ( )eW G � . Then

int( ( ))f W   .  Hence, the image ( )f W  has a nonempty interior. 

 

(iii)   (iv):  Let  ,U V  be  two  identity  neighborhoods  in  G �  such  that

 int( )V U  .  Then int( ( )f V   . 

 
 Consider x V  and  int( ( )) int (int( ))( )f f V fx U  . 

 

 Let 1int( )W U x    and  ,e e'  be identity elements in G � ,H � . 

 

 Then  1 1 int( )e xx U x   .  So, W  is an open neighborhood of  identity 

element in G �  and  

 

  1 1 1( ) ( ) int( ( )) ( ) int( (int( ))) ( )e' f x f x f V f x f U f x       

 

      1int( (int( )) ( ) )f U f x   

 

      1int( (int( ) ))f U x   . 

 
      int( ( ))f W .  

 

 Hence, ( )f W  is an identity neighbourhood of H � . 

 

(iv)   (v): From the above proof,  ( ) ( )e' Hf W  � . 
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(v)   (i): Obviously, this result follows from( )v .        

 

 Proposition 4.3: Let G �  and H �  be topological simple rough groups.  

Then the topological rough group homomorphism :f G H� �  is both continuous 

and open if and only if ( )e e'f   , where e  and e'  are the filter of identity 

neighborhoods in G �  and H �  respectively. 

 

 Proof: Suppose the homomorphism f  is continuous and open. Let  prove  

( )e e'f   . Since f is continuous, ( )e e'f   . Since f is open, ( )e' f e  . 

Therefore ( )e e'f   . Conversely, if ( )e e'f    then f is both open and 

continuous. Let eU   and e'V  . Then  ( )f U V  which implies ( )U f V . 

Since U is an open neighborhood of e in 1, ( )G f V
�  is an open set in G � . Also 

( ) e'f U   which implies  ( )f U  is an open set containing the identity element e'  in

H � . Hence f  is both open and continuous.         

 

 Lemma 4.4: If U is an open neighborhood of the identity element  

in topological simple rough group G � , then ( ) , ( )U cl U UU cl U   means closure 

of U . 

 
 Proof: We know that ( )U cl U . It is enough to prove that ( )cl U UU .  

Let  ( )a cl U . Then there exists a symmetric neighborhood W of e in G �  such that 

WW U  that is,  W U . Also a W  and aW is an open neighborhood of a.  So  

 aW U    and ( )a aW cl U    . Let  b aW U  .  Then  b aw , for some 

w W  which implies 1a bw  . Since W is symmetric and ,b U  

1 1w W W U     and a UU .                    

 

 Theorem 4.5:  (First closure lemma) Let G �  be a topological simple 

rough group such that G �  is open in G � . If S is a subset of G � ,  then 

 

( ) ( ),
U Ue e

cl S SU cl SU  
  
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where e  be the filter of identity neighborhood in G � . 

 

 Proof: Let ( )a cl S  and eU  . Then aU G �  is a neighborhood of a in 

G �  and  aU S   . Since  1  U U  , 1aU S   is  a  neighborhood of a. So, let 

1 b aU S   that  is  1b aU    and  b S .  Then  1 b au ,  for  some u U . 

Therefore, ( )a bu SU c Ul S   . Let ( )a cl SU . Let us prove ( )a SU . 

Then there exists an identity neighborhood  eV   such that VV U . Therefore, 

( )a cl SV SVV SU   . Proceeding this process we get, ( ) ( )cl SU SU  . 

Suppose ( )a SU . Let W be an identity neighborhood of a in e  and  

1   eW a U   .  Since,  a SU ,   a hu ,  for  some  ,h S u U  . Thus, 

1 11h au aU aa W W      which implies h S W  . Hence, ( )a cl S .   

 

 Theorem 4.6: Let G �  be a finite topological rough group with identity e 

and let e  be the filter of identity neighborhood in G � . Then there exists a 

topological rough normal subgroup N �  in G �  such that 

{ / }e U G N U  � �  and the elements are symmetric. 

 

 Proof:  Consider
U e

N U 


� .  Since G �   is finite, N  is non empty in

e  and e N � . Let ,a b N � . Then there exists eW   such that 1 .WW N  �  

Since N W� , ,a b W . Thus,  1 1ab UU N   � . Hence,  1ab N  � . Let

g G � . Since 1,e eN gN g  � �  and 1
eg N g � . That implies

1 N gN g� �  and 1N gN g� � . Hence, N �  is a topological rough normal 

subgroup.             

 
5. Conclusion 
 
 In this paper, we studied topological simple rough group from the simple 
rough group structure and given some examples. Further we investigated the basis of 
topological simple rough groups and discussed the concept of filters in topological 
simple rough groups, which are essential for a deeper understanding of their 
topological properties. 
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1. Introduction 
 

After the introduction of fuzzy sets [15] and intuitionistic fuzzy sets [4], 
Smarandache [10] created a neutrosophic set on a nonempty set by considering three 
components, namely membership, Indeterminacy,and non-membership whose sums 
lie between 0 and 3. In 2008, Lupiáñez [8] introduced the neutrosophic topology as 
an extension of intuitionistic fuzzy topology. Since, 2008 many authors such as 
Lupiáñez [8], Salama et.al. [10, 11], Acikgoz and his coworkers [1], Dhavaseelan 
et.al. [5], Al-Musaw [2], and others have contributed to neutrosophic topological 
spaces. Recently many weak and strong forms of neutrosophic open sets and 
neutrosophic continuity have been investigated by various authors [1, 2, 5, 6, 7, 12–
14]. In this paper, we introduce a new class of mappings called neutrosophic fuzzy 
semi δ-pre irresolute mappings and obtain some of their characterizations and 
properties. 
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2. Preliminaries 
 
 This section contains some basic definitions and preliminary results which 
will be needed in the sequel. 
 
 Definition 2.1 [12]: A Neutrosophic set (NS) in X  is a structure 

{ ( ) ( ) ( ) }, , , :A A AA xx µ xx x X      

 

where : 0,1 , : ,] [ [0 1] ,Aµ X A X      and : 0,1] [A X    denote the 

membership, indeterminacy, and non-membership of A, satisfying the condition that

0 ( ) ( ) ( ) 3 ,A A Aµ x x x x X        . 

 
 In real-life applications in scientific and engineering problems, using a 
neutrosophic set with values from a real standard or a non-standard subset of 

0,  1  
   is difficult. Hence, we consider the neutrosophic set which takes the value 

from the closed interval [0,1] and the sum of membership, indeterminacy, and  
non-membership degrees of each element of the universe of discourse lies between 0 
and 3. 
 
 Definition 2.2 [10]: Let X  be a nonempty set and let the neutrosophic sets 

A  and neutrosophic set B  be in the form { ( ) ( ) ( ) }, , , :A A AA xx µ xx x X     , 

}, ( ), ( ){ , ( ) :B B BB x µ x x x x X      and let { }:iA i J  be an arbitrary 

family of neutrosophic sets in X . Then: 
 

(a)   if , ,( ) ( ) ( ) ( )A B A BA xB µ xµx x     and ( ) ( )A Bx x  . 

 

(b)  ifA B A B   and B A . 

 

(c)  { ( ) ( ) ( ) }, , , :c
A A AA µx Xx xxx      . 

 

(d) , ( ), ( ) },{ ( ) :i Ai Ai AiA x µ x x x x X       ∩ . 

 

(e)  , ( ), ( ) },{ ( ) :i Ai Ai AiA x µ x x x x X        . 

 

(f)  }, 0, 0 1 :{ ,x x X   0  and },1,1 0 :{ ,x x X   1
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 Definition 2.3 [8, 9]: A neutrosophic topology on a nonempty set X  is a 
family τ of neutrosophic sets in X  that satisfies the following axioms. 
 

 1( )NT   0  and 1   

 

 2( )NT  Finite intersection of members of τ is a member of τ 

 

 3( )NT  Anyunion of members of τ is a member of τ 

 
 In this case, the pair ( ),X   is called a neutrosophic topological space and 

each neutrosophic set in τ is known as a neutrosophic open set in X . The 

complement cA  of a neutrosophic open set A is called a neutrosophic closed set in 
X . 
 
 Definition 2.4 [5]: Let , , [0,1]     and 0 3      . A neutron-

sophic point ( ), ,x     of X  is a neutrosophic set in X defined by  

 

( , )

( , , )
( )

(0, 0, 1)

if y x
x y

if y x 

   
 


 

 

 Definition 2.5 [1]: Let ( ), ,x     be a neutrosophic point in X  and 

}:{ , , ,A A AA x µ x X      is a neutrosophic set in X . Then 

( , , )x A     if and only if ),(A Axµ    , and  ( )A x  . 

 

 Definition 2.6 [1]: A neutrosophic point ( ), ,x     is said to be quasi-

coincident (q -coincident, for short) with A , denoted by ( , , )x qA    iff 

( , , )
cx A    . If ( ), ,x     is not quasi-coincident with A , we denote by

, ,( ( ) )qx A   . 

 
 Definition 2.7 [1]: Two neutrosophic set A  and B  of X  are said to be  

q -coincident (denoted by qA B ) if cA B . 
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 Lemma 2.8 [1]: For any two neutrosophic sets A  and B  of  

,X ( ) c
qA B A B   where ( )qA B  is not q-coincident with B . 

 
 Definition 2.9 [9]: Let ( ),X   be a NTS and ( )F N X . Then the 

neutrosophic interior and neutrosophic closure of A  are defined by: 
 
  ( ( ):) {cl H H NF XC    and }F H  

  
  int( ) :{F K K    and }K F   

 
 Definition 2.10 [3]: A neutrosophic set A  of a NTS ( ),X   is called 

neutrosophic regular open (resp.neutrosophic regular closed) if int( ( ))A cl A  

(resp. (int( )))A cl A . 

 
 Definition 2.11 [1]: The δ-interior (denoted by int ) (resp.δ-closure 

(denoted by cl )) of a neutrosophicset A  of a NTS( ),X   is the union of all 

neutrosophic regular open sets contained in (resp.intersection of all neutrosophic 
regular closed sets containing)A . 
 
 Definition 2.12 [3, 6, 13]: A neutrosophic set A  of a NTS ( ),X   is called 

neutrosophic semi open (resp.neutrosophic pre open, neutrosophic α-open, 
neutrosophic semi preopen, neutrosophic δ-open, neutrosophic δ-preopen, 
neutrosophic δ-semi open, neutrosophic b-open) if  
 

(int( )) resp. int( ( ))(A cl A A cl A  , ( (int( )))int clA A , (int( ( )))clA cl A , 

int( )A A , ))int( (A cl A , )in( ( )tA cl A , (int( )) int( ( ))A cl A cl A  . 

 
 Definition 2.13 [11]: A neutrosophic set A  of a neutrosophic topological 
space ( ),X   is called neutrosophic semi δ-preopen if there exists an eutrosophic  

δ-pre open set O  in X  such that ( )O c OA l  . 

 
 The family of all neutrosophic semi δ-pre open set so fan neutrosophic 
topological space ( ),X   is denoted by ( )NS PO X . 

 
 Definition 2.14 [11]: A neutrosophic set A  in a neutrosophic topological 

space ( ),X   is called neutrosophic semi δ-preclosed) if ( )cA NS PO X . The 
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family of all neutrosophic semi δ-preclosed) sets of an neutrosophictopological space 
( ),X   is denoted by ( )NS PC X . 

 
 Remark 2.15 [11]: Every neutrosophic semi preopen (resp.neutrosophic  
δ-preopen) set is neutrosophic semi δ-preopen. But the separate converse may not be 
true. 
 

 Definition 2.16 [11]: Let ( ),X   be an neutrosophic topological space and A  

be an neutrosophic set of X . Then the neutrosophic semi δ-preinterior (denoted by
ints p ) and neutrosophic semi δ-preclosure (denoted bys pcl ) of A  respectively 

defined as follows: 
 
 {int( ) ; ( )}:s p A O O A O NS PO X    , 

 

 ( ) { }: ; ( )s pcl O O A O NS PC XA     . 

 

 Definition 2.17 [11]: Let A  be an neutrosophic set A  of an neutrosophic 

topological space ( ),X   and ( , , )x     be an neutrosophic point of X . A  is called: 

 

(a)  Neutrosophic semi δ-pre neighborhood of ( , , )x    if there exists an 

neutrosophic set ( )O S XN PO  such that ( , , )x O A    . 

 

(b)  Neutrosophic semi δ-pre Q -neighborhood of ( , , )x     if there exists an 

neutrosophic set ( )O S XN PO  such that ( , , )x O A    . 

 
 Definition 2.19 [9,11]: A mapping  : ( , ) ( , )f X Y   is called: 

 

(a)  Neutrosophic continuous if  1( )f A  is a neutrosophic open set in X  for each 

neutrosophic open set A  of Y . 
 

(b)  Neutrosophic semi δ-pre continuous if  1 ( )( )f NS P XA O   for every 

neutrosophic open set A  of Y . 
 
3. Neutrosophic Semi δ-preir Resolute Mappings 

 
 In this section, we introduce the concept of neutrosophic semi δ-pre 
irresolute mappings and study some of their properties in neutrosophic topological 
spaces. 
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 Definition 3.1: A mapping f  from aneutrosophic topological space ( ),X   

to another neutrosophic topological space ( ),Y   is said to be neutrosophic semi  

δ-pre irresolute if  1 ( )( )f NS P XA O   for every neutrosophic set

( )NS P YO  . 

 
 Remark 3.2: Every neutrosophic semi δ-pre irresolute mapping is 
neutrosophic semi δ-pre continuous but the converse may not be true. 
 

 Example 3.3: Let { , }, { , }X a b Y p q  , and neutrosophic sets U defined 

as follows: 
 

{ , 0.5, 0.4, 0.5 , , 0.4, 0.4, 0.6 }U a b      

 

let {0, , 1}U    and {0, 1}    be neutrosophic topologies on X  and Y  

respectively. Then the mapping : ( , ) ( , )f X Y   defined by ( )f a p  and 

( )f b q  is neutrosophic semi δ-pre continuous and hence neutrosophic continuous 

but not neutrosophic semi δ-pre irresolute. 
 
 Consider the following example: 
 
 Example 3.4: Example 3.4. Let { , }X a b , { , }Y p q , and neutrosophic 

sets V  defined as follows: 
 

, 0.4, 0.3, 0.6 , , 0.5, 0.3, }0.{ 5V a b      

 

let {0, 1}    and {0, , 1}V    be neutrosophic topologies on X  and Y  

respectively. Then the mapping : ( , ) ( , )g X Y   defined by ( )g a p  and 

( )g b q  is neutrosophic semi δ-pre irresolute but not neutrosophic continuous. 

 
 Remark 3.5: Example (3.3) and Example (3.4) show that the concepts of 

neutrosophic semi δ-pre irresolute and neutrosophic continuous mappings are 

independent. 
 

 Theorem 3.6: Let : ( , ) ( , )f X Y   be a mapping then the following 

statements are equivalent: 
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(a) F is neutrosophic semi δ-pre irresolute  

 

(b) If 1( ) ( )f NS PA XC   for every neutrosophic set ( )A NS PC Y . 

 

(c) For every neutrosophic point ( ), ,x     in X  and every neutrosophic set 

( )A NS PO Y  such that ), ,(( )f x A     there is an neutrosophic 

set ( )O NS PO X  such that ,( ),x O     and  ( )f O A . 

 

(d)  For every neutrosophic point ( ), ,x    of X  and every neutrosophic 

semi δ-pre neighborhood  A  of ), ,(
1( ) ( ),f x f A  
  is an neutrosophic 

semi δ-pre neighborhood of ( ), ,x    . 

 

(e)  For every neutrosophic point ( ), ,x    of X  and every neutrosophic 

semi δ-pre neighbor hood A of , ,( )( )f x    , there is an neutrosophic 

semi δ-pre neighborhood U of ( ), ,x    such that ( )f U A . 

 

(f)  For every neutrosophic point ( ), ,x     of X  and every neutrosophic set 

( )A S YN PO  such that  ), ,(( )qf x A   , there is an neutrosophic set 

( )O NS PO X  such that ,( )x qO   and ( )f O A . 

 

(g) for every neutrosophic point ( ), ,x    of X  and every neutrosophic semi 

δ-pre Q -neighborhood A of f(x(α,η,β)), f­1(A) is an neutrosophic semi 

δ-pre Q -neighborhood of ( ), ,x    . 

 

(h)  for every neutrosophic point ( ), ,x      of X  and every neutrosophic 

semi δ-pre Q -neighborhood A  of  , ,( )( )f x    , there is an neutrosophic 

semi pre Q -neighborhood U of ( ), ,x     such that  ( )f U A . 

(j)  ( ( )) ( ( ))f lAs pc fl s pc A  , for every neutrosophicset Aof X . 

 

(j)  1 1( ( ) ( )) ( )s pcl f O f s pcl O   , for every neutrosophic set O of Y . 
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(k)  1 1int int( )( ( )) ( )f s p s p fO O   , for every neutrosophic set O of Y .  

 
 Proof: (a)  (b) Obvious. 
 

 (a) ⇒ (c) Let ( , , )x     be an eutrosophic point of X  and ( )A NS PO Y  

such that ( , , )( )f x A    . Put 1( )O f A , then by )( ), (O NSa PO X  such 

that ( , , )x O     and  ( )f O A . 

 

 (c) ⇒ (a) Let ( )A NS POY and 1
( , , ) ( )x f A  

 . Then ( , , )( )f x A    . 

Now by ( )c  there is an eutrosophic set ( )O NS PO X  such that ( , , )x O     

and   ( )f O A . Then 1
( , , ) ( )x O f A  

 . Hence, 1 ( )( )f NS P XA O  . 

 

 (a) ⇒ (d) Let ( ), ,x     be a neutrosophic point of X , and let A  be a semi  

δ-pre neighborhood of , ,( )( )f x    .Then there is an eutrosophic set 

( )U NS PO X  such that ( , , )( )f x U A    . Now 1( ) ( )f NS PU XO   

and 1 1( ) ( )f fU A  . Thus, 1( )f A  is an eutrosophic semi δ-pre neighborhood of 

( , , )x     inX . 

 

 (d) ⇒ (e) Let ( ), ,x     be a neutrosophic point of X , and let A  be a semi  

δ-pre neighborhood of , ,( )( )f x    . Then 1( )U f A  is an eutrosophic semi δ-pre 

neighborhood of  ( , , )x     and 1( ) ( ( ))f U f f A A  . 

 

 (e) ⇒ (c) Let ( ), ,x     be an neutrosophic point of X  and ( )A NS PO Y  

such that ( , , )( )f x A    . So there is neutrosophic semi δ-pre neighborhood U of 

( , , )x     in X  such that ( , , )x U     and ( )f U A . Hence there is an eutrosophic 

set ( )O S XN PO  such that ( , , )x O U     and so  ( ) ( )f O f U A  . 

 

          (a) ⇒ (f) Let ( , , )x     be an neutrosophic point of X  and ( )A NS PO Y  

such that ( , , )( )qf x A    . Let 1( )O f A . Then ( )O S XN PO , ( , , )qx O     

and 1( ) ( ( ))f O f f A A   . 
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 (f) ⇒ (a) Let ( )A NS PO Y and 1
( , , ) ( )x f A  

  clearly ( , , )  ( )f x A     

choose the Neutrosophic point   cx  defined as 
 

( , , )

( , , ) if
( )

(1, 1, 0) if
c

z x
x z

z x  

   
 


 

 

 Then ( , , )( )c
qf x     A   and so by( )f  there exists an neutrosophic set  

)  (O NS P XO   such that  ( , , )
c

qx      O and ( )f O A . Now ( , , )
c

qx    O  

implies ( , , )x O     . Thus,  1
( , , )x f A  

 . Hence,  1( ) ( )f A NS PO X  . 

 

 (f) ⇒ (g) Let ( , , )x     be an neutrosophic point of X  and A  be semi  

δ-Q-neighborhood of ( ( , , ))f x    . Then there is a neutrosophic open set 

1 ( )A NS PO Y  such that 1( ( , , ))qf x A A     . By hypothesis, there is a 

neutrosophic set ( )O NS PO X  such that ( , , )x qO    and 1( )f O A . Thus,

1 1
( , , ) 1( ) ( )qx O f A f A  

   . Hence, 1( )f A  is an neutrosophic semi δ-pre  

Q-neighborhood of ( , , )x    . 

 

 (f) ⇒ (h) Let ( , , )x     be an eutrosophic point of X  and A be a semi δ-pre-Q-

neighborhood of ( ( , , ))f x    . Then 1( )U f A  is aneutrosophic semi δ-pre-Q-

neighborhood of ( , , )x     and 1  ( ) ( ( ))f U f f A A  . 

 

 (h) ⇒ (f) Let ( , , )x     be an eutrosophic point of X  and ( )A NS PO Y  

such that ( , , )( )qf x A   . Then A  is neutrosophic semi δ-pre-Q-neighborhood of

( ( , , ))f x    . So there is an eutrosophic semi δ-pre Q-neighborhood U  of ( , , )x     

such that ( )f U A . Now U  being an eutrosophic semi δ-pre Q-neighborhood of

( , , )x    . Then there exists an eutrosophicset ( )O S XN PO  such that

( , , )qx O U    . Hence, ( , )qx O   and ( ) ( )f O f U A  . 

 

 (b) ⇒ (i) Let A  be an eutrosophic set of X . Since, 1( ( ))A f f A , we have
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1 1( ( ( )))A f s pcl f A  . Now ( ( )) ( )s pcl f A NS PC Y   and hence,

1( ( ( ))) ( )f s pcl f A NS PC X   . There for 1( ) ( ( ( )))es pcl f s pcl f AA   and

1( ( )) ( ( ( ))) ( ( ))f s pcl A f f s pcl A s pcl f A    . 

 

 (i) ⇒ (b) Let ( )A S YN PC  then 1 1( ( ( ))) ( ( ( )))f s pcl f A s pcl f f A    

( )s pcl A A  . Hence, 1 1( ( )) ( )s pcl f A f A    and 1( ) ( )sof NSA XPC  . 

 

 (i) ⇒ (j) Let O  be any neutrosophic set of Y , then 1( )f O  is an 

neutrosophic set of X . Therefore by hypothesis (i), 1  ( ( ( )))f s pcl f O   

1( ( ( ))) ( )s pcl f f O s pcl O   . Hence, 1 1( ( ) ( )) ( )s pcl f O f s pcl O   . 

 

 (j) ⇒ (i) Let A  be any neutrosophic set of X , then  1( )f A  is an 

neutrosophic set of Y ,and by (j), 1 1( ( ( )) ( ( ( ) )) )s pcl f f A f s pcl f A   . Hence,

( ( )) ( ( ))f s pcl A s pcl f A  . 

 
 (a) ⇒ (k) Let O  be any neutrosophic set of Y , then int( ) ( )s p O NS POY   

and 1( ( ))int ( )f s p O NS PO X   . Since, 1 1( ( )) ( )intf s p O f O  , then

1 1int int( )( ( )) ( )f s p O s p f O   . 

 
 (i) ⇒ (a) Let ( )O S YN PO , then int( )s p O O   and

1 1int( ( ))( )f s p f OO   . Thus, 1 1int( ( ))( )f s p f OO    and

1 ( )( )f NS P XO O  . Hence,  f  is neutrosophic semi δ-pre irresolute  

 

 Definition 3.7: A mapping : ( , ) ( , )f X Y   is called neutrosophic  

R-open if the image of every neutrosophic open set of X  is neutrosophic δ-open  
in Y . 

 Theorem 3.8: : ( , ) ( , )Iff X Y   is neutrosophic δ-almost 

continuous and neutrosophic R-open mapping, then f  is neutrosophic semi  

δ-pre irresolute. 
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 Proof: Let ( )A S YN PO . Then there exist aneutrosophic set 

( )O F XI PO  such that ( )O c OA l  , therefore 1 1( ) ( )f fO A   

1 1 )( ( )) ( ( )f cl O cl f O   because f  is neutrosophic R-open. Since f  is 

neutrosophic δ-almost continuous and neutrosophic  R-open, 1 ( )( )f IF P XO O  . 

Hence, 1 ( )( )f NS P XA O  . 

 

 Theorem 3.9: Let : ( , ) ( , )f X Y   and : ( , ) ( , )g Y Z   be 

neutrosophic semi δ-pre irresolute mappings then gof  is neutrosophic semi  

δ-pre irresolute. 

 
 Proof: Let ( )A NS PO Z . Since g  is neutrosophic semi δ-preirresolute,

1 ( )( )g NS P YA O  . Therefore, 1 1 1 )( ) ( ) ( (( ))gof f g A NS PA O X    , 

because  f  is neutrosophic semi δ-pre irresolute. Hence, gof  is neutrosophic semi 

δ-pre irresolute. 

 

 Theorem 3.10: Let : ( , ) ( , )f X Y   is neutrosophic semi δ-pre 

irresolute and : ( , ) ( , )g Y Z   is neutrosophic semi δ-pre continuous 

mapping, then gof is neutrosophic semi δ-pre continuous. 

 
 Proof: Let O  be any neutrosophic open set of Z . Since g  is neutrosophic 

semi δ-precontinuous 1 ( )( )g NS P YO O  . Therefore, 1 1 1( ) ( ) ( ( ))gof f g OO    

( )NS PO X  because f  is neutrosophic semi δ-pre irresolute. Hence, gof  is 

neutrosophic semi δ-precontinuous. 
 
4. Conclusion 
 
 In this paper, a new class of mappings called neutrosophic fuzzy semi δ-pre 
irresolute mappings have been introduced, it is shown by examples that the concepts 
of neutrosophic fuzzy semi δ-pre irresolute mappings are stronger than the 
neutrosophic fuzzy semi δ-pre continuous mappings and independent of the 
neutrosophic fuzzy continuous mappings. Several characterizations and properties of 
this class of neutrosophic fuzzy mappings have been studied. In the future, we study 
the images and inverse images of neutrosophic compact, and neutrosophic connected 
spaces under these classes of mappings. 



28             M. THAKUR, J. P. BAJPAI, A.S. BANAFAR AND S.S. THAKUR 
  

REFERENCES 
 

[1] Acikgoz, A., Cakalli, H., Esenbel, F., and Kocinac, LJ.D.R.:  A quest of G-continuity in 
 neutrosophic spaces, Math. Meth. Appl. Sci., DOI: 10.1002/mma.7113. 
 
[2] Al-Musaw, A. F. (2022): On neutrosophic semi-regularization topological spaces Int. J. 
 Nonlinear Anal. Appl., Vol. 13(2), pp. 51-55. 
 
[3] Arokiarani, I., Dhavaseelan, R., Jafari, S., and Parimala, M.  (2017): On some new notions 
 and functions in neutrosophictopological spaces, Neutrosophic Sets and Systems, 
 Vol. 16(1), pp. 16-19. 
 
[4] Atanassov, K. (1986): Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20,  
 pp. 87-96. 
 
[5] Dhavaseelan, R., Jafari, S., Ozel C., and Al Shumran M. A. (2018): Generalized 
 neutrosophic contra-continuity, New Trendsin Neutrosophic Theory and 
 Applications-VolumeII, Florentin Smarandache, Surapati Pramanik (Editors), `Pons 
 Editions Brussels, Belgium, EU 2018, pp. 255-274. 
 
[6] Ebenanjar, P. E., Immaculate J. J., and Wilfred, C. B. (2018): On Neutrosophic b-open 
 sets in Neutrosophic topological space J. Phys., Conf. Ser., Vol. 1139(2018) 012062, 
 pp. 1-5. 
 
[7] Iswarya, P. and Bageerathi, K. (2016): OnNeutrosophicSemi-open Sets in Neutrosophic 
 Topological Spaces, IJMTT, Vol. 37(3), pp. 214-223. 
 
[8] Lupiáñez F. G. (2008): On neutrosophic topology, The International Journal of Systems 
 and Cybernetics, Vol. 37(6,), pp. 797-800. 
 
[9] Salama, A. A., Alblowi, S. A. (2012): Neutrosophic set and neutrosophic topological 
 spaces, IOSR Journal of Mathematics, Vol. 3(4), pp. 31-35. 
 
[10] Smarandache, F. (1999): A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, 
 Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, 
 NM. 
 
[11] Thakur, M., Smarandache, F., and Thakur, S. S. (2024): Neutrosophic semiδ-pre open 
 sets and neutrosophic semi δ-pre continuity, Neutrosophic Sets and Systems, Vol. 73, 
 pp. 400-414. https://fs.unm.edu/nss8/index.php/111/article/view/5059 
 
[12] Thomas, T., and Anila. S, (2018): On Neutrosophic Semi-preopen Sets and Semi-
 preclosed Sets in a Neutrosophic Topological Space, International Journal of 
 Scientific Research in Mathematical and Statistical Sciences, Vol. 5(5), pp. 138-143. 
 

https://fs.unm.edu/nss8/index.php/111/article/view/5059


      NEUTROSOPHIC SEMI  -PRE IRRESOLUTE MAPPINGS 29 

[13] Vadivel, A., Seenivasan, M., and John Sundar C. (2021): A Introduction to δ-open sets in 
 a Neutrosophic Topological Spaces, Journal of Physics: Conference Series 
 1724(2021)012011.doi:10.1088/1742-6596/1724/1/012011. 
 
[14] Venkateswara Rao, V., and Srinivasa Rao, Y. (2017): Neutrosophic Preopen sets and 
 Preclosed sets in NeutrosophicTopological spaces, International Journal of Chem 
 Tech Research, Vol. 10(10), pp. 449-458. 
 
[15] Zadeh, L. A., (1965): Fuzzy sets, Inform. And Control, Vol. 8, pp. 338-353. 
 
 

1,2,3,4. Department of Applied Mathematics,          (Received, November 8, 2024) 
    Jabalpur Engineering College,                                   (Revised, January 29, 2025) 
    Jabalpur, 482011, India 
 
    1. E-mail-mahimavthakur@gmail.com 
    2. E-mail: jyotipbajpai@gmail.com 
    3. E-mail-anita.banafar1@gmail.com 
    4. E-mail: ssthakur@jecjabalpur.ac.in 

 

mailto:mahimavthakur@gmail.com
mailto:jyotipbajpai@gmail.com
mailto:anita.banafar1@gmail.com
mailto:ssthakur@jecjabalpur.ac.in


Journal of Indian Acad. Math.                 ISSN: 0970-5120 

Vol. 47, No. 1 (2025) pp. 31-40 
 

 

 

 
Purva Rajwade1 

and 
 Rachna Navalakhe2

 

  

A NOTE ON NANO FUZZY CLOSURE 
AND BICLOSURE SPACES 
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1. Introduction 
 

Thivagar L. at al. [9, 6] introduced the concept of Nano topological spaces 
which were defined in terms of lower approximation, upper approximation and 
boundary region of a subset of a universe � using an equivalence relation on it and 
also defined Nano closed sets, Nano interior and Nano closure. Further, 
Bhuvneshwari K. et al. [2] introduced Nano generalized closed set in Nano 
topological spaces in 2014. B. A. Deole [5] has introduced Nano closure and Nano 
biclosure spaces in Nano topological spaces. 

 
After the theory of fuzzy sets, given by L. Zadeh [11], fuzzfication of 

topological spaces was done. This work is done by C. L. Chang [4] and defined fuzzy 
topological spaces. 
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R. Navalakhe et al. [7] defined Nano fuzzy topological spaces with respect to 
a fuzzy subset � of an universe which is defined in terms of lower and upper 
approximations of � and studied Nano fuzzy closure and Nano fuzzy interior of a 
fuzzy subset. In this article we have presented the idea of Nano fuzzy closure spaces 
and Nano fuzzy bi-closure spaces and examined their characteristics. 

 
2. Preliminaries 
 
 In this section we have narrated some of the important definition and results 
which are helpful in defining Nano fuzzy closure and Nano fuzzy bi-closure spaces 
in Nano fuzzy topological spaces. 
 
 Definition 2.1 [5]: Let U be a non-empty finite set of objects called the 
universe and R be an equivalence relation on U and � ⊆ �. Then Nano closure 
operator is a function: ����: �(�) → �(�) such that for all � ⊆ � 
 

���� = �

���(�) �� � ⊆ ���(�) 
���(�) �� � ⊆ ���(�)

�; �� ������ ��� � �� � = �

� 

 
where ��’s are elements of ��(�) and ��’s are elements of ��(�). Which satisfies 
three conditions: 
 
 1. ����(�)= � 
 
 2. � ⊆ ����(�) 
 
 3. ����(� �) = ����(�) ����(�) 
 
 Hence, (�, ����) is called Nano closure space. 
 
 Definition 2.2 [7, 8]: Let � be the universe, �� and �� be equivalence 
relations on �. P1 and P2 are subsets of �. Then ���(��) and ���(��) satisfies the 
following axioms:  
 
 1. U and ∈���(��) and ���(��). 
 

2. The union of the elements of any sub collection of ���(��) is in ���(��) 
and ���(��) is in ���(��). 

 
3. The intersection of the elements of any finite sub collection of ���(��) is 

in ���(��) and ���(��) is in ���(��). 
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 Hence, ���(��) and ���(��) are called the Nano (��, ��) bitopology on � 
with respect to ��and ��, (�, ���,�

(�)) is called Nano (��, ��) bitopological space. 

Elements of the ���,�
(�) are known as Nano (1,2)  open sets in � and elements of 

[���,�
(�)]� are called Nano (1,2)  closed sets. 

 
 Definition 2.3 [1]: If (�, ���,�

(�)) is a Nano bitopological space with respect 

to � where � ⊆ � and if � ⊆ �, then 
 
 1. The Nano (1,2)  closure of � is defined as the intersection of all Nano 
(1,2)  closed sets containing � and it is denoted by ����,�

��(�). It is the smallest 

Nano (1,2)   closed set containing �. 
 
 2. The Nano (1,2)  interior of � is defined as the union of all Nano (1,2)  
open subsets of � contained in � and it is denoted by ����,�

���(�). It is the largest 

Nano (1,2) open subset of �. 
 
 Definition 2.4 [5]: Let U be a non-empty finite set of objects called the 
universe and �� and �� be two equivalence relations on U and � ⊆ �. Then Nano 
closure operator is a function: �����

: �(�) → �(�) where � = {1,2} such that for all 

� ⊆ � 

�����
= �

���(�) �� � ⊆ ���(�) 
���(�) �� � ⊆ ���(�)

�; �� ������ ��� � �� � = �

� 

 
where ��’s are elements of ��(�) and ��’s are elements of ��(�). Which satisfies 
three conditions: 
 
 1. �����

(�) = �  and  �����
(�) = � 

 
 2. � ⊆ �����

(�)  and  � ⊆ �����
(�) 

 
 3. �����

(� �) = �����
(�) �����

(�) and 

 
     �����

(� �) = �����
(�) �����

(�). 

 
 That is there are two closure spaces (�, �����

) and (�, �����
). Hence, 

(�, �����
, �����

) is called Nano biclosure space. 
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 Definition 2.5 [5]: Let (�, �����
, �����

) be a Nano biclosure space. A Nano 

biclosure space (�, �����
, �����

) is called a Nano biclosure subspace of 

(�, �����
, �����

) if � ⊆ � and �����
= �����

 � for each � = {1,2}, � = {3,4} and 

each subset � ⊆ �. 
 
 Definition 2.6 Properties of Fuzzy Approximation Space 
[3, 10]: Let � be an arbitrary relation from  �  to �. The lower and upper 
approximation operators of a fuzzy set R and R� satisfies the following properties: for 
all �, � ∈ �(�),   
 

(FL1) �(�) = (�(��))� 

(FU1) �(�) = (�(�� ))� 

(FL2) �(� �) = �(�) �(�) 

(FU2) �(� �) = �(�) �(�) 

(FL3) � ≤ � ⇒ �(�) ≤ �(�) 

(FU3) � ≤ � ⇒ �(�) ≤ �(�) 

(FL4) �(� �) =  �(�) �(�) 

(FU4) �(� �) = �(�) �(�) 

 Definition 2.7 [7]:  Let � be a non-empty finite set, � be an equivalence 

relation on X, � ≤ � be a fuzzy subset and ��(�) = � 1�, 0�, �(�), �(�), ��(�)�. 
Then by property (2.6), ��(�) atisfies the following axioms  
 

i. 0�, 1� ∈ �(�)(�) where 0�: � → � denotes the null fuzzy sets and 1�: � → � 
denotes the whole fuzzy set. 

 
ii. Arbitrary union of members of  �(�)(�) is a member of �(�)(�) . 

 
iii. Finite intersection of members of �(�)(�) is a member of  �(�)(�). 

 
 That is, �(�)(�) is a topology on � called the Nano fuzzy topology on � with 

respect to �. 
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 We call (�, �(�)(�)) as the Nano fuzzy topological space (NFTS). The 

elements of the Nano fuzzy topological space that is �(�)(�), are called Nano fuzzy 

open sets and elements of [�(�)(�)]� are called Nano fuzzy closed sets. 

 
 Definition 2.8 [7]:  Let (�, �(�)(�)) be a Nano fuzzy topological space with 

respect to � where � ≤ �  and if � ≤ � then the Nano fuzzy interior of � is defined 
as union of all Nano fuzzy open subsets of � and it is denoted by �����(�). That is, 
it is the largest Nano fuzzy open subset contained in �. 
 

Similarly, the Nano fuzzy closure of � is defined as the intersection of all 
Nano fuzzy closed sets containing �. It is denoted by ����(�) and it is the smallest 
Nano fuzzy closed set containing �. 

 
 Definition 2.9 [1]:  Let � be a non-empty finite set, ��  and �� be 
equivalence relations on X, ��, �� ≤ � be fuzzy subsets and 
��,��

(�) = {���
(��), ���

(��)}. Then ��,��
(�)satisfies the following axioms: 

 
1. 0��

, 1��
∈ ���

(��)where 0��
: �� → � denotes the null fuzzy sets and 

1��
: �� → �  denotes the whole fuzzy set and 0��

, 1��
∈ ���

(��) where 

0��
: �� → � denotes the null fuzzy sets and  1��

: �� → � denotes the whole        

fuzzy set. 
 

2.  Arbitrary union of members of ���(��) and ���(��) are in ���(��) and 
���(��) respectively.  

 
3.   Finite intersection of members of ���(��) and ���(��) are in ���(��) and 

���(��) respectively.  
 

 That is, ���(��) and ���(��) are called the Nano fuzzy bitopology ��,��
(�) 

on � with respect to �� ��� ��. We call ��, ��,��
(�)� as the Nano fuzzy 

bitopological space (NFBTS). The elements of the Nano fuzzy bitopological space 
are called Nano fuzzy (1,2)  open sets and elements of [��,��

(�)]� are called Nano 

fuzzy (1,2)   closed sets. 
 

3. Nano fuzzy Closure Spaces 
 
 Definition 3.1: Let � be a non-empty finite set of objects which called the 
universe and � be an equivalence relation defined on � and � be an fuzzy subset of 
�. Then Nano fuzzy closure operator is a function �����: �(�) → �(�) where �(�) 
is the set of all fuzzy subsets of �, such that for all � ≤ � 
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����� = �
��(�) �� � ≤ ��(�)

���(�) �� � ≤ ���(�)

�; �� ������ ��� 0� �� � = 0�

� 

 Where ��’s are elements of �(�) and ���’s are elements of ��(�). Which 
satisfies three conditions: 

1. �����(0�) = 0� 
 
2. � ≤ �����(�) 
 
3. �����(� �) = �����(�) �����(�) 
 

 Hence, (�, �����) is called Nano fuzzy closure space. 
 
 Definition 3.2: The elements of Nano fuzzy closure space are called Nano 
fuzzy open sets in Nano fuzzy closure spaces. The complement of Nano fuzzy open 
sets is called Nano fuzzy closed sets with respect to the Nano fuzzy closure space. 
 
 Definition 3.3: A fuzzy subset � of a Nano fuzzy closure space (�, �����) 

is called Nano fuzzy closed if ������(�)� = �. 
 
 The complement of Nano fuzzy closed set is called Nano fuzzy open. 
 
4. Nano fuzzy Bi-closure Spaces 
 
 Definition 4.1: Let � be a non-empty finite set of objects which is called the 
universe and �� and �� be two equivalence relations on � and � be any fuzzy subset 
of �. Then Nano fuzzy closure operator is a function: ������

: �(�) → �(�), where 

� = {1,2}, and �(�) is the set of all fuzzy subsets of �, such that for all � ≤ � 
 

����� = �
��(�) �� � ≤ ��(�)

���(�) �� � ≤ ���(�)

�; �� ������ ��� 0� �� � = 0�

� 

 

 Where ��’s are elements of �(�) and ���’s are elements of ��(�). Which 
satisfies three conditions: 
 
 1. ������

(0�) = 0�  and   ������
(0�) = 0� 

 
 2. � ≤ ������

(�)  and  � ≤ ������
(�) 
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 3. ������
(� �) = ������

(�) ������
(�)  

and 
     ������

(� �) =  ������
(�) ������

(�) 

 
 That is there are two fuzzy closure spaces (�, ������

)  and  (�, ������
). 

 
 Hence, (�, ������

, ������
) is called Nano fuzzy biclosure space. 

 
 Definition 4.2: The elements of Nano fuzzy biclosure space are called Nano 
fuzzy open sets in Nano fuzzy bi-closure spaces. The complement of Nano fuzzy 
open sets is called Nano fuzzy closed sets with respect to the Nano fuzzy biclosure 
space. 
 
 Definition 4.3: Let (�, ������

, ������
) be a Nano fuzzy biclosure space. A 

Nano fuzzy biclosure space (�, ������
, ������

) is called a Nano fuzzy biclosure 

subspace of (�, ������
, ������

)  if � ⊆ �  and ������
= ������

� for each 

� = {1,2}, � = {3,4} and each fuzzy subset � ≤ �. 
 
 Remark 4.4: 1. Nano fuzzy open sets of Nano fuzzy bi-closure space are 
open in both Nano fuzzy closure spaces. 
 
 2. A fuzzy subset � of a Nano fuzzy bi-closure space (�, ������

, ������
) is 

called Nano fuzzy closed if  ������
�������

(�)� = �. 

 
 The complement of Nano fuzzy closed set is called Nano fuzzy open. 
 
 3. � is a Nano fuzzy closed subset of Nano fuzzy biclosure space 
(�, ������

, ������
) if and only if � is Nano fuzzy closed subset of both 

(�, ������
) and (�, ������

). 

 
 4. Let � be a Nano fuzzy closed subset of a Nano fuzzy biclosure space 
(�, ������

, ������
) 

 
 The following conditions are equivalent. 
 

 1. ������
�������

(�)� = � 

 
 2. ������

(�) = �, ������
(�) = � 
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 Remark 4.5: Let � be a fuzzy subset of a Nano fuzzy biclosure space 
(�, ������

, ������
). If � is a Nano fuzzy open set in (�, ������

, ������
), then 

 

������
�������

(1� �)� = ������
�������

(1� �)� 

 
 Proposition 4.6: Let (�, ������

, ������
) be a Nano fuzzy biclosure space 

and let � ≤ �. Then 
 

1. � is Nano fuzzy open if and only if  � = 1� �������
�������

(1� �)�� 

 

2. If � is Nano fuzzy open and � ≤ �, then � ≤ 1� �������
�������

(1� �)��. 

 
 Proof: 1. Let (�, ������

, ������
) be a Nano fuzzy biclosure space and let 

� ≤ � and � is Nano fuzzy open then 1� � is Nano fuzzy closed in Nano fuzzy 

biclosure space. So, by definition, ������
�������

(1� �)� = 1� �. This 

implies that � = 1� �������
�������

(1� �)��. 

 
 2. By part (1) obvious. 
 
 Proposition 4.7: Let (�, ������

, ������
) is a Nano fuzzy biclosure space. 

If � and � are two Nano fuzzy closed subsets of (�, ������
, ������

). Then � � is 

also Nano fuzzy closed in (�, ������
, ������

). 

 
 Proposition 4.8: Let (�, ������

, ������
) is a Nano fuzzy biclosure space. 

If � and � are two Nano fuzzy closed subsets of (�, ������
, ������

) then � � is 

Nano fuzzy closed if  ������
 and ������

 are disjoint. 

 
 Proof: Let � and � are two Nano fuzzy closed subsets of 
(�, ������

, ������
).  

 

 Then ������
�������

(�)� = �  and  ������
�������

(�)� = � 

 Now,  
 

������
�������

(� �)� = ������
�������

��) ������
(�)��

= ������
�������

(�)� ������
�������

(�)� = � � 
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 Therefore � � is Nano closed if ������
 and ������

 are disjoint. 

 
 Proposition 4.9: If (�, ������

, ������
) is a Nano fuzzy biclosure subspace 

of (�, ������
, ������

), then for every Nano fuzzy open subset �   of 

(�, ������
, ������

), � � is an Nano fuzzy open set in (�, ������
, ������

). 

 
 Proof: Let � be a Nano fuzzy open set in (�, ������

, ������
), then by 

property we can say that � is Nano fuzzy open in both ������
  and  ������

. 

 Thus, 
  
������

(� � �) = ������
(� � �) � ≤ ������

(� �) � = (� �) � =

� (� �)  for each � = {1,2}, � = {3,4}. Consequently, � � is Nano fuzzy open in 
both (�, ������

)  and (�, ������
). Therefore, � � is Nano fuzzy open in 

(�, ������
, ������

). 

 
 Proposition 4.10: Let (�, ������

, ������
) be a Nano fuzzy biclosure space 

and let (�, ������
, ������

)  be a Nano fuzzy biclosure subspace of 

(�, ������
, ������

). If � is a Nano fuzzy closed subset of (�, ������
, ������

), 

then � is also a Nano fuzzy closed subset of (�, ������
, ������

). 

 
 Proof: Let � be a Nano fuzzy closed subset of (�, ������

, ������
). Then 

������
(�) = �  and ������

(�) = �. Since � is Nano fuzzy closed subset of both 

(�, ������
)  and  (�, ������

). 

 
 Consequently, � is a Nano fuzzy closed subset of both (�, ������

) and 

(�, ������
). Therefore, � is a Nano fuzzy closed subset of (�, ������

, ������
). 
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A COMPARATIVE ANALYSIS OF SELJE 
TOPOLOGICAL SPACE WITH OTHER 
TOPOLOGICAL SPACES 
 

 
 
 
 
 
 

Abstract: In recent years, numerous topologies have emerged, including the 
newly discovered Selje topology, which builds on micro and nano 
topologies.  This paper offers a comparative analysis of Selje topology, 
emphasizing its real-world applications, particularly in analyzing dynamic 
systems such as climate change. The fundamental principles that link Selje, 
Micro and Nano topologies are discussed. The analysis demonstrates that 
Selje topology provides a more refined and flexible framework, allowing for 
greater precision in understanding complex, multifactorial systems. Key 
findings highlight Selje’s ability to handle intricate interdependencies and 
scalability challenges more effectively than nano and micro topologies, 
making it especially valuable for studying large datasets and highly 
interconnected systems. 
 
Keywords: Selje Topological Space, Micro Topology, Nano Topology, 

Scalability, Precision, Inclusion. 
 
Mathematics Subject Classification: 54A05, 54B05. 

 
1. Introduction 
 

Topology, a branch of mathematics focused on studying properties of space that 
remain invariant under continuous deformations, has evolved significantly with the 
development of specialized topological structures. These structures have become 
essential in analyzing complex, multifactorial systems across diverse fields, such as 
engineering, medical sciences and, more recently, climate change analysis. Among 
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the notable advancements in topological spaces are nano topology, micro topology 
and the newly introduced Selje topology. Each of these topologies offers unique 
frameworks for examining spatial relationships, continuity and the interaction of 
critical variables within complex systems. 

 

 Nano topology [12] introduced by Lellis Thivagar in 2013, relies on lower 
and upper approximations, providing a binary classification system that identifies 
whether elements belong to a critical or non-critical set. This straightforward 
structure excels in isolating key spatial elements in relatively simple systems. 
However, nano topology struggles with more complex and interdependent systems, 
as it cannot fully capture the wide range of possible relationships between elements. 
This limitation becomes especially pronounced in systems where variables interact 
dynamically and change over time. 

 
 To overcome these limitations, micro topology [10] was developed by 
Sakkraiveeranan in 2019. Micro topology builds on the framework of nano topology 
by incorporating Levine’s generalized closed sets, which allow for more flexible and 
detailed approximations. This extension provides a deeper exploration of open and 
closed sets, making micro topology better suited for dynamic systems with greater 
complexity. While this approach offers a more refined understanding of spatial 
relationships, it still encounters difficulties when handling highly multifactorial 
systems with overlapping interdependent variables. 
 

 In 2023, Selje topology [5] introduced by Jeyanthi and Selva Nandhini, 
emerged as a further refinement of nano and micro topologies. It was developed to 
address the challenges posed by complex systems where multiple variables interact in 
intricate ways. Selje topology builds on the strengths of its predecessors, 
incorporating Selje-open and Selje-closed sets that provide even finer approximations 
of spatial elements. This enhanced framework allows for better handling of set 
intersections and scalability, making it particularly effective in studying systems that 
involve intricate dependencies and relationships among multiple variables. 

 
 While climate change analysis represents a key application of Selje topology, 

its usefulness extends beyond this field. The topology’s ability to manage 
multifactorial systems makes it suitable for other domains as well, including 
biological systems where gene interactions and cellular processes are interdependent. 
Similarly, in network analysis, Selje topology can provide insights into the intricate 
relationships within social or communication networks, where multiple layers of 
connection and influence must be considered. By offering a more refined and 
adaptable approach to spatial relationships, Selje topology demonstrates significant 
potential for analyzing dynamic, interconnected systems across various disciplines. 
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 This paper presents a comparative analysis of nano, micro and Selje 
topologies, focusing on their respective strengths and limitations in addressing the 
complexities of climate change. By examining the foundational theorems of each 
topology and applying them to climate change impact analysis, this study aims to 
show how Selje topology offers a deeper, more flexible understanding of 
multifactorial processes. The analysis highlights the critical role of topological 
methods in detecting and analyzing the intricate patterns and relationships that define 
dynamic systems, emphasizing the practical utility of these frameworks in 
contemporary scientific research. 
 

Preliminaries 
 

 Definition 2.1: Let V  denote a non-empty finite set of objects referred 

to as the universe and let  represent an equivalence relation on V  known as 

the indiscernibility relation. Elements within the same equivalence class are 

considered indiscernible from each other. This pair, denoted as ( ),V , 

constitutes the approximation space. 

 

 Let E be a subset of V . 

 

1.  The lower approximation of E  with respect to  , denoted as ( ) E , 

consists of all objects that can definitively be classified as belonging  

to E   under the influence of  . In mathematical terms, 

(( ) { }( ) : )      E E  where   signifies the equivalence class 

determined by E . 

 

2. The upper approximation of E  with respect to  , denoted as ( ) E , 

comprises all objects that could potentially be classified as E  under the 

influence of  . Mathematically, }( ) : (( )) {      E E    

 

3. The boundary region of E   with respect to  , denoted as ( ) E , 

includes all objects that cannot be definitively classified as either 

belonging to E  or not belonging to E  under the influence of  . In 

mathematical terms, ( ) ( )   ( )     E E E   
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 Definition 2.2: Let V   represent the universe,an equivalence relation 

on V   denote    and ( ) { ( ) ( ), , (, , )}T       EE E E E , where E V . 

Under these conditions, ( )   Proceeding with the given postulates: 

 

 1.   and V  belong to ( ) E . 

 

 2. Any subset of the union of elements ( ) E  remains within ( ) E . 

 

 3. Any finite subset of the intersection of elements ( ) E  is contained 

in ( ) E . In other words, ( ) E  forms a topology on V  known as the nano 

topology on V concerning E . ( ), ( )V E  constitutes the nano topological 

space. The sets within ( ) E   are denoted as nano open sets and the dual 

nano topology of [ ( )] E  is represented by [ ]( ) c
 E . 

 

In this context, ( )T E  is termed the Nano Topology [5] of the universal 

set V  with respect to the subset E . The pair ( ( )), V T E  constitutes a nano 

topological space and its constituent elements are referred to as nano-open 

sets. 

 

 Definition 2.3: ( ( )), V T E  creates a nanotopological space. In this 

case, the set ( )Y E  consists of two groups, namely

{ ( ) ( )}: ,' 'N N Y N N T E   . The combination ( )T E  is expressed as the  

microtopology Y ; where Y is not nanotopology elements of ( )T E . 

 

 Definition 2.4:  Micro Topology ( )Y E adheres to the following 

postulates: 

 

1.  Both the universal set ( )E  and the empty set   are elements of 

( ).µ E  

 

2.   Any subset of the union of elements of ( )µ E  remains within ( )µ E . 
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3.  Any finite subset of the intersection of elements of ( )µ E is contained 

within ( )µ E . Thus, the Micro topology ( )µ E  is defined as 

( )} ) { ( 'µ µ NE N   for N  and ( )' µN E , where ( )µ T E .  

This constitutes the Micro topology on the set V  concerning E . 

 

 The trio ), ,(  ( ) ( )µ V T E E  is denoted as the Micro topological space 

and the elements of ( )µ E are known as Mic-open sets. Moreover, the 

complement of a Mic-open set is defined as a Mic-closed set. 

 

 Next, ( )Y E is called the microtopology of E   and V . Triple 

( ( ) ( )), , E T E Y E called micro-topological space. Elements in ( )Y E  are 

slightly open and their complements are slightly  off. 

 

 Definition 2.5: Consider the microtopological space ( ( )), V Y E  and 

Selje topology be defined as )(( ) {(  ) () :'SJ S S J S    E Y EJ  and for 

fixed ( ) }, ,' 'J J  Y E VJ J  

 

 Definition 2.6: The Selje topology ( )SJ E satisfies the following axioms 

 

1. Both the universal set V  and the empty set   are elements of ( )T E . 

 

2.  Any subset of the union of elements from ( )SJ E  remains within 

( )SJ E . 

 

3.  Any finite subset of the intersection of elements within ( )SJ E  is 

contained within ( )SJ E . 

 

 The triplet ), ,( ( ) ( )SJ E Y E E is labeled as Selje topological space. 

Then, the components of Selje topology are Selje-Open (S J -Open) sets and 
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their complements are Selje-closed (S J -closed) sets. The collection of Selje 

closed sets of Selje topology is denoted as ( )S EJCL . 

 

3.  Theoretical Foundations and Comparative Analysis of Nano, Micro and Selje              
Topologies 

 
 The theorems compare nano, micro and Selje Topological Spaces, showing 
that Selje Topology offers finer approximations, better scalability for complex 
systems and generalizes the other two. They demonstrate why Selje Topological 
Space is superior for handling complex, multifactorial applications with improved 
precision and flexibility. 

 
 Theorem 3.1 establishes a hierarchical relationship between nano, micro and 
Selje Topological Spaces, showing that Selje topological space provides the most 
refined approximations, followed by micro and nano topologies. The inclusions 
between closures and interiors reflect the increasing precision of each space. 
 

 Theorem 3.1: Inclusion in Nano, Micro and Selje Topologies: Let X U  

be a subset in the universe U. The relationships between the approximations in 

nano, micro and Selje topologies are given by: 

 

   ( ) ( ) ( )R RL X Mic cl X SJ cl X     

and    

   int( ) int( ) ( )R RSJ X Mic X U X     

 

where ( )LR X  and ( )UR X  are the lower and upper approximations in nano 

topology, ( )Mic cl X  and int( )Mic X  are the micro closure and interior in 

micro topology and ( )SJ cl X and int( )SJ X  are the Selje closure and 

interior, respectively. 

  

 Proof:  In nano topology, ( ) ( )L X X U X   . 
 

 In micro topology, ( ) ( )L Mic cX Xl   and  int( ) ( )Mic X UR X  . 
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 In Selje topology,  ( ) ( )Mic cl X SJ cl X    

and
    

int( ) int( )SJ X Mic X  .   

 Thus, the theorem follows.                                                          

 

 Lemma 3.2 states that if a function is continuous in nano topology, it will 
also be continuous in both micro and Selje topologies. This is because micro and 
Selje topologies generalize the structures of nano topology, preserving the continuity 
of functions across these spaces. 

 

 Lemma 3.2 Preservation of Continuity in Micro and Selje Topologies: If  

:f U V  is continuous in nano topology, then f is continuous in both micro 

and Selje topological spaces. 

 

 Proof: In nano topology, 1 )( ) (Rf V' U   for any nano-open set V' V . In 

micro topology, since micro-open sets are unions or intersections of nano-open sets,
1( ) ( )Rf W' µ U  . Similarly, in Selje topology, 1( ) ( )Rf S' SJ U  . Hence, f is 

continuous in both micro and Selje topologies.                                                           

 

 Theorem 3.3 demonstrates that Selje Topological Space scales better than 
nano and micro topologies. As system complexity increases, Selje retains higher 
precision in approximating sets, making it ideal for complex systems. 

 
 Scalability here refers to how well the different topologies handle an increase 
in system complexity. As the complexity of the dataset (e.g., the number of variables, 
the amount of data) increases, the precision of approximations made by each 
topology changes. 
 

 Theorem 3.3 Scalability of Approximations: For any subset A U , we 

have: 

( )
lim ( ( )) ( ( )) ( ( ))R R

complexity A
precision SJ cl A precision Mic cl A precision L A


      

 

 Proof: 1. In nano topology, precision
| ( ) |

( ( ))
| |
R

R
L A

L A
A

  tends to 0 as

| .| A     
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2. In micro topology, precision
| ( ) |

( ( ))
| |

Mic cl A
Mic cl A

A


   , which is more precise 

than in nano topology. 
    

3. In Selje topology, precision 
| ( ) |

( ( ))
| |

 
RSJ cl A

SJ cl A
A


  , which remains precise 

even as complexity increases.           

 

Theorem 3.4 shows that the intersection of Selje-open sets provides a finer 
approximation than nano-open or micro-open sets. Selje Topology captures more 
intricate relationships, making it more powerful for handling complex data. 

 

 Theorem 3.4 Finer Set Operations in Selje Topology: For any subsets 

,A B U , the intersection of Selje-open sets provides a finer approximation 

than the intersection of micro-open or nano-open sets: 

 

( ) ( ) ( )R RSJ int A B Mic int A B L A B       

 

 Proof: 1. In nano topology, |( ) { }( ) ( )R R RL A B x U x L A L B    .  

2. In micro topology, ) { | ( ) ( )}(Mic int A B x U x Mic int Mic intA B        . 

3. In Selje topology, { | ( ) ( )}( )R R RSJ int A B x U x SJ int SJ inA Bt       , 

thus, providing a finer approximation.                                 

 

The below corollary states that Selje Topological Space generalizes both nano 
and micro topologies, but not all Selje-open sets are nano-open or micro-open, 
offering a broader and more flexible structure. 

 

 Corollary: (Generalization of Nano and Micro Topologies). Selje 

Topological Space generalizes both nano and micro topologies. Every nano-

open and micro-open set is a Selje-open set, but not every Selje-open set is 

nano-open or micro-open. 

 

 Proof: By the definition of Selje Topology, ( ) ( ) ( )R R RU µ U SJ U   , 
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meaning all nano-open and micro-open sets belong to the Selje Topology. However, 
Selje-open sets can contain additional elements that nano and micro topologies 

cannot capture.                                                

 
4. Topological Analysis of Climate Change Impact: A Comparative Study Using 
Nano, Micro and Selje Topologies 

 
 This application focuses on differentiating three topological spaces-nano 
topology, micro topology and Selje Topology-through the lens of climate change 
impact analysis. Climate change, a multifactorial process, affects various sectors like 
agriculture, health and the economy, with factors such as temperature rise, rainfall 
patterns and sea level rise influencing different regions in diverse ways. 
 
 By modeling these factors within each topological space, we aim to identify 
which regions and sectors are most affected. The process involves analyzing key 
climate-related variables, applying each topological method to assess their 
significance and comparing the results to determine how each topology captures 
critical factors. The comparison highlights the strengths of each topology, with 
special focus on how Selje Topology refines the relationships between variables, 
offering a more detailed and precise analysis compared to nano and micro topologies. 
In the end, the betterment of each topological space is analyzed, showing how they 
differ in precision, scalability and flexibility in identifying the most impactful factors 
of climate change on different regions. 
 
 4.1 Methodology for Topological Analysis of Climate Change Impact: 
The following structured steps outline the methodology used for applying nano, 
micro and Selje topologies to analyze climate change impacts: 

  

• Data Preparation: Collected and standardized climate data, focusing on critical 
factors such as temperature rise, rainfall patterns, sea level rise, greenhouse gas 
emissions, deforestation and other socio-economic variables across various regions 
and sectors. This data was organized to ensure consistency and comparability across 
different regions. 
 

• Topological Space Application: Applied nano, micro and Selje Topological 
Spaces to the climate data to assess the relationships between the key factors. The 
topologies were used to study how these factors interact and influence one another in 
various regions, allowing for the identification of underlying patterns in the data. 
Special attention was paid to how the different topological spaces handle these 
relationships, particularly their set approximations and scalability. 
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• Critical Factor Identification: Determined the most significant climate-related 
factors for each region by analyzing the topological spaces. The analysis focused on 
identifying which variables-such as temperature rise, rainfall variability, or 
deforestation-had the greatest impact on environmental, economic and health 
outcomes in specific regions. 
 

• Visualization and Analysis: Generated diagrams, tables and comparative metrics 
to visualize the relationships between climate factors and the regions they affect. 
These visualizations highlight the differences in performance between nano, micro 
and Selje topologies. (Add visual aids such as graphs comparing factor influence 
across regions for each topology to show how Selje provides deeper insights.) 
 

• Comparison of Topologies: Compared the efficiency and flexibility of nano, 
micro and Selje Topologies in analyzing the climate change impact. This comparison 
focused on determining which topology provided the most accurate and scalable 
analysis for multi- factorial climate systems. Results showed that while all three 
topologies identified key variables, Selje topology allowed for more detailed insights 
into variable interactions, offering superior scalability and precision in the analysis of 
complex datasets. 
 
 4.2 Topological Analysis of Climate Change Impact: The table below 
presents the data collected for climate change impact analysis. This data is then 
processed to compare the performance of nano, micro and Selje Topological Spaces. 
  

Region Temp- 
rature 
(Te) 

 Rainfall 
(Ra) 

Sea 
Level 
(Sl) 

GHG 
Emis- 
sions 

(GHG) 

Defores-      
tation(D) 

Agri. 
Prod. 
(Ap) 

Health 
Impacts 

(Hi) 

Eco- 
nomic 
Costs 
(Ec) 

Impact 
Rate(Ir) 

  Coastal 
  Regions 

(Cr) 

  
 

  
 

  
 

Medium 

Agri 
cultural 
Lands 
(Al) 

 

 

  

 

 

 

    

 

 
Medium 

Forested 
Areas 
(Fa) 

     
 

  
 

High 

Urban 
Areas 
(Ua) 

     
 

  
 

High 
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Region Temp- 
rature 
(Te) 

 Rainfall 
(Ra) 

Sea 
Level 
(Sl) 

GHG 
Emis- 
sions 

Defores-      
tation(D) 

Agri. 
Prod. 
(Ap) 

Health 
Impacts 

(Hi) 

Eco- 
nomic 
Costs 

Impact 
Rate(Ir) 

Island 
    Nations 

(In) 

 
 

   
  

 
 

Medium 

River 
Basins 

(Rb) 

    
  

  
 

High 

Energy 
Sector 

(Es) 

     
 

 
  

High 

Fisheries 
(Fs) 

        High 

Tourism 
Indus- 
try (Ti) 

 

 

  

 

 

 

 

 

  

 

  
High 

Health 
care Sys-

tems 
(Hs) 

 

 

 

 

 

 

   

 

 

 

 

 

 
 

Medium 

 
Table 1: Impact of Climate Change on Various Regions and Sectors 

 
 Let the set of region be E = {Cr,Al,F,Ua,In,Rb,Es,Fs,Ti,Hs} 

 and  
              G = {Te,Ra,Sl,GHG,De,Ap,Hi,Ec,Ir}.  

 
 It splits into two cases where  
 

H = {Te,Ra,Sl,GHG,De,Ap,Hi,Ec} and I = {Ir} 

 

 The group of Equivalence types V/H corresponding to H is given by 

 
V/H = {{Cr},{Al,In},{Ua},{Fa,Rb,Es},{Ti},{Fs,Hs}}, 

 
                E = {Fa,Ua,Rb,Es,Fs,Ti} 

 
 Case 1: When Impact level is High 
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T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fs,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},{Al,Fs,Hs}, 

   {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs}} 

 

SJH(E) =  {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs},     

               {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Ti}, 
      {Cr,Al,Fa,In,Es,Ti},{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti}, 
               {Al,Ua,In},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
               {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs}, 
               {Al,Fs,Hs},{Cr,Al,Fa,In,Es,Fs,Hs},{Al,Fa,Es,Fs,Ti,Hs}, 
               {Ua,Rb,Fs,Hs},{Cr,Fa,Ua,In,Rb,Es,Ti,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs}} 

 

 Phase I: Te is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es},{Al,Fa,Ua,In,Rb,Es,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs}} 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es},{Al,Fa,Ua,Rb,Es}, 

   {Al,Fa,Ua,In,Rb,Es,Fs,Ti,Hs}} 
 

SJH(E) = {,V,{Al},{Al,Fa,Es},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},{Ua,Rb}, 

              {Fa,Ua,Rb,Es},{Fa,Ua,Rb,Es,Ti},{Cr,Fa,Ua,In,Rb,Es,Ti},{Al,Ua,Rb}, 
              {Al,Fa,Ua,Rb,Es},{Fa,Es},{Fa,Es,Ti},{Cr,Fa,In,Es,Ti}, 
     {Al,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},  
     {Fa,Es},{Fa,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Cr,Al,Fa,Ua,In,Rb,Es,Ti}} 

 

 Phase II: Ra is removed 
 

T(E) = {,V, {Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 

 

µ(E) = {,V,{Al},}Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

   {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

              {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},   
              {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
              {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
              {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
              {Cr,Al,Fa,In,Es,Fs,Ti,Hs} 



       A COMPARATIVE ANALYSIS OF SELJE TOPOLOGICAL SPACE  53 

 Phase III: Sl is removed 
 

T(E) =  {,V, {Fa,Rb,Es,Ti},{Cr,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs}} 

 

µ(E) = {,V, {Al},{Fa,Rb,Es,Ti},{Al,Fa,Rb,Es,Ti},{Cr,Fa,Ua,Rb,Es,Fs,Ti,Hs}, 

            {Cr,Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs},{Cr,Al,Ua,Fs,Hs}} 
 

SJH(E) = {,V,{Al},{Al,Fa},{Al,Fa,Es,Ti},{Cr,Al,Fa,Es,Ti},{Cr,Al}, 

               {Cr,Al,Fa,In,Es,Ti},{Rb},{Fa,Rb},{Fa,Rb,Es,Ti},{Cr,Fa,Rb,Es,Ti},                                 
       {Al,Rb},{Al,Fa,Rb},{Al,Fa,Rb,Es,Ti},{Cr,Al,Fa,Rb,Es,Ti}, 
               {Cr,Al,Rb},{Cr,Al,Fa,In,Rb,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 
     {Al,Fa,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs}, 
     {Cr,Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Ua,Fs,Hs},{Fa,Ua,Fs,Hs}, 
     {Fa,Ua,Es,Fs,Hs},{Cr,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs}, 
     {Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Al,Ua,Fs,Hs}{Al,Fa,Ua,Fs,Hs} 
     {Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Ua,Fs,Hs}, 
     {Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs},{Fa},{Fa,Es,Ti},{Cr,Fa,Es,Ti},{Cr}, 
     {Cr,Fa,In,Es,Ti},{Cr,Al,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs}} 

 
 Phase IV: GHG is removed 

T(E) = {,V,{Fa,Rb,Es,Ti},{Fa,Ua,In,Rb,Es,Fs,Ti,Hs},{Fa,Ua,Rb,Fs,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Rb,Es,Ti},{Al,Fa,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs}, 

  {Al,Fa,Rb,Es,Fs,Ti,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Hs}} 
 

SJH(E) = {,V, {Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Fa,Es},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Fa,Ua,Rb,Es,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al}, 
      {Cr,Al,Fa,In,Es,Ti},{Al,Fa,Es,Ti},{Al,Fa,Es},{Rb},{Cr,Fa,In,Rb,Es,Ti}, 
     {Fa,Rb,Es,Ti},{Fa,Rb,Es},{Al,Rb},{Cr,Al,Fa,In,Rb,Es,Ti},           
      {Al,Fa,Rb,Es,Ti},{Al,Fa,Rb,Es},{Ua,Rb,Fs,Hs},                      
      {Cr,Al,Fa,In,Rb,Es,Fs,Ti,Hs},{Al,Fa,Rb,Es,Fs,Ti,Hs}, 
      {Al,Fa,Rb,Es,Fs,Hs}} 
 
 Phase V: De is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 
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µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

  {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti}, 
     {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
     {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
     {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
     {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 Phase VI: Ap is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 

 

µ(E) ={,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

 {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 

 

SJH(E) = {,V, {Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

      {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},  
      {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
     {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
        {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
      {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 

 

 Phase VII: Hi is removed 

T(E) = {,V,{Fa,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Ua,Fs,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Rb,Es,Ti},{Al,Fa,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs}, 

    {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Ua,Fs,Hs},{Al,Ua,Fs,Hs}} 
 

SJH(E) = {,V,{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},{Rb},{Fa,Rb,Es,Ti}, 

     {Cr,Fa,In,Rb,Es,Ti},{Al,Rb},{Al,Fa,Rb,Es,Ti},Cr,Al,Fa,Ua,In,Rb,Es,Ti}, 
     {Ua,Rb,Fs,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Cr,Fa,Ua,In,Rb,Es,Fs,Ti,Hs},     
     {Al,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs}, 
     {Fa,Es,Ti},{Cr,Fa,In,Es,Ti}} 
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 Phase VIII: Ec is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},    

  {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti}, 
     {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
     {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
     {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
      {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 Following the aforementioned analysis of CrRase Cr, it has been determined 
that the principal factors affecting climate change impact are Rainfall, Deforestation, 
Algricultural Productivity and Economic Crosts. 
 
 Case 2: When Impact level is Normal 
 

T(E) = {,V,{Cr,Al,In},{Cr,Al,In,Fs,Hs},{Fs,Hs}} 

 

µ(E) = {,V,{Al},{Cr,Al,In},{Cr,Al,In,Fs,Hs},{Fs,Hs},{Al,Fs,Hs}}  

 

SJH(E) = {,V,{Al},{Cr,Al},{Cr,Al,In,Ti},{Cr,Al,Fa,In,Es,Ti},{Al,Fs,Hs}, 

    {Cr,Al,Fs,Hs},{Cr,Al,In,Fs,Ti,Hs},{Cr,Al,Fa,In,Es,Fs,Ti,Hs}, 
    {Fs,Hs},{Cr,Fs,Hs},{Cr,In,Fs,Ti,Hs},{Cr,Fa,In,Es,Fs,Ti,Hs}, 

    {Cr},{Cr,In,Ti},{Cr,Fa,In,Es,Ti},{Al,Ua,Rb,Fs,Hs},          
     {Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Ti,Hs}} 
 
 Phase I: Te is removed 
 

T(E) = {,V,{Cr},{Cr,Al,In,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs} 

 

µ(E) = {,V,{Al},{Cr},{Cr,Al},{Cr,Al,In,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs} 

 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Cr},{Cr,In,Ti},{In,Ti},{Al,Ua,Rb,Fs,Hs}, 



56  V. JEYANTHI, AND N. SELVA NANDHINI 
  

      {Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Ti,Hs},         
       {Al,Ua,In,Rb,Fs,Ti,Hs},{Al},{Cr,Al,Fa,In,Es,Ti},{Cr,Al},{Cr,Al,In,Ti}, 
       {Al,In,Ti},{Al,Fs,Hs} {Cr,Al,Fa,In,Es,Fs,Ti,Hs},{Cr,Al,In,Fs,Ti,Hs}, 
      {Al,In,Fs,Ti,Hs},{Cr,Al,Fs,Hs}} 
 
Phase II: Ra is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

  {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

      {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},   
     {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti}, 
     {Al,Ua,Rb},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 
     {Fs,Hs},{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
     {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 Phase III: Sl is removed 
 

T(E)  = {,V,{Al,In}{Cr,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs}} 

 

µ(E) ={,V,{Al},{Al,In},{Cr,UaFs,Hs},{Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs}} 

 

SJH(E)  = {,V,{Cr,Fa,In,Es,Ti},{Cr},{In},{Cr,In},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Ua,In,Rb,Fs,Hs},{Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Hs},   
      {Al},{Cr,Al,Fa,In,Es,Ti},{Al,In},{Cr,Al},{Cr,Al,In},{Ua,FsHs}, 
     {Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Ua,In,Fs,Hs},{Cr,Ua,Fs,Hs}, 
     {Cr,Ua,In,Fs,Hs},{Al,Ua,Fs,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs}, 
     {Al,Ua,In,Fs,Hs},{Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs}} 
 
 Phase IV: GHG is removed 
 

T(E) = {,V,{Cr,Al,In},{Fa,Rb,Es,Fs,Hs},{Cr,Al,Fa,In,Rb,Es,Fs,Ti,Hs}} 

 

µ(E) = {,V,{Al},{Cr,Al,In},{Fa,Rb,Es,Fs,Hs},{Al,Fa,Rb,Es,Fs,Hs}, 

   {Cr,Al,Fa,In,Rb,Es,Fs,Hs}} 
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SJH(E) =  {,V,{Al},{Cr,Al,In},{Al,Fa,Es},{Al,Fa,In,Es},{Cr,Al,Fa,In,Es,Ti},       

      {Rb,Fs,Hs},{Cr,In,Rb,Fs,Hs},{Fa,Rb,Es,Fs,Hs},{Fa,In,Rb,Fs,Hs}, 
     {Cr,Fa,In,Rb,Es,Fs,Ti,Hs},{Al,Rb,Fs,Hs},{Cr,Al,In,Rb,Fs,Ti,Hs}, 
     {Al,Fa,Rb,Es,Fs,Hs},{Al,Fa,In,Rb,Es,Fs,Hs}, 
     {Cr,Al,Fa,In,Rb,Es,Fs,Ti,Hs},{Cr,In},{Fa,In},{Fa,In,Ti}, 
     {Cr,Fa,In,Es,Ti},{Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,Fs,Rb,Fs,Hs}, 
     {Al,Fa,Rb,Es,Fs,Hs},{Al,Fa,In,Rb,Es,Fs,Hs}} 
 
 Phase V: De is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs}, 

  {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti}, 
    {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
    {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
    {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
    {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 Phase VI: Ap is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

              {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

     {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},  
     {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti}, 
     {Al,Ua,Rb},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
     {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
      {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 Phase VII: Hi is removed 
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T(E)  = {,V,{Cr,Al,In},{Cr,Al,Ua,In,Fs,Hs},{Ua,Fs,Hs}} 

 

µ(E) ={,V,{Al},{Cr,Al,In},{Cr,Al,Ua,In,Fs,Hs},{Ua,Fs,Hs},{Al,Ua,Fs,Hs}} 

 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Cr},{Cr,In},{Al,Ua,Rb,Fs,Hs}, 

     {Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Hs},{Al},{Cr,Al,Fa,In,Es,Ti}, 
     {Cr,Al},{Cr,Al,In},{Al,Ua,Fs,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs}, 
     {Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs}, 
     {Ua,Fs,Hs},{Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs}, 
     {Cr,Ua,In,Fs,Hs}} 
 
 Phase VIII: Ec is removed 
 

T(E) = {,V,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}} 

 

µ(E) = {,V,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti}, 

              {Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}} 
 

SJH(E) = {,V,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs}, 

    {Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},   
    {Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb}, 
    {Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs}, 
    {Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs}, 
     {Cr,Al,Fa,In,Es,Fs,Ti,Hs}} 
 
 From both Case 1 and Case 2, it is clear that Rainfall, Deforestation, 
Agricultural Productivity and Economic Costs play a crucial role in driving climate 
change outcomes. 
 

 Visualization and Analysis 
 
 To provide a clear comparison of the performance of nano, micro and Selje 
topologies in identifying critical climate factors, a heat map was generated (see 
Figure 1). This visual repre- sentation compares the ability of each topology to detect 
key factors, such as temperature rise, rainfall variability and deforestation, across 
various regions including Coastal, Agricultural, Urban, Forested and Island regions. 
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Figure 1: Heat Map of Topology Performance by Region

 
The heat map shows the performance score of each 

representing better performance in terms of accurately identifying impactful factors.  
As seen in the heat map, the Selje topology consistently demonstrates superior 
performance across all regions, particularly in complex envir
forested areas, where multifactorial dependencies are prevalent.
 
5. Results and Discussion
 
 Comparison of Nano, Micro and Selje Topological   Spaces

 In this analysis, nano topology, micro topology and Selje topology were 
applied to climate change impact factors to assess their efficiency in identifying 
critical variables. While all three topologies consistently identified Rainfall, 
Deforestation, Agricultural Productivity and Economic Costs as major factors, the 
depth of analysis, precision and flexibility differed significantly across the topologies.

 
Nano Topology 
 
 Strengths: Nano topology provides a simple binary classification of critical 
climate factors, making it effective for identifying whether a factor is part of a 
set. 
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Heat Map of Topology Performance by Region 

The heat map shows the performance score of each topology, with darker shades 
representing better performance in terms of accurately identifying impactful factors.  
As seen in the heat map, the Selje topology consistently demonstrates superior 
performance across all regions, particularly in complex environments like urban and 
forested areas, where multifactorial dependencies are prevalent. 

Results and Discussion 

Comparison of Nano, Micro and Selje Topological   Spaces 

In this analysis, nano topology, micro topology and Selje topology were 
to climate change impact factors to assess their efficiency in identifying 

critical variables. While all three topologies consistently identified Rainfall, 
Deforestation, Agricultural Productivity and Economic Costs as major factors, the 

precision and flexibility differed significantly across the topologies.

Nano topology provides a simple binary classification of critical 
climate factors, making it effective for identifying whether a factor is part of a 
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representing better performance in terms of accurately identifying impactful factors.  
As seen in the heat map, the Selje topology consistently demonstrates superior 

onments like urban and 

In this analysis, nano topology, micro topology and Selje topology were 
to climate change impact factors to assess their efficiency in identifying 

critical variables. While all three topologies consistently identified Rainfall, 
Deforestation, Agricultural Productivity and Economic Costs as major factors, the 

precision and flexibility differed significantly across the topologies. 

Nano topology provides a simple binary classification of critical 
climate factors, making it effective for identifying whether a factor is part of a critical 
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 Weaknesses: Its binary approach cannot capture the complexities of 
dynamic systems, leading to limitations in handling multifactorial relationships, 
scalability and interdependencies. 
 

Micro Topology 
 
 Strengths: Micro topology refines nano topology by introducing micro-open 
and micro closed sets, allowing for more nuanced classifications and adaptable 
relationships between factors. 

 

 Weaknesses: While an improvement, micro topology still struggles with 
highly multifactorial systems, lacking the precision needed to fully address the 
complex, interconnected nature of climate factors. 
 

Selje Topology 
 
 Strengths: Selje topology generalizes both nano and micro topologies, 
providing superior flexibility and precision. It uses Selje-open and Selje-closed sets 
to capture intricate relationships between climate factors, even in dynamic and 
multifactorial systems. 

 

 Theorem 1: Demonstrates finer approximations through better handling of 
closures and interiors. 
 

 Theorem 2: Highlights Selje’s superior scalability, enabling it to handle 
complex systems more effectively. 
 

 Theorem 3: Proves Selje topology’s ability to capture interdependencies 
through finer approximations of set intersections. 
 

 Better Performance: Selje topology offers deeper insights into the 
variability of climate impacts across regions. Unlike nano and micro, which treat 
factors as static, Selje allows for a dynamic understanding of how these factors 
fluctuate under different conditions and regions.  
 

 Weaknesses: The complexity of Selje topology may be unnecessary for 
simpler systems where its precision is not required. 
 

Selje Topology’s Superiority 
 

While all three topologies identified the same major factors, Selje topology 
stands out due to its enhanced precision, scalability and ability to capture complex 
relationships. 
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 Precision in Complex Systems: It handles intricate, multifactorial 
environments like climate change, providing a finer analysis of the interactions 
between key factors.  
 
 Scalability: As demonstrated in Theorem 3.3, Selje topology scales well with 
system complexity, retaining accuracy even as more variables are introduced. 
 
 Handling Nuanced Relationships: Theorem 3.4 shows that Selje topology 
excels in analyzing overlapping and interdependent factors, offering a more detailed 
understanding of cumulative impacts.  
 
 Flexibility: Unlike nano’s rigid binary classification, Selje topology adapts to 
uncertainties and changing conditions, making it more versatile for dynamic systems. 
 
6. Conclusion 

 While nano, micro and Selje topologies all identified the same key climate 
factors, Selje topology offers greater analytical power due to its flexibility, precision 
and scalability. These qualities make it the optimal choice for analyzing complex, 
multifactorial systems like climate change, where relationships between factors are 
dynamic and interdependent. Future research could explore Selje topology’s 
application in other fields, such as optimizing smart grids or analyzing healthcare 
systems, where multifactorial interactions are critical. Its adaptability and precision 
make it well-suited for real-world applications in dynamic environments, providing 
deeper insights and better handling of complex systems. 
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1. Introduction 
 
 The fuzzy [15] set concept was introduced by Zadeh in 1965. Later,  
F. Smarandache introduced the neutrosophic set, which is a mathematical tool 
designed to address problems involving imprecise, indeterminate and inconsistent 
data. Smarandache’s neutrosophic set allows the indeterminacy membership function 
to operate independently from the truth and falsity membership functions. This 
theory has been extensively explored by researchers and has been applied to various 
real-life situations that involve uncertainty. Rajesh Chatterjee pioneered the concept 
of quadripartitioned single-valued neutrosophic sets. Recently, Das [1] and his team 
introduced Quadripartitioned Neutrosophic Topological Spaces by applying topology 
to these quadripartitioned neutrosophic sets. Rama Malik [5] and Surapati Pramanik 
introduced the concept of the pentapartitioned neutrosophic set and its properties. In 
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this set, indeterminacy is divided into three components contradiction, ignorance and 
unknown membership functions. 
 
 In 2021, R. Radha and A. Stanis Arul Mary [7,8] expanded on the concepts 
of pentapartitioned and quadripartitioned neutrosophic sets to develop the 
heptapartitioned neutrosophic set [6]. This advancement brought a new dimension to 
handle complex indeterminate data by introducing a seven-part partitioning system. 
Building on this foundation, V. Jeyanthi and T. Mythili [4] made further strides in 
2023 by introducing heptapartitioned neutrosophic topological spaces. Their work 
applied topological principles to the heptapartitioned neutrosophic sets, enhancing 
their utility in various scientific and mathematical applications. These developments 
mark significant progress in the field, offering more sophisticated tools for dealing 
with uncertainty and indeterminacy. As a result, researchers now have better methods 
to address real-world problems involving complex data. In 1995, F. Smarandache 
[14] introduced Seven Symbol-Valued Neutrosophic Logic. When the elements  

, , ,A R A RT T F F , U, C, and G are considered as subsets of [0, 1], this logic evolves into 

a numerical system with seven distinct values. This system provides the foundation 
for defining the Heptapartitioned Neutrosophic Set and examining its characteristics. 
Each of these symbols corresponds to a specific type of membership: absolute truth, 
relative truth, contradiction, unknown, ignorance, relative falsity, and absolute falsity, 
respectively. 

 
Building on Heptapartitioned Neutrosophic Topological Spaces, the authors have 

extended their research to the Heptapartitioned Neutrosophic Pythagorean Set, 
incorporating it into the framework of topological spaces. This extension allows us to 
explore the properties and implications of this set within the broader context of 
topology. Our work now integrates these concepts, offering new insights into their 
interaction and application in topological settings. 
 
2. Preliminaries 
 
 2.1 Basic Concepts 
 

 Definition 2.1.1:  Let X be a universe. A Neutrosophic set A on X can be 

defined as follows: 
}, ( ), ( ){ , ( ) :A A AA T I F X          

 

 Where , , : [0,1]A A AT I F X   and 0 ( ) ( ) ( ) 3A A AT I F      . 

 

 Here, ( )AT   is the degree of membership, ( )AI   is the degree of 
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indeterminacy, and ( )AF   is the degree of nonmembership. 

 

 Moreover, ( )AT   and ( )AF   are dependent neutrosophic components, while 

( )AI x  is an independent component. 

 

 Definition 2.1.2:  Let X be a universe. A Quadripartitioned Neutrosophic Set 

A with independent neutrosophic components on X is defined as follows: 

 
}, ( ), ( ), ( , ( ) :{ )A A A AA T C U F x X        

 

where , , , : [0,1]A A A AT C U F X   and 0 ( ) ( ) ( ) ( ) 4A A A AT C U F        . 

 

 In this context,  ( )AT   represents the degree of truth membership,  ( )AC   

represents the degree of contradiction membership, ( )AU   represents the degree of 

ignorance membership, and ( )AF   represents the degree of false membership. 

 

 Definition 2.1.3: Let X be a non-empty set. A PNS A over X characterizes 

each element ζ  in  X by a truth-membership function AT , a contradiction 

membership function AC , an ignorance membership function AU , an unknown 

membership function AK , and a falsity membership function AF . These functions 

satisfy the condition: 
 

0 ( ) ( ) ( ) ( ) ( ) 5A A A A AT C K U F           

 
for each X  .  
 

 Definition 2.1.4: Consider R to be a universe. Then G, a HNS over R is 

defined as: 
 

{( ( ) ( ) ( ) ( ) ( )) }, ( ), ( ), , , , , :G G G G G G GG T M C U I K F R        , 
 

where the values ( ) ( ) ( ) ( ) ( )( ), ( ), , , , ,G G G G G G GT M C U I K F      correspond to 

the absolute truth membership, relative truth membership, contradiction membership, 
unknown membership, ignorance membership, relative falsity membership, and 
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absolute falsity membership of  , respectively. Here,   is an element of the set R 

and each membership value belongs to the interval [0, 1]. Thus, 
 

(0 (( ) ( ) ) ( ) ( ) ( ) 7,)G G G G G G GT M C U I K F R                 . 

 

 Definition 2.1.5:  Let X be a universe.  A Heptapartitioned Neutrosophic 

Pythagorean Set G with GT , GM , GC  and GU  as dependent neutrosophic 

components and GI , GK , and GF  as independent components for G on X is an 

object of the form: 
 

{ , , ( ), ( ), ( ), ( ), ( ), ( ) : }( )G G G G G G GG T M C U I K F X             

 

where  ( ) ( ) 1, ( ) ( ) 1G G G GT F M K        , and 

 
2 2 2 2 2 2 2( 3)( ( )) ( ( )) ( ) ( ( )) (( )) ( ( )) ( ( ))G G G G G G GT M C U I K F              

 

 Here, ( )TG   represents the degree of absolute truth membership, ( )GM   

represents the degree of relative truth membership, ( )GC   represents the degree of 

contradiction membership, ( )GU   represents the degree of unknown membership, 

( )GI   represents the degree of ignorance membership, ( )GK   represents the degree 

of relative falsity membership, and ( )GF   represents the degree of absolute false 

membership. 
 
 Definition 2.1.6: A Heptapartitioned Neutrosophic Pythagorean Set (HNPS) 

A is contained in another Heptapartitioned Neutrosophic Pythagorean Set B (denoted 

as A B ) if and only if the following conditions hold for every element 

) ( ): (A BX T T   , ( ) ( )A BM M  , ( ) ( )A BC C  , ( ) ( )A BU U  , 

( ) ( )A BI I  , ( ) ( )A BK K   and ( ) ( )A BF F   

 
 Definition 2.1.7: The complement of a Heptapartitioned Neutrosophic 

Pythagorean Set ( ),F G  on X, denoted by( ), cF G , is defined as: 

 

}( ), ,) (( ) { , , ( ),1 ,( ) ( ( ) ( ) ) :}), , (c
G G G G G G GF A F U I C T M K X             
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 Definition 2.1.8:  Let X be a non-empty set, A and B are two 

Heptapartitioned  Neutrosophic Pythagorean sets. Then 
 

        max( , )[ ( A BA B T T , max( , )A BM M , max( , )A BC C , min( , )A BU U ,    

               min( , )A BI I , min( , )A BK K , ]min( , ) :A BF F X    

 

 min( , )[ ( A BA B T T , min( , )A BM M , min( , )A BC C , max( , )A BU U , 

  max( , )A BI I , max( , )A BK K , ]max( , ) :A BF F X   

  

 Definition 2.1.9: A Heptapartitioned neutrosophic set G is called an absolute 

Heptapartitioned neutrosophic set  if and only if it’s absolute truth-membership, 
relative truth-membership, contradiction-membership, ignorance-membership, 
unknown-membership, absolute falsity-membership, and relative falsity-membership 
are defined as follows: 
 

 ( ) 1GT   , ( ) 1GM   ,  ( ) 1GC   , ( ) 0GU   , ( ) 0GI   , 

 ( ) 0GK   , and  ( ) 0GF     

 
 Definition 2.1.10: A Heptapartitioned neutrosophic set G is called a relative 
Heptapartitioned neutrosophic set  if and only if its absolute truth-membership, 
relative truth-membership, contradiction-membership, ignorance-membership, 
unknown-membership, absolute falsity-membership, and relative falsity-membership 
are defined as follows: 
 

 ( ) 0GT   , ( ) 0GM   , ( ) 0GC   , ( ) 1GU   , ( ) 1GI   ,

 ( ) 1GK   , and ( ) 1GF     

 
3. Heptapartitioned Neutrosophic Pythagorean Topological Spaces 
 
 Definition 3.0.1:  A Heptapartitioned Neutrosophic Pythagorean topology on 

a non-empty set W is a   of Heptapartitioned Neutrosophic Pythagorean sets 

satisfying the following axioms. 
 

 (i) 0 ,1W W   

  
 (ii) The union of the elements of any sub collection of    is in  . 
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 (iii) The intersection of the elements of any finite sub collection   is in 
 . 
 
 The pair ( ),W   is called an Heptapartitioned Neutrosophic Pythagorean 

Topological Space over W. 
 
 Note 3.1:  1. Every member of   is called a HNP open set in W. 
 

 2. The set WA  is called a HNP closed set in W if c
WA  , where 

{ : }c c
W WA A    

 

 Example 3.1: Let 1 2 3{ , , }W c c c  and Let , ,W W WA B C  be 

Heptapartitioned Neutrosophic Pythagorean sets where 

 

1 2  , 0.4, 0.2, 0.5, 0.3, 0.1, 0.6, 0.2 , 0.6, 0.4, 0.3, 0.2, 0.5, 0.7, 0.1{WA c c       

 3, 0.5, 0.3, 0.4, 0 }.1, 0.2, 0.6, 0.3c    

 

1 2  , 0.3, 0.5, 0.2, 0.4, 0.6, 0.2, 0.7 , 0.7, 0.3, 0.5, 0.1, 0.4, 0.6, 0.2{WB c c     

 3, 0.6, 0.2, 0.3, 0.5, 0.1, 0.4, 0.3 }c    

 

1 2  , 0.5, 0.4, 0.6, 0.2, 0.3, 0.7, 0.1 , 0.4, 0.6, 0.5, 0.3, 0.2, 0.1, 0.7{WC c c      

 3, 0.7, 0.5, 0.3, 0 }.6, 0.4, 0.2, 0.1c    

 

 In this example, { , , , 0 ,1 }W W W W WA B C   forms a Heptapartitioned 

Neutrosophic Pythagoreantopology on W. 

 

 Proposition 3.2:  Let 1( , )W   and 2( , )W   be two Heptapartitioned 

Neutrosophic Pythagorean topological space on W, Then 1 2   is an 

Heptapartitioned Neutrosophic Pythagorean topology on W where 

1 2 1 2 {   }:  W W WA A and A       

 

 Obviously 0 , 1W W  .  
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 Let 1 2,W WA B     

 

 Then 1 2,   ,W W W WA B and A B    

 

 We know that 1  and 2  are two Heptapartitioned Neutrosophic 

Pythagorean topological space W. 

 

 Then 1 2       W W W WA B and A B       

 

 Hence, 1 2 W WA B       

 

 Let 1  and 1  are two Heptapartitioned Neutrosophic Pythagorean 

topological spaces on W. 

 

 Denote  1 1 1:  { W W WA B A      and   2 1 1}WA      {  WA 

1 2:      } W W WB A and A   . 

 

 Example 3.3: Let WA  and WB  be two Heptapartitioned Neutrosophic 

Pythagorean topological space on W. 

 

 Define  1 {0 , 1 , }W W WA   

   2 {0 , 1 , }W W WB  

 

 Then 1 2 {0 , 1 }W W   is a Heptapartitioned Neutrosophic 

Pythagorean topological space on W. 

 

 But 1 2 {0 , , , 1 }W W W WA B  ,  1 2 }0 , , ,{ 1 ,W W W W W WA B A B     

and 1 2 }0 , , ,{ 1 ,W W W W W WA B A B     are not Heptapartitioned 

Neutrosophic Pythagorean topological space on W. 
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4. Properties of Heptapartitioned Neutrosophic Pythagorean Topological Spaces 
 
 Definition 4.0.1: Let ( ),W   be a Heptapartitioned Neutrosophic 

Pythagorean topological space on W and let WA  belongs to Heptapartitioned 

Neutrosophic Pythagorean set on W. Then the interior of WA  is denoted as

HNPInt ( )WA . It is defined by HNPInt ( ) { : }W W W WA B A B     

 

 Definition 4.0.2: Let ( ),W  be a Heptapartitioned Neutrosophic Pythagorean 

topological space on W and let WA   belongs to Heptapartitioned Neutrosophic 

Pythagorean set W. Then the clo sure of WA   is denoted as HNPC( )WA . It is 

defined by HNPC( ) { : }c
W W W WA B A B     

 

 Theorem 4.1: Let ( ),W   be a Heptapartitioned Neutrosophic 

Pythagorean topological space over W. Then the following properties are hold. 

 

(i)   0W  and 1W  are Heptapartitioned Neutrosophic Pythagorean closed 

sets over W. 

 

(ii) The intersection of any number of Heptapartitioned Neutrosophic 

Pythagorean closed set is a Heptapartitioned Neutrosophic 

Pythagorean closed set over W. 

 

(iii)  The union of any two Heptapartitioned Neutrosophic Pythagorean 

closed set is an Heptapartitioned Neutrosophic Pythagorean closed 

set over W. 

 

 Proof:  It is obviously true.          

 

 Theorem 4.2:  Let ( ),W   be a Heptapartitioned Neutrosophic 

Pythagorean topological space over W and Let WA   Heptapartitioned 

Neutrosophic Pythagorean topological space. Then the following properties 

hold. 
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(i)  Int( )W WHNP A A  

 

(ii)   W WA B  implies Int( ) Int( )W WHNP A HNP B . 

 

(iii)  Int( )WHNP A  . 

 

(iv)  WA  is a HNP open set implies Int ( )W WA AHNP . 

 

(v)  Int( Int     Int( )( )) WHNP HNP AW HNP A   

 

(vi)  Int(0 ) 0 ,   In 1 1)t(W W W WHNP HNP  . 

 
 Proof:  (i) and (ii) are obviously true. 
 

 (iii) obviously :{   }W W wB B A       

 

 Note that : HNPInt( )W W w WB B A A       

 

 Therefore, HNPInt( )WA   

 

 (iv) Necessity: Let WA  be a HNP open set. ie., WA   By (i) and (ii) 

HNPInt( )W wA A .  

 

 Since  WA   and   W wA A  

 

 Then    {   :   } HNPInt( )W W W w WA B B A A    

 

   HNPInt( )W WA A   

 

 Thus,HNPInt wA . 

 

 Sufficiency: Let HNPInt( )w wA A  
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 By (iii) HNPInt( )wA   ie., wA  is a HNP open set. 

 

 (v) To prove HNPInt(HNPInt( )) HNPInt( )w wA A  

 

 By (iii) HNPInt( )wA  . 

 

 By (iv) HNPInt(HNPInt( )) HNPInt( )w wA A . 

 

 We know that 0W  and 1W  are in   

 

 By (iv) HNPInt(0 ) 0W W , HNPInt(1 ) 1W W . 

 

 Hence, the result.           

 

 Theorem 4.3: Let ( ),W   be a Heptapartitioned Neutrosophic 

Pythagorean topological space over W and Let WA  is in the Heptapartitioned 

Neutrosophic Pythagorean topological space. Then the following properties 

hold. 

 

(i)  ( ) W WA HNPCl A  

 

(ii)  W WA B  implies )( ()W WHNPCl A HNPCl B . 

 

(iii)  ( )  C
WHNPCl A  . 

 

(iv)  WA  is a  HNP closed set implies  ( )W WHNPCl A A . 

 

(v)  ( ( )) ( )W WHNPCl HNPCl A HNPCl A  

 

(vi)  0 0 ,  ( ) )1 1(W W W WHNPCl HNPCl  . 

 
 Proof:  (i) and (ii) are obviously true. 
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 (iii) By theorem, HNPCl( )c
W

A  . 

 

 Therefore, {[ ( )   ( :   })]
c cc

W W W wHNPCl A B B A     

 

  : HNPInt( )c c
W W w WB B A A     .  

 

 Therefore,[ (HNPCl )]cWA  . 

 
 (iv) Necessity: 
 

 By theorem,   HNPCl( )W WA A  

 

 Let WA  be a HNP closed set. ie.,   c
WA   

 

 Since,  WA   and  W wA A  

 

 HNPCl }(  {   :  ) c
W W W wA B A A    

 

 HNPCl ( )W wA A  

 

 Thus, HNPCl( )w wA A   

 
 Sufficiency: This is obviously true by (iii) 
 

 (v) and (vi) can be proved by (iii) and (iv).        

 

 Theorem 4.4: Let ( ),W   be a Heptapartitioned Neutrosophic 

Pythagorean topological space over W and Let WA , WB  are in 

Heptapartitioned Neutrosophic Pythagorean topological space W. Then the 

following properties hold. 

 

(i) ( ) ( ))    (W W W WHNPInt A HNPInt B HNPInt A B   

 



76  V. JEYANTHI AND T. MYTHILI  

(ii)  (( ))  ) (W W W WHNPInt A HNPInt B HNPInt A B     

 

(iii)  ( ) )( )  (W W W WHNPCl A HNPCl B HNPCl A B     

 

(iv)  ( ) ( ) ( ) W W W WHNPCl A B HNPCl A HNPCl B    

 

(v)  )(   (( ))c c
W WHNPInt A HNPCl A   

 

(vi)    ( )( ( ))c c
W WHNPCl A HNPInt A   

 

 Proof: (i) Since  W W wA B A    for any w in W  

 

 By theorem, HNPInt( ) HNPInt( )W W WA B A   

 

 Similarly, HNPInt(   ) HNPInt( )W W WA B B    

 

 HNPInt( ) HNPInt( ) HNPInt( )W W W WA B A B     

 

 By theorem, HNPInt( )WA AW   and HNPInt( )W WB B  

 

 Thus, HNPInt(   )  W W W WA B A B    

 

 Therefore, HNPInt( )  HNPInt( ) HNPInt(   )W W W WA B A B    

 
 Similarly we can prove (ii),(iii) and (iv). 
 

 (v) {(HNPInt (   :))   }( )c
W W W w wA B B A A      

 

 { : }c c
W W wB A B     

 

 HNPCl( )c
wA  
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 Similarly we can prove (vi).                                                                          

 

 Example 4.5:  Let 1 2{ ,  }W c c  and Let ,  ,  W W WA B C  be 

Heptapartitioned Neutrosophic Pythagorean sets where 

 

1 2  { , 0.3, 0.2, 0.1, 0.4, 0.3, 0.2, 0.1 , 0.4, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2 }WA c c     

 

1 2  { , 0.2, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2 , 0.3, 0.4, 0.1, 0.4, 0.3, 0.2, 0.1 }WB c c      

 

1 2  { , 0.4, 0.3, 0.2, 0.3, 0.2, 0.1, 0.3 , 0.3, 0.4, 0.1, 0.3, 0.2, 0.1, 0.2 }WC c c      

 

{ , , , 0 , 1 }W W W W WA B C  is an Heptapartitioned Neutrosophic Pythagorean 

topology on W. 

 

(i)  Int( ) 0   Int( )W W WHNP A HNP A    

 

     Then    W W WA B C  

 

     Int( ) Int( ) 0 0 0W W W W WHNP A HNP B     

 

      And  n(Int   I t() )W W W WHNP A B HNP C C    

 

     ( ) ( )Int( ) Int Int  W W W WHNP A HNP B HNP A B    

 

(ii)  ( ) ( ( )) 0 1c c c
W W W WHNPCl B HNPCl B     

 

    Int( ) Int( ) 1  1 1c c
W W W W WHNP A HNP B      

 

     Similarly,  ( ) ( )c c c c
W W W WHNPCl A B HNPCl A B    

 

    )  ( c c
W WHNPCl A B    
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     c
WC   

 

     ) Int( ) Int(( )c cc c
W W WHNPCl A B HNP A HNP BW    

 
5. Conclusion 
 
 Here, the authors explore the properties of Heptapartitioned Neutrosophic 
Pythagorean Topological Spaces. They delve into the theoretical aspects of these 
spaces, examining their unique characteristics and behavior.  Here also applied in real 
life problems, demonstrating its practical utility. By integrating these topological 
spaces into various real world scenarios, they showcase the versatility and 
effectiveness of Heptapartitioned Neutrosophic Topological Spaces in solving 
complex issues. The research highlights the potential of this novel approach in both 
theoretical and applied contexts. 
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Abstract: This paper presents a novel fixed-point framework on Hilbert 
manifolds, called Axion. The local and global structure of manifolds can be 
better understood by using contraction mappings to define axion points. By 

using an Axion structure( , , )a  , where   is a diffeomorphism and   is 

its inverse meeting a contraction condition, the Axion Fixed Point Theorem 
extends conventional fixed-point findings to infinite-dimensional spaces. By 
establishing the existence and uniqueness of axion points, this approach 
advances our knowledge of fixed points in functional spaces. 
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1. Introduction and Preliminaries 
 
 A Hilbert space is an infinite-dimensional generalization of Euclidean space, 
equipped with an inner product that induces a norm and a complete metric topology. 
Fixed point theorems are essential in analysis, topology, and geometry, providing 
fundamental results in nonlinear functional analysis, differential equations, and 
dynamical systems. The Banach Fixed Point Theorem, one of the most well-known 
results, guarantees the existence and uniqueness of fixed points under contraction 
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mappings in complete metric spaces. In 1956, Nash established the fundamental 
theory for embedding abstract Riemannian manifolds into Euclidean spaces, which 
remains a cornerstone in differential geometry [10]. A few years later, Hamilton 
(1982) contributed critical insights into curvature evolution, significantly influencing 
modern perspectives in differential geometry and general relativity [6]. In 2006, 
Chavel provided an extensive treatment of modern Riemannian geometry, focusing 
on embedding theorems and geometric flows [5]. Lee (2013) presented a 
contemporary perspective on smooth manifolds and Lie groups, which has been 
instrumental in advancing research in differential structures [8]. Between 2020 and 
2024, significant progress was made in isometric embeddings and Hilbert manifold 
structures.  Chattopadhyay et al.  (2020) investigated the isometric embeddability of

m
qS  into n

pS , contributing to a deeper understanding of embeddings between finite-

dimensional spaces [4]. In 2024, Capdeville examined the isometric embeddings of 

n-point spaces for 4n  , laying the groundwork for further studies in discrete metric 

spaces [3]. Looking ahead to 2025, Madhan Velayuthan and Jeyanthi Venkatapathy 
have extended embedding theories by addressing diffeomorphic embeddings of 
higher-dimensional Hilbert manifolds into Hilbert spaces. Their work introduces 
innovative techniques for handling infinite-dimensional structures and preserving 
geometric and topological properties [9]. 
 

 Definition 1.1 ([8]): A topological space  is called an n-dimensional 

manifold if: 

 

1.   Local Euclidean Property: ,p   a neighborhood U   

and a homeomorphism : nU V    , such that   and 1   are 

continuous. 

 

2.   Hausdorff Property:   is Hausdorff, i.e., ,   ,   ,p q p q    

disjoint open sets ,  p qU U  such that pp U  and qq U . 

 

3.   Second-Countability: The topology of   has a countable basis. 

 

 If, in addition,   is equipped with an atlas {( )},j j jU    such that 

for any two overlapping charts ( ),j jU   and ( ),k kU  , the transition maps  
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1 ( ) ( ):k j j k k j kj U U U U        are infinitely differentiable ( )C  , then 

  is called a smooth manifold. 

 

 Definition 1.2 ([5]): A Hilbert manifold   is a smooth manifold 

modeled on an Hilbert space  . Specifically,   satisfies: 

 

1.  ∃  an atlas {( )},U     such that each chart 

( ):U U        is a bijective homeomorphism mapping onto 

an open subset of  . 

 

2.  Transition maps between overlapping charts, 

1 ( ) ( ): U U U U              , are infinitely differentiable

( )C  . 

 

3. The topology of    is induced by  , i.e.,A    is open if and 

only if ( )A  is open  in   for each chart  . 

 

 Definition 1.3 [9]: Let   and    be Hilbert manifolds. A mapping 

:       is called a diffeomorphism if it satisfies the following 

conditions: 

 

1.  Bijectivity: The map   is a bijection, meaning it is both injective 

and surjective. 

 

2.  Smoothness: The map    is infinitely differentiable, i.e.,

( , )C     . 

 

3.  Smooth Inverse: The inverse mapping 1      exists and is 

also smooth, ensuring that    establishes a smooth one-to-one 

correspondence between   and  . 
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 If such a map exists, we say that    and    are diffeomorphic, 

denoted as   . 

 

 Definition 1.4 [8]: Given a local chart :U V     , the induced 

metric on U  is defined by ( , ) ( ) ( ) ,   ·d x y x y where          

denotes the norm in the Hilbert space  . 

 

 Theorem 1.5 ([8]): Let d  be a complete metric space and let 

: d dC    be a contraction mapping, i.e., [0,1]c   such that

( ( ), ( )) · ( , ), ,   dd h t c d h t h t     . Then,    has a unique fixed point 

.dh    

 
2. Axion Fixed Point Theorem 
 
 This section presents new definition Axion and Axion fixed point theorem. 
 

 Definition 2.1: Let    be a Hilbert manifold modeled on a Hilbert 

space  , with an atlas{( )},U    . An Axion is an ordered triplet 

( , , )a   satisfying: 

 

1.  Accumulation: a   is an accumulation point of   S M , i.e., 

 U'  ,  a U' U' S    . 

 

2.  Smooth Chart: ∃  a chart ( , )U     with a U  and a smooth 

diffeomorphism (: )U U     . 

 

3.  Inverse Mapping: 1  : ( )U U 
     is smooth. 

 

 The set of all Axions {( ) | ( ), , :a U U      is a 

diffeomorphism, 1   }. 
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 Theorem 2.2 (Axion Fixed Point Theorem):  Let ( , , )a   be an Axion in 

a Hilbert manifold    with respect to a chart ( , )U  , where: 

 

1.  (: )U U      is a smooth diffeomorphism. 

  

2.  ): (U U    is the inverse of  , i.e., 1   . 

 

3.    satisfies the contraction condition:   a constant [0,1)c   such 

that  )( ), ( ) · ( , ) ,( ,d x y c d x y x y U      . 

 

 Then,   a unique fixed point a U
   such that  ( )a a  . 

 

 Proof:  The local chart  :    U V      induces a metric on U  defined 

by:  ) ( , ) ( ( )x y xd y      , where ·   is the norm in  . This metric 

provides a distance measure for elements of U . To apply the Banach Fixed  

Point Theorem, we must show that ( , )U d   is a complete metric space. Let ( )nx   

be a Cauchy sequence in U  with respect to d . By definition,

( , ) ( ) ( )n m n md x x x x      .  

 

 Since, ( )nx  is Cauchy in U , the sequence ( )nx  is Cauchy in  . Since, 

  is a Hilbert space, it is complete, and thus,   a limit point y    such that: 

( )nx y   as n   . Since, 
1




  is a diffeomorphism. By the continuity of 

, ( )n nx x y       as n   . Since ( )y U  , we have ( )y U  , 

proving that U  is complete. By assumption, [0,1)c   such that: 

( ( ), ( )) · ( , ),    ,  d x y c d x y x y U      . This confirms that Γ is a strict 

contraction mapping.  
 

 Since ( , )U d   is a complete metric space and Γ is a contraction, the 

Banach Contraction Theorem guarantees the existence of a unique fixed point 
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a U
   such that: ( )a a   . Suppose there exist two fixed points 1 2,  a a U  

such that 1 1( )a a   and 2 2( )a a  . 

 

 Then, 1 2 1 2 1 2( , ) ( ( ), ( )) · ( , )d a a d a a c d a a       . 

 Since, [0,1)c  , it follows that 1 2( , ) 0d a a  , implying 1 2a a .  

 Thus, the fixed point is unique.                      

 
3. Conclusion 
 
 The Axion triplet ( , , )a    is introduced in the Axion fixed point Theorem, 

which extends the standard Banach fixed point theorem to Hilbert manifolds. This 
framework preserves the underlying geometric structure of the manifold while 
enabling the analysis of contraction mappings inside local charts. In order to provide 
stability under smooth transformations, the theorem ensures that fixed points for such 
mappings exist and are unique. The Banach contraction theorem is used in the proof 
to demonstrate convergence, taking use of the contraction quality of Γ and the 
completeness of the induced metric space. 
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1. Introduction 

 
 In 1979, the notion of para-Sasakian (briefly, P-Sasakian) and special para-
Sasakian (briefly, SP-Sasakian) manifolds were introduced by Sato and Matsumoto 
[28]. Later, Adati and Matsumoto investigate some interesting results on P-Sasakian 
manifolds and SP-Sasakian manifolds in [1]. The properties of para-Sasakian 
manifold have been studied by many authors. For instance, we see [2, 16, 17, 19, 27, 
30] and their references. 
 
 The notion of Schouten-van Kampen connection (shortly, SVK-connection) 
was introduced in the third decade of last century for a study of non-holomorphic 
manifolds [29, 37]. In 2006, Bejancu [3] studied Schouten-van Kampen connection 
on Foliated manifolds. Recently, Biswas and Baisya [4, 5] investigated some 
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properties of pesudo symmetric Sasakian manifolds with respect to SVK-
connectiopn. Most recently, this connection has been introduced on para-Sasakian 
manifold by Sundriyal and Upreti [31]. They studied projective curvature tensor, 
concircular curvature tensor and Nijenhuis tensor for the para-sasakian manifold with  

respect to this connection. SVK-connection ( )  for an n-dimensional almost contact 

metric manifold M equipped with an almost contact metric structure ), , ,( g   

consisting of a (1, 1) tensor field  , a vector field  , a 1-form   and a Riemannian 

metricg  , is defined by 

 

   ( )( ) ( )X X X XY YY Y           ,            (1.1) 

 

for all , ( )X Y M , where ( )M  is the set of all vector fields on M and   being 

the Levi-Civita connection on M . 

 
 The concept of Ricci flow was first introduced by R. S. Hamilton in the early 
1980s. Hamilton [13] observed that the Ricci flow is an excellent tool for simplifying 
the structure of a manifold. It is the process which deforms the metric of a 
Riemannian manifold by smoothing out the irregularities. The Ricci flow equation is 
given by 

        2
g

S
t


 


,                                                  (1.2) 

 

where g is a Riemannian metric, S is Ricci tensor and t is time. The solitons for the 

Ricci flow is the solutions of the above equation, where the metrices at different 
times differ by a diffeomorphism of the manifold. A Ricci soliton is represented by a 

triple ( , , )g V  , where V is a vector field and   is a scalar, which satisfies the 

equation 

    2 2 0VL g S g   ,                                       (1.3) 

 

where S is Ricci curvature tensor and VL g  denotes the Lie derivative of g along the 

vector field V . A Ricci soliton is said to be shrinking, steady, expanding according 

as 0  , 0  , 0  , respectively. The vector field V is called potential vector 

field and if it is a gradient of a smooth function, then the Ricci soliton ( , , )g V   is 

called a gradient Ricci soliton and the associated function is called the potential 
function. Ricci soliton was further studied by many researchers. For instance, we see 
[18, 25, 35, 36] and their references. 
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 In 2005, Fischer [12] introduced conformal Ricci flow which is a general- 
isation of the Ricci flow equation that modifies the unit volume constraint to a scalar 
curvature constraint. The conformal Ricci flow equation is given by 
 

    2
g g

S pg
t n

  
    

  
                                  (1.4) 

 
                                                                     ( ) 1r g                (1.5) 

 
where ( )r g  is the scalar curvature of the manifold, p  is a non-dynamical scalar field 

and n  is the dimension of the manifold. In 2015, corresponding to the conformal 
Ricci flow equation, Basu and Bhattacharyya [7] introduced the notion of conformal 
Ricci soliton as a generalisation of Ricci soliton and it is given by  
 

   
2

2 2 0VL g S p g
n


  

      
  

,             (1.6) 

where   is a constant. 
 
 As a generalization of Ricci soliton, the  -Ricci soliton was introduced by  

Cho  and  Kimura  [9].  This notion has also been studied by Cälin  and Crasmarearu 
[10]. Later, remarkable studies on  -Ricci soliton have been made by Blaga [6] and 

Prakasha [24]. Let M  be a Riemannian manifold with structure ), , ,( g  . Consider 

the equation 

   2 2 2 0VL g S g µ        ,                          (1.7) 

 

where S  is Ricci curvature tensor, VL g  denotes the Lie derivative of g  along the 

vector field V ,   and µ  are real constants. The data ), , ,(g V µ  which satisfies the 

equation (1.7) is called an  -Ricci soliton on M . In particular, when 0µ  , the 

notion of η-Ricci soliton simply reduces to the notion of Ricci soliton. And when
0µ  , ), , ,(g V µ  is called proper  -Ricci soliton on M . 

 
 In 2018, Siddiqi [34] introduced the notion of conformal  -Ricci soliton as  

 

  
2

2 2 2 0,VL g S p g
n

  
  

        
  

                           (1.8) 

   

where VL g  denotes the Lie derivative of g  along the vector field ,V   and β are real 
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constants and p  is a non-dynamical scalar field. 

 

 Definition 1.1: Let   and   be two tensors of rank 4. A Riemanian 

manifold (or, pseudo Riemannian manifold) M is said to be  -semisymmetric 

type if 0( ), .X Y    for all smooth vector fields X, Y on M, where  acts on 

 as derivation of tensor algebra. 

 
 In the above definition if we consider R   , then the manifold M  is 
called semi-symmetric [32]. Semi-symmetry and other conditions of semi-symmetry 
type are studied in detail in [8, 15, 20, 33]. In 2013, Kundu and Shaikh [26] 
investigated the equivalency of the various geometric structures depending on 
conditions of semi-symmetry. They have established the following conditions 
 

(i) . 0E R  , . 0E P  , . 0E E  , . 0E P  , . 0E  ,  . 0iE W   and

. 0iE     ( for all 1,2,...9i  ) are equivalent and named such a class by

1C ; 

 

(ii) .   0R R  , .   0R P  , .   0R E  , .  0R P  , .  0R M  , .  0iR W   and 

. 0iR W    (for all 1,2,  ......9i   ) are equivalent and named such a class 

by 2C ; 

 

(iii)  . 0R K   and . 0R C   are equivalent and named such a class by 3C ; 

 

(iv)  . 0E C   and . 0E K   are equivalent and named such a class by 4C ; 

 
where the symbols , , , ,C E P K M  and Wi  stand for conformal curvature tensor [11], 

concircular curvature tensor [38], projective curvature tensor [38], conharmonic 
curvature tensor [14], M-projective curvature tensor [22], Wi -curvature tensor [21, 

22, 23] and iW  -curvature tensor [22], respectively. 

 

      ( , ) ( , )C X Y R X Y   

  
1

( ) ( ) ( )
2 1

g g g
r

X QY QX Y X Y
n n

 
     

   ,            (1.9) 
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( , ) ( , ) ( )
( 1)

g
r

E X Y R X Y X Y
n n

 


 ,                       (1.10) 

 

1
( , ) ( , ) ( )

1
gP X Y R X Y X Y

n
 


 ,                                                 (1.11) 

1
( , ) ( , ) [( ) ( )]

2
g gK X Y R X Y X QY QX Y

n
  


  ,                                   (1.12) 

1
( , ) ( , ) [( ) ( )]

2( 1)
g gX Y R X Y X QY QX Y

n
  


   ,                       (1.13) 

0
1

( , ) ( , ) ( )
1

gX Y R X Y X QY
n

 


  ,                                                  (1.14) 

0
1

( , ) ( , ) ( )
1

gX Y R X Y X QY
n

  


  ,                                                  (1.15) 

1
1

( , ) ( , ) ( )
1

SX Y R X Y X Y
n

 


  ,                                                             (1.16) 

1
1

( , ) ( , ) ( )
1

SX Y R X Y X Y
n

  


  ,                                                  (1.17) 

2( , ) ( , )X Y R X Y   

  
1

( ) ( ) ( )
2

g g SQX Y X QY X Y
n

    
   ,          (1.18) 

2( , ) ( , )X Y R X Y    

  
1

( ) ( ) ( )
2

g g SQX Y X QY X Y
n

    
   ,          (1.19) 

3
1

( , ) ( , ) ( )
1

gX Y R X Y Y QX
n

 


  ,                                                  (1.20) 

3
1

( , ) ( , ) ( )
1

gX Y R X Y Y QX
n

  


  ,                                                  (1.21) 

1
( , ) ( , ) [( ) ( )]

1
g SX Y R X Y X QY X Y

n
  


   ,                                     (1.22) 

1
( , ) ( , ) [( ) ( )]

1
g SX Y R X Y X QY X Y

n
   


   ,                         (1.23) 

7
1

( , ) ( , ) [( ) ( )]
1

g SX Y R X Y QX Y X Y
n

  


   ,                                     (1.24) 
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7
1

( , ) ( , ) [( ) ( )]
1

g SX Y R X Y QX Y X Y
n

   


   ,                                  (1.25) 

4
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z g X Z QY g X Y QZ
n

  


 ,                        (1.26) 

4
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z g X Z QY g X Y QZ
n

   


 ,                        (1.27) 

6
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S X Z QY g X Y QZ
n

  


 ,                        (1.28) 

6
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S Y Z X g X Y QZ
n

   


 ,                        (1.29) 

8
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S Y Z X g X Y Z
n

  


 ,                        (1.30) 

8
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S Y Z X g X Y Z
n

   


 ,                        (1.31) 

9
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S X Y Z g Y Z QX
n

  


 ,                        (1.32) 

9
1

( , ) ( , ) [ ( , ) ( , ) ]
1

X Y Z R X Y Z S X Y Z g Y Z QX
n

   


 ,                        (1.33) 

where 

( ) ( , ) ( , )DX Y Z D Y Z X D X Z Y  . 

 
for all , , ( )X Y Z M , where R  is the Riemannian curvature tensor of type (1, 3) 

and r  is the scalar curvature. 
 

 Definition 1.2:  A para-Sasakian manifold M is called an Einstein 

manifold if its Ricci tensor is of the form 

 
( , ) ( , )S Y Z kg Y Z , 

for all  , ( )Y Z M , where k being a scalar. 

 

 Definition 1.3: A para-Sasakian manifold M is called an  -Einstein 

manifold if its Ricci tensor is of the form 

 

1 2( , ) ( , ) ( ) ( )S Y Z l g Y Z l Y Z   , 
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for all  , ( )Y Z M , where 1l , 2l  are scalars. 

 

 Definition 1.4: A para-Sasakian manifold M is called a generalized  

 -Einstein manifold if its Ricci tensor is of the form 

 

1 2 3( ) ( ) ( ) ( ) ( ), , ,S Y Z k g Y Z k Y Z k g Y Z     , 

 

for all  , ( )Y Z M , where  1k , 2k  and 3k  are scalars. 

 
 This paper is structured as follows: 
 
 First two sections of the paper has been kept for introduction and  
preliminaries. In Section-3, we study properties of para-Sasakian manifold with 
respect to SVK-connection. In Section-4, we introduce conformal Ricci soliton on  
para-Sasakian manifold with respect to SVK-connection. In Section-5, we study 
conformal η-Ricci soliton on para-Sasakian manifold with respect to  
SVK-connection. Section-6 concerns with conformal η-Ricci soliton with respect to 

SVK-connection on para-Sasakian manifolds of class 1C , 2C , 3C  and 4C . 

 
2. Preliminaries 
 
 Let M  be an n -dimensional differentiable manifold with structure ( ), ,  , 

where   is a 1-form,   is the structure vector field,   is a (1, 1)-tensor field 

satisfying [28] 

   2  ,  1( ) ( ) ( )X X X                                             (2.1) 

 
       0, 0( )    ,                                                    (2.2) 

 
for all vector field X  on M  is called almost paracontact manifold. If an almost 
paracontact manifold M with structure ( ), ,   admits a pseudo-Riemannian metric 

g  such that [39] 

   ( ) ( ) (, ) (, )g X Y g X Y X Y     ,                          (2.3) 

 
then we say that M  is an almost paracontact metric manifold with an almost 
paracontact metric structure ), , ,( g  . From (2.3) one can deduce that 
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    ( ) (, ) ,g X Y g X Y   ,                                       (2.4) 

 

    ( , )   ( )g X    .                                                (2.5) 

 

 An almost paracontact metric structure of M  becomes a paracontact metric 
structure [39] if 

( ), ,) (g X Y d X Y , 

 
for all vector fieldsX ,Y on M , where 
 

1
( , )  { ( ) ( ) ([ , ])}.

2
d X Y X Y Y X X Y       

 
 The manifold M  is called a para-Sasakian manifold if 
 

   (( , () ) )X Y g X Y Y X     ,                          (2.6) 
 

for any smooth vector fields X ,Y on M . 
 
 In a para-Sasakian manifold the following relations also hold [39] 
 

 ( ) ( ), ,X XY g X Y X       ,                                         (2.7) 

 

 ( ( , ) ) ( , ) ( ) ( , ) ( )R X Y Z g X Z Y g Y Z X    ,                         (2.8) 

 

 ( , ) ( ) ( )R X Y X Y Y X    ,                                            (2.9) 

 

         ( , ) ( , ) ( )R X Y g X Y Y X     ,                                     (2.10) 

 

         ( , ) ( , ) ( )R X Y g X Y Y X    ,                                               (2.11) 

 

          ( , ) ( )R X X X     ,                                                               (2.12) 

 

                          ( , )  ( 1) ( )S X n X    ,                                                  (2.13) 

 

                          ( , )  ( 1),   ( 1)S n Q n         ,                        (2.14) 

 

                   ,  ( , ) ( 1) ( ) ( )( )S X Y S X Y n X Y     .                        (2.15) 
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for any smooth vector fields , ,X Y Z  onM . 

 
3. Schouten-Van Kampen Connection on  Para-Sasakian Manifolds 
 
 In this section we get the relation between SVK-connection and Levi-Civita 
connection on para-Sasakian manifoldM . Then we obtain Rie-mannian curvature 
tensor, Ricci curvature tensor, Ricci operator and scalar curvature of M with respect 
to the SVK-connection. We also establish here the first Bianchi identity with respect 
to SVK-connection on M . 
 
 In view of (1.1), (2.7) and (2.5), we get the expression for SVK-connection 
in a para-Sasakian manifold M as 
 

   (,( ) )X XY Y g X Y Y X        ,            (3.1) 

with torsion tensor 
 

, ( ) )( , ) (2 ( )T X Y g X Y Y X X Y      . 

 

 On para-Sasakian manifold the connection   has the following properties 
 

  (  0,( )) ,X X Y g X Y      ,                                       (3.2) 

 

             )( )) ,  ,( ) ( ( ) (   (, )Xg Y Z g X Y Z g Y Z X     .                          (3.3) 

 
for all , ( )X Y M . 

 

 Proposition 3.1: The SVK-connection on a para-Sasakian manifold is 

non metric compatible connection. 

 Proposition 3.2: The SVK-connection on a para-Sasakian manifold is 

non symmetric connection. 

 

 Proposition 3.3: The structure vector field of a para-Sasakian manifold 

is parallel with respect to SVK-connection. 

 

 Let R  be the Riemannian curvature tensor with respect to SVK-connection 
on a para-Sasakian manifold defined as 
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         [ , ]( , ) X Y Y X X YR X Y Z Z Z Z        .            (3.4) 

 
 Then using (2.6), (2.7) and (3.1) in (3.4) we get 
 

( , )   ( , ) ( , ) ( ) ( , ) ( )R X Y Z R X Y Z g Y Z X g X Z Y        

      ( , ) ,( )g X Z Y g Y Z X       

      ( ) ( ) ( ) ( )Y Z X X Z Y     .                          (3.5) 

 
 Writing the equation (3.5) by cyclic permutations of ,X Y  and Z  and using 

the fact that ( , ) ( , ) ( , )  0R X Y Z R Y Z X R Z X Y   , we have 

 

( , ) ( , ) ( , ) 0R X Y Z R Y Z X R Z X Y    , 

 
for all , , ( )X Y Z M . 

 
 Taking inner product of (3.5) with a vector field U and contracting over X  
and U we get 
 

  ( , ) ( , ) ( 1) ( ) ( ) ( , )S Y Z S Y Z n Y Z g Y Z       ,            (3.6) 

 

where S  denotes Ricci curvature tensor with respect to   and ( )trace  . 

 

 Proposition 3.4: The SVK-connection on para-Sasakian manifold 

satisfies the first Bianchi identity. 

 

 Lemma 3.5: Let M be an n-dimensional para-Sasakian manifold 

admitting SVK-connection, then 

 

  ( , ) 0,  ( , ) 2 [ ( , ) ( ) ]R X Y R Y Z g Y Z Z Y      ,                 (3.7) 

 

  ( , ) 2[ ( , ) ( ) ]R X Z g X Z Z X     ,                                         (3.8) 

 

      ( , ) 0 ( , )S X S Y   ,                                                            (3.9) 
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                         1 ,  0( ) ( )QX QX n X X Q        ,                (3.10) 

 

                                         2( 1)r r n     ,                                                    (3.11) 

 

for all , , ( )X Y Z M , where R , Q  and r  denote Riemannian curvature 

tensor, Ricci operator and scalar curvature with respect to  , respectively. 

 

 Remark 3.6: Eigen value of Ricci operator with respect to SVK-

connection corresponding to the eigen vector ξ is zero. 

 
4. Conformal Ricci Soliton on Para-Sasakian Manifold with Respect to  

      SVK-Connection 

 In this section we find a para-Sasakian manifold M  admitting conformal 
Ricci soliton with respect to SVK-connection in which the potential vector field 
being pointwise collinear with the structure vector field of M  . 
 
 Let V  , where   is some non-zero smooth function. Taking covariant 

derivative of V  in the direction of X  and using (2.7) we get 
 

    ( )XV X X      .                                       (4.1) 

 
 In view of (3.1) and (4.1) we have 
 

  ( ) ( ) ( ),XV X X g X V V X           .                      (4.2) 

 
 Writing equation (1.6) with respect to SVK-connection we have 
 

             
2

0 ( )( , ) 2 ( , ) 2 ( , )VL g X Y S X Y p g X Y
n


  

      
  

  

       ( , ) ( , )X Yg V Y g X V     

  
2

2 ( , ) 2 ( , )S X Y p g X Y
n


  

     
  

.                       (4.3) 

 
 Using (4.2) in (4.3) we get 
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   0 ( ) ( ) ( ) ( )X Y Y X       

                                  
2

2 ( , ) 2 ( , )S X Y p g X Y
n


  

     
  

.                   (4.4) 

 
 Setting X   and using (3.9) in (4.4) we get 

 

       
2

0 ( ) ( ) ( ) 2 ( )Y Y p Y
n

     
  

      
  

.                    (4.5) 

 
 Replacing Y by   in (4.5) we obtain 

 

             
1

( )
2

p

n
  

  
    
  

.                                         (4.6) 

 
 Using (4.6) in (4.5) we get 
 

             
1

( )
2

p
Y

n
 

  
    
  

.                                        (4.7) 

 
 If we consider ( ) 0Y   , then equation (4.7) yields 

 

        
1

2

p

n
   . 

 
 Therefore we have the following theorem 
 

 Theorem 4.1: Let ), ,( ,M g   be a para-Sasakian manifold admitting 

conformal Ricci soliton ( , , )g V   with respect to SVK-connection. If V is 

pointwise collinear with , then V  is a constant multiple of   provided 

1
2

p

n
   . 

 
 Now setting V   in (4.3) we have 

 

   
2

0 2 ( , ) 2 ( , )S X Y p g X Y
n


  

     
  

.                      (4.8) 
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 Using (3.6) in (4.8) we get 
 

   
1

( , ) ( , )
2

p
S X Y g X Y

n


  
    
  

 

          ( 1) ( ) ( ) ( , )n X Y g X Y      .              (4.9) 

 

 Corollary 4.2: If a para-Sasakian manifold M admits conformal Ricci 

soliton ( , , )g    with respect to SVK-connection, then M is generalized  

 -Einstein. 

 
5. Conformal η-Ricci Soliton on Para-Sasakian Manifold with Respect to  
    SVK-Connection 
 
 Writing equation (1.6) with respect to SVK-connection we have  
 

   0 ( )( , ) 2 ( , )L g X Y S X Y   

           
2

2 ( , ) 2 ( ) ( )p g X Y X Y
n

  
  

     
  

.          (5.1) 

 
 Expanding (5.1) we get 

   0 ( , ) ( , ) 2 ( , )X Yg Y g X S X Y        

           
2

2 ( , ) 2 ( ) ( )p g X Y X Y
n

  
  

     
  

.          (5.2) 

 Using (3.2) in (5.2) we obtain 
 

      
2

0 2 ( , ) 2 ( , ) 2 ( ) ( )S X Y p g X Y X Y
n

  
  

      
  

.                (5.3) 

 
 Setting X   in (5.3) we have 

 

    
1

2

p

n
 

 
   
 

.                                              (5.4)  

 
 Hence, we have the following theorem 
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 Theorem 5.1: If an n-dimensional para-Sasakian manifold admits a 

conformal  -Ricci soliton ), , ,(g     with respect to SVK-connection, then 

the relation between the soliton scalars are given by 

 

                                                  
1

2

p

n
 

 
   
 

. 

 
 Using (3.6) in (5.3) we obtain 

   
1

( , ) ( , )
2

p
S X Y g X Y

n


  
    
  

 

          ( 1) ( ) ( ) ( , )n X Y g X Y        ,       (5.5) 

which shows that M  is generalized  -Einstein manifold. 

 

 Corollary 5.2: If an n-dimensional para-Sasakian manifold M contains 

a conformal  -Ricci soliton with respect to SVK-connection, then M is 

generalized   -Einstein manifold. 

 
 Contracting (5.5) over X  andY we get 
 

               2( 2) 2
2

n
r p n       .                                    (5.6) 

 Corollary 5.3: If an n-dimensional para-Sasakian manifold M contains 

a conformal  -Ricci soliton with respect to SVK-connection, then the scalar 

curvature of M is given by equation (5.6). 

 
6. Conformal  -Ricci Soliton with Respect to SVK-Connection on Equivalence  

     Classes 1 2 3, ,C C C  and 4C  

 
 In this section we consider  -Ricci soliton ), , ,(g     with respect to SVK- 

connection on the manifolds belong to the equivalence classes 1 2 3, ,C C C and 4C and 

obtain the relation between the soliton constants. 
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 Conformal η-Ricci soliton with respect to   on class 1C : The condition 

that must be satisfied by the Riemannian curvature tensor ( )R is 

 
        0( ( ) )(, . ),E X R Y Z V  ,                                       (6.1) 

for all , , , ( )X Y Z V M . 

 
 Equation (6.1) gives 
 
 ( , ). ( , )   ( ( , ) , )E X R Y Z V R E X Y Z V    

    ( , ( , ) ) ( , ) ( , )R Y E X Z V R Y Z E X V   .       (6.2) 

 
 Setting V   and using (1.10), (2.9)-(2.11) in (6.2) we get  

 
     0   [ ( 1)][ ( , ) ( , ) ]r n n g X Y Z g X Z Y    [ ( 1)] ( , )r n n R Y Z X   . (6.3) 

 
 Taking an inner product of (6.3) with a vector field U we get  

          0  [ ( 1)] [ ( , ) ( , ) ( , ) ( , )]r n n g X Y g Z U g X Z g Y U      

                   [ ( 1)] ( ( , ) , )r n n g R Y Z X U   .                                       (6.4) 

 
 Contracting (6.4) over Z  and U  we have 
 
          ( , ) ( 1) ( , )S X Y n g X Y   ,                                  (6.5) 

if   ( 1)r n n   . 

 
 In view of (5.5) and (6.5) we obtain 
 

   
1

0 1 ( , )
2

p
n g X Y

n


  
      
  

  

    ( 1) ( ) ( ) ( , )n X Y g X Y        .             (6.6) 

 
 Setting Y   in (6.6) we have 

 

    
1

2

p

n
 

 
   
 

.                                              (6.7) 
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 Thus, we have the following theorem: 
 

 Theorem 6.1: Let ), , ,(M g    be an  -dimensional para-Sasakian 

manifold of class 1C . If M  admits a conformal  -Ricci soliton with respect 

to SVK-connection, then the soliton constants are given by 

 

1

2

p

n
 

 
   
 

, 

provided ( 1)r n n   . 

 

 Corollary 6.2: A para-Sasakian manifold of class 1C  is Einstein 

manifold if  ( 1)r n n   . 

 

 Corollary 6.3: If a para-Sasakian manifold of class 1C  contains 

conformal  -Ricci soliton with respect to SVK-connection, then the manifold 

is generalized  -Einstein, provided ( 1)r n n   . 

 

 Conformal  -Ricci Soliton with Respect to  on Class 2C : The 

condition that must be satisfied by the Riemannian curvature tensor (R) is 
 

0( ( ) )(, . ),E X R Y Z V  , 

for all , , ,  ( )X Y Z V M   

 
 ( , ). ( , )    ( ( , ) , )R X R Y Z V R R X Y Z V    

    ( , ( , ) ) ( , ) ( , )R Y R X Z V R Y Z R X V   .      (6.8) 

 
 Setting V   and using (2.8)-(2.11) in (6.8) we get 

 
   0 [ ( , ) ( , ) ] ( , )g X Y Z g X Z Y R Y Z X   .            (6.9) 

 
 Taking an inner product of (6.9) with a vector field W  we get 
 
 0 [ ( , ) , ( , ) ( , )] ( ( , ) , )( )g X Y g Z W g X Z g Y W g R Y Z X W   .          (6.10) 
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 Contracting (6.10) over Z  and W  we have 
 
          ( , ) ( 1) ( , )S X Y n g X Y   ,                       (6.11) 

 
 In view of (5.5) and (6.11) we obtain 
 

                  
1

0 1 ( , )
2

p
n g X Y

n


  
      
  

  

    ( 1) ( ) ( ) ( , )n X Y g X Y        ,           (6.12) 

 
 Setting Y   in (6.12) we have 

 

1

2

p

n
 

 
   
 

. 

 
 This leads to the following theorem: 
 

 Theorem 6.4: Let ), ,( ,M g   be an n-dimensional para-Sasakian 

manifold of class 2C . If M  admits a conformal  -Ricci soliton with respect 

to SVK-connection, then the soliton constants are given by 

 

1

2

p

n
 

 
   
 

. 

 

 Corollary 6.5: A para-Sasakian manifold of class 2C  is always Einstein 

manifold. 

 

 Conformal η-Ricci Soliton with Respect to  on Class 3C : The condition 

that must be satisfied by conformal curvature tensor ( )C  is 

 
       0( ( ) )(, . ),R X C Y Z V  ,                                     (6.13) 

 
for all , , , ( )X Y Z V M . 

 
 Equation (6.13) gives 
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 ( , ). ( , )   ( ( , ) , )R X C Y Z V C R X Y Z V    

             ( , ( , ) ) ( , ) ( , )C Y R X Z V C Y Z R X V   .       (6.14) 

 
 Setting V   in (6.14) we have 

 
            ( , ). ( , )   ( ( , ) , )R X C Y Z C R X Y Z      

            ( , ( , ) ) ( , ) ( , )C Y R X Z C Y Z R X     .      (6.15) 

 
 Using (1.9), (2.9)-(2.11) in (6.14) and taking inner product of (6.15) with a 
vector field U and then contracting over Z ,U  we get 
 

                     
21

( , ) ( , ) ( ) ( )
1 1

n r n n r
S X Y g X Y X Y

n n
 

     
        

.          (6.16) 

 
 In consequence of (5.5) and (6.16) we obtain 
 

        
1 1

0 ( , )
2 1

p n r
g X Y

n n


   
       

 

       
2

1 ( ) ( ) ( , )
1

n n r
n X Y g X Y

n
  

  
     

 
  ,          (6.17) 

 
 Setting  Y   in (6.17) we have 

 

1

2

p

n
 

 
   
 

 , 

 
which gives the following theorem: 
 

 Theorem 6.6: Let ), ,( ,M g   be an n-dimensional para-Sasakian 

manifold of class 3C . If M  admits a conformal  -Ricci soliton with respect 

to SVK-connection, then the soliton constants are given by 

 

1

2

p

n
 

 
   
 

. 
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 Corollary 6.7: a para-Sasakian manifold of class 3C  is always an  

 -Einstein manifold. 

 

 Conformal η-Ricci soliton with respect to   on class 4C : The condition 

that must be satisfied by conformal curvature tensor ( )C is 

 
   0( ( ) )(, . ),E X C Y Z V  ,                                     (6.18) 

for all , , , ( )X Y Z V M . 

 
 Equation (6.13) gives 
 
            ( , ). ( , )   ( ( , ) , )E X C Y Z V C E X Y Z V    

             ( , ( , ) ) ( , ) ( , )C Y E X Z V C Y Z E X V   .    (6.19) 

 
 Setting V   in (6.14) we have 

 
            ( , ). ( , )   ( ( , ) , )E X C Y Z C E X Y Z      

            ( , ( , ) ) ( , ) ( , )C Y E X Z C Y Z E X     .      (6.20) 

 
 Using (1.9), (1.10), (2.9)-(2.11) in (6.14) and taking inner product of (6.15) 
with a vector field U and then contracting overZ , U  we get 
 

21
( , ) ( , ) ( ) ( )

1 1

n r n n r
S X Y g X Y X Y

n n
 

     
        

, 

if  (  1)r n n   . 

 
 In view of (5.5) and (6.16) we obtain 
 

        
1 1

0 ( , )
2 1

p n r
g X Y

n n


   
         

 

       
2

1 ( ) ( ) ( , )
1

n n r
n X Y g X Y

n
  

  
     

 
  ,          (6.22) 
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 Setting Y   in (6.22) we have 

 

1

2

p

n
 

 
   
 

, 

which gives the following theorem: 
 

 Theorem 6.8: Let ), ,( ,M g   be an n-dimensional para-Sasakian 

manifold of class 4C . If M  admits a conformal  -Ricci soliton with respect 

to SVK-connection, then the soliton constants are given by 

 

1

2

p

n
 

 
   
 

. 

provided (  1)r n n   . 

 

 Corollary 6.9: A para-Sasakian manifold of class 4C  is an η-Einstein 

manifold if (  1)r n n   . 
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estimate the first two Taylor-Maclaurin coefficients and Fekete-Szegö 
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1. Introduction 
 
 We begin by considering that B  represents the class of analytic functions 
defined as 

   
2

( ) r
r

r

z z d z z




    O ,                                      (1.1) 

those are analytic in open unit disk 1{ }: ,z zz   O . Let us denote the S  

as the family of all analytic and univalent functions in O . 
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 Koebe one-quarter Theorem [11] states that, the image of O  under any 
univalent function  S  contains the disk of radius 1/4. As a result, every function 

  has an inverse 1  given by 
 

2 2 3 3 41
2 3 2 3 42 2( ) ( ) (2 ) (5 5 ) · · ·.z z w d w d d w d d d d w            

 

 A function  S  is bi-univalent in O  if both   and 1  are univalent in 

O . Let us denote   as the class of bi-univalent functions. 
 

 Assume that 1g  and 2g   are analytic functions that are defined in O . We say 

that 1g  is subordinate to 2g  i.e. 1 2( ) ( )g z g z , when we can identify a function w  

with analytic properties in domain O , as follows: 
 

0, ( )(0) 1w w z     and  1 2( ) ( ( ))g z g w z . 

 

 In particular, 2g  is univalent in O  then the below equivalence is obtained. 

 

1 2 1 2(0) (0)g g g g   and 1 2 ) ( ) ( g gO O . 

 
 A function :   S  belongs to the class of concave functions if   
satisfies conditions listed below: 
 

•    is analytic in O  and satisfying normalization conditions 
 (0) (0) 1 0'    . 

 
•   maps O  conformally onto a set whose complement with respect to   is 

convex. 
 

• The opening angle ( ) O  at    is less than or equal to ( ], 1, 2   .  

 
 The class ( )   represents the class of concave analytic and univalent  

functions (for details, see [5; 3; 4; 25; 24]) and the functions of this class satisfy 

below inequality: 
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( )
1 0

( )

z '' z
z

' z

 
  

 





R O  

Bhowmik B., Ponnusamy S., Wirths K. [7] established that a function maps O onto 
an angled concave domain   if and only if 
 

( 1)(1 ) ( )1
1 0

1 2(1 ) ( )

z z '' z

z ' z

  
   

  








R . 

 
 Numerous studies on bi-univalent function subclasses may be found in the 
varied publications [9; 8; 16; 21]. Motivated by works [27; 30; 28; 31; 20; 2], we 
analyze the novel subclasses of concave and bi-close-to-convex functions. 
 
Let us consider the Miller-Ross function [17] (also see [15; 29]) and is denoted as 
 

,
0

( )
( ) , , , .

( 1)

r

r

z
z z z

r










  

 
 


  

 

 The two parameter Mittag-Leffler function [32], , ( )µ z  is given by 

 

,
0

( ) , , , , 0.
( )

r

r

z
z z

r
     

 





 
 

   R{ , }  

 
For 1µ  , we have the Mittag-Leffler function [18], 

 

0

( ) , , , 0.
( 1)

r

r

z
z z

r
  







 
 

   R{ }  

 
 The Miller-Ross function [12] can be represented as 
 

, 1,1 ( )( )G z z z
   . 

 
 Recently, Şeker et al. [26] represented a power series with the corresponding 
coefficients are the Miller-Ross type Poisson distribution, which is as shown below: 
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1

,
,2

( )
( ) , , 0.

( ) ( )

r
r

r

z z z z
r






 




 



  
 










 


O          (1.2) 

 
 Now, consider the convolution of functions (1.1) and (1.2), an operator


  : B B  written as: 

 

  ( ) ( ) ( )z z z 
       

        
1

,2

( )

( ) ( )

r
r

r
r

z d z
r 

 



 



 
 




 
 

         
2

, , 0.r
r r

r

z d z z 




      O    

 

where, 
1

,

( )

( ) ( )

r

r
r 

 






 






 

. 

 
 In particular, 
 

                2
,

( )

(2 ) ( )

 



 






 

,   and   
2

3
,

( )

(3 ) ( )

 



 






 

.                    (1.3) 

 
 1.1 Involution Numbers: Considering the involution numbers (that are also 
referred to as telephone numbers (TN)), the recurrence relation is 
 

( ) ( 1) ( 1) ( 2)r r r r       , 2r  , 

 
with  (0) (1) 1   . 

 
 New generalized telephone numbers (GTNs) were recently identified in 2019 
by Bednarz and Wolowiec-Musial [6] and are represented as 
 

( ) ( 1) ( 1) ( 2)r r r r          ,       2, 1r   , 

 

with (0) (1) 1    . 
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 GTNs are presented in exponential series form by 
 

2

2
!

0

( ) , 1
xx rx

r
r

e r






 


  . 

 

 Thus, for 1  , we have TNs ( )r  and for specific values of (, )r r  is 

provided as 
 

1.  (0) (1) 1    , 
 
2.   (2) 1   , 
 
3.   (3) 1 3   , 
 
4.   2(4) 1 6 3     , 
 
5.   2(5) 1 10 15     . 

 
 Let us consider the function 
 

     
2

2( )
xx

x e





  

  
!

0

( )
rx

r
r

r




    

  
2 3 42
2 6 24

1 (1 ) (1 3 ) (1 6 3 ) .x x xx               

 
 For x  O . (see also [19; 10]) 
 
 We introduce two novel subclasses of bi-univalent functions connected with 
the Poisson distribution of Miller-Ross type that are subordinate to GTNs in our 
current paper. In addition, we estimate the Fekete-Szego inequality and the Taylor-
Maclaurin coefficients 2d , 3d , for the newly defined classes. 
 
2. Ozaki-type Bi-Close-to-Convex Functions 
 
 In 1952, Kaplan [13] introduced the class K  of close-to-convex functions. In 
1935, Ozaki [22] had already identified these functions, satisfying the following 
inequality: 
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( ) 1

1 ,
( ) 2

z ' z
z

z

 
   

 





R O .                         (2.1) 

 
 Kaplan [8] states that the function which satisfy inequality (2.1) are close-to- 
convex functions and which are categorized under class S . The Ozaki inequality 
was further generalized by Kargar and Gebadian [14]. (For details see [22; 1]) A 
function  B  is locally univalent and is said to be Ozaki close-to-convex 
function if it satisfy the condition: 
 

1 1
2 2

( ) 1
1 , , ]

( ) 2

z ' z
z

z

 
    

 
R O, 




    . 

 
 

 Definition 1:  The class ),( , ,OBCV      includes all functions 

B   if it satisfies the following subordination conditions: 

 

          
,

,

(( ( )) )2 1 2
( )

2 1 2 1 ( ( ))

z z ' '
z

z '







 
 

    








 









,                  (2.2) 

and 

        
,

,

(( ( )) )2 1 2
( )

2 1 2 1 ( ( ))

w w ' '
z

w '







 
 

    








 


 

 
,                  (2.3) 

 

where  1( ) ( )w w    and  1
2

1   . 

 

 Remark 1:  For  1
2
   , the class ) ( ), ,( ,OBCV CV      

includes all functions      if 

 

,

,

(( ( )) )
( )

( ( ))

z z ' '
z

z '




















, and 

,

,

(( ( )) )
( )

( ( ))

w w ' '
z

w '













 

 
 

 

where  1( ) ( )w w   . 

 
 The following lemma [23] will be necessary for proving the main findings. 
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 Lemma 1: If h   , then 2kc    for each k, where   is the family 

of all functions h, analytic in O , for which [ ( )] 0 ( )h z z  O , where 

 
2

1 2( ) 1 · · · ( )h z c z c z z    O . 

 

 Theorem 1: A function B   form (1.1)  is in class

),( , ,OBCV     , then 

 

    2
2 2

2 3 2 2

2 1 2 1
min ,

4 2 (2 1)(3 2 ) 2(1 )
d

   
    

     

 

    
,            

(2.4)  

and 

2 2

2 2 2 2
3 3 32 2 2

(2 1) (2 1)2 1 2 1
min ,

12 1212 4[(2 1)(3 2 ) 2(1 )
d

    
     

     

  

     
 

(2.5) 

where  2    and  3   are as given in (1.3). 

 
 Proof:  Let us consider ( )s z  and ( )t z  as 

 

   2
1 2

1 ( )
( ) 1 ,

1 ( )

l z
s z s z s z

l z


    


                        (2.6) 

 

   2
1 2

1 ( )
( ) 1 ,

1 ( )

m w
t w t w t w

m w


    


                   (2.7) 

 
or, equivalently, 

2
1 2

1 2
( ) 1 1

( ) ,
( ) 1 2 2

ss z
l z s z s z

s z

   
      
      

                        (2.8) 

and 
 

       
2
1 2

1 2
( ) 1 1

( ) ,
( ) 1 2 2

tt w
m w t w t w

t w

   
           

                           (2.9) 
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 Then (0) (0) 1s t   , and ( )s z  and ( )t z are analytic in O  with a positive 

real part in O . 
 
 Now consider, 
 

 

2[ ( )]
( )

2( ( ))
l z

l z
l z e





  

 

2
11 2 2( ( )) 1 (1 )

2 2 8

ss s
l z z z

 
     
 
 

    

   
3
13 1 2 3( 1) (1 3 ) .

2 4 48

ss s s
z

 
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 
 

             (2.10) 

 
 Similarly, 

 

2
11 2 2( ( )) 1 (1 )

2 2 8

tt t
m w w w

 
     
 
 

   

   
3
13 1 2 3( 1) (1 3 ) .

2 4 48

tt t t
w

 
      
 
 

             (2.11) 

 
 From (2.2) and (2.3), we have 
 

 
,

,

(( ( )) )2 1 2
( )),

2 1 2 1 ( ( ))

z z ' '
l z

z '







 
  

    







 




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


                       (2.12) 

and 

 

  
,

,

(( ( )) )2 1 2
( ( )).

2 1 2 1 ( ( ))

w w ' '
m w

w '







 
  

    







 


 

 
                 (2.13) 

 
 Using (2.10), (2.11) in (2.12), (2.13) and comparing the coefficients, we the 
following relations 
 

    1
2 2

4

2 1 2

s
d 





,                                         (2.14) 
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2
122 2

3 3 2 2

4
(3 2 ) ( 1)

2 1 2 8

ss
d d   


 


 ,                          (2.15) 

 

    1
2 2

4

2 1 2

t
d

 
  

 



,                                  (2.16) 

 

  
2
122 2 2

3 32 2 2

4
(3[2 ] 2 ) ( 1)

2 1 2 8

ss
d d d    


 


 .              (2.17) 

 
 
 From (2.14) and (2.16), it follows that 
 

        1 1s t  .                                                 (2.18) 

 
 Squaring and adding (2.14) and (2.16), we obtain that 
 

        2 2 2 2
2 2 1 12

128

(2 1)
d s t 





.                                      (2.19) 

 
 Now, applying Lemma 1 to (2.19), we get 
 

    2 2
2

2 1

4
d


  




.                                                (2.20) 

 
 Adding (2.15) and (2.17), we can find out that 

 

    
2 2
1 12 22 2 2

3 2 2 2

4
[6 4 ] ( 1)

2 1 2 8

s ts t
d d

 
    
 
 

 


 .                (2.21) 

 

 If we use (2.19) in (2.21), then we have 
 

    
2

2 22
2 2 2

3 2 2

( )(2 1)

16[(2 1)(3 2 ) 2(1 ) ]

s t
d

 


   



   
.                        (2.22) 
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 Employing Lemma 1, we obtain 
 

2
2 2

3 2 2

2 1

2 (2 1)(3 2 ) 2(1 )
d


  

   



   
. 

 
 Subtracting (2.17) from (2.15) and using (2.18), it follows that 
 

   2 22
3 32

24
( )

2 1 2

s t
d d


 





, 

i.e., 
 

   2 2 2
3 2

3

( )(2 1)

48

s t
d d

 
 




.                                      (2.23) 

 

 Substituting the value of 2
2d  from (2.19) in (2.23), we obtain 

 

  

2 2 2
1 12 2

3 2
3 2

( )(2 1)( )(2 1)

48 128

s ts t
d

  
 



 
.                         (2.24) 

 
 Applying Lemma 1, we obtain 
 

2

3 2
3 2

(2 1)2 1

12 12
d


   



 
. 

 
 Using (2.22) in (2.23), we obtain 
 

 
2

2 2 2 2
3 2 2

3 3 2 2

( )(2 1) ( )(2 1)

48 16[(2 1)(3 2 ) 2(1 ) ]

s t s t
d

   
 

   

 

    
.   (2.25) 

 
 Using Lemma (1), it follows that 
 

 
2

3 2 2
3 3 2 2

(2 1)2 1

12 4[(2 1)(3 2 ) 2(1 ) ]
d


   

   



    
.                         
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 Lemma 2 [13]:  Let 1 2,b b   and 1 2,c c   . Suppose that

1 2,c c     , then 

 

1 1 2
1 2 1 1 2 2

2 1 2

2 ,
( ) ( )

2 ,

b b b
b b c b b c

b b b





      
      

       
 

 

 Theorem 2:  A function B   form (1.1) is in class 

),( , ,OBCV      and   , then 

 
2 1 2 1

12 482 3 3
3 2 2 1

48 3

, 0 ( , , )

4 ( , , ) , ( , , )
d d



 

 



  
    

    


 

 





 


   



 
 

 

 Proof:  From (2.22) and (2.23), we have 
 

         2 22 2
3 2 2

3

( )(2 1)
(1 )

48

s t
d d d

 
   


 


  

 

  
2

2 2 2 2

2 2
33 2 2

( )(1 )(2 1) ( )(2 1)

4816[(2 1)(3 2 ) (1 ) ]

s t s t    
 

   

  

   
 

 

  2 2
3 3

2 1 2 1
( , , ) ( , , )

48 48
s t 

    
      
   
   

 
   

 
   , 

where  

2

2 2
3 2 2

(1 )(2 1)
( , , )

16[(2 1)(3 2 ) (1 ) ]


 


   

 
 

   



 

 

 Applying Lemma 2, we deduce that 
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2 1 2 1

12 482 3 3
3 2 2 1

48 3

, 0 ( , , )

4 ( , , ) , ( , , )
d d



 

 



  
    

    


 

 





 


   



 
                        

 

 Corollary 1: A function B    form (1.1)  is in class 

),( , ,OBCV     , then 

2
3 2

3

2 1

12
d d


   




. 

 
3. Bi-concave Functions 
 

 Definition 2:  A function B   is belongs to the class 

), , ,(BCV      if it satisfies the following subordination conditions: 

 
,

,

( ( ))(1 )(1 )2
1 ( ),

1 2(1 ) ( ( ))

z z ''z
z

z z '







    
  

 














 
                       (3.1) 

and 

    

,

,

( ( ))(1 )(1 )2
1 ( )

1 2(1 ) ( ( ))

w w ''w
w

w w '







    
  

 














 
                      (3.2) 

 

where  1( ) ( )w w    and  1 2  . 

 

 Theorem 3: A function B   form (1.1) is in class ), , ,(BCV    , 

then 

2

2 2
2

9 6 1
min

16
d

  
   

 

 
, 

 

     

1
22

2 2
32 2

1 3 2 1 2
( 1) ,

4( 1)(2 3 ) 2(1 )


      
    
          


  

   


 
    (3.3) 
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and 

2

3 2
32

9 6 1 1
min

1216
d

   
   




  
, 

2

2 2
332 2

1 3 2 1 2 1
( 1) ,

4 12( 1)(2 3 ) 2(1 )

     
    

       
  

    


 
  (3.4) 

 

where 1 2   and 2  and 3  are as given in (1.3). 

 
 Proof:  From (3.1) and (3.2), we can write 
 

,

,

( ( ))(1 )(1 )2
1 ( )),

1 2(1 ) ( ( ))

z z ''z
l z

z z '







    
  

 














 
                       (3.5) 

and 

     

,

,

( ( ))(1 )(1 )2
1 ( ))

1 2(1 ) ( ( ))

w w ''w
m w

w w '







    
  

 








 

  
.            (3.6) 

 
 Using (2.10), (2.11) in (3.5), (3.6) respectively and equating the coefficients, 
we obtain 

                                        1
2 2

2
[(1 ) 2 ]

1 2

s
d  





,                                    (3.7) 

 

              
2

2 12 2
3 32 2

2
[(1 ) 4 6 ] ( 1)

1 2 8

ss
d d     


  


,              (3.8) 

 

                                     1
2 2

2
[(1 ) 2 ]

1 2

t
d   





,                                    (3.9) 

 

 
2

2 12 2 2
3 32 2 2

2
[(1 ) 4 6 (2 )] ( 1)

1 2 8

tt
d d d      


  


.            (3.10) 

 
 From (3.7) and (3.9), it follows that 
 

           1 1s t .                                                    (3.11) 
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 From (3.7) and (3.9), we can write 
 

   1
2

2 2

( 1)1

2 8

s
d


 
 


,                                              (3.12) 

 

   1
2

2 2

( 1)1

2 8

t
d


 
 


.                                              (3.13) 

 
 Squaring and adding (3.12) and (3.13), we obtain 
 

        
2 2 22 2
1 1 1 12

2 2 2 2
2 2 2

( )( 1)(1 ) ( 1)( )

4 128 16

s t s t
d

   
  

  

 
 ,             (3.14) 

i.e., 

       

2 2 2 2 2
1 1 1 12

22 2 2
2 2 2

( )( 1) (1 ) ( 1)( )
2

64 2 8

s t s t
d

    
  

  

  
.            (3.15) 

 
 Applying Lemma 1 to (3.14), we have 
 

2

2 2
2

9 6 1

16
d   
  

 


. 

 
 Adding (3.8) and (3.10), we obtain 
 

2 2
1 12 22 2 2

32 2 2

( )2
{2(1 ) 8 12 } ( 1)

1 2 8

s ts t
d d

 
      
 
 

 


  .          (3.16) 

 
 Implies that, 
 

2 2
1 12 22 2

32 2

( 1)( 1)( )( 1)( ) ( 1)
(2 3 )

16 64 2

s ts t
d

    
   

  
  . 

 
 Multiplying both sides by (ϱ  1), thus, we get 
 

2 2 22 2
1 12 22 2

32 2

( 1)( 1) ( )( 1) ( ) ( 1)
( 1)(2 3 )

16 64 2

s ts t
d

    
    

  
   .  (3.17) 
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 Using (3.15) in (3.17), we obtain 
 

2 2
2 22 2 2

32 2 2 2
2

( 1) ( ) (1 )
( 1)(2 3 ) 2(1 ) ( 1)

16 2

s t
d d

  
      

 
   


 

           
2 2

1 12
2

( 1) ( 1)
( 1) ( )

28
s t

  
     

 

 



.   (3.18) 

 Thus, we have 
 

2
2 22

2 2
32

( 1) ( )1

16[( 1)(2 3 ) 2(1 )]

s t
d

  
 

    



  
  

 

           
2 2 2

1 12 2
2 2

(1 ) ( 1) ( 1)
( 1) ( 1) ( )

22 8
s t

   
       

 

  
 

 
.             (3.19) 

 
 Applying Lemma 1 to (3.19), we obtain 
 

2 2
2 2
2 2 2

32 2

1 2 1
( 1)

4( 1)(2 3 ) 2(1 )
d

   
     

     

   


   
. 

 
 Now, subtracting (3.10) from (3.8) and using (3.11), we get 
 

      2 22
32

3

( )( 1)

48

s t
d d

 
 




.                        (3.20) 

 
 Using (3.14) in (3.20), we find that 
 

2 2 22 2
1 1 1 1 2 2

3 2 2 2
32 2 2

( )( 1)(1 ) ( 1)( ) ( )( 1)

484 128 16

s t s t s t
d

     
   

  

  
.  (3.21) 

 
 According to Lemma 1, we deduce that 
 

2

3 2
32

9 6 1 1

1216
d

  
   

  


. 
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 Next we use the value of 2
2d  form (3.19) in (3.20), we obtain 

 
2

2 2
3 2

32

( 1) ( )1

16[( 1)(2 3 ) 2(1 )]

s t
d

  
 

    



  
  

 
           

2 2 2
2 2

1 12 2
32 2

(1 ) ( 1) ( 1) ( )( 1)
( 1) ( 1) ( )

2 482 8

s t
s t

     
       

 

   
 

 
. 

(3.22) 
 Using Lemma 1, we get 
 

2 2

3 2 2
332 2

1 3 2 1 1
( 1)

4 12[( 1)(2 3 ) 2(1 )]
d

    
   

     

    


    
 

 
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EDGE ODD GRACEFUL LABELING OF 
SOME SNAKE GRAPHS 
 

 
 
 
 
 
 

Abstract: An edge odd graceful labeling of graph G  is a bijection f  from 

the edges of the graph to }1, 3,  ..., 2 1{ q   such that, when each vertex is 

assigned the sum of all the edges incident to it mod 2q  the resulting vertex 

labels are distinct. A graph is called an edge odd graceful graph as it admits 

an edge odd graceful labeling. It was intoduced by Solairaju and Chithra in 

2008. In this research paper, Edge odd graceful labeling of some snake 

graphs such as double alternate triangular snake ( )nDAT , double alternate 

quadrilateral snake ( )nDAQ  and alternate pentagonal snake ( )nA PS  have 

been discussed. 

 

Keywords: Edge Odd Graceful Labeling, Edge Odd Graceful Graph, Snake 
Graphs.   
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1. Introduction 
 
 In this research article, all graphs ( ( ), ( ))G V G E G  are finite, simple, 

connected and undirected. Here ( )V G  be the vertex set and ( )E G be the edge set of a 

graph. Graph labeling is an assignment of integers to edges or vertices or both, 
subject to certain conditions. For an extensive survey on graph labeling and 



134 VALANI DARSHANA K AND KANANI KAILAS K   

bibliographic references, we refer to Gallian [2]. A graceful labeling of a graph G , 
which was introduced by Rosa [6] in 1967, is a injection f  from the vertices of the 

graph to the set }1, 2, ...,{ q  such that the induced function f   from the set of edges 

to the set }1, 2,0, ...,{ q  defined as   ( ) ( ) ( )u vf e uv f f    , is bijective. 

Soleha et al. [10] have proved that the alternate triangular snake and alternate 
quadrilateral snake graphs are edge odd graceful. 
 

 Definition 1.1 [9]: A function f  is called an edge odd graceful labeling 

of a graph G  if  :   {1, 3, ..., 2 1}( )E Gf q       is bijective and the induced 

function  : ( ) {0, 1, 2, ..., 2 1}f V G q   ,  defined as 
( )

( ) ( ) 
uv E G

f u f uv   
   

(mod 2 )q  is injective. 

 
 A graph which admits an edge odd graceful labeling is called an edge 
odd graceful graph. 
 

 Definition 1.2 [1]: An alternate triangular snake  ( )nAT  is obtained 

from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   

(alternatively) to new vertex iv , where 1 1i n    for even n and for 

1 2i n    for odd n.  

 

 That is every alternate edge of a path nP is replaced by 3C . 
 

 Definition 1.3 [1]: A double alternate triangular snake ( )nDAT  is 

obtained from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   

(alternatively) to two new vertices iv  and iw , where 1 1i n    for even 

n and for 1 2i n    for odd n. 

 

 In other words, the double alternate triangular snake ( )nDAT  consists 

of two alternate triangular snakes that have a common path. 

 

 Definition 1.4 [1]: An alternate quadrilateral snake ( )nA Q  is obtained 

from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   
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(alternatively) to two new vertices iv and iw , respectively and then joining iv , 

and iw  where 1 1i n    for even n and for 1 2i n    for odd n. 

 

 That is every alternate edge of a path nP  is replaced by 4C . 
 

 Definition 1.5 [1]: The double alternate quadrilateral snake ( )nDAQ  

obtained from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   

(alternatively) to two new vertices iv , iw and 1iv  , 1iw   respectively and then 

joining iv , 1iv    and iw , 1iw  , where 1 1i n    for even n and for 

1 2i n    for odd n . 

 

 In other words, the double alternate quadrilateral snake graph  

( )nDAQ   consists of two alternate quadrilateral snakes that have a common 

path. 
 

 Definition 1.6  [8]: An alternate pentagonal snake ( )nA PS  is obtained 

from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   

(alternatively) to new vertices iv  and iw  respectively and then joining iv  and 

iw to the new vertex ix , where 1 1i n    for even n and for 

1 2i n    for odd  n. 

 

 That is, every alternate edge of path nP is replaced by a cycle 5C . 

 
2. Main Results 
 

 Theorem 2.1: The double alternate triangular snake ( )nDAT  is an edge 

odd graceful graph for all 2n  . 

 

 Proof: Let G  be a double alternate triangular snake ( )nDAT  which is 

obtained from a path nP with vertices 1 2, , ..., nu u u  by joining iu  and 1iu    

(alternatively) to two  new vertices jv  and jw , where 1 1i n    for even n , 

1 2i n    for odd n  and  21
n

j    . 
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4

1 3

5
  9  

9

5 7

2

 Therefore 
 

2 }, , / 1 ,( ) { 1
n

i j jV u v w i n jG         

 

1 2 1 22 2( ) { } { } { }/1 1 /1 /1
n n

i i i i i iE u u i n u v vG i u i               

   2 1 22 2{ } { }/1 /1
n n

i i i iu w i u w i         . 

 
 Here note that 
 

2 , if 0 (mod 2)
( )

2 1, if 1 (mod 2)

n n
V G

n n


   

 
 

 

3 1, if 0 (mod 2)
( )

3 3, if 1 (mod 2)

n n
E G

n n

 
   

 
 

 
 Case 1: 0, 2 (mod 4)n    

 Subcase 1:  2n   
     v1 
 
 
 
 

u1    u2 

 
 
 
 

w1 

 

Figure 1: Edge odd graceful labeling of double alternate triangular snake 2( )DAT   

 

 Here Figure 1 shows that the double alternate triangular snake 2( )DAT  is an 

edge odd graceful graph. 
 
 Subcase 2: 0, 2 (mod 4)n   and  2n   

 

 Define edge labeling : ( ) {1, 3, 5, ..., 6 3}f E G n   is as follows: 
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1 4 2 1;  1 1( )i if u u n i i n        

2    1 2
4 3;(  1) n

i if u v i i       

2 2
4 1  1( ) ; n

i if u v i i      

2 1 2
6 4 1;  1( ) n

i if u w n i i        

2 2
6 4( 1;  1) n

i if u w n i i       

 
 The corresponding labels of vertices iu   and , 1, 2, 3...  mod (6 2)iv i n   
are 

1 1 2 1 1 1 1( ) ( ) ( ) ( ) 4 3f u f u u f u v f u w n      ; 

1 1
2 2

( ) ( ) ( ) ( ) ( )i ii i i i i i if u f u u f u u f u v f u w
     

     

            2 4 2;  2 1n i i n       

1
2 2

( ) ( 1( ) () ) 2n nn n n n nf u f u u f u v f u w n
     ; 

2 1 2 2
( ) ( ) ( ) 8 4;  1 n

i i i i if v f u v f u v i i
        

2 1 2 2
6( ( 8 2;  ) ( ) 1) n

i i i i if w f u w f u w n i i
         

 
 The labels of edges are in the set }1, 3, 5, ..., 6 3{ n  . Then the labels of 

vertices are in the set 
 

.{4, 12, ..., 4 4 {4 3} {2 6, 2 10, . ., 4 4} 2 1}n n n n n n            

        6 6, 6 14, ..., 2 2n n n     . 

 

 Here    ,   ( ) ( )i ji j f v f v   . 

 

 Therefore, the induced function : ( ) {0, 1, 2, ..., 2 1}f V G q    , defined 

as 
( )

( ) ( ) mod (6 2)
uv E G

f u f uv n   
 is injective. 
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 Case 2: 1 (mod 4)n    
 
 Define edge labeling   : {1, 3, 5, ..., 6 7}( )f E G n   is as follows: 

 

1 4 2 3;  1 2( )i if u u n i i n        

1( ) 2 1n nf u u n   ; 

2 1 24 3;  ( 1)
n

i if u v i i        

2 24 1( ;  ) 1
n

i if u v i i       

2 1 24 4 1( ; 1)  
n

i if u w n i i         

2 24 4 1;  ( ) 1
n

i if u w n i i        

 
 The corresponding labels of vertices iu  and , 1, 2, 3... mod (6 6)iv i n   
are 
 

1 1 2 1 1 1 1( ) ( ) ( ) ( ) 8 3f u f u u f u v f u w n      ; 

1 1
2 2

( ) ( ) ( ) ) )( (i ii i i i i i if u f u u f u u f u v f u w
     

      

            
6 4 4;  2 – 2n i i n       

1 2 1 1 1
2 2

( ) ( ) ( ) ) ) 6 4( (n nn n n n n n nf u f u u f u u f u v f u w n
        

       

1  ( ) ( ) 2 1n n nf u f u u n
   ; 

2 1 2 28( ) 4;  1( ) ( )
n

i i i i if v f u v f u v i i
         

2 1 2 2( ) ( ) ( 2 8 6;)  1
n

i i i if w f u wi f u w n i i
         

  
 The labels of edges are in the set }1, 3, 5, ..., 6 7{ n  . Then the labels of 

vertices are in the set 3{4, 12, ..., 4 8 2 6 4, 6 8, .} .., 4 6n n n n n           

2 1 2 2, 2 10, ..., 4 4n n n n         . 
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 Here  ,   ( ) ( )i ji j f v f v   . 
 

 Therefore, the induced function  : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as   ( ) ( ) ( ) mod (6 6)
uv E

f u G f uv n   
  is injective. 

 
 Case 3:  3 (mod 4)n   

 
 Define edge labeling   : {1, 3, 5, ..., 6 7}( )f E G n    is as follows: 

 

1 2 2 3;  1 – 1( )i if u u n i i n        

22    1 4 3  ;  1) ;(
n

i if u v i i        

22 4 1( ;  ) 1
n

i if u v i i       

22    1  ( ) 4 4 7; 1
n

i if u w n i i         

22 4 4 5;  ( ) 1
n

i if u w n i i        

 

 The corresponding labels of vertices iu  and , 1, 2, 3...  mod (6 6)iv i n   

are 
 

1 1 2 1 1 1 1( ) ( ) ( ) ( ) 6 3f u f u u f u v f u w n      ; 

1 1
2 2

( ) ( ) ( ) ( ) ( )i ii i i i i i if u f u u f u u f u v f u w
     

      

            
2 8 8;  2 – 1n i i n       

 

1( ) ( ) 4 5n n nf u f u u n
   ; 

22 1 2 8( ) 4;  1( ) ( )
n

i i i i if v f u v f u v i i
         

22  1 2(   ;  1( ) ( ) )
n

i i i i if w f u w f u w i
        
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 The labels of edges are in the set }1, 3, 5, ..., 6 7{ n  . Then the labels of 

vertices are in the set 4, 12, ..., 4 4 6 3{ }n n   

2 8, 2 16, ..., 4 10n n n     4 5n    {2 2, 2 10, ..., 6 10}n n n   . 

Here ,   ( ) ( )i ji j f v f v   . 

 

 Therefore, the induced function : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as   
( )

( ) ( ) mod (6 6)
uv E G

f u f uv n


   is injective. 

 

 Example 2.2:  The  edge  odd  graceful  labeling  of  double  alternate  

triangular snake 8( )DAT , 9( )DAT  and 11( )DAT  is shown in Figure 2, 3, and 4. 

 
 
 
 
 
 
 
 
 

Figure 2: The edge odd graceful labeling of double alternate triangular  
snake 8( )DAT  

 
 
 
 
 
 
 
 

Figure 3: The edge odd graceful labeling of double alternate triangular  
snake 9( )DAT  

 
 
 
 
 
 
 

Figure 4: The edge odd graceful labeling of double alternate triangular  
snake 11( )DAT . 
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 In each possibility the graph under consideration satisfies the vertex 
conditions and edge conditions for an edge odd graceful labeling. Hence, the double 

alternate triangular snake ( )nDAT  is an edge odd graceful graph for all  2n  .    

 

 Theorem 2.3: The double alternate quadrilateral snake ( )nDAQ  is an 

edge odd graceful graph for all  2n  . 

 

 Proof: Let G  be a double alternate quadrilateral snake ( )nDAQ  which is 

obtained from a path nP with vertices 1 2, , ..., nu u u  by joining iu  and 1iu   

(alternatively) to two new vertices iv , iw  and 1iv  , 1iw   respectively and then 

joining iv , 1iv   and iw , 1iw  , where 1 1i n    for even n  and for 

1 2i n  
 
for odd n .  

 
Therefore, 
 

, , /) 1( { }i i iV G u v w i n     

 

21 2 1 2{ } { }( ) /1 1 /1
n

i i i iE G u u i n v v i          

               22 1 2 }/ }1 /1 /1{ { } {
n

i i i i i iw w i u v i n v w i n         . 

 
 Here note that 
 

3 , if 0 (mod 2)
( )

3 2, if 1 (mod 2)

n n
V G

n n


   

 
 

 

4 1, if 0 (mod 2)
( )

4 4, if 1 (mod 2)

n n
E G

n n

 
   

 
 

 
 Case 1:  0 ( mod 2)n    
 
 Subcase 1: 2n    
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Figure 5: Edge odd graceful labeling of double alternate quadrilateral snake  

graph 2( )DAQ  

 

 Here Figure 5 shows that double alternate quadrilateral snake 2( )DAQ is an 

edge odd graceful graph. 
 
 Subcase 2: 0 ( mod 2)n     and   2n   
 
 Define edge labeling   : {1, 3, 5, ...8 3}( )f E G n    is as follows: 

 

1 3 2 1;  1 – 1( )i if u u n i i n        

2   1 2 1 2
) 6 5;  ( 1 n

i if u v i i        

2 2 2
6 1;  1( ) n

i if u v i i      

1 2
6 3  ( ) ; 1 n

i if v v i i       

2 1 2 1 2
8 6) 3;  1(   n

i if u w n i i         

2 2 2
8 6 1 2( ) ;   n

i if u w n i i       

1 2
6( ) 8 1;  1 n

i if w w n i i       

 

 The corresponding labels of vertices iu  and iv , 1, 2, 3... mod (8 2)i n   

are  
 

1 1 2 1 1 1 1( ) ( ) ( ) ( ) 3 1;f u f u u f u v f u w n        
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1 1 6 4 4;  2 – 1(( ) ( ) ( ) ) ( )i i i i i i i i if u f u u f u u f u v f u w n i i n
            

1( ) ( ) ( ) ( ) 5 3n n n n n n nf u f u u f u v f u w n
      

2 1 2 1 2 1 2 1 2 2
( ) ( ) ( 12 8;  1)   n

i i i i if v f u v f v v i i
           

2 2  1 2 2 2 2
( ) ( ) ( ) 12 4;  1 n

i i i i if v f v v f v u i i
        

2 1 2 1 2 1 2 1 2 2
8 12 ;( ) ( )  ( 6 1  ) n

i i i i if w f u w f w w n i i
            

2 2   1 2 2 2 2
8 12 2;( ) ( (  1) ) n

i i i i if w f w w f w u n i i
         

 
 The labels of edges are in the set }1, 3, 5, ..., 8 3{ n  . Then the labels of 

vertices are in the set 2{4, 16, ..., 6 8 8, 0, ..., 6 4 3} 1n n n         

6 4, 6 8, ..., 2 6 5 3 8 6, 8 18, ..., 2 6n n n n n n n                 

{8 10, 8 22, ..., 2 2}n n n   . Here ,   ( ) ( )i ji j f v f v   .  

 

 Therefore, the induced function  : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as  
( )

  ( ) ( ) mod(8 2)
uv E G

f u f uv n   
 is injective. 

 
 Case 2: 1 (mod 2)n    

 
 Define edge labeling   : {1, 3, 5, ...8 9}( )f E G n   is as follows: 

 

1 6 2 7;  1 – 1( )i if u u n i i n        

22  1 2   1 4 3)  1( ;
n

i if u v i i         

22 2  4 4 7;( )  1
n

i if u v n i i        

 21 2 4 5 1( ;)  
n

i if v v n i i         

22    1 2 1 4 4 1( ) 5;  
n

i if u w n i i          
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22 2 4 1 1( ;)  
n

i if u w i i       

21 2 4 3 1( ;)  
n

i if w w n i i        

  
 The corresponding labels of vertices iu and iv , 1, 2, 3...  mod (8 8)i n   
are 
 

1 1 2 1 1 1 1( ) ( ) ( ) ( ) 2 3f u f u u f u v f u w n      ; 

2 1 2 2 2 1 2 1 2 2 1 2 1 2 1 2 1( ) ( ) ( ) ( ) ( )i i i i i i i i if u f u u f u u f u v f u w
           , 

      
2

28 16 20;  2
n

n i i


        

2 2 1 2 2 2 1 2 2 2 2( ) ( ) ( ) ( ) ( )i i i i i i i i if u f u u f u u f u v f u w
       

             28 16 16;  1
n

n i i        

1( ) ( ) 8 9n nf un f u u n
     

22 1 2 1 2 1 2 1 2 2( ) ( ) ( ) 8 8;  1
n

i i i i if v f u v f v v n i i
             

22 2 2 2   1 2 6 8 1( ) ) 12;) (  (
n

i i i i if v f u v f v v n i i
          

22   1 2 1 2 1 2 1 2 6( ) ( ) ( ) 8 8;  1
n

i i i i if w f u w f w w n i i
             

22 2 2 2    1 2 ;( ) ( ) 2 1) 8  ( 4
n

i i i i if w f u w f w w n i i
          

 
 The labels of edges are in the set }1, 3, 5, ..., 8 9{ n   . Then the labels of 

vertices are in the set { }2 ,  2 8, ..., 6 12 6 4, 6 4, ..., 2 8n n n n n n        

2 3n    8, 24, ..., 8 16n    {2 3} 20, 36, , ..., 8 20 8 9n n n           

{6 , 6 8, ..., 2 4} 2 4, 2 12, ..., 6 8n n n n n n        . 

 

 Here   ,   ( ) ( )i ji j f v f v   . 

 

 Therefore, the induced function  : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

( )
  ( ) ( ) mod (8 8)

uv E G
f u f uv n   

 is injective. 
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 Example 2.4:  The edge odd graceful labeling of the double alternate 

quadrilateral snake 6( )DAQ  and  7( )DAQ   is shown in the following Figure 6 

and 7. 

 
 

Figure 6: The edge odd graceful labeling of double alternate quadrilateral  

snake DA(Q6) 

 

 
 

Figure 7: The edge odd graceful labeling of double alternate quadrilateral  
snake 7( )DAQ . 

 
 In each possibility the graph under consideration satisfies the  
vertex conditions and edge conditions for an edge odd graceful labeling. Hence,  
the double alternate quadrilateral snake ( )nDAQ  is an edge odd graceful graph  
for all  2n  .                                    
 
 Theorem 2.5: The alternate pentagonal snake ( )nA PS  is an edge odd 
graceful graph for all  2n  . 
 

 Proof:  Let G  be a alternate pentagonal snake ( )nA PS which is obtained 

from a path nP  with vertices 1 2, , ..., nu u u  by joining iu  and  1iu   (alternatively) 

to new vertices jv  and jw  respectively and then joining jv  and jw  to the new 
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vertex jx , where 1 1i n    for even , 1 2n i n    for odd n  and 

21
n

j      . 

 
 Therefore, 
 

2, , , /( ) { }1 , 1
n

i j j jV G u v w x i n j        
  

2 21 2 1( ) { } { } { }/1 1 /1 /1
n n

i i i i i iE G u u i n u v i v x i               

               2 22{ } { }  /1 /1
n n

i i i ix w i w u i        . 

 
 Here note that 
 

5
2
5
2

, if 0 (mod 2)
( )

1, if 1 (mod 2)

n

n

n
V G

n

 
   

  
 

 

3 1, if 0 (mod 2)
( )

3 3, if 1 (mod 2)

n n
E G

n n

 
   

 
 

 
 
 Case 1:  0 (mod 2)n    
 
 Subcase 1: 0 (mod 6)n    
 
 Define edge labeling   : {1, 3, 5, ..., 6 2}( )f E G n   is as follows: 
 

1 4 2 1;  1 – 1( )i if u u n i i n        

2  1 2
2 4 3;  1( ) n

i if u v n i i        

2
4 3) ;  ( 1 n

i if v x i i      

2
2 4( 1;  1) n

i if w x n i i       

2 2
4 1  1( ) ; n

i if u w i i      
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 The corresponding labels of vertices iu  and , 1, 2, 3...  mod(6 2)iv i n   

are   

1 1 2 1 1( ) ( ) ( ) 6 2f u f u u f u v n       

2
2 2 1 2 2 2 1 2 2

( ) ( ) ( ) 2 12 3;  1) ( n
i i i i i i if u f u u f u u f u w n i i 

          

2 1 2 1 2 2 2 1 2 1 2
( ) ( ) ( ) ( 4 1 ;) 2 9  2 n

i i i i i i if u f u u f u u f u v n i i
               

1 /2( ) ( ) ( ) 8 4n n n n nf u f u u f w u n
    ; 

2 1 2
( ) ( ) ( ) 2 8 6;  1 n

i i i i if v f u v f v x n i i
         

2
  2 8 4;  1( ) ( ) ( ) n

i i i i if x f v x f x w n i i          

2 2
  2( 2 8 ;  ( 1) ) ( ) n

i i i i if w f x w f w u n i i          

 
 The labels of edges are in the set }1, 3, 5, ..., 6 3{ n  .Then the labels of 

vertices are in the set }{6 2 {2 9, 2 21, ...,} 2 13n n n n     

    4 15, 4{ n n    27, ..., 4 7 2 2 2 2, 2 10, ..., 6 6}n n n n n            

{2 4, 2 12, ..., 6 4} 2 6, 2 14, ..., 6 2n n n n n n         . 

 
 Here   ,   ( ) ( )i ji j f v f v   . 
 

 Therefore, the induced function  : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as 
( )

  ( ) ( ) mod (6 2) 
uv E G

f u f uv n


   is injective. 

 

 Subcase 2:  2, 4 (mod 6)n    

 
 Define edge labeling  : {1, 3, 5, ..., 6 2}( )E Gf n   is as follows: 

 

1 4 2 1;  1 – 1( )i if u u n i i n        

2   1 2
8 7;  1( ) n

i if u v i i      

2
8 5) ;  ( 1 n

i if v x i i      
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2
;( ) 8 3  1  n

i if w x i i      

2 2
8 1  1( ) ; n

i if u w i i      

 

 The corresponding labels of vertices iv  and , 1, 2, 3...  mod (6 2)iv i n    

are 
 

1 1 2 1 1( ) ( ) ( ) 4 2f u f u u f u v n     ; 

2
2 2 2 1 2 1 2 2 2

( ) ( ) ( ) 2 16 3;  ) 1( n
i i i i i i if u f u u f u u f u w n i i 

           

2 1 2 1 2 2 2 1 2 1 2
( ) ( ( 2 16 13;  2  ) ( ) ) n

i i i i i i if u f u u f u u f u v n i i
             

1 /2( ) ( ) ( ) 4 2n n n n nf u f u u f w u n
    ; 

2 1 2
( ) ( ) ( ) 16 12;  1 n

i i i i if v f u v f v x i i
        

2
( ) ( 16 8;)  ( 1) n

i i i i if x f v x f x w i i         

2 2
4( ) 16 ;  1) ( ) ( n

i i i i if w f x w f w u i i        

 
 The labels of edges are in the set }1, 3, 5, ..., 6 3{ n  . Then the labels of 

vertices are in the set 4 2 2 13, 2 29, ..{ ., 4 17}n n n n       

{2 19, 2 35, ..., 4 11}n n n    {8, 24, ..., 2 6}n   {12, 28, ..., 2 2}n  . 

 

 Here   ,   ( ) ( )i ji j f v f v   . 
 

 Therefore, the induced function  : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as 
( )

  ( ) ( ) mod  (6 2)
uv E G

f u f uv n


    is injective. 

 
 Case 2: 1 (mod 2)n    
 
 Here note that 
 
   25 1( )

n
GV      

 
   3( ) 3E G n     
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 Define edge labeling  : {1, 3, 5, ...6 7}( )E Gf n   is as follows: 
 

1 6 2 5;  1 – 1( )i if u u n i i n        

22    1 4 3( ) ;  1
n

i if u v i i        

22 4 5;  ( ) 1
n

i if v x n i i        

24 1;(  ) 1
n

i if w x i i       

22 2 4 3;  ( ) 1
n

i if u w n i i        

 

 The corresponding labels of vertices iu  and , 1, 2, 3...  mod (6 6)iv i n   

are 
 

1 1 2 1 1( ) ( ) ( ) 6 6f u f u u f u v n     ; 

22 2 2 1 2    1 2 2(   2 4 1;( ) 1( (  ) ) )
n

i i i i i i if u f u u f u u f u w n i i
            

22 1 2 1 2 2 2 1 2 1( ) ( ) ( ) ( 6 4  ) 1; 2
n

i i i i i i if u f u u f u u f u v n i i
              

1( ) ( ) 4 3n n nf u f u u n
   ; 

22 1( ) ( ) ( 2 8 8;  ) 1
n

i i i i if v f u v f v x n i i
          

28( ) ( )  ( ) 2 6;  1
n

i i i i if x f v x f x w n i i           

22  ( 2 8 4;( ) ( ) )  1
n

i i i i if w f x w f w u n i i           

 
 The labels of edges are in the set }1, 3, 5, ..., 6 7{ n  . 

 
           Then the labels of vertices are in the set 2{6 6 2 3, 7, ..., 3} 6n n n n       

 {6 9, 6 13, ..., 4 1} 4 3n n n n         2 , 2 8, ..., 6 12n n n      

 {2 2, 2 10, ..., 6 10} 2 4, 2 12, ..., 6 8n n n n n n         . 

 
 Here   ,   ( )  ( )i ji j f v f v   . 
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 Therefore, the induced function : ( ) {0, 1, 2, ..., 2 1}f V G q   , defined 

as 
( )

( ) ( ) mod (6 6)
uv E G

f u f uv n   
 is injective. 

 

 Example 2.6: The edge odd graceful labeling of the alternate pentagonal 

snake 6( )A PS , 10( )A PS  and 9( )A PS is shown in Figure 8, 9 and  10. 

 
 
 
 
 
 
 
 
 
 
 

Figure 8: The edge odd graceful labeling of alternate pentagonal snake 6( )A PS . 

 
 
 
 
 
 
 
 
 

Figure 9: The edge odd graceful labeling of alternate pentagonal snake 10( )A PS . 

 

 
 
 

Figure 10: The edge odd graceful labeling of alternate pentagonal snake  

graph 9( )A PS  
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 In each possibility the graph under consideration satisfies the  
vertex conditions and edge conditions for an edge odd graceful labeling.  
Hence, the alternate pentagonal snake ( )nA PS  is an edge odd graceful graph for  
all 2n  .                                    
 
3   Conclusion 
 
 In this paper, it is proved that double alternate triangular snake ( )nDAT , 
double alternate quadrilateral snake ( )nDAQ  and alternate pentagonal snake 

( )nA PS  are edge odd graceful graphs. To derive new families of graphs that admit 
edge odd graceful labeling is an open area of research. 
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ANTIMAGIC LABELING OF LINE 
GRAPH OF SOME GRAPHS 
 

 
 
 
 
 
 

Abstract: Motivated from the study of magic square, Hartsfield and  
Ringel defined antimagic labeling as a bijection 

: {1, 2, ,( ) | ( )3, }f E EG G   such that , ( ), ƒu v V G u v  , sum 

of ( )f e  for all e incident to u  is different from sum of ( )f e for all e  

incident to v . In this paper, we discussed antimagic labeling of the line 
graph of armed crown, double comb, ladder, wheel and tadpole. 
 
Keywords: Graph Labeling, Antimagic Labeling, Graph Operation, Line    
       Graph. 
 
Mathematics Subject Classification (2020) No.: 05C78, 05C76. 

 
1. Introduction 
 
 All the graphs considered in this paper are simple, finite, connected and 
undirected. A graph ( ), ( ))(G V G E G  with q  edges is said to be antimagic, if 

there exist a bijective labeling f from edge set of G  to 1, 2, 3, , q  such that the 

sums of the labels of the edges incident to each vertex is distinct. Hartsfield and 
Ringel [12] in ‘Pearls in graph theory’ introduced antimagic labeling and conjecture 

that ‘every connected graph different from 2K  is antimagic’. 

 
 Many authors have tried to attack antimagic conjecture, Alon et al. [1] have 
derived conditions on degree of a vertices for graph to be antimagic. Arumugam  
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et al. [2] have shown that various pyramid graphs are antimagic graphs. Cheng [6] 
has proved that Cartesian products of two or more regular graphs are antimagic. 
Joseph and Kureethara[15] have investigated  that  Cartesian  product  of  wheel  
graph  and  path  graph  is  antimagic.  Bača  et al. [3] as well as Wang et al .[24] 
have discussed antimagic labeling for some join graphs. Latchoumanane and 
Varadhan [17] have studied antimagicness for tensor product of wheel and star. 
Lozano et al. [18] have proved antimagic labeling of caterpillars. Sethuraman and 
Shermily [21] have verified binomial tree and Fibonacci tree are antimagic. Barasara 
and Prajapati [4, 5] have obtained antimagic labeling of some degree splitting graphs 
as well as for some snake graphs. Although researchers applied various techniques, 
still antimagic conjecture remains open. 
 
 A detailed survey on antimagic labeling can be found in Jin and Tu [14]. 
While survey on graph labeling is carried out by Gallian [10]. 
 
 In this paper, we study antimagic labeling in the context of line graph 
operation. 
 
2. Preliminaries 
 

 Definition 2.1 ([7]): The line graph  ( )L G   of a graph G  is the graph 

whose vertex set is ( )E G  and two vertices are adjacent in ( )L G whenever they 

are incident in G . 

 

 Definition 2.2 ([23]): The armed crown  nAC  is a graph in which path 

2P  is attached at each vertex of cycle nC  by an edge. 

 

 Definition 2.3 ([19]): The Cartesian  product  of  graphs  1G   and 2G  

denoted by 1 2G G  is the graph with vertex set 

1 2 1( ) ( ) {( ), / ()V GV u v u V GG     and 2)}(v V G  and ( ),u v    is adjacent 

to ( , )u' v'  if and only if either u u'  and 2( )vv' E G  or v v'  and 

1( )uu' E G . 

 

 Definition 2.4 ([11]): The ladder graph  nL  is defined as 2 n nL P K   . 
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 Definition 2.5 ([9]): Let G  and H  be two graphs. The corona product 

of G  and H , denoted by G H , is obtained by taking one copy of G  and 

  ( )V G   copies of H , and by joining each vertex of the ith copies of H  to the ith 

vertex of G , for 1, 2, 3, , ( )V G  . 

 

 Definition 2.6 ([13]): Let nP  be a path graph with n vertices. The 

double comb graph is defined as 12nP K . 

 

 Definition 2.7 ([22]):  The graph obtained by joining cycle nC  to a path 

mP  with an edge is called tadpole graph. It is denoted by ( , )T n m . 

 

 Preposition 2.1 ([1]): If G  has 4n   vertices and ( ) 2G n   then 

G  is antimagic. 

 

 Preposition 2.2 (Exercise in [12]): The cycle nC  is antimagic. 

 
3. Main Results 
 

 Theorem 3.1: The armed crown graph nAC  is an antimagic graph. 

 

 Proof:  Let nAC   be an armed crown graph with 

   { , , /  1,2, , }( ) ' ''
i iinV v v v iAC n    and 1( ) { / 1, 2, , 1}n i iE AC v v i n  

1 / 1, 2, , / 1, 2, ,' ' ''
n i i i iv v v v i n v v i n           . 

 

 Then ( ) 3nV AC n   and ( ) 3nE AC n . 

 

 We define : ( ) {1, 2, , 3 }nf E AC n   as follows. 

 

   1( ) 2 1nf v v n  , 

 

1( ) 3 1;i if v v n i     For 1   1i n   , 
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( ) ; '
i if v v n i    For 1 i n  , 

( ) ; ' ''
i if v v i    For 1 i n  . 

 
 Above define edge labeling function will generate distinct vertex labels for 

all the vertices of nAC . Thus, f  is an antimagic labeling. 

 

 Hence, the armed crown graph nAC  is an antimagic  graph. 

 

 Illustration 3.1: The graph 8AC  and its antimagic labeling is shown in 

Figure 1. 

 
Figure 1: 8AC   and its antimagic labeling. 

 

 Theorem 3.2: The graph ( )nL AC  is an antimagic graph. 

 

 Proof:  Let nAC  be an armed crown graph with ( )   , , /{ ' ''
n i i iV AC v v v i     

1, 2, }, n   and 1( ) { / 1, 2, , 1}n i i iE AC e v v i n      1{ }n ne v v   

/ 1, 2, , / 1, 2, ,' ''' ' ''
i i i i i ie v v i n e v v i n          .To  construct ( )nL AC , 
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let the vertices corresponding to ie  be ix , '
ie  be '

ix  and ''
ie  be ''

ix  for each i . Then 

( )( 3nL AC nV    and ( ( ) 4nE L AC n . 

 

 We define  : {1, 2 }( ( 4) ,) ,nf E L AC n   as follows. 

 

   ( )' ''
i if x x i ; For 1  i n  , 

   1( ) 1'
nf x x n  , 

1( ) 1'
i if x x n i    ;  For 1  1i n   , 

    ( ) 3 1'
i if x x n i   ; For 1  i n  ,   

1  ( ) 3 1i if x x n i    ; For 1  1i n   , 

   1( ) 3 1nf x x n  . 

 
 Above define edge labeling function will generate distinct vertex labels for 

all the vertices of ( )nL AC . Thus, f  is an antimagic labeling. 

 

 Hence, the graph ( )nL AC  is an antimagic graph.                                          

 

 Illustration 3.2: The graph 6( )L AC  and its antimagic labeling is shown 

in Figure 2. 

 
Figure 2: 6( )L AC  and its antimagic labeling. 
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 Theorem 3.3: The graph 1( 2 )nL P K  is an antimagic graph. 

 

 Proof: Let 1 2nP K  be a double comb graph with 1( 2 )nV P K    

{ }, , / 1, 2, ,' ''
i i iv v v i n   and 1 12 { / 1, 2, , 1}( )n i i iE P K e v v i n    

{ / 1, 2, , } { / 1, 2, , }' ' '' ''
i i i i i ie v v i n e v v i n      . To construct

1( 2 )nL P K , let the vertices corresponding to ie  be ix , '
ie  be '

ix  and ''
ie  be ''

ix  for 

each i . Then 1( 1( 2 ) 3nL P K nV     and 1( ( 2 ) 6 6nE L P K n   . 

 

 We define : ( 2 1) {1, 2, , 6 6}nf E P K n    as per following two 

cases. 
 
 Case 1: For 2n  . 
 

 The graph 2 1( 2 )L P K  has 5 vertices and 2 1( (   2 )) 4L P K  .  Thus, 

by Preposition 2.1, 2 1( 2 )L P K  is an antimagic graph. 

 
 Case 2: For 3n  . 

  1 1( ) 1' ''f x x  , 

  ( ) 2' ''
n nf x x  , 

   ( ) 2 1'
i if x x i  ;  For 1  1i n   , 

1( ) 2'
i if x x i  ;  For 2  i n  ,    

    ( ) 4 2''
i if x x n i  ;  For 1  1i n   , 

1( ) 4 1 2''
i if x x n i    ; For 1  1i n   , 

1( ) 5 4i if x x n i    ; For 1  2i n   , 

   ( ) 4 3' ''
i if x x n i   ; For 2  1i n   . 

 
 Above define edge labeling function will generate distinct vertex labels for 
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all the vertices of 1( 2 )nL P K . Thus,  f  is an antimagic labeling.  

 

 Hence, the graph  1( 2 )nL P K  is an antimagic graph.                                

 

 Illustration 3.3: The graph 7 1( 2 )L P K  and its antimagic labeling is 

shown in Figure 3. 

 

Figure 3: 7 1( 2 )L P K and its antimagic labeling. 

 

 Theorem 3.4: The graph ( )nL L  is an antimagic graph. 

 

 Proof:  Let nL  be a ladder graph with ( ) { , / 1, 2, , }'
n i iV L v v i n    and 

( )nE L  1 / 1, 2, , 1 { / 1, 2, , }{ }' '
i i i i i ie v v i n e v v i n       

1 / 1, 2 }, , 1{ '' ' '
i i ie v v i n   . To construct ( )nL L , let the vertices 

corresponding to ie  be ix , '
ie  be '

ix  and ''
ie  be ''

ix  for each i . 

 

 Then ( ) 3 2( nV L L n     and ( ) 6 8( nE L L n   . 

 
 We define : ( ( )) {1, 2, , 6 8}f E L Ln n   as per following four cases. 

 
 Case 1: For 2n  . 
 

 The graph 2( )L L  is also known as cycle 4C . Thus, by Preposition 2.2, 

2( )L L  is an antimagic graph. 
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 Case 2: For 4n  . 
 

 The antimagic labeling of graph 4( )L L is demonstrated in following Figure 4. 

 

 
Figure 4:  4( )L L  and its antimagic labeling. 

 
 Case 3: For 0, 1, 3(mod 4)n   and 4n  . 

 

   ( )'i if x x i ;    For 1  1i n   ,  

1( ) 1'
i if x x n i    ;   For 1  1i n   , 

   ( ) 2( 1)''
i if x x n i   ;  For 1  1i n   , 

1( ) 3( 1)''
i if x x n i    ;  For 1  1i n   , 

 1( ) 4( 1)' '
i if x x n i    ;  For 1  2i n   , 

1 5)( ( 1) 1'' ''
i if x x n i     ;  For 1  2i n   . 

 

 Case 4: For 2(mod 4)n   and 2n  . 

    ( )'i if x x i ;    For 1  1i n   , 

 1( ) 2( 1)'
i if x x n i    ;  For 1  1i n   , 

    ( ) 1''
i if x x n i   ;  For 1  1i n   , 
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1  ( ) 3( 1)''
i if x x n i    ;  For 1  1i n   , 

1 4)( ( 1)' '
i if x x n i    ;  For 1  2i n   , 

1 5)( ( 1) 1'' ''
i if x x n i     ;  For 1  2i n   . 

 
 Above define edge labeling function will generate distinct vertex labels for 

all the vertices of ( )nL L . Thus, f  is an antimagic labeling.  

 

 Hence, the graph ( )nL L is an antimagic graph.                                               

 

 Illustration 3.4: The graph 6( )L L  and its antimagic labeling is shown 

in Figure 5. 

 
Figure 5: 6( )L L and its antimagic labeling. 

 

 Theorem 3.5: The graph ( )nL W  is an antimagic graph. 
 

 Proof: Let nW  be a wheel graph with  { , / 1, 2, , }( ) inV v i nW v    and  

1 1( ) { / 1, 2, , 1} { } { / 1, 2, , }'
n i i i n n i iE W e v v i n e v v e vv i n         . 

 

 To construct ( )nL W , let the vertices corresponding to ie  be ix  and '
ie  be  '

ix  

for each i . 

 Then ( ) 2( nV LW n    and
2 5

( ( )
2

n
n n

WE L


   . 

 

  We define  
2 5

: ( ( )) 1, 2, ,
2

n
n n

f E L W
 

  
 

  as follows. 
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1( )i if x x i  ;    For 1  1i n   , 

   1( )nf x x n , 

    ( )'i if x x n i  ;   For 1  i n  , 

 1( ) 3 1'
i if x x n i    ;  For 1  1i n   , 

    1( ) 2 1'
nf x x n  , 

 
( 1) 2 1( )' '

i i j if x n nx j      ;   
1  2,

For 
1  ,

i

j n i






 

   

 
2( )

( 1)( 2)
( 1) 1

2
' '
i i jf

i i
i n nx jx 

 
      ; 

3  1,
For 

1  ,

i n

j n i






 

 
 

 Above define edge labeling function will generate distinct vertex labels for 

all the vertices of ( )nL W .  

 
 Thus, f  is an antimagic labeling.  

 

 Hence, the graph ( )nL W  is an antimagic graph.                                             

 

 Illustration 3.5: The graph 5( )L W  and its antimagic labeling is shown 

in Figure 6. 

 
Figure 6: 5( )L W and its antimagic labeling. 
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 Theorem 3.6: The graph ( ( , ))L T n m  is an antimagic graph. 
 

 Proof:  Let ( , )T n m  be a tadpole with 1 2( ( , )) { , , , }m nV T n m v v v    

and   1 1( ( , )) {   /   1 , 2, , }  i i i n m n m mE T n m e v v i n m e v v           . 

To construct ( ( , ))L T n m , let the vertices  corresponding  to ie  be ix  for each i .  
 

 Then ( ( , ))  (V L T n m n m   and ( ( , ))   1(E L T n m n m    . 

 

 We define : ( ( ( , )) {1, 2, , 1}f E L T n m n m    as per following 

seven cases. 
 

 Case 1: For 3n   and 1m n  . 

       1( )i if x x i  ;   For 1  1i n m    , 

    ( )n m mf x x n m   , 

1( ) 1m n mf x x n m     . 
 

 Case 2: For 4n   and ( 1m n   or )3m n  . 

       1( )i if x x i  ;   For 1  1i n m   , 

   ( )n m mf x x n m   ,  

1( ) 1m n mf x x n m     . 
 

 Case 3: For ( 3n   or 4)n   and   2m n  . 

      1( )i if x x i  ;   For 1  1i n m   , 

   ( ) 1n m mf x x n m    , 

1( )m n mf x x n m    . 
  

 Case 4: For odd  5n   and 1m  . 

1( ) 2 2i if x x n i    ;  For 2 
2

n m
i


   

1( ) 2 ( )i if x x i n m    ;  For  1  1
2

n m
i n m


     
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1 2( )    f x x n m  ,  

1( ) 1n mf x x n m    ,  

2( ) 1n mf x x n m    . 

 
 Case 5: For even  6n   and 1m  . 

   1( ) 2 2i if x x n i    ;  
1

For 2 
2

n m
i

 
   

   1( ) 2 ( )i if x x i n m    ;  
1

For  1,
2

n m
i n m

 
    

     1 2( )f x x n m  ,   

1( ) 1n mf x x n m    , 

2( ) 1n mf x x n m    . 

 
 Case 6: For  5n   and (1 4m n   or )2m n   and n m  is 

even. 

      1( ) 2i if x x i  ;   For 1 
2

n m
i


   , 

      1( ) 2 ( ) 1i if x x i n m     ; For   + 1 1
2

n m
i n m


    

   ( ) 1n m mf x x n m    , 

1( ) 1m n mf x x n m     . 

 

 Case 7: For  6n   and (1 4m n   or )2m n   and  n m  is 

odd. 

      1( ) 2i if x x i  ;   
1

For 1 
2

n m
i

 
   

      1( ) 2 ( ) 2i if x x i n m     ; 
1

For  + 1  1
2

n m
i n m

 
    

   ( ) 2n m mf x x n m    , 

1( )m n mf x x n m    . 
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 Above define edge labeling function will generate distinct vertex labels for 
all the vertices of ( ( , ))L T n m . Thus, f  is an antimagic labeling.  

 

 Hence, the graph ( ( , ))L T n m  is an antimagic graph.                                     

 

 Illustration 3.6: The graph ( (5, 5))L T   and its antimagic labeling is 

shown in Figure 7. 

 

 
Figure 7: ( (5, 5))L T  and its antimagic labeling. 

 
4. Applications of Antimagic Labeling 
 
 Labeled graph has many applications in computer science, applied sciences, 
social sciences and cryptography. Development of encryption and decryption 
algorithm using antimagic labeling was studied by Krishnaa [16], Femina and Xavier 
[8] and Selvakumar and Gupta [20]. 
 
5. Conclusions 
 
 It is quite difficult to verify that the given connected graph admits antimagic 
labeling. Many authors [3, 4, 6, 15, 17, 24] have studied antimagic labeling for 
various graph operations. 
 
 While in this paper, antimagic labeling for the line graph of armed crown, 
double comb, ladder, wheel and tadpole is verified. 
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VECTOR BASIS S-CORDIAL LABELING  
OF FRIENDSHIP GRAPH, FAN GRAPH,  
AND LILLY GRAPH  
 

 

 
 
 
 

Abstract: Let G  be a ( ),p q  graph. Let V be an inner product space with 

basis S . Let ): (V G S   be a map. For each xy  assign the label

,x y  , where ,x y  denotes the inner product of x and y. We say that 

  is a vector basis S-cordial labeling if 1| |x y    and 

1| |i j    where x  denotes the number of vertices labeled with the 

vector x and i  denotes the number of edges labeled with the scalar i. A 

graph with a vector basis S-cordial labeling is called a vector basis  

S-cordial graph. In this paper, we investigate the vector basis S-cordial 

labeling of certain graphs like friendship graph, fan graph, lilly graph,  
bistar graph, crown graph and armed crown graph where  

S = {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)} is a basis in 4R  . 

 
Keywords: Friendship Graph, Fan Graph, Lilly Graph, Bistar Graph, and 

Crown Graph. 
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1. Introduction 
 
 In this paper, we consider only finite, simple and undirected graph
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( ( )G V G , ( ))E G  where ( )V G  and ( )E G  respectively, denote the vertex set and 

edge set of G. Note that | ( ) |p V G  and | ( ) |q E G denote the number of vertices 

and edges of G respectively. The idea of graph labeling was first introduced by Rosa 

in 1967 [16]. Vertex odd graceful labeling has studied in [5]. Baskar Babujee and 
Shobana [3] have examined the prime and prime cordial labeling for some  
special graphs. Radio geometric mean labeling of some star like graphs have 
investigated in [8]. Parmar [18] proved that for the wheel, fan and friendship graphs 
are edge vertex prime.  
 

 The join 1 2G G  [6] of two graphs 1G  and 2G is defined as the graph whose 

vertex set is 1 2( ) ( )V G V G  and the edge set consists of these edges which are in 1G

and in 2G and the edges contained by joining each vertex of 1G to each vertex of 2G . 

The fan graph nF  [18] is a graph that is constructed by joining all vertices of a path 

nP  to a further vertex, called center. That is, 1n nF K P  . Amutha and Uma Devi 

[1] have explored the super graceful labeling for some families of fan graphs. 
Barasara [2] proved that the comb is an edge and total edge product cordial. For a 
dynamic survey on graph labeling, we refer to Gallian [6].  
 

 The friendship graph 3( )C n [6] can be constructed by joining n copies of the 

cycle graph 3C  with a common vertex, which becomes a universal vertex for the 

graph. The corona 1 2G G  [6] of two graphs 1G  and 2G  is obtained by taking one 

copy of 1G  and 1| ( ) |V G  copies of 2G  and joining each vertex of the thi  copy of 

2G  to the thi  vertex of 1G . 

 
 The concept of cordial labeling was first introduced by I. Cahit [4]. Mitra and 
Bhoumik [11] have introduced the tribonacci cordial labeling of graphs. Parthiban 
and Sharma proved that the Lilly graph is a prime cordial graph in [13]. The Lilly 

graph , 2nI n   [13] can be constructed by two star graphs 1,2 , 2nK n   joining two 

paths 2 , 2nP n   with sharing a common vertex. That is, 1,2 2n nnI K P  . For the 

terminologies and different notations of graph theory, we refer the book of Harary [7] 
and of algebra; we refer the book of Herstein [9]. Sum divisor cordial labeling of 
theta graph was examined by Sugumaran and Rajesh in [17]. Difference cordial 
labeling for plus and hanging pyramid graphs have studied in [12]. Prajapati and  
A. Vantiya have proved that the triangular snake, double triangular snake, 
quadrilateral snake, double quadrilateral snake are SD-prime cordial in [14]. Kaneria 
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et al. [10] have investigated the balanced mean cordial labeling and graph operations. 
 

 We have introduced new labeling called vector basis S-cordial labeling in 

[15] and investigated the vector basis vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), 
(1,0,0,0)}-cordial labeling behavior of some standard graphs like path, cycle, comb, 
star and complete graph. In this paper, we investigate the vector basis {(1,1,1,1), 
(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of certain graphs like friendship graph, 
fan graph, lilly graph, bistar graph, crown graph and armed crown graph. 
 

2. Vector basis S-cordial labeling 

 

 Definition 2.1: Let G be a ( ),p q   graph. Let V be an inner product space 

with basis S. Let ): (V G S  be a map. For each xy assign the label ,x y   , 

where ,x y   denotes the inner product of x and y. We say that   is a vector basis 

S-cordial labeling if 1| |x y    and 1| |i j     where x  denotes the number 

of vertices labeled with the vector x and i  denotes the number of edges labeled with 

the scalar i. A graph with a vector basis S-cordial labeling is called a vector basis  

S- cordial graph. 

 

 Theorem 2.2: [15] The set S = {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)} is a 

basis for 4R  over R. 

 

 Theorem 2.3: [15] A graph G is vector basis {(1,0),(0,1)}-cordial if and only 

if G is a cordial graph. 
 

 Theorem 2.4: [15] The path nP  is a  vector  basis {(1,1,1,1), (1,1,1,0), 

(1,1,0,0), (1,0,0,0)}-cordial graph for all 1n  . 
 

 Theorem 2.5: [15] The cycle nC  is a vector basis {(1,1,1,1), (1,1,1,0), 

(1,1,0,0), (1,0,0,0)}-cordial if and only if  1,2, 3n   (mod 4) . 

 

 In this paper, we consider the inner product space �� and the standard  

inner product 1 1 2 2, n nx y x y x y x y       where 1 2( ), , , nx x x x  , 

1 2( ), , , ny y y y  , ix , iy R . 
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3. Main Results 
 

 In this section, we consider the basis S = {(1,1,1,1), (1,1,1,0), (1,1,0,0), 

(1,0,0,0)}. 
 

 Theorem 3.1: The friendship graph 3( )C n  is a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial if and only if  0,1,2n   (mod 4) . 

 

 Proof: The friendship graph 3( )C n  is a planar, undirected graph with 2 1n 

vertices and 3n edges. Let 3 },( ( )) 1 2{ |iV C n u u i n    and 3 2 1( ( )) { iE C n uu  , 

2 2 1 2, | }1i i iuu u u i n    respectively be the vertex and edge sets of 3( )C n .Then 

3 1|  ( ( )) |    2  V C n p n    and  3| ( ( ))  3|E C n q n  . There are four case arises. 

 
 Case (i):   0n   (mod 4)  

 
 Let 4n k . Then,  2 1 8 1p n k    . Next, we assign the vector  (1,1,1,1)  

to  the vertex u. Assign the vector (1,1,1,1) to the vertices 1 2 2, , , ku u u . We assign 

the vector (1,1,1,0) to the next vertices 2 1ku  , 2 2 4, ,k ku u  . Then assign the vector 

(1,1,0,0) to  the next vertices 4 1ku  , 4 2 6, ,k ku u  . Also assign the vector (1,0,0,0)  

to the remaining vertices 6 1ku  , 6 2 8, ,k ku u  . 

 
 Case  (ii):   1 n   (mod 4)   

 
 Let 4 1n k  . Then, 8 3p k  . Now, we assign the vector (1,1,1,1) to the 

vertex u. So assign the vector (1,1,1,1) to the vertices 1 2 2, , , ku u u . Assign the 

vector (1,1,1,0) to the next vertices 2 1ku  , 2 2 4, ,k ku u  . We assign the vector 

(1,1,0,0) to the next vertices 4 1ku  , 4 2 6, ,k ku u  . Further, assign the vector 

(1,1,1,0) to the vertex 6 1ku  . Assign the vector (1,0,0,0) to the vertex 6 2ku  . Then 

assign the vector (1,1,0,0) to the vertex 6 3ku  . Finally, assign the vector (1,0,0,0)  to 

the remaining 2 1k   vertices 6 4ku  , 6 5 8 3, ,k ku u  . 
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 Case (iii):  2n  (mod 4)  

 
 Let 4 2n k  . Then, 8 5p k  . Also, we assign the vector (1,1,1,1) to the 

vertex u. Assign the vector (1,1,1,1) to the vertices 1 2 2 1, , , ku u u  . We assign the 

vector (1,1,1,0) to the next vertices 2 2ku  , 2 3 4 2, ,k ku u  .  Then assign the vector  

(1,1,0,0)  to  the  vertices  4 3 4 4 6 3, , ,k k ku u u   . Moreover, assign the vector 

(1,0,0,0) to the remaining 2k  vertices 6 4 6 5 8 4, , ,k k ku u u   . 

 
 Case (iv): 3n  ( 4)mod  

 
 Let  4 3n k  . Then 8 7p k   and 12 9q k  . If we assign vector 

(1,1,1,1) to the vertex u and we have to assign (1,1,1,1) to the 2 1k   vertices, then

2 1
4 2

  2 1 2 1 1 3 2kk k k k          , a contradiction. But 4 3 1k    or 

4 1k    according as the vertex u receive the vector (1,1,1,1) or not. This is a 

contradiction since the size of 3( )C n  is 12 9k  .  

 
 Clearly the above labeling pattern provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the friendship graph 3( )C n  if 

0,1,2n  (mod 4) . 

 

 Theorem 3.2: The fan graph nF  is a vector basis {(1,1,1,1), (1,1,1,0), 

(1,1,0,0), (1,0,0,0)}-cordial if and only if 0n  (mod 4) . 

 

 Proof: Let |{ , 1 }( )n iu uV F i n    and {( }) | 1inE uu i nF      

1{ 1 }| 1i iu u i n     respectively be the vertex and edge sets of nF . Then 

( ) 1nV F p n    and ( ) 2 1nE F q n   . There are four cases arises. 

 
 Case (i): 0n  (mod 4)   

 
 Let 4n k . Then, 4 1p k  . Next, we assign the vector (1,1,1,1) to the 

vertex u. Assign the vector (1,1,1,1) to the first k vertices 1 2, , , ku u u . Then, assign 



174 R. PONRAJ AND R. JEYA   

the vector (1,1,1,0) to the next k  vertices 1 2 2, , ,k k ku u u   . Also, assign the vector 

(1,1,0,0) to the next k  vertices 2 1 2 2 3, , ,k k ku u u   . Moreover, assign the vector 

(1,0,0,0) to the remaining k  vertices 3 1 3 2 4, , ,k k ku u u   . 

 
 Case (ii): 1n  (mod 4)  

 
 Let 4 1n k  . Then 1 4 2 ( 1) ( 1)p n k k k k k            and  

2   1 8 1 (2 1) 2 2 2q n k k k k k         . Clearly, 4 2 1k    or 4 k   

according as the vertex u receive the vector (1,1,1,1) or not. This is a contradiction 

since the size of nF is 8 1k  . 

 
 Case (iii): 2n  (mod 4)  

 
 Let  4 2n k  .  Then 4 3 ( 1) ( 1) ( 1)p k k k k k          and   

8 3 (2 1) (2 1) (2 1) 2q k k k k k         . Thus, 4 2 1k    or 4 k 

according as the vertex  u receive the vector (1,1,1,1) or not. We get a contradiction 

since the size of nF  is 8 3k  . 

 
 Case (iv): 3n  (mod 4)  

 
 Let 4 3n k  . Then 4 4 ( 1) ( 1) ( 1) ( 1)p k k k k k           and  

 8 5 (2 2) (2 1) (2 1) (2 1)q k k k k k          . Hence, 4  2 1k    or  4  k   

according as the vertex u receive the vector (1,1,1,1) or not. We get a contradiction 

since the size of  nF  is 8 5k  . 

 
 Clearly the above labeling method provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the fan graph nF  if 0n   

(mod 4) . 

 
 Example 3.3: The  following Figure  1 illustrates  the  vector basis 

{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling fan graph 4F  . 
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Figure 1  

Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of 4F . 

 

 Theorem 3.4: The Lilly graph nI  is a vector basis {(1,1,1,1), (1,1,1,0), 

(1,1,0,0), (1,0,0,0)}-cordial graph for all 2n  . 
 

 Proof:  Consider the Lilly graph , 2nI n  .  

 Let ( ) { , , 1 1}|n i iV I u u v i n     { | }, 1i ix y i n   and 

( ) { , 1 }|n i iE I ux uy i n    1 1 1 1, , ,, }{ 1 2|i i i iuv uu u u v v i n      respectively 

be the vertex and edge sets of nI . Then ( ) 4 1nV I p n    and ( ) 4 2nE I q n   .  

 

 First, we assign the vector (1,1,1,1) to the vertex u. Assign the vector 

(1,1,1,1) to the vertices 1 2 1, , , nu u u  . Then, assign the vector (1,1,1,0) to the 

vertices 1 2 1, , , nv v v  . Also, assign the vector (1,1,0,0) to the vertices 1 2, , , nx x x

. Moreover, assign the vector (1,0,0,0) to the vertices 1 2, , , ny y y .  

 
 Hence, the above labeling technique provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}- cordial labeling for the Lilly graph nI . 

 
 Example 3.5: The following Figure 2  illustrates the vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of Lilly graph 4I . 
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Figure 2 

 Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of 4I . 

 

 Theorem 3.6: The crown graph 1nC K  is a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial if and only if n is odd. 

 

 Proof: Consider the crown graph 1nC K . Let nC  be the cycle

1 2 1nu u u u . Let 1( ) ( ) { | }1n n iV C K V C v i n     and 1( ) ( )nE C K E C 

}1{ |i iu v i n   respectively be the vertex and edge sets of 1nC K . Then 

1| ( ) | 2nV C K p n   and 1| ( ) | 2nE C K q n  . We have considered the two   

cases. 
 
 Case (i): 0p  ( 4)mod  

 
 Let  4p k . To get the edge label 4, the vector (1,1,1,1)  should  be assigned 

to the consecutive vertices of 1nC K . As the size of 1nC K  is 2 4n p k  , the 

maximum edges with label 4 is 1k  , a contradiction arises. 
 
 Case (ii): 2p  ( 4)mod  

 
 Let 4 2p k  . Then, assign the vector in the following order

1 2 1 2, , , , ,n nu u u v v v  . We assign the vector (1,1,1,1) to the first 1k   vertices

1 2 1, , , ku u u  . Also, assign the vector (1,1,1,0) to the next k vertices
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2 3, , ,k k nu u u   . We assign the vector (1,1,0,0) to the 1 k   vertices

1 2 1, , , kv v v  . Moreover, assign the vector (1,0,0,0) to the next k vertices

2 3, , ,k k nv v v   . 

 
 Thus, the above labeling technique provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the crown graph  1nC K . 
 

 Theorem 3.7: The armed crown graph nAC  is a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial if and only if  1,2, 3n   (mod 4) . 

 

 Proof: The armed crown graph nAC  is the graph obtained from the cycle 

1 2 1nu u u u  with ( ) ( )nV ACn V C  { | }, 1i iv w i n   and ( ) ( )n nE AC E C    

{ | }, 1i i i iu v v w i n  respectively be the vertex and edge sets of nAC . Then 

( ) 3nV AC p n   and ( ) 3nE AC q n  . We have considered the four cases. 

 

 Case (i): 0p  (mod 4)
 

 

 Let 4p k . To get the edge label 4, the vector  (1,1,1,1)  should  be assigned 

to the consecutive vertices of the graph. nAC   As the size of nAC   is 3 4n p k  , 

the maximum edges with label 4 is 1k   , a contradiction. 

 

 Case (ii): 1 (mod 4)p   

 

 Let 4 1p k  . Then, assign the vector in the following order 1 2, , nu u u ,

1 1 2 2, , , , ,n nv w v w v w . We assign the vector (1,1,1,1) to the first 1k   vertices. 

Next, assign the vector (1,1,1,0) to the next k vertices. Also assign the vector 

(1,1,0,0) to the next k vertices. Further, assign the vector (1,0,0,0) to the remaining k 

vertices. 
 

 Case (iii): 2 (mod 4)p    

 

 Let 4 2p k  . Then, assign the vector in the following order 1 2, , nu u u ,
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1 1 2 2, , , , ,n nv w v w v w . Now, assign the vector (1,1,1,1) to the first 1k   vertices. 

So assign the vector (1,1,1,0) to the next k  vertices. Next,  assign the vector  (1,1,0,0)  

to the next  1k   vertices.  Finally, assign the vector (1,0,0,0) to the remaining k 

vertices. 
 
 Case (iv): 3 (mod 4)p    

 

 Let 4 3p k  . Then, assign the vector in the following order 1 2, , nu u u ,

1 1 2 2, , , , ,n nv w v w v w . Also, assign the vector (1,1,1,1) to the first 1k   vertices. 

Assign the vector (1,1,1,0) to the next k vertices. Then, assign the vector  (1,1,0,0)  to 

the next  1k   vertices. Moreover, assign the vector (1,0,0,0) to the remaining 1k   
vertices. 
 
 Therefore, the above labeling method provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the armed crown graph nAC . 

 

 Theorem 3.8: The bistar graph ,  n nB  is a  vector  basis  {(1,1,1,1), (1,1,1,0), 

(1,1,0,0), (1,0,0,0)}-cordial graph for all n. 

 

 Proof: Let ,( ) { , , , 1 }|n n i iV B u u u v i n    and 

,( ) { , , 1 }|n n i iE B uv uu vv i n    respectively be the vertex and edge sets of ,n nB . 

Note that ,( ) 2 2n nV B p n    and ,( ) 2 1n nE B q n   . We have considered 

the two cases. 
 
 Case (i): 0 (mod 4)p   

 

 Let 4p k . Next, we assign the vector (1,1,1,1) to the vertices u and v. 

Assign the vector (1,1,1,1) to the vertices 1 2 2, , , ku u u  . Then, assign the vector 

(1,1,1,0) to the vertices 1 2 2, , ,k k ku u u  . Also, assign the vector (1,1,0,0) to the 

next k vertices 1 2, , , kv v v . Moreover, assign the vector (1,0,0,0) to the remaining k 

vertices. 
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 Case  (ii): 2 (mod 4)p   

 

 Let 4 2p k  . Now, we assign the vector (1,1,1,1)  to the vertices u  and v. 

Assign the  vector (1,1,1,1) to the vertices 1 2 1, , , ku u u  . Next,  assign  the  vector  

(1,1,1,0)  to  the vertices 1 2 1, , ,k k ku u u  . So, assign the vector (1,1,0,0) to the 

next k vertices 1 2, , , kv v v . Further, assign the vector (1,0,0,0) to the remaining 

vertices. 
 
 Clearly the above labeling method provides a vector basis {(1,1,1,1), 

(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the bistar graph ,n nB  . 

 
4. Conclusion 
 
 Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling 
behavior of certain standard graphs like friendship graph, fan graph, lilly graph, bistar 
graph, crown graph and armed crown graph have been investigated in this paper. The 
investigation of different kinds of families of graphs for existence of vector basis  

S-cordial labeling is an open problem. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x f x , the nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. 

 

 They can also be defined by the Binet-like formulas. Clearly, (1)n nf F , 

the nth Fibonacci number; and (1)n nl L , the nth Lucas number [1, 2]. 
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 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

( )( 2)n np fx x  and ( )( 2)n nq lx x , respectively [2, 6]. 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x .  

In addition, we let n ng f  or nl ; n nb p  or nq ; 2 4x    and 2 x     

[6, 7]. 
 
 1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the 
following properties [2, 3, 4, 5, 6, 7]: 
 

       
if

otherwise;

1 2
2

2 2

( 1) ,  

( 1) ,

n k
n nk

n k n k n n k
k

f g f
g g g

f

 

  

  
  

 
                 (1) 

 

if

otherwise

1
2

2
2

( 1) ,  

( 1) , ;

n k
r k n n

n k r n k n k n k r n k
r k

f f g f
g g g g

f f

 

      

  
  

 
                (2) 

 

if

otherwise

1
2 22

2 2

2 ( 1) ,    

2 ( 1) ,   ,

[ ]n k
n r k r n n

n k r n k n k n k r n k
n r k r

l l l g f
g g g g

l l l





      



   
  

 

       (3) 

 
where k  and r  are positive integers. These properties can be confirmed using Binet-
like formulas. 
 
 Consequently, we have 

 

if

otherwise

1( 1)
2 2 222 2 2 2

2
2 2 2

2 ( 1)   ,     

( 1) 2 ( 1) , .

[ ]

[ ]

n k
n k

n r k r k r n n

n k r n k n k n k r
n k n k

n r k r k r

l l l f f g f
g g g g

l l l f f

  



     

 



  

  
    


 

          (4) 
 
 Again, in the interest of brevity and convenience, we now let 
 

2(2 ) 22 1( )tkpn t p k r pk rA l l l     ;  and  2(2 ) 22 1( )tkpn t p k r pk rB l l l     . 

 
 It follows identities (1) and (4) that 
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if

otherwise

2
12

(2 ) (2 2 ) (2 ) 2 2

( 1) ,    

( 1) ,   ;

tk n npk
pn t k pn t p k pn t p k tk

pk

f g f
g g g

f


    

  
  

 
  

          (5) 
 

if

otherwise

1( 1)
222 2 2 2

(2  ) (2  2 ) (2 ) (2 2 )
2

2

,    

( 1) ,   ,

tk

pk r n n

pn t k r pn t p k pn t k pn t p k r
tk

pk r

Af f g f
g g g g

Bf f




       




  
  


  

           (6) 
 
respectively, where , , ,k p r  and t  are positive integers and 2t p  [6]. 

 
2. A Telescoping Gibonacci Sum 
 
 Using recursion, we established the following telescoping sum in [6]. In the 
interest of brevity, we omit its proof here. 
 

 Lemma 1: Let , , ,k p r t  , and   be positive integers, where 2t p . 

Then 

  
(2 2 ) (2 )

1 (2 2 ) (2 )

.
pn t p k r pn t k r tk r r

n tkpn t p k pn t k

g g g

g g g

  


  



     

   

 
   
  

                    (7) 

 
3. A Family of Gibonacci Sums 
 
 This lemma, coupled with identities (5) and (6), played a major role in the 
development of the following theorem. To present it in a concise fashion, we now let: 
 

 
2

1,    

,   ;

n nif g f
µ

otherwise

 
 


      

1
2

2

,    

,   ;

n nif g f
µ

otherwise
 

 
 



 

 

and 
1,    

1,  

n nif g f

otherwise.

 
 


  

 
 These tools served as building blocks in the development of the theorem [6]. 
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 Theorem 1: Let , , ,k p r  and t be positive integers, where 2t p . Then 

 

            
2 2

1 ( )

2
2(2 ) 2 2 2

2 2

2 ( 1( )1)

[ ( 1

]

) ]

[tk tk
pn t p k r pk r pk r tk r r

tk
n pn p k pk tt k

µ l l l f f g

µ f gg




  

   
 

 


 





.         (8) 

 
 The objective of our discourse is to confirm this result using graph-theoretic 
techniques. To this end, we now present the needed tools. 
 
4. Graph-Theoretic Tools 
 

 Consider the Fibonacci digraph in Figure 1 with vertices 1v  and 2v , where a 

weight is assigned to each edge [2, 5]. It follows from its weighted adjacency 

matrix   
1

1 0

x
Q

 
   
  

 that 

 
 

Figure 1: Weighted Fibonacci Digraph 
 

1

1

n nn

n n

f f
Q

f f




 
   
  

 , 

 
where 1n   [2, 3, 4, 5]. We extend the exponent n  to 0 , which is consistent with 

the Cassini-like formula 2
1 1 ( 1)nn n nf f f     , where 1 1f   [2, 5]. 

 

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . The walk is closed if i jv v ; and open, 

otherwise. The length of a walk is the number of edges in the walk. The weight of a 

walk is the product of the weights of the edges along the walk. 
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 The ijth entry of nQ  gives the sum of the weights of all walks of length n  

from iv  to jv  in the weighted digraph, where 1 i , j n  [2, 3, 4]. Consequently, 

the sum of the weights of closed walks of length n  originating at 1v  in the digraph is 

1nf   and that of those originating at 2v  is 1nf  . So, the sum of the weights of all 

closed walks of length n in the digraph is 1 1n n nf f l    [2, 5]. 

 
 Let A  and B  denote sets of walks of varying lengths originating at a vertex
v . Then the sum of the weights of the elements ( , )a b   in the product set A B is 

defined as the product of the sums of weights from each component [3, 4]. This 
definition can be extended to any finite number of component sets. In particular, let 

, , ,A B C  and D  denote the sets of walks of varying lengths originating at a vertex 

v , respectively. Then the sum of the weights of the elements ), , ,(a b c d  in the 

product set A B C D    is the product of the sums of weights from each 
component [3, 4]. 
 
 We now make an interesting observation. Let { }A u  and { }B v , 

where u  denotes the closed walk 1 1v v  and v  denotes the closed walk 

1 2 1v v v  . The weight of the element ( , )u u  in A A  is 2x , and that in B B  

is 1. Consequently, the sum w  of the weights of the elements in 

( )C A A B B B B B B B B                   is given by

2 24w x    . 
 
 These tools play a major role in the discourse. With them at our finger tips, 
we are now ready for our pursuit of the graph-theoretic confirmation. 
 
5. Graph-Theoretic Confirmation 
 

 Let nT   denote the set of closed walks of length n  in the digraph originating 

at 1v , and nU   the set of all closed walks of the same length n  in the digraph. 

Correspondingly, let nT  denote the sum of the weights of all elements in nT  , and 

nU  that of those in nU  . Clearly, 1n nT f   and 1 1n n n nU f f l     [2, 5]. 

With this brief background, we now begin the proof of the gibonacci sum (8) in two 
cases, where , , , 1k p r t   and 2t p . 
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 Proof: Case 1: Suppose n ng f . The sum of the weights of the elements in 

the product set  2 1 1pk rT T 
   is 2 1 1 2pk r pk rT T f f   ; the sum of those in 

(2 ) 1 (2 ) 1pn t p k pn t p kT T 
        is  2 2

(2 ) 1 (2 )pn t p k pn t p kT f     ; and that of those in 

1 1pk pkT T 
   is 2 2

1pk pkT f  . 

 

 We now let 
 

  
1

2(2 ) 2 2 1 1

2 2 2
1(2 )

( 1) 2 ( 1)

( 1)

[ ]

[ ]

tk tk
pn t p k r pk r pk r

n tk
pkpn t p k

U U U T T
S

w T T


    

 

  


 
  

 

        

1
2(2 ) 2 2

2 2 2 2
(2 )

( 1) 2 ( 1)

( 1)

[ ]

[ ]

tk tk
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tk
pkpn t p k

l l l f f

f f


  

 

  


  
 

 

 With identities (3) and (4), and Lemma 1, this yields 
 

      
1

2

2 2 2 2
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( 1)

( 1)

[

[ ]

tk
pk r

tk
pkpn t p k

Af f

f f



 



  

2 2 2 2
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pn t k pn t p k

f f f f

f f

       
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
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2

2 2 2 2
1 (2 )

( 1)

( 1)

[

[ ]

tk
pk r

tk
n pkpn t p k

Af f

f f



  


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

2 2
(2 2 ) (2 )

2 2
1 (2 2 ) (2 )

pn t p k r pn t k r

n pn t p k pn t k

f f

f f


    

   

 
  
  

  

 

                  
2

2
2

.tk r r

tk

f

f
                                                      (9) 

 
 We now turn to the next case. 
 

 Case 2: Let n ng l . Recall that the sum w  of the weights of the elements 

in C   is given by 2 24w x    , and that of the elements in the product set 

2 1 1k rC T T  
    is given by 2

2 1 1 2pk r pk rwT T f f    . The sum of the weights of 

the elements in the product set (2 ) (2 )pn t p k pn t p kU U 
     is

2 2
(2 ) (2 )pn t p k pn t p kU l    ; and that of those in 2 1 1pk pkT T 

   is 2 2
2 1 2pk pkT f  . 
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 As above, we now let 
 

                          
1

2(2 ) 2 2 1 1

2 2 2
1(2 )

( 1) 2 ( 1)

( 1)

[ ]

[ ]

tk tk
pn t p k r pk r pk r

n tk
pkpn t p k

w U U U T T
S

U wT


    

 

  


 
  

 

        
1 2

2(2 ) 2 2

2 2 2 2
(2 )

( 1) 2 ( 1)

( 1)

[ ]

[ ]

tk tk
pn t p k r pk r pk r

tk
pkpn t p k

l l l f f

l f


  

 

   


  
. 

 
 It then follows by identities (3) and (4), and Lemma 1 that 
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.tk r r

tk

l

l
                                                    (10) 

 

 This equation, coupled with equation (9), yields Theorem 1, as desired.       

 
 Interestingly, equation (9) can be rewritten in terms of graph-theoretic tools. 
 

 To realize this goal, we define 0 01,   2;   n nT U H T    or ;nU  
 
 

 

1,    

,   ;

n nif H T
µ

w otherwise


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1 ,    

,   ;

n nw
if H T
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w otherwise
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1,    

1,   ;

n nif H T

otherwise
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1   

1  ;

n nif H T

otherwise
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
 



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1,    

0,   .

n nif H T
'

otherwise

 
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



 
 
 With these new tools, and integers , , ,k p r  and t  as before, we now present 

the graph-theoretic version of equation (8): 
 

2(2 ) 2 2 1 1

2 2 2
1 1(2 )

( 1) 2 ( 1)

( 1)

[ ]

[ ]

tk tk
pn t p k r pk r pk r
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 



  
    

   
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 
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2
2

2

 tk r ' r

tk '

H

H





 



  . 

 (11) 
 
 Next, we turn to the Pell implications of the graph-theoretic techniques. 
 
6. Pell Consequence 
 

 With the gibonacci-Pell relationship ( )( 2)n nb gx x , we can construct the 

graph-theoretic proof of the Pell version of Theorem 1 independently by changing the 

weight of the loop at 1v  from x  to 2x . We encourage gibonacci enthusiasts to 

explore this path. 
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INVESTIGATING THE EXISTENCE OF 
THE EXPONENTIAL DIOPHANTINE  
RECTANGLES OVER STAR AND 
PRONIC NUMBERS  

 
 
Abstract: This paper is focused on collecting a different sort of rectangle 
called Exponential Diophantine Rectangles over Star and Pronic Numbers. 
We demonstrated that there is only one Exponential Diophantine Rectangle 
over the Star numbers and no Exponential Diophantine rectangles over the 
Pronic numbers. Python programming is provided for the existence of such 
rectangles. 
 

Keywords: Binomial Expansion, Catalan’s Conjecture, Diophantine 
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Pronic numbers, Rectangles. 
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1. Introduction 
 
 An exponential Diophantine equation is a special type of Diophantine 
equation where the variables exist in exponents. Many authors solved the different 
forms of exponential Diophantine equations. In particular, William Sobredo Gayo, Jr. 
and Jerico Bravo Bacani [12] solved the exponential Diophantine equation of the 

form 2( 1)x y
p qM M z    and Mahalakshmi, M. et al. [5], [6], and [7] solved 

various Diophantine equations to collect various geometrical shapes, including peble 
triangles and almost equilateral triangles. 
 
 We define and collect the exponential Diophantine rectangle over Special 
numbers (ED Rectangles over Special numbers), inspired by the above. In this paper 
we deal only with two types of special numbers especially star and Pronic numbers. 
After the introduction basis preliminaries provided. In section (3), the definition 
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of ED Rectangles over Star numbers ( )mS  and the lemmas needed for the main 

theorem, while subsections establish theorems for the existence of solutions to the 
Exponential Diophantie equations. Python code is displayed for the existence of such 
rectangles. Section (3) provides the definition theorems and Python programming for 
the existence of exponential Diopahantine Rectangles over Pronic numbers. 
 
2. Preliminaries 
 
 This section contains basic definitions and lemmas required for this article. 
 

 Lemma 2.1 (Catalan’s Conjecture): )3, 2, 2, 3(  is the unique solution for 

the exponential Diophantine equation 1x ya b  , where , , ,a b x y    such 

that min{ , , , } 2a b x y  . 

 

 Definition 2.1 (Binomial Expansion): For x    and n   , the 

expansion for (1 )nx  is 
( 1) 2
2!

1
n n

nx x


    and for 

( 1) 2
2 !

.(1  1)
n nnx is nx x


      

 In general,     
0 0

( )
n n

n n k k k n k
k k

k k

x y nC x y nC x y 

 

     . 

 

 Definition 2.2: The mth Star number ( )mS  is given by 

26 6 1mS m m   , for m   . 

 

 Example 1: 1 1S  , 10 541.S   

 

 Definition 2.3: The mth Pronic numbers ( )mP  are of the form

2
mP m m  , for all m   : 

 

 Definition 2.4: An Exponential Diophantine rectangle is defined as a 

rectangle with the length ( )l  and breadth ( )b  as ( 1)( )( , ) (rp r xb yl     , 

( 1) ( 2)( ))q r r x y     where , ,p q r    and ;x y  are non-negative 

integers such that  



 DIOPHANTINE RECTANGLES OVER STAR AND PRONIC NUMBERS  193 

    x x yp q r                                          (1) 

 
3. Exponential Diophantine Rectangles over Star Numbers 
 

 This section defines Exponential Diophantine Rectangles over mS , provides 

some lemmas for solving exponential Diophantine equations, and is divided into two 
subsections that examine some theorems. The existence of Exponential Diophantine 

Rectangles over mS  is proved by python programming with certain limits. 

 

 Definition 3.1 (Exponential Diophantine Rectangles over mS ): An 

Exponential Diophantine rectangle over star numbers ( )mS  is defined as a 

rectangle with the length ( )l  and breadth ( )b  as

1( 1) ( )( , ) ( ml m Sb m x y    , )( 1)( )mmS m x y    where m    and 

,x y  are non-negative integers such that 

 

    1 ( 1)yx x
mmS S m                                           (2) 

or 

    1 ( 1)yx x
mmS S m                                           (3) 

 
 Notation: Exponential Diophantine Rectangles over star numbers - ED 

Rectangles over mS . 

 

 Lemma 3.1: The inequality (1 2)xn   holds for all , 1n x  . 

 
 Proof: Let us show this by using induction hypothesis on n . Now, for

2n  , the inequality becomes 3 2x  . This is true for 1x  . Now, assume that 

the inequality (1 2)yn    holds for n k . That is, ( ) 21 yk    for 1k  . 

We have to show that the given inequality holds for 1n k  . We know that 

( 2) ( 1)k k   implies ( ) 22 yk   , for all , 1k y  .                              

 

 Lemma 3.2: The equation 4 2 36 4 4 1 0b b b b      has no positive 

integer solution for 1b  . 
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 Proof: The equation 4 2 36 4 4 1 2, (mod 4)3 b b b b     , which is an 

absurd one.                                                                                                                

 

 Lemma 3.3: If 2y  , the inequality  (1 ) 4yn n    holds for all 

1n  . 
 

 Lemma 3.4: The equation  12 11 10 9 812 66 220 495m m m m m      

7 6 5 4 3 2792 924 792 495 220 66 1 0m m m m m m         has no 

solution m   . 

 

 Proof: The equation 12 11 10 9 812 66 220 495m m m m m     

7 6 5 4 3 2792 924 792 495 220 66 1m m m m m m        0 (mod 10)  

 

 Hence it has no solution.                                  

 

 3.1 The exponential Diophantine equation 1 ( 1)x x y
mmS S m    : 

 

 The existence of the solution to the equation 1 ( 1)x x y
mmS S m     is 

discussed here. 
 

 Theorem 3.1: The exponential Diophantine equation 

1 ( 1)x x y
mmS S m     has only one solution )( , , (0, 1,) 1x y m    for all 

 , {0}x y    and m   . 

 
 Proof: Consider the exponential Diophantine equation 

1 ( 1)x x y
mmS S m     and solve this in various possibilities. 

 
Possibility 1:  For 0x   and 0y  , the equation (2) has no solution. 

 
Possibility 2:  If 0x   and 1y  , then we obtain 1m   from the exponential 

Diophantine equation. 
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Possibility 3:  If 1x   and 0y  , the equation becomes 212 1m     which 

has no solution as m   . 
 
Possibility 4:  For 1x y  , it reduces to a quadratic equation

212 1 0m m   . On solving this we obtain 8
24

m    . 

 

Possibility 5: When 0x   and 1y  , the equation becomes 2(  1)ym   . 

This is not possible by lemma (3.3). 
 

Possibility 6: For 1x   and 0y  , the equation becomes 2 6( 1)6 xm m 

2(6 6 1) 1xm m    . Here 1 0 (mod 2)x m
m xS S    which 

is an absurd one. 
 

Possibility 7: For 1x   and 1y  , we get 212 2 ( 1)ym m   . By using 

definition (2.1) and equating the coefficient of 2m , we get the 

value 4y  .  Putting the value of y  in 212 2 ( 1)ym m    

implies 4 2( 1 12 2)m m   . By lemma (3.2), it has no 

solutions. 
 
Possibility 8:  Now 1x   and 1y  , the equation changes into

1 1 0x x
m mS S m    . For 1m  , it reduces to 13 1x  , 

which is an impossible one as 1x  . Now, 1m   for,  
2

1 1 12 1 0m mS S m m m       . This is not 

possible as 1m   . 
 
Possibility 9:  Here , 1x y   and 1m  , the equation has no solution by lemma 

(2.1).  Now for , , 1x y m  , this possibility fails by using 

definition (2.1). 
 
 Hence, there is only one solution for the Diophantine equation 

1 ( 1)x x y
mmS S m     ( i.e., , , (0, 1, 1))( )x y m  .                                                
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 3.2 The exponential Diophantine equation 1 ( 1)x x y
mmS S m    : 

This subsection provides the theorem for determining the solution for the equation 

1 ( 1)x x y
mmS S m    . 

 

 Theorem 3.2: No integral solution exists for the exponential 

Diophantine equation 1 ( 1) ,   {0}x x y
mmS S m x y         and  m   . 

 
 Proof: Consider the exponential Diophantine equation  

1 ( 1)x x y
mmS S m     and solve this in various possibilities. 

 
Possibility 1:  For 0x   and 0y  , this possibility fails. 

 
Possibility 2: 0x   and 1y  , the equation becomes 1m   , which 

contradicts. 
 
Possibility 3:  Here 1x y  , then on solving the above equation, the value of 

m  obtained as 1
11
  . 

 
Possibility 4:  For 1x   and  0y  , we obtain m   . 

 
Possibility 5:  Now 0x   and  1y  , then from the equation we obtain

( ) 01 ym   , as  1m  . This possibility fails. 

 

Possibility 6:  When 1x   and  0y  , the equation becomes 1 1
x x
m mS S  . 

But  1 1(mod 2)x x
mmS S   . This is not possible. 

 
Possibility 7:  For 1x   and 1y  , now by the definition (2.1) we get 

12.y  If  12y  , then this possibility fails by lemma (3.4). 

 
Possibility 8:  When 1y   and  1x  , the equation reduces into 

11 m mm S S    which implies 11 1m  . 

 
Possibility 9:  1x   and  1y  , This possibility also fails by Binomial 

Expansion. 
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 Therefore the given equation has no solution.                               

 

 Theorem 3.3: (27, 1) is the only one ED Rectangle over mS . 

 
 Proof: By the theorem (3.1) and (3.2), there exists only one ( , , )x y z   and so 

there only one ED Rectangle exists over mS .         

 

 3.3 Python Programing for Existence of ED Rectangles over mS : In this 

section, we provided the python programming for the existence and non existence of 

the ED Rectangles over mS  

 
1 # ED rectangle over Star number 
2  import math 
3  def rectangle (): 
4   print (’x\ty\tn\tSm\tSn\t(l,b)’) 
5     for x in range (0, m + 1) : 
6      for y in range (0, m + 1) : 
7       for n in range (1, m + 1) : 
8       Sm = 6* n **2 + 6* n + 1 
9       Sn = 6* n **2 - 6* n + 1 
10     l = Sm *(n + 1) + n*(x + y) 
11     b = n*Sn + (n -1) *(x + y) 
12     if (Sm)**x + ( Sn)**x == ( n + 1) **y : 
13     print (x,’\t’, y,’\t’, n,’\t’, Sm ,’\t’, Sn ,’\t’ ,(l, b)) 
14 m = int ( input (" Enter the maximum range :")) 
15 # m is the maximum range 
16 rectangle () 
 

 Coding 1: Calculating the solution for 1 ( 1)x x y
m mS S m     

 

 
 

Figure 1: Output: Coding 1 
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18 #  ED rectangle over Star number 
19 import math 
20 def rectangle (): 
21   print (’x\ty\tn\tSm\tSn\t(l,b)’) 
22     for x in range (0,m + 1) : 
23      for y in range (0,m + 1) : 
24       for n in range (1,m + 1) : 
25        Sm = 6* n **2 + 6* n + 1 
26        Sn = 6* n **2 - 6* n + 1 
27        l = Sm *(n + 1) + n*(x + y) 
28        b = n*Sn + (n -1) *(x + y) 
29        if (Sm)**x - ( Sn)**x == ( n + 1) **y : 
30        print (x,’\t’,y,’\t’,n,’\t’, Sm ,’\t’,Sn ,’\t’ ,(l,b)) 
31 m = int ( input (" Enter the maximum range :")) 
32 #m is the maximum range 
33 rectangle () 
 

 Coding 2: Calculating the solution for 1 ( 1)x x y
m mS S m    

 

 
 

Figure 2: Output: Coding 2 
 
4. Exponential Diophantine Rectangles over Pronic Numbers 
 
 This section includes defintion of Exponential Diophantine Rectangles over 

mP  and also contains three subsections. First two subsections provide the theorems 

for solving the exponential Diopahntine equations. In the final subsection the python 
programming is provided for the existence of Exponential Diophantine Rectangles 

over mP  within a specific limit. 

 

 Definition 4.1: An Exponential Diophantine rectangle over Pronic 

numbers mP is defined as a rectangle with the length ( )l  and breadth ( )b  as  

1( , ) ( ( 1) ( )ml b yP m xm   , ( 1)( )) mm m yP x    where m    

and ,x y  are non-negative integers such that 
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    1 ( 1)x x y
mmP P m                                           (4) 

or 

    1 ( 1)x x y
mmP P m                                           (5) 

 
 Notation - Exponential Diophantine Rectangles over Pronic numbers- ED 

Rectangles over mP .  

 

 4.1 The exponential Diophantine equation 1 ( 1)x x y
mmP P m    : This 

subsections contains the theorem for finding the solution for the exponential 

Diophantine equation 1 ( 1)x x y
mmP P m    . 

 

 Theorem 4.1: The only solution for the Exponential Diophantine 

equation 1 ( 1)x x y
mmP P m    are ( ) {(0, 1, 1)}, ,x y m   with m    and

, 0}x y    . 

 
 Proof: Consider the exponential Diophantine equation 

1 ( 1)x x y
mmP P m     and solve this in various possibilities. 

 
Possibility 1:  Whenever 0x y  , there is no possibility. 

 
Possibility 2:  Here 0x   and 1y  , we obtain 1m  . 

 

Possibility 3:  Suppose 1x   and 0y  , the equation 4 reduced to 212 1m   

which is an impossible one. 
 
Possibility 4:  Now 1x y  , the equation (4) reduces to a quadratic equation 

22 3 1 0m m    and it is not solvabe over  . 
 

Possibility 5:  0x   and 1y   the equation (4) reduces( 1) 2ym   . For

1m  , it becomes 1y   which is contradiction to our 

assumption. For 1, ( 1)ym m   is always greater than 2. This 

possibility fails. 
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Possibility 6:  For 0y   and 1x  , the equation (4) reduces to

1 1x x
mmP P   . Thus, 1 0 (mod 2)x x

mmP P   . We get a 

contradiction. 
 
Possibility 7:  Whenever 1x   and 1y  , the equation reduced into

22 4 2 ( 1)ym m m    .  By using Binomial Expansion we 

get 2y  . Now for 2y  , the equation reduces into a quadratic 

equation 2 1 0m    and it is not solvable. 
 

Possibility 8:  Here 1y   and 1x  , we have 11 m mm P P    implies

21 3 2m m   . This is an impossible one. 
 
Possibility 9:  When , 1x y   Now for 1m  , we obtain an impossible one. If 

1m   and by using the definition 2.1, the possibility fails. 
 

 The given equation has only one solution.                   

 

 4.2 The exponential Diophantine equation 1 ( 1)x x y
mmP P m    : This 

subsection discusses about the solution for the equation 1 ( 1)x x y
mmP P m    . 

 

 Theorem 4.2: There is no solution exists for the Exponential 

Diophantine equation 1 ( 1)x x y
mmP P m    with m    and

, {0}x y   . 

 

 Proof: Consider the equation 1 ( 1)x x y
mmP P m    and deal with 

different possibilities. 
 

Possibility 1:  Whenever 0x y  , this is one fails. 

 
Possibility 2:  Suppose 0x   and 1y  , we obtain 1m   . This is a 

contradiction. 
 
Possibility 3:  If 1x   and  0y  , then m   . 
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Possibility 4:  For 1x y  , we obtain 1m   . 

 

Possibility 5:  When 0x   and  1y  , the equation becomes ( ) 01 ym   . 

This is impossible. 
 
Possibility 6:  Now  0y   and 1x  , we deal with two possibilities. For

1m  , we obtain a contradiction. For 1m  , then by lemma 

(2.1) 1mP   and mP  are obtained as 3 and 2 respectively, which 

contradicts. 
 
Possibility 7:  For 1x   and 1y  , by using Definition (2.1) we obtain 2y 

. This is an absurd one. 
 
Possibility 8:  Here 1x   and 1y  , the equation becomes 1 2 2m m    

(not possible). 
 
Possibility 9: , 1x y  , When 1m  , we get an impossible one and 1m   

this possibility fails (by Definition 2.1) 
 

 Hence, the Diophantine equation 1 ( 1)x x y
mmP P m     has no solution.    

 

 Theorem 4.3: There is no ED Rectangles over Pronic numbers exists. 

 
 Proof: By the above two theorems (4.1) and (4.2), we get the side of ED 

rectangle over mP  is (13, 0), this is not possible and conclude that there is no ED 

rectangles over Pronic numbers. 
 

 4.3 Python Programing for Existence of ED Rectangles over mP : The 

Python programming for the existence and nonexistence of the exponential 
Diophantine equation solution is provided in this part; however, the ED rectangle 

over mP , does not exist. 

 
34 #ED rectangle over Pm 
35 import math 
36 def rectangle (): 
37    print (’x\ty\tm\tPm\tPn\t(l,b)’) 
38     for x in range (0, n + 1) : 
39      for y in range (0, n + 1) : 
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40       for m in range (1, n + 1) : 
41       Pm = (m + 1) *(m + 2) 
42       Pn = m*(m - 1) 
43       l = Pm *(m + 1) +m*(x + y) 
44       b = m*Pn + (m - 1) *(x + y) 
45       if (Pm)**x + ( Pn)**x ==( m + 1) **y : 
46            print (x,’\t’,y,’\t’,m,’\t’, Pm ,’\t’,Pn ,’\t’ ,(l,b)) 
47 n = int ( input (" Enter the maximum range :")) 
48 #n is the maximum range 
49 rectangle () 
 

 Coding 3: Calculating the solution for 1 ( 1)x x y
mmP P m     

 

 
 

Figure 3: Output: Coding 3 
 
50 #ED rectangle over Pm 
51 import math 
52 def rectangle (): 
53    print (’x\ty\tm\tPm\tPn\t(l,b)’) 
54       for x in range (0,n +1) : 
55         for y in range (0,n +1) : 
56           for m in range (1,n +1) : 
57             Pm =(m +1) *(m +2) 
58             Pn=m*(m -1) 
59             l=Pm *(m +1) +m*(x+y) 
60             b=m*Pn +(m -1) *(x+y) 
61            if (Pm)**x -( Pn)**x == ( m +1) **y : 
62                print (x,’\t’,y,’\t’,m,’\t’, Pm ,’\t’,Pn ,’\t’ ,(l,b)) 
63 n = int ( input (" Enter the maximum range :")) 
64 #n is the maximum range 
65 rectangle () 
 

 Coding 4: Calculating the solution for 1 ( 1)x x y
mmP P m     

 

 
 

Figure 4: Output: Coding 4 
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Since the sides of the rectangles are positive, but we have 13l   and 0b   and 

therefore does not exists ED rectangle over mP . 

 
5. Conclusion 
 
 Finally we infer that there exists only one ED Rectangle over Star numbers 
and there is no ED Rectangles over Pronic numbers. In the future, this could be 
employed in cryptographic concepts like it helps to develop efficient algorithms. 
Additionally, it can be applied to furnishings design (making tables, chairs, etc.), 
building construction, graphic design (such as creating logos), etc. One can also work 
on these topics using various types of equations. 
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Abstract: In this present research work, study of duality associated with a 
special class of multiobjective optimization that include the interval valued 
components is delt. We define (ρ,φ,d)-Invexity and (ρ,φ,d-Pseuodinvexity, 
which are connected with an interval valued multiple integral functional. 
For such class of variational problems, we write dual problem associated 
with primal problem. We prove weak, strong and converse duality theorems 
for this type of variational problems. A brief comparison with existed 
methods have been done to show the importance of this research work. 
Additionally, numerical examples have been displayed at the appropriate 
places to support the results which shows the significance of our Study. 
 
Keywords: Multiobjective Optimization, (ρ, φ, d)-Invexity and (ρ, φ, d)-

Pseuodinvexity, Duality. 
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1. Introduction and Literature Review 
 

Mathematical optimization problems involving multiple objective functions 
that must be optimized simultaneously fall under the purview of multi-objective 
optimization, also known as Pareto optimization or multi-objective programming, 
vector optimization, multicriteria optimization, or multiattribute optimization. Several 
scientific domains, such as engineering, economics, and logistics, have used multi-
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objective vector optimization to make optimal judgments when there are trade-offs 
between two or more competing objectives. Multi-objective optimization issues with 
two or three objectives include things like optimizing performance while limiting fuel 
consumption and vehicle emissions, and minimizing cost while maximizing comfort 
while purchasing an automobile. There may be more than three objectives in practical 
tasks. 

 
 The application of duality theory to more general classes of functions has 
grown as a result of its success in mathematical programming. Kumar et al. [1] have 
considered multiobjective semi-infinite variational problem (MSVP) and generalised 
the concept of inveity. Kumar et al. [2] defined certain conditions on the functionals 
of multi-objective fractional variational problem in order that it becomes F-Kuhn 
Tucker pseudo invex or F-Fritz John pseudo invex. Bhardwaj and Ram [3] 
established the relationships between a class of interval-valued vector optimization 
problems and interval-valued vector variational-like inequality problems of both 
Stampacchia and Minty kinds in terms of convexificators. 
 
 Upadhyay et al. [4] dealt with a certain class of multiobjective semi-infinite 
programming problems with switching constraints (in short, MSIPSC) in the 
framework of Hadamard manifolds. Sahay and Bhatia [5] introduced new classes of 
higher order generalized strong invex functions under non-differentiable settings. 
 

 Soni et al. [6] discussed optimization problems with multiobjective functions 
and their applications in engineering field. 
 
 Zalmai [7] established global semiparametric sufficient efficiency results 
under various generalized ( ), , , ,b    -univexity assumptions for a multiobjective 

fractional subset programming problem. Hachimi and Aghezzaf [8] generalized a fairly 
large number of sufficient optimality conditions and duality results previously 
obtained  for  multiobjective  variational  problems.  Treanţă  [9]  introduced  
necessary efficiency conditions for a class of multi-time vector fractional variational 
problems with nonlinear equality and inequality constraints involving higher-order 
partial derivatives. Treanţă [10]  introduced  a generalised  condition  on  the 
functionals  involved  in  a  multidimensional  vector  control  problem  and  prove 
that a (strongly) b-V-KT-pseudoinvex multidimensional control problem is 
characterized so that all Kuhn-Tucker points are efficient solutions. Kim [11] 
formulated duality for nondifferentiable multiobjective variational problems and 
established the weak, strong, and converse duality theorems under generalized  
( ),F  -convexity assumptions. Gulati et al. [12] obtained Fritz John and Kuhn-

Tucker type necessary optimality conditions for a Pareto optimal (efficient) solution 
of a multiobjective control problem are by first reducing the multiobjective control 
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problem to a system of single objective control problems, and then using already 
established optimality conditions. Nahak and Nanda [13] presented the sufficient 
optimality criteria for a class of multiobjective variational control problems under the 
V-invexity assumption. They also proved duality results under a variety of V-invexity 
assumptions. 
 
 Antczak and Jiménez [14] generalized the notion of B-(p, r)-invexity and 
proved sufficient optimality conditions under the assumptions that the functions 
constituting them are B-(p, r)-invex. Antczak [15] extended the notions of  
(Φ, ρ)-invexity and generalized (Φ, ρ)-invexity to the continuous case and we use 
these concepts to establish sufficient optimality conditions for the considered class of 
nonconvex multiobjective variational control problems and established several mixed 
duality results are under (Φ, ρ)-invexity. Khazafi et al. [16] introduced the classes of 
(B, ρ)-type I and generalized (B, ρ)-type I, and derived various sufficient optimality 
conditions and mixed type duality results for multiobjective control problems under 
(B, ρ)-type I and generalized (B, ρ)-type I assumptions. Zhang et al. [17] extended the 
vector-valued G-invex functions to multiobjective variational control problems, by 
using this concept, a number of sufficient optimality results and Mond-Weir type 
duality results were obtained for multiobjective variational control programming 
problem. Treanţă and Arana [18] defined a Kuhn-Tucker (KT)-pseudoinvex 
multidimensional control problem and introduced a new condition on the functions, 
which were involved in a multidimensional control problem proved that a  
KT-pseudoinvex multidimensional control problem is characterized such that a KT 
point is an optimal solution. Mititelu [19] established necessary conditions for normal 
efficient solutions of a class of multiobjective fractional variational problem (MFP) 
with nonlinear equality and inequality constraints using a parametric approach to 
relate efficient solutions of fractional problems and a non-fractional problem and 
established the sufficiency of these conditions for efficiency solutions in problem 
(MFP) using the (ρ, b)-quasiinvexity notion. 
 
 Mititelu and Treanţă [20] formulated and proved necessary and sufficient 
optimality conditions in multiobjective control problems which involve multiple 
integral and under (ρ, b)-quasiinvexity assumptions, sufficient efficiency conditions 
for a feasible solution were derived. Treanţă and Mititelu [21] introduced several 
results of duality for a class of multiobjective fractional control problems involving 
multiple integrals and under (ρ, b)-quasiinvexity assumptions, they formulated and 
prove weak, strong and converse duality results. Treanţă [22] formulated and proved 
efficiency conditions for the considered uncertain variational control problem and 
established sufficiency of Karush-Kuhn-Tucker conditions under some invexity and 
(ρ, b)-quasiinvexity assumptions of the involved functionals. Treanţă [23] formulated 
and proved weak, strong, and converse duality results for the considered class of 
variational control problems by using the new notion of (ρ,ψ,d)-quasiinvexity 
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associated with an interval-valued multiple-integral functional. Treanţă [24] 
investigated some connections between an LU-optimal solution of a variational 
control problem governed by interval-valued multiple integral functional and a 
saddle-point associated with an LU-Lagrange functional corresponding to a modified 
interval-valued variational control problem. 
 
 In contrast to earlier studies, the current work addresses the duality study 
related to a novel class of multiobjective optimization problems that involve interval-
valued ratio vector components. When taken into account simultaneously, these three 
emphasized components are completely novel in the relevant literature. Additionally, 
numerical example is given to show how useful the conclusions drawn in the study 
are. 
  

The following table compares our study with the available literature in this field 
 

Research Article 
Mutliobjective 
Optimization 

Invexity 
and 

Pseudoinvexity 

Inverval 
Valued 

Components 

Duality 
Criteria 

Kumar et al. [1] Yes 
Generalised 

Invexity 
No No 

Bhardwaj et al. [3] No 
Generalised 

Approximate 
Invexity 

Yes No 

Upadhyay et al. [4] Yes No No Yes 

Hachimi and  
Aghezzaf [8] 

Yes No No Yes 

Kim [11] Yes No No Yes 
Gulati et al. [12] Yes No No Yes 

Nahak and Nanda [13] Yes V-Invexity No Yes 

Antczak and Jiménez 
[14] 

Yes B-(p, r)-Invexity No Yes 

Antczak [15] Yes No No Yes 
Khazafi et al. [16] Yes Yes No No 

Mititelu [19] Yes No No No 

Treanţă and  
Mititelu [21] 

Yes (ρ, b)-Q uasiinvexity No Yes 

Treanţă [23] Yes 
(ρ, ψ, d)- 

Quasiinvexity 
Yes Yes 

Treanţă [24] Yes (p, b, d)-Invexity Yes No 

Our Proposed Paper Yes 

Both (ρ,φ,d)- 
Invexity and  

(ρ, φ,d)-
Pseuodinvexity 

Yes Yes 
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 In the field of multiobjective optimization, somewhere invexity or 
pseudoinvexity were discussed, somewhere mutliobjective optimization with interval 
valued components were discussed, while somewhere duality results were discussed. 
To the best of our knowledge, all four components simultaneously with  
(ρ,φ,d)-Invexity and (ρ, φ, d)-Pseuodinvexity were not discussed, so there was a 
research gap in this field. 
 
 The structure of the paper is as follows: The problem formulation, 
preliminary mathematical tools, and notations are included in Section 2 of this article. 
The key findings are presented in Section 3 of this document. Results for Mond-Weir 
weak, strong, and converse duality are developed and demonstrated for the recently 
introduced category of multiobjective optimization problems. The paper is finally 
concluded in Section 4. 
 
2. The formulation of Problem and Notations 
 
 This part presents the definitions, notations, and preliminary findings that 
will be utilized in the follow-up. Given this, we take into account: 
 
 Let us assume Ω be a compact domain which is a subset of Euclidean space 
m  and a point in this compact domain Ω is represented by ( )t t  where

1, 2 .m   . 

 
 Now, following continuous differentiable functions are defined 
 

( ) :  i n k mnX X       where 1, 2 ..i n   and 1, 2 .m    

  

1 2( , .. ) ( ) : n k q
qY Y Y Y Y         where 1, 2 ..q     

 
 It is assumed that the functions that are continuously differentiable 
 

( ) :  i n k mnX X        where 1, 2 ..i n   and 1, 2 .m    

 
 Satisfy the complete integrability conditions (closeness conditions) 
 

i iD X D X     where , , 1, 2 m       and 1, 2i n   

 

 Where D  represent the total derivative operator. 
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 If we consider any two vectors 1 2 ), . ..( . . sd d d d  and 1 2 ), . ..( . . se e e e  in

s , then  following  partial ordering is used 
 

 r rd e d e   ,  r rd e d e   , 

 

 r rd e d e   ,  ,  , 1, 2.........r r r rd e d e d e r s      

 
 Now let us assume that K  is the set of all closed and bounded real intervals, 

we represent a closed and bounded interval by ] ,[ L UF f f , where Lf  and Uf

are the lower and upper bounds of F , respectively. The interval operations covered 
in this paper can be carried out in the following ways: 
 

(1) L LF G f g     and  U Uf g ;                   

(2) if L Uf f f   then [ , ]F f f f  ;      

(3) [ , ]l L U UF G f g f g    ;                         

(4) [ , ] [ , ]L U L UF f f f f      ;      

(5) For any , { , ]L Uh R h F h f h f     ;                                 

(6) For any h R and 0, [ , ]L Uh hF hf hf  ;                                 

(7) For any h R  and  0, [ , ]U Lh hF hf hf  ;                               

(8) [ , ]L L U UF G f g f g    ;                                                       

(9) / [ / , / ],L L U UF G f g f g where , 0L Ug g  .                              

 
 Now we have some following definitions  
 
 Definition 1: If F  and G  are two closed and bounded real intervals, i.e.

,F G K , then we have  

L UF G f g    and U Uf g  

 
 Definition 2: If F  and G  are two closed and bounded real intervals, i.e. 

,F G K , then we have  

 
L UF G f g   and U Uf g  
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 Definition 3: Interval valued Functions 
 

 If we define a function f  from n k    to K , i.e. 

n kf K      such that  

 

( , ( ), ( )) [ ( , ( ), ( )), ( , ( ), ( ))]L Uf t b t c t f t b t c t f t b t c t , where  t    

 

 Where both ( , ( ), ( ))Lf t b t c t  and ( , ( ), ( ))Uf t b t c t   are  real  valued  functions  

and the condition ( , ( ), ( )) ( , ( ), ( ))L Uf t b t c t f t b t c t t     is satisfied , then f  is 

said to be an interval valued function. 
 
 The following (per Mititelu and Treantă [19], and Treantă [21]) was used  to 
formulate and demonstrate the primary findings of this work, now we are going to 
introduce (ρ, φ, d)-Invexity and (ρ, φ, d)-Pseuodinvexity with the help of functional 
which is interval valued multiple integral. 
 
 For this first we consider an interval-valued function which is continuously 
differentiable 

: n mn kh R R R K     such that 
 

( , ( ), ( ), ( )) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L Uh h t b t b t c t h t b t b t c t h t b t b t c t     
 

 Where ( )b t  represents partial derivative of ( )b t  with respect to t  i.e. 

( ) ( )
b

b t t
t

 





. 

 

 Now for any b B  and c C , we define following interval-valued 
multiple integral functional: 
 

 :H B C K   such that 
 

 

.
( , ) ( , ( ), ( ), ( ))H b c h t b t b t c t dt   

   

. .
[ ( , ( ), ( ), ( )) , ( , ( ), ( ), ( )) ]L Uh t b t b t c t dt h t b t b t c t dt    

 

 If   is a real number and : [0, )B C B C       be a positive 

functional and 0 0( ( , ), ( , ))d b c b c  is a real valued function defined on 2( )B C  . 
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 Definition 4:  (ρ, φ,d)-Invexity and (ρ, φ,d)-Pseudoinvexity 
 

(i) Now if there exists a functional such that  
 

: n k n k n           such that 

 
0 0 0 0( , ( ), ( ), ( ), ( )) ( ( , ( ), ( ), ( ), ( )))it b t c t b t c t t b t c t b t c t     where 1, 2 .. ,i n    

of the 1C  class functional with 0 0( , ( ), ( ), ( ), ( )) 0, , 0t b t c t b t c t t       , 

and another functional such that 
 

: n k n k K             such that 

 
0 0 0 0( , ( ), ( ), ( ), ( )) ( ( , ( ), ( ), ( ), ( )))jt b t c t b t c t t b t c t b t c t     where 1, 2 .. ,j k   

of the 0C  class function with 0 0( , ( ), ( ), ( ), ( )) 0, , 0t b t c t b t c t t        

such that for each ( , )b c B C : 

 
0 0( , ) ( , )H b c H b c  

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t dt      

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t D dt   

    

           
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
c cb c b c h t b t b t c t h t b t b t c t dt     

           0 0 2 0 0( , , , ) (( , ), ( , )) 0b c b c d b c b c 
 

 

 Or in other words 
 

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t dt     

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t D dt   

    

           
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
c cb c b c h t b t b t c t h t b t b t c t dt     

           0 0 2 0 0 0 0( , , , ) (( , ), ( , )) 0 ( , ) ( , )b c b c d b c b c H b c H b c     
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 In this case H  is called as (ρ, φ, d)-Invex at point 0 0( , )b c B C  with 

respect to   and  . 
 

(ii) Now if there exists a functional such that  
 

: n k n k n             such that 
 

0 0 0 0( , ( ), ( ), ( ), ( )) ( ( , ( ), ( ), ( ), ( )))it b t c t b t c t t b t c t b t c t     where 1, 2 .. ,i n    

of the 1C  class functional with 0 0( , ( ), ( ), ( ), ( )) 0, , 0t b t c t b t c t t       , 

and another functional such that 
 

: n k n k K             such that 
 

0 0 0 0( , ( ), ( ), ( ), ( )) ( ( , ( ), ( ), ( ), ( )))jt b t c t b t c t t b t c t b t c t     where 1, 2 .. ,j k   

of the 0C  class function with 0 0( , ( ), ( ), ( ), ( )) 0, , 0t b t c t b t c t t        

such that for each 0 0( , ) ( , )b c b c B C  : 
 

0 0( , ) ( , )H b c H b c  

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t dt      

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t D dt   

    

           
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
c cb c b c h t b t b t c t h t b t b t c t dt     

           0 0 2 0 0( , , , ) (( , ), ( , )) 0b c b c d b c b c   
 

 Or in other words 
 

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t dt     

 
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
b bb c b c h t b t b t c t h t b t b t c t D dt   

    

           
.

0 0 0 0 0 0 0 0( , , , ) [ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L U
c cb c b c h t b t b t c t h t b t b t c t dt     

           0 0 2 0 0 0 0( , , , ) (( , ), ( , )) 0 ( , ) ( , )b c b c d b c b c H b c H b c     
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 In this case H  is called as (ρ, φ, d)-pseudoinvex at point 0 0( , )b c B C  

with respect to   and  . 

 
 Definition 5: Now if we consider a vector valued continuously differentiable 
function h  such that 
 

: n mn k ph            such that 
 

( , ( ), ( ), ( ))h h t b t b t c t   where  1, 2r p   

 

1 1([ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))]L Uh t b t b t c t h t b t b t c t    

   ................[ ( , ( ), ( ), ( )), ( , ( ), ( ), ( ))])L U
p ph t b t b t c t h t b t b t c t   

 
 Now we define vector multiple integral functional H  with the help of above 
continuously differentiable function 
 

: pH B C K   such that 
 

.
( , ) ( , ( ), ( ), ( ))H b c h t b t b t c t dt   

 
. .

1 1( , ( ), ( ), ( )) , ( , ( ), ( ), ( )) ,L Uh t b t b t c t dt h t b t b t c t dt 
  
      
 

  

. .
( , ( ), ( ), ( )) , ( , ( ), ( ), ( ))L U

p ph t b t b t c t dt h t b t b t c t dt 
  

     
 

 
 Now this vector valued multiple integral functional H  is said to be (ρ, φ,d)- 

Invex or (ρ, φ,d)-Pseudoinvex at point 0 0( , )b c B C  with respect to   and   if 

each of the interval valued component of the vector is (ρ, φ,d)-Invex or (ρ, φ, d)-

Pseudoinvex respectively at point 0 0( , )b c B C with respect to   and  . 

 Now consider a vector valued continuous differentiable function g such that 

     1 2( , ....... )pg g g g     where   : n k p
rg R R K   , 1, 2........r p    

 We may now design a new class of multiobjective variational control 
problems with interval-valued components that we refer to as Primal Problems 
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(abbreviated PP for short) 
 

 . .

( , ) 1min ( , ) ( , ( ), ( ) , ........ ( , ( ), ( )b c pG b c g t b t c t dt g t b t c t dt   
   

 

subject to 
 

( ) ( , ( ), ( ), 1, 2.....
ib i

t
t X t b t c t i n




   and 1, 2........m   and t              (1) 

 

 ( , ( ), ( )) 0,Y t b t c t t                                                          (2) 

 ( ) ( )b t t given                                                             (3)  

 
 Now for 1, 2........r p  we have 

 

  
. .

( , ( ), ( ) [ ( , ( ), ( ) , ( , ( ), ( ) ]L U
r r rg t b t c t dt g t b t c t dt g t b t c t dt  

  

  

or ( , ) [ ( , ), ( , )]L U
r r rG b c G b c G b c   

 
 The set of all feasible solutions in primal problem is defined by  
 
 {( , )D b c b B    and }c C  satisfying equations (1), (2) and (3). 

 

 Definition 6: A feasible solution 0 0( , )b c D  in primal problem is said to 

be an LU-optimal solution if there does not exist any( , )b c D   such that

0 0( , ) ( , )G b c G b c . 

 

 Constrained by certain qualification assumptions, if 0 0( , )b c D is an LU-

Optimal solution of the variational control, then Treantă [21] and Mititelu and 
Treantă [19] can be considered. According to this there exists piecewise  

smooth functions ,   and  , with ( ) ( ( ), ( )), ( ) ( ( ))L Ut t t t t       and 

( ) ( )it t   such that 

  0 0 0 0( , ( ), ( )) ( ) ( , ( ), ( ))
l i
rr

il i i

g X
t b t c t t t b t c t

b b

 
 


 
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  0 0( ) ( , ( ), ( )) ( ) 0.i

i

Y
t t b t c t t

b t









 
  

 
                    (4) 

 
 Where 1, 2.........i n  and ,l L U .  

 

  0 0 0 0( , ( ), ( )) ( ) ( , ( ), ( ))
l i
rr

il j j

g X
t b t c t t t b t c t

c c

 
 


 

  

 0 0( ) ( , ( ), ( )) 0.
j

Y
t t b t c t

c




 


                (5) 

 
 Where 1, 2.........j k  and ,l L U . 

 

 And  0 0( ) ( , ( ), ( )) 0t Y t b t c t
   (no summation) ( ), ( ) 0t t             (6)  

 
for all t    except at the point of discontinuities. 
 

 Definition 7: For the primal problem an LU-Optimal solution 0 0( , )b c D  

is called an normal LU-optimal solution if above necessary LU-optimality conditions 
in equation (4) to (6) are satisfied. 
 
3. Dual problem associated with Primal problem 
 
 Suppose that the set {1, 2...... }P q  is partitioned into the set 

1 2{ , , ........ }sP P P , where s q . Using the same notations as in Section 2, we relate 

the next multiobjective variational control problem with interval-valued vector 
components, known as the Dual Problem (DP), to the above primal problem for 
( , )a u B C : 

 . .

( , ) 1min ( , ) ( , ( ), ( ) , ........ ( , ( ), ( )a u pG a u g t a t u t dt g t a t u t dt   
   

 

subject to 

  ( , ( ), ( )) ( ) ( , ( ), ( ))
l i
rr

il i i

g X
t a t u t t t a t u t

a a

 
 


 

  

   ( ) ( , ( ), ( )) ( ) 0.i

i

Y
t t a t u t t

a t









 
  

 
                    (7) 
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 Where 1, 2.........i n  and ,l L U  

 

  ( , ( ), ( )) ( ) ( , ( ), ( ))
l i
rr

il j j

g X
t a t u t t t a t u t

u u

 
 


 

  

   ( ) ( , ( ), ( )) 0.
j

Y
t t a t u t

u




 


                                     (8) 

 
 Where 1, 2.........j k  and ,l L U . 

 

    ( ) ( , ( ), ( )0 ( ) 0
i

i
i

b
t X t a t u t t

t


 


 

  
 

.                         (9) 

 

 And  ( ) ( , ( ), ( )0 0P
Pt Y t a t u t


     where  1, 2........s                      (10) 

 

 Where     ( ) 0, ( ) ( ( )) 0r
l t t       ,       ( ) ( )a t t given    

,l L U .                     (11) 

 

 And the expression is ( ) ( , ( ), ( ))P
Pt Y t a t u t


  is 

 

( ) ( , ( ), ( )) ( ) ( , ( ), ( ))P
P P

t Y t a t u t t Y t a t u t
  

   
 

 
 In this section, we prove that, under (ρ, φ, d)-Invexity hypotheses, the 
multiobjective optimization problems with interval-valued components, Primal 
Problem and Dual Problem, are a Mond-Weir dual pair. Moreover, keep in mind that 
  is the collection of all feasible solutions related to dual problem. 

 
 Now we formulate and establish the initial duality result, which is also 
known as weak duality. 
 
 Weak Duality theorem-For any multiobjective variational problem with 
interval-valued components (Primal Problem), let ( , )b c D  be a feasible solution; 

similarly, let ( , , , , )a u      be a feasible solution for the multiobjective 

variational problem with interval-valued components (Dual Problem). Furthermore, 
keep in mind that the following prerequisites are satisfied: 
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(i) For each r , the functional 
 

 
.,

, ( , ) ( , ( ), ( )a u
rr l b c g t b t c t dt g   1, 2......r p  and ,l L U  is  

(�1, φ, d)-Invex at ( , )a u  with regard to   and   or in other words, each 

interval-valued multiple-integral functional 
 

 , ,,
, ,( , ) [ ( , ), ( , )]a u a ua u

r r L r Ub c b c b cg g g , 1, 2......r p  is  (�1, φ, d)-Invex at 

( , )a u   with regard to   and  . 

 

(ii) The functional 
.

( , ) ( ) ( , ( ), ( ), ( )
i

i
i

b
X b c t X t b t c t t dt

t


 


 

  
 

    is  

(�2,φ, d)-Invex at ( , )a u  with regard  to    and  . 

 
(iii) Each functional 

.
( , ) ( ) ( , ( ), ( )Q

QY b c t Y t b t c t dt
 

      1, 2.......s   is  3 ), ,( d  - 

Invex at ( , )a u  with respect to   and  . 

 
(iv) With regard to � ��� � , at least one of the functionals provided in (i) to 

(iii) is (�, φ, d)-Pseudoinvex  at  ( , )a u ,  where  1 2,r    and 3
 . 

 
(v) For the given 

 

1 2 3
1

0
sr

rl 
   


       where   1 2,r   and 3

  . 

 
Then, supremum of dual problem is less than or equal to the infimum of 
primal problem. 

 
 Proof: The values of primal problem at ( , )b c D and dual problem at 

( , , , , )a u      are denoted by ( , )b c  and ( , , , , )a u     respectively. Contrast 

to the result, if possible, suppose that ( , ) ( , , , , )b c a u     . 

 
 Now, take into consideration the following non-empty set for 

1, 2...... , ,r p l L U  and 1, 2, ........... :s     
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, ,
, ,{( , ) ( , ) ( , ), ( , ) ( , ), ( , ) ( , )}a u b c
r l r lS b c B C b c a u X b c X a u Y b c Y a u       g g   

 
 Now by using above (i) for ( , )b c S  and 1, 2r p   and ,l L U , 

we have  
 

, ,
, ,( , ) ( , )a u b c
r l r lb c a u g g   

 

. .
( , , , ) ( ) ( , ( ), ( ) ( , , , ) ( ) ( , ( ), ( )l l

r a r ub c a u g t a t u t dt b c a u g t a t u t dt        

 1 2( , , , ) (( , )( , ))r b c a u d b c a u     

             

 Now we multiply this by 0r
l    where ,l L U  and take summation 

over  1, 2r p  , we  get the following 

 

. .
( , , , ) ( ) ( , ( ), ( ) ( , , , ) ( ) ( , ( ), ( )r l r l

r a r ul lb c a u g t a t u t dt b c a u g t a t u t dt         

   1 2( , , , ) (( , )( , ))r
rl b c a u d b c a u    .                (12) 

 
 Now since for each ( , )b c S , the inequality ( , ) ( , )X b c X a u  satisfies, 

now according to (ii), we have the following  
 

.
( , , , ) [ ( )( ) ( , ( ), ( )) ( ) ( )( ) ( , ( ), ( )) ]i i

a ui ib c a u t X t a t u t t D t X t a t u t dt  
            

  2 2( , , , ) (( , )( , ))b c a u d b c a u   .               (13) 
 

 Similarly, for each ( , )b c S , the inequality ( , ) ( , )Y b c Y a u   for 

1, 2 s    exists, now using (iii) , we have the following 

 

 
.

( , , , ) [ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( )) ]Q Q
Q a Q ub c a u t Y t a t u t t Y t a t u t dt 
 

       

   3 2( , , , ) (( , )( , ))b c a u d b c a u   . 

 
 Now, taking the summation over 1, 2 s   , we have 
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.

( , , , ) [ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( )) ]a ub c a u t Y t a t u t t Y t a t u t dt 
        

   3 2

1

( , , , ) (( , )( , ))
s

b c a u d b c a u


 


                               (14) 

 
 Now, adding equations (12),(13) and (14) and taking condition (iv) under 
consideration, we have 
 

.
( , , , ) ( ) ( , ( ), ( ))r l

r alb c a u g t a t u t dt    

  
.

( , , , ) [ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( ))]i
a aib c a u t X t a t u t t Y t a t u t dt 

       

  
.

( , , , ) ( ) ( , ( ), ( ))r l
r ulb c a u g t a t u t dt      

  
.

( , , , ) [ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( ))]i
u uib c a u t X t a t u t t Y t a t u t dt 

        

 
.

1 2 3 2

1

( , , , ) [ ( ) ] ( , , , ) (( , ), ( , ))
s

r
rlb c a u t D dt b c a u d b c a u

 


       


 
     

 
 

   

 Where ,l L U . 

  
 Since, ( , , , ) 0b c a u  , using this, we have the following 

.
( ) ( , ( ), ( ))r l
r ql g t a t u t dt   

.
[ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( ))]i

a ai t X t a t u t t Y t a t u t dt 
      

.
( ) ( , ( ), ( ))r l
r ul g t a t u t dt    

.
[ ( )( ) ( , ( ), ( )) ( )( ) ( , ( ), ( ))]i

u ui t X t a t u t t Y t a t u t dt 
      

.
1 2 3 2

1

[ ( ) ] ( , , , ) (( , ), ( , ))
s

r
rlt D dt b c a u d b c a u

 


      


 
     

 
 

 . 

 
 Where � = �, �. 
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 Now using the constraints (7) and (8) of dual problem, we have  
 

 
. .
[ ( ) [ ( ) ] 0D t dt t D dt 

        
 

 

   1 2 3 2

1

( , , , ) (( , ), ( , ))
s

r
rl b c a u d b c a u



    


 
    

 
 



 Where � = �, �. 
 
 By direct formula of derivative, we know that 
 

[ ( )] ( ) ( )D t t D D t  
         

 

( ) [ ( )] ( )D t D t t D  
         

 
 Now applying integral over the region Ω , we have 
 

. . .
( ) [ ( )] [ ( ) ]D t dt D t dt t D dt  

 


         
 

  

 Using the condition 0    and applying the flow-divergence formula, 

we get  
. .

[ ( ) [ ( ) 0D t dt t nd 
   


  


 

 

 Where ( )n n 


 where 1, 2 m   , is the unit normal vector to the 

hyper surface  , now it follows that  

. .
( ) [ ( ) ]D t dt t D dt 

      
 

or 
. .

( ) [ ( ) ] 0D t dt t D dt 
        

. 

 
 Therefore, we have 
 

1 2 3 2

1

0 ( , , , ) (( , ), ( , ))
s

r
rl b c a u d b c a u



    


 
    

 
 

 . 
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 Where � = �, �. 
 

  Now applying the condition (v) and 2(( , ), ( , )) 0d b c a u  , we get a 

contradiction. Therefore, supremum of dual problem is less than or equal to the 
infimum of primal problem. 
 
 The following outcome proves a strong duality between the two 
multiobjective optimization problems with interval-valued components under 
consideration. 
 

 Strong Duality theorem-If we consider the same (ρ, φ, d)-Invexity 

hypotheses mentioned in above weak duality theorem, if  0 0( , )b c D   is a normal 

LU-optimal solution of the given primal problem,  then 0 0, ( )t   and 0( )t  such 

that 0 0 0 0 0( , , , , )b c      is an LU-optimal solution of the dual problem, and the 

values of corresponding objective functions are equal. 

 

 Proof: Consider that 0 0( , )b c D  is a normal LU-optimal solution of the 

primal problem, the necessary LU-optimality conditions mentioned in equations (4) 

to (6) involve that 0 0, ( )t   and 0( )t  such that 0 0 0 0 0( , , , , )b c      is an 

feasible solution for dual problem. 
 

0
0 0( ) ( , ( ), ( ))

i
ib

t X t b t c t
t







 for 1, 2, ......i n , 1, 2......m   t    

 
 Now by equation (6) 
 

0 0( ) ( , , ( ), ( )0 0t Y t b t c t
  , (summation is taken over  ) and t   . 

 
 Therefore, the value of objective function of dual problem has the same 
value of objective function of primal problem. Hence by weak duality theorem 

0 0 0 0 0( , , , , )b c      is an LU-optimal solution of dual problem. 

 
 A converse duality conclusion related to considered multiobjective 
optimization problems with interval-valued components is formulated in the 
following theorem. 
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 Converse Duality theorem-Assume that the LU-optimal solution of dual 

problem is 0 0 0 0 0( , , , , )b c     . Furthermore, presumptively the following 

circumstances hold true: 
 

(i) ( , )b c D  is a normal LU-optimal solution of the given primal problem. 
 

(ii) For 0 0 0 0 0( , , , , )b c    , the hypotheses of weak duality theorem are met. 
 

 Consequently, the corresponding objective values are equal and 
0 0( , ) ( , )b c b c . 

 

 Proof:  In contrast to the outcome, let's assume that 0 0( , ) ( , )b c b c and 

that 0 0( , )b c  is not a normal LU-optimal solution of primal problem. According to 

Treantă and Mititelu and Treantă, since ( , )b c D   is a normal LU-optimal solution 

of primal problem, there exist , ( )u t  and ( )t , satisfying equations (4) to (6) and 

definition of normal LU-optimal solution. Consequently 
 

  ( ) ( , ( ), ( ) ( ) 0,
ibi

i
t

t X t b t c t t
 

 



  
  

  

 

  ( ) ( , ( ), ( ) 0Q
Qt Y t b t c t


  , 1, 2.......s    

 

where ( , , , , )b c       as a result. Additionally, ( , ) ( , , , , )b c b c        

is present. We obtain 0 0 0 0 0( , ) ( , , , , )b c b c       in accordance with weak 

duality theorem, or  0 0 0 0 0( , , , , ) ( , , , , )b c b c        . The maximal LU-

optimality of 0 0 0 0 0( , , , , )b c     is in conflict with this. As a result, the 

corresponding objective values are identical and 0 0( , ) ( , )b c b c . 

 
 Illustrative instance: The following two-dimensional interval-valued 
variational control problem is taken into consideration: 
 

.

( , )
(0.3)

min ( , ( ), ( ),b c g t b t c t dt  

   
. .

2 1 2 2 1 2

(0.3) (0.3)
( ( ) 8 ( ) 16) , ( ( )c t c t dt dt c t dt dt

 
    

  
,  
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 Subject to 
 

  
1 2

( ) ( ) 3 ( )
b b
t t c t

t t

 
  

 
 where  1 2

(0.3)( , )t t t    

 

  281 ( ) 0b t     where 1 2
(0.3)( , )t t t    

 

  (0) (0, 0) 6b b  ,  (3) (3, 3) 8b b         

 

where 1 2
0 0 0( , ) (0, 0)t t t   and 1 2

1 1 1( , ) 33t t t   in 2  are the diagonally 

opposed points that fix the square (0.3): .,b    (0.3)
8 8

: ,
3 3

c
 

  
 

  and 

1 2 (0.3)( , )0 0t t
  . 

 

 Furthermore, we consider that in the examined variational control problem in 
which affine state functions are the only ones that interest us. It is possible to 
demonstrate by direct computation that the feasible point  

 

0 1 21
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3
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3

c t  , 1 2
(0.3)( , )t t t    

 

is a normal LU-optimal solution with 1 2 5
( , ) (1, ), ( , ) (1, 1)

3
L U          

and  0   for the optimization problem under  consideration.  Moreover, the   

(�, 1, 0)-invexity  (with    )  of  the functionals involved (refer to weak duality 

theorem) at 0 0( , )b c  with regard to  and   may be easily verified as follows: Given 

by 2
(0.3), : ( )          
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where (0.3)int( )  and (0.3)( )   represent interior region and boundary of (0.3)  

respectively. 
 

 Therefore, by strong duality theorem 1 21 8 5
( ) 6, , (1, 1), (1, ), 0

3 3 3
t t

 
  

 
 

will be an LU-optimal solution for the dual problem mentioned below 
 

.

( , )
(0.3)

max ( , ( ), ( ),a u g t a t u t dt  

   
. .

2 1 2 2 1 2

(0.3) (0.3)
( ( ) 8 ( ) 16) , ( )u t u t dt dt u t dt dt

 
    

  
 

subject to  

     
1 2

1 2
2 ( ) ( ) ( ) ( ) 0t a t t t

t t

 


 
   

 
        where  1 2

(0.3)( , )t t t    

 

 1 22 ( ) 8 2 ( ) ( ) ( ) 0L L Uu t u t t t                   where   1 2
(0.3)( , )t t t        

 

1 2
1 2

( ) 3 ( ) ( ) ( ) 3 ( ) ( ) 0
a b

t u t t t u t t
t t

 
    

        
    

           

where   1 2
(0.3)( , )t t t    

 2( )(81 ( )) 0t a t   ,  where   1 2
(0.3)( , )t t t    

 

, [0, 0]L U    , ( ) 0t  ,     (0) (0, 0) 6a a  ,      (3) (3, 3) 8b b  . 

 
and the values of objective of both primal and dual problem are equal. 
 
4. Conclusions 
 
 In this paper we have formulated and proved Mond-Weir weak, strong, and 
converse duality theorems for a completely new concept of multiobjective 
optimization problems having interval-valued components, based on the completely 
new notion of (ρ, φ, d)-Invexity and (ρ, φ, d)-Pseudoinvexity related with an interval-
valued multiple-integral functional. Considering the relevance of interval analysis 
and duality theory to optimization and control, this work constitutes a significant 
contribution for applied sciences researchers and engineers. 
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Future Scope 
 
 This paper can be extended from numerous points of view for additional 
exploration. In this paper we have studied for one parameter t, which can be 
generalised for two or three parameters. On the other hand, here, we have studied 
Both (ρ, φ, d)-Invexity and (ρ, φ, d)-Pseuodinvexity for multiobjective optimization, 
which can also be studied for fractional programming or Inverse optimization. So, 
this study has great future scope. 
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Abstract: This study examines the effects of thermal radiation and heat 
generation along a stretching surface. The power-law non-Newtonian model 
under the influence of Brownian motion and thermophoresis for nanofluids 
is analysed for determining their effects on various parameters of nanofluid 
like temperature, velocity etc. The uniform magnetic field and boundary 
conditions for convective mode are also considered for nanofluid flow. The 
objective of similarity invariants is to convert non-linear partial differential 
equations into ordinary differential equations invariantly. The numerical 
results of the investigation for the impacts of various parameters on skin 
friction coefficients, Nusselt-Sherwood numbers are determined. The 
behaviour of different physical factors on skin friction coefficients in x  and 
y  directions, on the local Nusselt number, and on the Sherwood number is 

analysed. An increment in the power-law index increases the Nusselt 
number. The results of the experiment indicates that an increase in the heat 
generation parameter will result in a drop in the Nusselt number and an 
increase in the Sherwood number. Sherwood number will decrease and 
Nusselt number will increase with an increase in thermal radiation 
parameter. 
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1. Introduction 
 
 The dispersion of nanoparticles in a base fluid, such as water, ethylene 
glycol, or oil, is known as nanofluid. It was introduced and studied by Choi(1995). In 
his experimental research, he also noticed that heat transfer was enhanced in 
nanofluid compared to regular fluids. There are many attractive applications of 
nanofluid like coolants, brake fluid, gear lubrication in automobile industries. It is 
useful in solar devices, as delivery of cancer drugs in the medical field, and coolants 
in electronic devices. So, it is an essential to study the influence of different physical 
factors and various physical situations on nanofluid flow. 
 
 Tesfaye et al. (2020) analysed the erratic flow of Williamson nanofluid over 
a stretched sheet under the influence of a magnetic field, heat radiation, and chemical 
reaction. Kalidas et al. (2018) examined heat generation/absorption effects for 
Oldroyd-B type nanofluid, two-dimensional flow over a permeable stretching surface 
under the effect of magnetic field and slip velocity. Umadevi and Nithyadevi (2016) 
investigated two-dimensional nanofluid flows under uniform heat generation or 
absorption with a uniform magnetic field for different thermal boundaries. Bilal et al. 
(2018) examined the impact of the various physical factors for three-dimensional 
Maxwell nanofluid MHD flow passing through a bidirectional stretching surface 
under nonlinear thermal radiation. Hayat et al. (2017) addressed three-dimensional 
Maxwell MHD nanofluid flow under the influence of heat generation-absorption and 
thermal radiation on a stretching surface. Burger’s nano-liquid flow over a stretching 
sheet was studied by Ganesh et al. (2018) with the impact of non-linear radiation and 
non-uniform heat generation and absorption. The thermal radiation effects on the 
MHD stagnation point, the two-dimensional flow of a non-Newtonian Williamson 
fluid, over a stretching plate, were examined by Hasmawani et al. (2019) by applying 
similarity transformations. The two-dimensional flow of Maxwell nanofluid on a 
linearly stretching surface under heat generation and absorption impacts was 
investigated by Awais et al. (2015). The two-dimensional flow passing over an 
exponentially stretching sheet of MHD Casson fluid was studied with internal heat 
generation by Animasaun et al. (2016). 
 
 Waqas et al. (2017) modelled and analysed Oldroyd-B nano-liquid two-
dimensional flow over a moving sheet with heat generation and absorption effects 
using the Homotopy analysis method. The MHD nanofluid three- dimensional flow 
over a shrinking sheet under viscous dissipation and heat generation and absorption 
with entropy generation was examined by Hiranmoy et al. (2019). The solution for 
unsteady, two-dimensional nanofluid flow over a stretching surface was studied 
numerically by utilising the fourth-fifth order RKF technique under the influence of 
radiation, thermophoresis, and heat generation and absorption by Pandey and Manoj 
(2018). Ahmed et al. (2019) examined MHD Maxwell nanofluids flow over a 
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stretching surface under the influence of heat generation-absorption and non-linear 
thermal radiation in the porous medium by applying similarity variables and the 
shooting technique. Kalpna and Sumit (2017) investigated two- dimensional (MHD) 
Jeffrey nanofluid flow in the presence of thermal radiation, heat 
generation/absorption, and viscous dissipation over an impermeable surface by 
assuming similarity transformations and applying the Homotopy analysis method. 
Makinde (2011) introduced similarity variables and used the fourth-order Runge- 
Kutta method and the shooting method to examine the impacts of internal heat 
generation on two-dimensional boundary layer flow on a vertical plate with a 
convective surface boundary condition. Lalrinpuia and Surender (2019) used the 
homotopy analysis approach to assess MHD nanofluid flow in a saturated porous 
medium, in an inclined channel with a heat source/sink, accounting for hydrodynamic 
slip and convection at the boundary. Khan et al. (2014) analysed the impacts of heat 
generation/ absorption on the 3-D flow of an Oldroyd-B nanofluid over a sheet 
stretching in both x and y directions. They applied similarity transformations. 
 
 The influence of heat generation, radiation, and viscous dissipation on the 
flow of MHD nanofluid over a sheet stretched exponentially in a porous medium was 
studied by Thiagarajan and Dinesh Kumar (2019). The MHD-Carreau nanofluid flow 
over a radially stretched sheet under the influence of chemical reaction, nonlinear 
thermal radiation, and heat generation/absorption was examined by Dianchen et al. 
(2018). The second grade Cattaneo-Christov two-dimensional fluid flow caused by a 
linear stretched Riga plate was studied under the impact of heat generation/absorption 
by Aisha et al. (2018). Abdul Khan et al. (2018) analysed Williamson nanofluid flow 
in three dimensions across a linear porous stretching surface for the impact of thermal 
radiation.  Sulochana  et  al.  (2016)  investigated Newtonian and non-Newtonian,  
3-D magnetohydrodynamic fluid flow across a stretched sheet. Chuo-Jeng and Kuo-
Ann (2021) examined the effects of zero nanoparticle flux, internal heat generation, 
nonlinear radiation, and changing viscosity on free convection on a non-Newtonian 
power-law nanofluid flowing via a vertical truncated cone embedded in a fluid-
saturated porous medium. Considering thermal radiation and heat 
absorption/generation, Mabood et al. (2020) investigated MHD Oldroyd-B two-
dimensional, thermal stratified flow across an inclined linearly stretched sheet. 
Recently, Newtonian and various non-Newtonian fluid models like Sisko, Powell-
Eyring, Power-Law Model, Prandtl-Eyring were analysed using invariant analysis via 
the group- theoretic technique by deriving dependent and independent invariants. 
(Patel et al. 2015, Shukla et al. 2017, 2018, 2020). Impact of heat 
generation/absorption in the context of nonlinear thermal radiation on 
magnetohydrodynamic stagnation-point two-dimensional Newtonian nanofluid flow 
across a convective stretching surface were examined by Feroz et al. (2018). Shukla 
et al. (2020) analysed flow over linearly stretching surface for 3-D Power-low 
nanofluid. 
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 Due to the significance role of heat generation and thermal radiation on 
nanofluid flow, we have extended the work done by Shukla et al. (2020) and 
considered the influence of heat generation and thermal radiation. In this paper, we 
have studied a power-law fluid flow in three dimensions on a linearly stretched sheet. 
A survey of the literature shows that most studies have focused on flows in two 
directions, X and Y. The scenario is more real in three dimensions, X, Y, and Z. We 
have also examined the effects of thermophoresis, magnetic field, and Brownian 
motion on heat generation and thermal radiation. The convective boundary conditions 
have been considered for the analysis of the present non-Newtonian fluid flow model. 
Various parameters like Nusselt number, skin friction coefficients, and Sherwood 
number have been considered for analysing the flow. Similarity-dependent and 
independent invariants have been used with the aim of transforming the nonlinear 
PDEs into ODEs invariantly. 
 
2. Governing Equation of the Boundary Value Problem 
 
 Here, we have considered the three-dimensional power-law nano non-
Newtonian fluid model. The flow is incompressible, steady, laminar over a linearly 

stretching sheet with the velocity wu ax  and wv by  in X and Y-direction 

respectively. Here, the stretched sheet is exposed to a homogeneous magnetic field B 
that is directed in the surface's normal direction. The conditions of convective 
boundaries are considered for the flow analysis. Heat generation/absorption impacts, 
as well as the impact of thermal radiation, are also considered in the heat transfer 
study. 
 
 We have taken the following parameters for the flow analysis. 
 

T   - Temperature at Infinite distance from the sheet's surface 

C  - Concentration at Infinite distance from the sheet's surface 

fh    - Heat transfer coefficient 

sh    - Convective mass transfer coefficient 

 
 Convective heat transfer mode is used to heat or cool the sheet's surface by 

maintaining a hot fluid temperature fT  and a convective concentration of fluid fC . 

 
 We have used the following boundary value flow governing equations. 

 

0
u v w

x y z

  
  

  
                                                                                                            (1) 
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 Boundary values for convective mode are given by 
 

wu u ax  , wv v by  , 0w  , ( )f f
T

k h T T
z


  


, ( )B s f

C
D h C C

z


  


 

at 0, 0, 0, 0, ,z u v w T T C C        at z                                  (6) 

 
 Where, 
 

u  - Velocity in the x  direction, v -Velocity in the y  direction, w  -Velocity in 

the z  direction 
 
T - Fluid temperature, C -Fluid concentration, �-Fluid density, �-Heat 

capacitance ratio 
 

TD  -  Thermophoresis diffusion coefficient, BD -Brownian diffusion coefficient,   

n  : flow index 
 
� (> 0) - Rheological constant, �-electrical conductivity of the fluid, �-thermal 

diffusivity 
 

0Q  :  coefficient of internal heat generation, rq -radiative heat flux. 
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rq  is defined as 

3 44
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T T
q

zk

 




 



  

 

 Where    - the Stefan-Boltzmann constant, k - absorption coefficient. 
 

 Now, expanding 4T  about T  and neglecting higher terms, we get following 

expression: 
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 By putting rq

z




 in equation (4), we get the following equation. 
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3. Invariance Analysis by Generalized Group Theoretic Method 
 
 We have used the following dependent and independent absolute invariants 
to convert governing partial differential equations into ordinary differential equations 
invariantly. (Shukla et al. 2020) 
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 We have assumed the following values for the coefficients and parameters. 
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      (10) 
 

 Where Re -local Reynolds number, pr -generalised Prandtl number, Le -the 

Lewis number, bN -Brownian motion parameter, tN -thermophoresis parameter 1Bi  

and 2Bi -generalised Biot number. We have taken skin-friction coefficients fxC  and 

fyC  along the x - and y -axes, the Nusselt number, and the Sherwood number for 

analysing the fluid flow. We have used the following equations for above parameters: 
 

   
1
1

1( ) ( (0))' nn
fxRe C H                                                 (11) 

 

   
1

11
1 2( ) ( (0)) (0)w ' n 'n

fy
w

av
Re C H H

bu
                              (12) 
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1
1

4( ) (1 ) (0)'n
x dRe Nu R H                                            (13) 

   
1
1

5( ) (0)'n
xRe Sh H                                                           (14) 

 
 Differentiating absolute invariants of equation (9) with respect to similarity 
independent variable   and applying on governing equations (1 to 5, 8), we obtain 

following equations. 
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
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 Similarly, we have obtained the following equations of boundary conditions 
from equation (6). 
 

0At  , 1 1H  , 2 1H  , 3 0H  , 4 1 4(1 )'H Bi H   , 5 2 5(1 )'H Bi H   , 

At   , 1 2 3 4 5 0H H H H H     .                                              (20) 

 
 The following equations are obtained from equations (15-19) 
 

1 1 2 2,' 'H H   , 2 1
3 1 2 11 1

n b n '
n a n

H 
 

                                             (21) 
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4. Numerical Solution 
 
 We have transformed the aforementioned system of equations into a system 
of first order differential equations in order to use Bvp4c - MATLAB software. 
 

 By replacing functions 1 1 1 2 2 2 4 4 5 5, , , , , , , , ,' '' ' '' ' 'H H H H       by iy , for 

1, 2, , 10i     respectively, we get the following equations. 
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   7 8y' y                                                                                                          (32) 
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  1 4 2 50 0, 1y y y y         

 

 8 1 7 10 2 9(1 (0)), (1 (0))y Bi y y Bi y        

 

1 4 7 90, 0, 0, 0y y y y                                                            (36) 

 
 We have obtained the following equations from equations (11-14) 
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6. Results and Discussion 
 
 We have used MATLAB bvp4c solver for analysing fluid flow problem. 
Tables 1 and 2 show the values for Skin friction coefficients, Nusselt number, and 
Sherwood number. 
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Table 1: Skin friction coefficient values for various parameters in the x  and y  

directions 
 

n   a   b  pr  
tN   bN  M   dR   Le  � xCf   yCf  

1 1 1 1 0.1 0.1 0.5 0 0.2 0 1.7538893508 1.7538893508 

1 1 1 1 0.2 0.1 0.5 0 0.2 0 1.7538897120 1.7538897120 

1 1 1 1 0.3 0.1 0.5 0 0.2 0 1.7538902961 1.7538902961 

1 1 1 1 0.1 0.1 0.5 0 0.2 0 1.7538893508 1.7538893508 

1 1 1 1 0.1 0.2 0.5 0 0.2 0 1.7538895038 1.7538895038 

1 1 1 1 0.1 0.3 0.5 0 0.2 0 1.7538896175 1.7538896175 

1 1 1 1 0.1 0.1 0.5 0 0.2 0 1.7538893508 1.7538893508 

1 1 1 1 0.1 0.1 1.2 0 0.2 0 1.9058126194 1.9058126194 

1 1 1 1 0.1 0.1 1.5 0 0.2 0 1.9704591416 1.9704591416 

1 1 1 1 0.1 0.1 0.5 0 0.2 0.2 1.7538900002 1.7538900002 

1 1 1 1 0.1 0.1 0.5 0.1 0.2 0.2 1.7538901651 1.7538901651 

1 1 1 1 0.1 0.1 0.5 0.2 0.2 0.2 1.7538907395 1.7538907395 

1 1 1 1 0.1 0.1 0.5 0 0 0.2 1.7538899995 1.7538899995 

1 1 1 1 0.1 0.1 0.5 0 0.1 0.2 1.7538899984 1.7538899984 

1 1 1 1 0.1 0.1 0.5 0 0.2 0.2 1.7538900002 1.7538900002 

1 10 2 2 0.1 0.1 0.5 0.1 0.2 0.2 1.5511878626 1.8971685570 

1 10 4 2 0.1 0.1 0.5 0.1 0.2 0.2 2.8042554030 1.3992670114 

1 10 6 2 0.1 0.1 0.5 0.1 0.2 0.2 3.1138892553 1.1463275550 

 
 From Table 1, it is observed that the value of skin friction coefficient in X  
and Y  direction both enhances with rising values of the thermophoresis parameter 

tN  as well as thermal radiation dR . The reason behind it is that if the thermophoresis 

parameter is increasing the temperature and concentration, differences between the 
surface of the semi-infinite vertical plate and the ambient fluid are increasing and 
hence accelerates the heat transfer rate. Table  1  shows  the  skin  friction  coefficient  

for  various  values  of  the Brownian motion parameter bN . 

 



242  H. SHUKLA, S. DAVE, K.K. DAVE, A.K. RATHOD, N.D.PATEL AND J.A. PRAJAPATI 

  

 The skin friction coefficient in both directions is seen to grow with 

increasing values of the Brownian motion parameter bN  and opposite behaviour 

observed for Lewis number Le . The skin friction coefficient increases as the 
magnetic field parameter M  increases because it reflects an increase in surface 
velocity gradients. A similar phenomenon is noticed in Table 1. Effect of stretching 
ratio parameter significantly affects skin friction coefficient. An increase in 
parameter b , the skin friction coefficient in the X  direction rises, whereas the Y  
direction exhibits the opposite behaviour. 
 

Table 2: Sherwood number and Nusselt number Values for different parameters 
 

n  b   n   tN  bN  M   pr  Le  � Rd  xSh  xNu  

1 1 1 0.1 0.1 0.5 1 0.2 0 0 0.1055262378 0.3824750511 

1 1 1 0.2 0.1 0.5 1 0.2 0 0 -0.0451858252 0.3801468924 

1 1 1 0.3 0.1 0.5 1 0.2 0 0 -0.1918276471 0.3777829817 

1 1 1 0.1 0.1 0.5 1 0.2 0 0 0.1055262378 0.3824750511 

1 1 1 0.1 0.2 0.5 1 0.2 0 0 0.1838693036 0.3801079022 

1 1 1 0.1 0.3 0.5 1 0.2 0 0 0.2099947839 0.3777045682 

1 1 1 0.1 0.1 0.5 1 0.2 0 0 0.1055262378 0.3824750511 

1 1 1 0.1 0.1 1.2 1 0.2 0 0 0.1066120068 0.3811253420 

1 1 1 0.1 0.1 1.5 1 0.2 0 0 0.1070520017 0.3803950922 

1 1 1 0.1 0.1 0.5 0.7 0.2 0 0 0.6808097648 -0.0591201311 

1 1 1 0.1 0.1 0.5 1.2 0.2 0 0 0.4517559332 0.0767238041 

1 1 1 0.1 0.1 0.5 1.7 0.2 0 0 0.1075016163 0.4341594390 

1 1 1 0.1 0.1 0.5 1 0 0.2 0 0.0640340920 0.3645373365 

1 1 1 0.1 0.1 0.5 1 0.1 0.2 0 0.0926736299 0.3644023170 

1 1 1 0.1 0.1 0.5 1 0.2 0 0 0.1055262378 0.3824750511 

1 1 1 0.1 0.1 0.5 1 0.2 0.2 0 0.1210982576 0.3642872395 

1 1 1 0.1 0.1 0.5 2 0.2 0.2 0.1 0.1154854564 0.4960100946 

1 1 1.2 0.1 0.1 0.5 2 0.2 0.2 0.1 0.1151724519 0.4966261688 

1 1 1.3 0.1 0.1 0.5 2 0.2 0.2 0.1 0.1150959844 0.4968748668 

1 1 1.4 0.1 0.1 0.5 2 0.2 0.2 0.1 0.1150477775 0.4970963117 
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 Table 2 indicates the effect of various parameters on the Sherwood number 
and Nusselt number. Growing thermophoresis parameter values are accompanied by 
decreasing Sharwood and Nusselt numbers. Table 2 demonstrates that when the 
Brownian motion parameter increases, the rate of heat transmission slows down, 
resulting in a fall in the Nusselt number and an observed increase in the Sherwood 
number. It is observed that the Nusselt number decreases and the Sherwood number 
increases with an acceleration of the magnetic parameter .  
 
 The Lorentz force is increased when the magnetic parameter increases, 
slowing down fluid motion and lowering the rate of heat flux in the process. By 
increasing the value of the Lewis number, nanoparticle volume fraction distribution 
decreases, because of reduction in mass diffusion. This, in turn, increases the 
Sherwood number, with the opposite effect being seen on the Nusselt number. Based 
on the table's numerical values, it can be determined that as the radiation parameter is 
raised, the Sherwood number falls and the Nusselt number rises. An analogous result 
was noted with the Prandtl number. The Sherwood number rises, the heat generation 
parameter lambda increases, and the Nusselt number decreases. The Sherwood 
number decreases as n  (the power-law index) increases, but the Nusselt number 
increases. 
 
 Figures 1 and 2 depict, how the Lewis number changes the Nusselt and 
Sherwood numbers in response to thermophoresis and thermal radiation, respectively. 
The Nusselt number decreases as the thermophoresis parameter and Lewis number 
grow, while inverse patterns are seen as the thermal radiation parameter increases. As 
thermophoresis and Lewis numbers rise, Sherwood number tends to increase; 
conversely, as the thermal radiation parameter increases, it tends to decrease. 
 
 Figures 3 and 4 show the impact of the heat source/sink parameter under the 
influence of thermal radiation and thermophoresis parameter on the Nusselt number 
and Sherwood number. Figures 5 and 6 demonstrate the influence of the Brownian 
motion parameter, the thermophoresis parameter, and the thermal radiation parameter 
on the Sherwood number and Nusselt number respectively. Sherwood number 
decreases as thermal radiation parameter value increases. Nusselt number increasing 
as a result of the thermal radiation parameter increasing. 
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5. Conclusion 
 
 We have used both similarity dependent and independent invariants to get a 
similarity solution for the boundary value problem associated 
nanofluid flow. The power
converted into ordinary differential equations with the help of invariants. The 
numerical solutions of derived ordinary differential equations are utilized by us
MATLAB bvp4c software to find the effects of various parameters like Nusselt 
number, Sharwood number and Skin friction coefficients on fluid flow. The 
following are the findings of the analysis of the fluid flow using invariants.

INVARIANT ANALYSIS OF HEAT GENERATION  

We have used both similarity dependent and independent invariants to get a 
similarity solution for the boundary value problem associated with power
nanofluid flow. The power-law nanofluid problem's governing equations have been 
converted into ordinary differential equations with the help of invariants. The 
numerical solutions of derived ordinary differential equations are utilized by us
MATLAB bvp4c software to find the effects of various parameters like Nusselt 
number, Sharwood number and Skin friction coefficients on fluid flow. The 
following are the findings of the analysis of the fluid flow using invariants. 
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We have used both similarity dependent and independent invariants to get a 
with power-law 

law nanofluid problem's governing equations have been 
converted into ordinary differential equations with the help of invariants. The 
numerical solutions of derived ordinary differential equations are utilized by using 
MATLAB bvp4c software to find the effects of various parameters like Nusselt 
number, Sharwood number and Skin friction coefficients on fluid flow. The 
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 The findings indicate that an increase in the Lewis number Le  results in a 
 drop in the coefficient of skin friction in the x  and y  directions, an increase 

 in the Sharwood number, and a decrease in the Nusselt number. 
 

 An increase in the magnetic parameter M  causes the skin friction coefficient 
 to increase in both the x  and y  directions, the Nusselt number decreases, 

 and the Sharwood number increases. 
 

 A rise in the power-law index , a fall in the Sherwood number, and an 
 increase in the Nusselt number. 
 

 The Sherwood and Nusselt numbers decrease with an increase in the 
 thermophoresis parameter. 
 

 As the radiation parameter increases, the Nusselt number rises while the 
 Sherwood number reduces. 
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Abstract. An analytical study of the motion of a steady, homogenous, 
incompressible, plane rotating MHD fluid flow through a porous medium 
for exact solutions is carried out. The velocity vector of the fluid particle is 
thought to be variably inclined to the magnetic field vector at every point. 
The flow of fluid is governed by non-linear partial differential equations. 
These governing equations are converted into a system of linear partial 
differential equations by means of transformation technique known as 
magnetograph transformation. The two components of the magnetic field in 
the physical plane and two independent variables are switched around using 
the magnetograph transformation. Further, the flow equations have been 
derived using the Legendre transform of the magnetic flux function. Finally, 
several examples have been used to apply and illustrate the developed 
theory and exact solutions have been determined. The expressions for the 
components of velocity vector, components of magnetic field vector, 
magnetic lines and pressure distribution are obtained and analyzed 
graphically. 
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1. Introduction 
 
 The governing equations for the flow of non-Newtonian fluids give rise to 
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systems of non-linear partial differential equations; these equations have no general 
solution. The several approaches used to solve these equations and their applications 
have received excellent coverage from Ames [1]. Hodograph transformations, as 
employed by Martin [2] in fluid mechanics, are a class of transformations that change 
variables from the physical plane to the velocity plane.  
 
 The magnetograph transformation- a method for accurately solving non-
linear partial differential equations- which govern the steady flow of a homogeneous, 
incompressible, viscous fluid with finite electrical conductivity in a porous medium 
in a rotating reference frame-is the subject of the current study. It is common practice 
to solve non-linear partial differential equations using transformation techniques. The 
magnetograph is a curve formed by the extremities of the magnetic field vectors 
when they are extended from a given point. An equivalent linear system is produced 
by using the magnetograph transformation to switch the roles of the independent and 
dependent variables. In other words, the transformations that are used to switch the 
roles of the two independent variables in the physical plane and the two components 
of the magnetic field are known as magnetograph transformations.  
 
 The governing non-linear equations are transformed into a linear form that 
may be solved by using the magnetograph transformation. Using magnetograph 
transformation, several researchers have studied MHD fluid flow and discovered 
precise answers. In order to investigate orthogonal MHD flow, S. N. Singh [3] 
invented and used magnetograph transformation. Researchers Venkateshappa, 
Siddabasappa, and Rudraswamy [26] as well as C. S. Bagewadi and Siddabasappa 
[4], looked on rotating MHD ow that was variably inclined in the magnetograph 
plane. Exact solutions were found by M. Kumar and S. Sil [5] after studying aligned 
MHD flow in the magnetograph plane.  
 
 The study of fluid flow in a rotating frame is important for many technical 
applications that are directly affected by the coriolis force created by the earth’s 
rotation. Examples of these applications include spin coating, the creation and use of 
computer disks, rotational viscometers, centrifugal machinery, the pumping of liquid 
metals at high melting points, the growth of crystals from molten silicon, turbo-
machinery etc. The coriolis force is shown to have a significant impact when 
compared to the viscous and inertial forces in the equations of motion.  
 
 The coriolis force has a major impact on the hydromagnetic flow in the 
liquid core of the earth, which is essential to the mean geomagnetic field [6]. Because 
of its role in solar physics and its relationship to the formation of sunspots and the 
solar cycle, the theory of rotating fluid is also significant. Several studies with 
rotating fluid have been carried out [9, 11, 10, 12, 7, 8, 13, 26]. Many works have 
been conducted on various types of flows for both non-MHD and MHD. 
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 In the study of soil percolation in hydrology, the petroleum industry, 
agricultural engineering, and many other significant fields, the flow of a viscous fluid 
through a porous material is crucial. Numerous authors [17, 19, 14, 20, 21, 23, 22, 
16, 15, 24, 25, 18, 28, 29] have investigated fluid flows across porous media and 
discovered an exact solution. 
 
 The objective of this research is to analyze the motion of a rotating, steady, 
homogenous, incompressible, variably inclined MHD plane flow through a porous 
medium in order to obtain exact solutions. The fluid flow equation is described by 
nonlinear partial differential equations. The magnetograph transformation helps the 
nonlinear partial differential equations turn into a system of linear partial differential 
equations. Two independent variables and the two components of the magnetic field 
in the physical plane have been swapped out using the magnetograph transformation. 
Moreover, the magnetic flux function’s Legendre transform function has been 
utilized to illustrate the flow equations. Finally, a few examples have been used to 
clarify the proposed theory and exact solutions have been found.  
 
 The expressions for the pressure distribution, magnetic lines, velocity vector 
components and magnetic field vector components are obtained and graphically 
examined. We first consider the appropriate steady flow equations in a rotating frame 
of reference, which includes coriolis force and centrifugal force with non-uniform 
angular velocity. Using a Legendre transform of the magnetic flux function and 
rewriting all of the equations in terms of this transformed function, the exact 
solutions are found by switching the dependent and independent variables in the 
magnetograph plane. Examples are considered to point out the usefulness of the 
method. The geometry of streamlines and magnetic lines are discussed. The general 
solution for angular velocity is also found with the variation of pressure and angular 
velocity is discussed by plotting various graphs for some different form of suitable 
examples. 
 
2. Basic Equations 
 
 The fundamental equations that regulate the steady flow of a homogeneous 
incompressible viscous fluid with finite electrical conductivity in a porous medium in 
the presence of a magnetic field in a rotating reference frame are 
 

   · 0 V  , (Continuity equation)               (1) 
 

2( · 2 ( )) )( P µ            V V r V Q H     

              



 V , (Momentum Equation)              (2) 
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  )( ) (       HV H H ,   (Diffusion equation)             (3) 

 

             · 0 H ,                          (Solenoidal equation)           (4) 

 
where V = velocity field vector, P = fluid pressure, H = magnetic field vector,  
Q = current density, µ = magnetic permeability, σ = electrical conductivity of the 
fluid, ρ = the constant fluid field density,   = angular velocity, η = coefficient of 
viscosity, κ = permeability of the medium, r = radius vector and γH = magnetic 
viscosity,   × ( × r ) = centripital acceleration, 2  × V = coriolis acceleration. 
 
 On introducing the function 

 

   
v u

x y
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 ,             (vorticity function)                   (5) 
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x y
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,       (Current density function)       (6) 
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B V P'    2r ,     (Bernoulli function)               (7) 

 

where 2 2 2,V u v P'    is the reduced pressure and 21

2
| |P' P   r  and 

the last term being the centrifugal contribution of the pressure. The above system 
reduces to 
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    2 1 0
H H

x y

 
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 

 
,                                               (12) 

 

    2 1( , )
H H

Q x y
x y

 
 
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 
,                                      (13) 

 

    ( , )
v u

x y
x y

 
 

 

 
  ,                           (14) 

 

of seven partial differential equations in eight unknown functions 1 2, , ,u v H H  , 

, ,Q   and B  which are functions of( , )x y . In addition, c  is an arbitrary 

integration constant that may be found using the diffusion equation (3). Martin [2] 
has successfully employed a first-order system similar to this one to investigate 
viscous non-MHD flows. 
 
 Let ( , )x y   be the variable angle such that ( , ) 0x y   for every 

( , )x y  in the region of flow. Equation (11) yields 

 

   2 1 sinuH vH UH c HQ      ,                          (15) 

 

   1 2 cos ( ) cotHuH vH UH c Q       ,              (16) 

 

where 2 2
1 2( )H H H   . Considering these as two linear algebraic equations in 

the unknown’s u  and v , we solve (15) and (16) in terms of  1 2,H H  , and α. 
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cot
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H
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v c Q
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 
,                                (18) 

 
we can eliminate u  and v  from the system (8)-(14) by using equations (17) and (18) 

and then obtaining a system of equations to be solved for 1 2, , , , ,H H B Q    and 

  as functions of x  and y , this approach leads to the study of system (8)-(14) in the 
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magnetograph plane. By using (17)-(18) and removing u  and v  from the system of 
(8)-(14) we get the system of six partial differential equations as under, 
 

    1 2 0
H H

x y

 
 
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 
,                                               (19) 
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2 2 2 2
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3. Magnetograph transformations 
 

 As mentioned in the equations of flow 1 1( , )H H x y  , 2 2( , )H H x y  the 

Jacobian 
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 Let x  and y  be functions of 1H  and 2H , that is, 2
1( , )x x H H   , 

2
1( , )y y H H   .  

 
 Given these assumptions, we may have the following relations: 
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 Further, 
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where 1 2( , )f H H   is transformed function of continuously differentiable function of 

f  in the 1 2H H  -plane. 

 
4. Flow Equations in Magnetograph Plane 
 
 Applying the aforementioned transformation relations to the system of 

equations (19)-(24) in the magnetograph plane, or 1 2( , )H H    plane, for the first order 
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partial derivatives results in the transformed system of partial differential equations 
being 

    
1 2

0
x y

H H

 
 

  
,                                               (28) 

 

2 1

2 2
1 2 2 1 2

( , ) cot
( 2 ) ( )

( , )
H

x y H H
j c Q

H H H H H

 
  

    
     
      

 

    
   

 

                   2 1
2 2 2

1 21 2

( , )cot
( )

( , )
H

B yH H
QH c Q j

H HH H

 
 

  
     
   

 


  
 ,         (29) 

 

2 2

2 2
1 2 1 2

( , ) cot
( 2 ) ( )  

( , )
H

y H H
j c Q

H H H H


  

   
    
     

 

   



   

 

      2 1
1 2 2

1 21 2

( , )cot
( )  

( , )
H

x BH H
QH c Q

H HH H

 
 

  
    
   

 


  
,                (30) 

 

    
2 1

x y
j Q

H H

  
  

   
,                                       (31) 

 

cot cot2 1 2 1
2 2 2 2
1 2 1 2

1 2 1 2

( ) , , ( )

( , ) ( , )

H H H H
H H

H H H H
c Q y x c Q

j
H H H H

 
 

 

 

           
               
           

  
 
  

   

   

   
 ,  

(32) 

2 2 2
1 2 21 2

1 1

cot
( ) cot cot 2 cotH

x
c Q H H H H H H

H H


  

   
       

  
 

  

2
2 1

1

( cot )H
Q

H H H
H

 
 

   
 


  

2 2 2
1 2 21 2

2 1

cot
( ) 2 cotH

x
c Q H H H H H H

H H




   
        

    
 
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2
1 2

1

( cot )H
Q

H H H
H

 
 

   
 


  

2 2 2
1 2 12 1

2 2

cot
( ) 2 cot  H

y
c Q H H H H H H

H H


 

   
        

    
 

  

2
1 2

2

( cot ) H
Q

H H H
H

 
 

   
 


  

2 2 2
1 2 12 1

1 1

cot
( ) cot cot 2  H

y
c Q H H H H H H

H H


  

   
        

  
 

  

2
1 2

1

( cot ) = 0H
Q

H H H
H

 
 

   
 


.                                                                   (33) 

 
5. Legendre Transform of Magnetic Flux Function 
 
 The solenoidal equation (19) verified the existence of the magnetic flux 
function ( , )x y  and is such that 

 

 2 1d H dx H dy        or 2 1,H H
x y

 
  

 
  

,                         (34) 

 

 Similarly, for the magnetic flux function ( , )x y , equation (28) verified the 

existence of the function 1 2( , )L H H  , also known as Legendre’s transform function. 

It is such that 

 1 2dL ydH xdH           or 
1 2

,
L L

y x
H H

 
  

  
,                          (35) 

 

and these two equation are connected by 21 2 1 ( , )( , )L H x HH y x yH       .  

 

 Introducing 1 2( , )L H H   into the system of equations (28)-(33) it follows that 

equation (28) is identically satisfied with j given by (27) and the system is substituted 
by 

 
( , )

cot2 2 1
( , ) 2 21 2 2  1 2

  ( 2 ) ( )

L
H H Hy

HH H H H H
j c Q


  


 

  

  
      

  

  

    




   
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  2 1 1
2 2 2

1 21 2

,cot
( )  

( , )

L
H

H

BH H
JH c j

H HH H

 
 





   



 


  
             (36) 

 

 2 11

2 2
1 2 1 2

( , ) cot
( 2 ) ( )

( , )

L
H

H
H H

j c Q
H H H H


  




   
    
     

  

   



   

 

  2 1 2
1 2 2

1 21 2

( , )cot
( )

( , ) 

L
H

H

BH H
QH c Q

H HH H

 
 




 
    
   

 


  
         (37) 

 

cot cot2 1 2 1

2 2 2 21 21 2 1 2

1 2 1 2

( ) , , ( )

( , ) ( , )
=  ,

H H H HL L
H H

H HH H H H

c Q c Q

H H H H
j

 
 

  

  

   


 

                              
 
 
 

   

    

   
  

    (38) 

   
2 2

2 2
2 1

L L
j Q

H H

  
  
   
 

,                                                  (39) 

 
2

2 2 2
1 2 22 12

12

cot
( ) 2 cot  H

L
c Q H H H H H H

HH




  
    

  
    


  

 2
1 2

1

( cot )H
Q

H H H
H

 
 

   
 


 

 
2

2 2 2
1 2 21 22

11

cot
( ) 2 cotH

L
c Q H H H H H H

HH




  
     

  
    


 

 2
2 1

1

( cot )H
Q

H H H
H

 
 

   
 


 

 
2

2
1

1 2 2 1

cot cot
( )   H

y
c Q H H

H H H H

 


   
   
    


   

  

 2
2 1 1 2

2 1

( cot ) ( cot )H
Q Q

H H H H H
H H

  
  

    
  

   
 

  

 2 2 2
1 2 11 2( )(2 cot cot 4 ) 0Hc Q H H H H H H        

                  (40) 
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1
2

2 2 2

2 2
1 221

L L L
j

H HH H


        
      

  
,                                          (41) 

 

for the seven functions 1 2( ),L H H   1 2( ),B H H   1 2( ),H H   1 2( ),j H H  1 2( ),H H    

1 2( )J H H  and 1 2( )H H  . 

 

 Introducing polar co-ordinates 1( , ) cosH H H   and 2 sinH H    

 

      
1 2 1 2

( , )1

( , ) ( , )

( , ) F G

H H H

F G

H H

  


    
, 

 

   
1

sin
cos  

H H H






  
 

  
, 

 

   
2

cos
sin    

H H q






  
 

  
  

 

where 1 2 )( , )  ( ,F FH H H   ; 1 2 )( ) ( ,G H H G H    are continuously 

differentiable functions in ( ),H   coordinates, the equation (40) takes the form 

 
2

2
2

cot
( ) cotH H

L Q
c J H

H


  

 

 


   
  

   
  

 

2 2 2

1 2 1
( )H H

L L j
H c Q

HH H
 



     
          

  

 
21 1 cot

( ) 2 cot     cot 0H H
L L Q

c Q H H
H H HH


   

  

   
 



        
         

         
 . 

(42) 
 

6. Applications 
 
 Example 1: Let 
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21 1 2 2
1 2 11 2 2 3 31 2

1

tan , ( , ) cot ( )( )H
H

L N N H H NH H N H
H

  
    

 
  





       (43) 

 

form a set of solution of the partial differential equation (40) when 1 20,N N  and 

3N are arbitrary constants. As 3N  is arbitrary, there are two cases of the solution 

which may considered by (43). 
 

 (i)  If 3 0N   i.e., variably inclined flows and 

 

 (ii)  If 3 0N   i.e., crossed flows. 
 

 When (i) 3 0N  . 

 

 Using (43) in (35) we have 
 

  1 1 2 2 2
1 22 2
( , ) ; ( , ) ,  

N x N y
H x y H x y r x y

r r
     .                (44) 

 

 This represents radial flow and magnetic field profile is thus the arc of a 
rectangular hyperbola, using (44) we obtain 
 

2 2
3 12

1

( )
c

u yr N N x
N r

   , 2 2
3 12

1

( )
c

v N N y xr
N r

  , 

  
1

2
( , )

c
x y

N


  ,  0Q  ,  

2
311

2
( , ) cot

N N
x y

r
 

 
 
 
 

       (45) 

 

 With the help of (45) and integrability condition on B  i.e., 
 

2 2B B

x y y x

 


   
 

 
from equations (9) and (10) we get angular velocity 

 

2 2 2 2 2 2 2 2
3 31 1( ) ( ) ( ) 0y x y N N x x x y N N y x y

x y k




  

 
     

   
 

 
  

(46) 
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 The Lagrange form of solution of this equation is 
 

 2 1
3 1 tan

y
N N C

x
   ,     where  2

31N N
k




  ,                         (47) 

 

the streamlines are given by 2 2 1
1 3 n( ta)

y
x y N N constant

x
   , the magnetic 

flux function is 

1tan
y

constant
x

   

and from (9) and (10) we have 
 

2
2 1 2 2

3 3 1 2
1 1 1

2
4 tan )( , ) (

c c cy y c
B c N N N x y

kN kN x N
x y

   
  

      
 

  

 
22

1
3 1

1

tan
cx c y

N N
kN x

   
    

 
  

 

 
2

2 2 1 2 2
3 12

1

( ) tan     ln( )
c y c

x y N N x y constant
xN

     


,          (48) 

 
and hence the pressure 

21
( , )

2
P x y B V  , 

is 
2

2 1
3 3 1 2

1 1 1

2 22
( , ) 4 tan ( , )( )

c c cy y c
P x y c N N N P x y

kN k
x y

N x N

   
  

    





 

 

 
22 2

1 2 2 1 2 2
3 1 3 12

1 1

tan ( ) tan       ln( )
cx c y c y c

N N x y N N x y
kN x xN

       
         

    
  

 
2 2

3 12 2
2 2 2
1

1 1
( )

2 2 2( )

c c N N
x y constant

N x y

 
   


                                                   (49) 

 
and 
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 (ii) for 3 0N   i.e., crossed flows, the value of , ,u v   calculate similarly 

by putting 3 0N   in equation (6.1). 

 

 By putting 3 0N   in equation (6.4) we get 

 

1 lnC y
k




   

 

 Again,  B   and P can be calculated by putting 3 0N   in equations (6.6) 

and (6.7) respectively. 
 
 

 
Figure 1: Streamlines for example 1 
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Figure 2: Magnetic lines for example 1 
 
 
 

 
 

Figure 3: Variation of angular velocity versus x  for example 1 
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Figure 4: Variation of pressure versus x  at 2y   for density variation example 1 

 

 
 

Figure 5: Variation of pressure versus x  at 2y   for porosity variation for 

example1 
 
 Example 2: Another solution of equation (5.7) is 
 

2 2 1 2 2
1 2 1 21 3 31 12 42 2( ) ,   ( ) cot ( )( , )L M H H M H H M H M MH H H           

(50) 
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 Where 1 2 30, ,M M M  and 4M  are arbitrary constants. 

 
 We have 

1 2

,
dL dL

y x
dH dH

  
 

, 

 

 We examine the case where 3M  and 4M  are arbitrary constants. When 

flows are variably inclined, 3 0M  , i.e. The resulting flows are crossed if 

3 4 0M M   and constantly inclined if 3 0M  , 4 0M  . Now consider the 

case when 3 0M  , 4 0M  . Using (49) in (35) we obtain 

 

1 22x M H  , 1 1  2y M H    

and therefore 

   1
12

y
H

M


 ,  2

22

x
H

M


 ,                                            (51) 

 

 This indicates that the radial distance from the central axis directly affects the 

magnetic field
1

 
2

r
H

M


 . 

 
 The changing angle between the velocity and magnetic fields in the physical 
plane is given by 

 

2
31

42
1

( , ) cot
4

M r
x y M

M
 

 
  
  

 

 
and hence vorticity, current density and velocity components are given by 

 

3

1 1 1

1
,  HM

c Q
M M M

 
   
 

  

 

     

1 4 3

2 2
1 1

2 ( )
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     1 4 3

2 2
1 1

2 ( )
 

2( )

H M x M y M y
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M Mx y

   
    

   
 .               (52) 

 
 It is to be noted that velocity of the fluid is infinite when 0r   i.e., when

0H  . And fluid velocity is zero when the radial distance is infinite and so the 
velocity of the fluid decreases as the r -increases. From (48) and integrability 
condition on B  equations (9) and (10) yields the angular velocity   as 
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 The solution to this problem in Lagrange form is  
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where    
2
1

3

4M

M k
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
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 The streamlines are provided by  
 

1
2 22 1 2

4 31
2 28 )tan 8 n (  l ( )

y
M M M M sx y x y con tant

x
    , 

 
the magnetic flux function is  
 

2 2x y constant   

 
and (54) yield the energy function B  as 
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 And pressure is 
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Figure 6: Streamlines for example 2 
 

 

Figure 7: Magnetic lines for example 2 
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Figure 8: Variation of angular velocity versus x  for example 2 
 
 
 

 

Figure 9: Variation of pressure versus x  at 2y   for 



 variation example 2 



272     SAYANTAN SIL AND BIRENDRA KUMAR VISHWAKARMA   

 
 

Figure 10: Variation of pressure versus x  at y = 2 for κ η variation example 2 
 
 Example 3: Consider 
 

   ( , ) lnL H A B H D                                            (57) 

 
 In ( ),H    coordinates, where D  is an arbitrary constant and A  and B  are 

real values that are not zero. Applying this in (42) we have 
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forms a solution set of the partial differential equation (42). If 1 0M   the flows are 

constantly inclined with 

    1cot
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A
   

  
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,                                            (58) 

 

and when 1 0M  , the flows are variably inclined, we have 
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 Now integrability condition for B  yields 
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 The Lagrange form of solution of this equation is 
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the streamlines are given by 
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and the magnetic flux function is 
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y

A B r constant
x

   . 



274     SAYANTAN SIL AND BIRENDRA KUMAR VISHWAKARMA   

 Now equation (9), (10) and   gives us the energy function 
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 And hence, the pressure function is 
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Figure 11: Streamline for example 3 
 
 

 
Figure 12: Magnetic line for example 3 
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Figure 13: Variation of angular velocity verses x  for example 3 
 

 

Figure 14: Variation of pressure verses x  at 2y   for 



 variation  

for example 3 
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Figure 15: Variation of pressure verses x  at 2y   for fluid density variation  

for example 3 
 

7. Conclusion 
 
 In this work, an approach has been carried out where magnetograph 
transformation method has been applied for the exact solution of the equations 
governing the flow of a homogeneous, incompressible viscous fluid through porous 
media of a variably inclined rotating MHD with finite electrical conductivity. We 
have utilized magnetograph transformation in this problem to reformulate the 
governing non-linear equation into linear once. Three different forms of Legendre 
transform function of the magnetic flux function have been considered as examples 
to illustrate the technique of solving for the exact solution. The expressions for 
streamlines, magnetic lines, angular velocity and pressure distribution are found out 
in each case. The main results are listed below: 
 

 In example 1 the streamlines are given by 2 12
1 3  ( an) t y

x
N Nx y   = 

constant  and magnetic lines are given by 1tan y

x
constant  . 

 

 In example 2 streamlines and magnetic lines are given by 2 1
18 tan y

x
M    

2 2 2 2 2
4 318 ln( ) ( )M M x y M x y constant      and 2 2x y  

constant  respectively. 
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 In example 3, the streamlines are given by 2 1
1 1tan y

x
M A M AB   

2 2 2 2ln( ) ( )x y x y constant     and magnetic lines are given by

1tan ln
y

A B r constant
x

   . 

 
 Also for example 1 components of velocity are independent of permeability of 

porous medium and angular velocity of rotating frame. The vorticity function 
is constant and current density is zero. Pressure depends on angular velocity, 
permeability of the medium and the fluid density. 

 
 In example 2 for the form of Legendre transform function we find that the 

magnetic field varies with the radial distance from central axis. Current 
density function is constant and verticity function containing magnetic 
viscosity term is also a constant. The components of velocity depends on 
magnetic viscosity and current density function. Also, velocity of the fluid 
decreases with radial distance. Magnetic viscosity, current function, angular 
velocity, permeability of the medium and fluid density affects the pressure 
function. 

 
 For the form of Legendre transform function considered in example 3 verticity 

function is constant, components of velocity does not involve permeability of 
medium and angular velocity. Pressure depends on angular velocity, 
permeability of medium and fluid density. 

 
 Angular velocity depends on permeability of porous medium for all examples. 

 

 In example 1 angular velocity for positive 2
31N N  decreases with x  and for 

negative increases x  becoming almost constant beyond 7x   for both 
cases. For the form of Legendre transform function represents radial flow and 
magnetic field profile is arc of a rectangular hyperbola. 

 
 In example 2 angular velocity is found to increase with x  in the beginning 

and shoots up at 100x   and decreases afterward in Figure 4. 
 

 In example 3 angular velocity is found to decrease with x  in the beginning 
shoot up at 0x   and shows varying trend there afterwards (Figure 8). 

In example 1 (Figure 2) pressure increases at constant 



 for different fluid of 

different densities. For different 



 values at constant fluid density   the 
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pressure shows parabolic variations with x  and is almost symmetric about
100x  . 

 
 In examples 2 (Figure 5) Pressure varies linearly with x  for different values 

of 



 at constant fluid density. For fluid of different densities at constant 





pressure declines initially and increases rapidly with large x values. 
 

 In example 3 pressure has a inverted parabolic variation (Figure 8 and 9) with 

x for different 



 at constant density ρ as well as different fluid density at 

constant 



 which are symmetric about 0x   . 
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