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1. Introduction

The rough set theory, initially proposed by Pawlak (1982) [19], has been
utilized as an effective mathematical tool for modeling and processing incomplete
information. In recent years, rough sets have been integrated with various
mathematical theories such as algebra and topology.

Algebraic structures of rough sets have been studied by several authors,
including Bonikowaski. Z, Kuroki. N, Wang. PP and Li. Z et al. [5, 14, 15, 16].
In 1994, Biswas and Nanda [4] introduced the concept of rough group and rough
subgroups, which are based on upper approximation and are independent of lower
approximation. Miao et al. [7] have enhanced the definitions of rough group and



2 P. TAMILARASI AND R. SELVI

rough subgroup, and have demonstrated their new properties. Conversely, Kuroki and
Wang [15] outlined certain properties of lower and upper approximations in relation
to the normal subgroups in 1996. Bagirmaz et al. [17] proposed the concept of
topological rough groups, expanding the idea of a topological group to encompass the
algebraic structures of rough groups.

In group theory, A group is simple if its only normal subgroups are the identity
subgroup and the group itself [12]. The notion of a simple group was introduced by
Galois about 180 years ago. Simple groups are the building blocks of all groups. In
the concept of topological group, filters provide a powerful tool for understanding the
topological properties like convergence, continuity, compactness, etc..

In this paper, we investigate the key principles of topological simple rough
groups, which merge the structures of simple group and topological rough group. We give
some examples to illustrate this concept and discuss the basis of topological simple
rough group, which forms the foundation for studying their local properties, Also we
explore the filter of identity neighborhoods, underscoring their role in analyzing the
structure of topological simple rough groups.

2. Preliminaries

Definition 2.1 ([7]): Let U be a universe, C' be a family of subsets of U,

C ={X;,Xs,...,X,}. Cis called a classification of U if the following properties are
satisfied:

2. X, NX; =6, # j).

Definition 2.2 ([7]): Let K = (U, R) be an approximation space and X be a
subset of U. The sets

1. X ={z|[z]p N X # ¢};
2. X ={z|[z]r € X};

3. BNX)=X-X
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are called upper approximation, lower approximation and boundary region of X in K,
respectively.

Definition 2.3 ([7]): Let K = (U, R) be an approximation space and be a

binary operation defined on U. A subset G of universe U is called a rough group if
the following properties are satisfied:

1.Vz, yeG,zxy e G,

2. Association property holds inG ;

3. Je€ G suchthat Vo € G,z *e =e*x = x; eis called the rough identity

element of rough group G;

4.VreG,dy€ G such that x*y=y*x=e; y is called the rough

inverse element of zin G;

Definition 2.4 ([7]): A non-empty subset H of rough group G is called its

rough subgroup, if it is a rough group itself with respect to operation

There is only one guaranteed trivial rough subgroup of rough group G, i.e.,
G itself. A necessary and sufficient condition for {e} to be a trivial rough subgroup

of rough group G is e € G.

Definition 2.5 ([7]): A rough group is called a commutative rough group if
forevery 1,y € G,wehave r*xy=y=*zx.

Definition 2.6 ([7]): A rough subgroup N of rough group G is called a rough
invariant subgroup, if Va € G,a* N = N *q.

Definition 2.7 ([9]): Let G be a rough group and A C G . We say that A is

symmetric if A = A",
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Definition 2.8 ([9]): Let G; C U; and Gy C Uy be rough groups. We say

that G; and G, be rough homomorphism if there exists a surjection mapping

¢ : G, = G, such that the following conditions (1)-(3) hold:

L. ‘01 is a surjection mapping from G; to Gy;

2.Forany z,y € G, U{e} , we have p(z * y) = p(x) * ©(y);

3. For any subset Hof Gy, H = o~ (o(H)).

If a rough homomorphism is a bijection, then we say that G| and G, are
rough isomorphism.

Definition 2.9 ([3]): Let G be a topological group. A filter on G is a family
1 of non-empty subsets of G satisfying the two conditions:

1.If Uand Varein 77 then U NV isalsoin 77;

22.IfUenpand U CW CG,then W e p.

Definition 2.10 ([3]): Let G be a topological group. A family £ is called an
open filter on G if there exists a filter 7 in G such that & is the intersection of 7

with the family of all open subsets of G.

Of course, this definition is equivalent to the following one: & is an open

filter on G'if & is a family of non-empty open subsets of G such that the intersection
of any finite number of elements of & is also in &, and for each U € & and for

every open subset Wof G such that U C W, W also belongs to &,

Definition 2.11 ([17]): A topological rough group is a rough group (G,*)
together with a topology T'on G satisfying the following two properties:
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1. the mapping f:G xG — G defined by f(z,y) = 2y is continuous with
respect to product topology on G xG and the topology T on G
induced by T,

1

2. the inverse mapping ¢ : G — G defined by g(z) = 2™ is continuous with

respect to the topology 7; on G induced by 7T'.

Definition 2.12 ([17]): let G be a topological rough group and let H be a
subgroup of G. Then, H is called a topological rough subgroup of G if

1. the mapping fy : Hx H — H defined by f;(z,y) = zy is continuous
where H carries the topology induced by G ,

1

2. the inverse mapping gy : H — H defined by gy (z) = ™ is continuous.

Definition 2.13 ([1]): A mapping ¢ : G; — G, is called a topological rough
group homomorphism, if ¢ is a rough homomorphism and continuous with respect

to the topology 75 on G, inducing T, On Gy and the topology 7| on G, inducing

TG, on Gi.

Definition 2.14 ([17]): Let G be a topological rough group and let N be a
normal subgroup of G. Then, N is called a topological rough normal subgroup of G
if Va € G,aN = Na.

Throughout this paper, we consider X be the universal set, Gg be a rough

group with identity eand G be the upper rough approximation of G
3. Topological Simple Rough Group

Definition 3.1: A rough group G is called a simple rough group if it
contains no proper non-trivial rough normal subgroups. That is, G  has only the

rough normal subgroups are {e} and G
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Example 3.2: Let X ={1,2,3,4,5,6} be the set all integers with respect to
the multiplication modulo 7. A classification of X is X/R = {{1,6},{2,3},{4,5}}.

Let G ={1,2,4}. Then G =X and G =¢. Clearly, G is a rough group and

it has no proper rough normal subgroups, hence G is a simple rough group.

Example 3.3: Let X =5, be the set of all permutations of {1, 2, 3, 4} with

the multiplication operation of permutations. Consider a classification of X is
X/R ={C1, C2,C3, C4}, where

Cr =1(1), (12), (13), (14), (23), (24), 34);

Cy = {(123), (132), (124), (142), (134), (143), (234), (243)}
Cs = {(1234), (1243), (1324), (1342), (1423), (1432)}

Cy =1(12)(34), (13)(24), (14)(23)}

Let A; be the set all even permutations of S, that is, 44 = {(1),C5,C,}.
Then upper approximation of 4,, 4, =C; UC, UC, and lower approximation of

Ay, Ay=Cy UC, . Hence, A, is arough group.

Also we get some proper rough normal subgroups of A, like
{@1)},{(1),Cs} and {(1),C,} . Therefore, A, is not a simple rough group.

Definition 3.4: A topological simple rough group is a simple rough group

(G ,*) together with a topology 7 on G satisfying the following two properties:

(i) The mapping f: G xG — G definedby f(z,y) =2y, 2,y € G
is continuous with respect to the product topology on G x G and the

topology 7 on G induced by T

(ii) The inverse mapping g: G — G defined by g(z)=z"', € G is

continuous with respect to the topology ron G induced by 7.
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Example 3.5: Let X ={[0],[1],[2],[3],[4]} be the set of residue classes of

modulo 5 and * be the binary operation of residue addition. A classification of X is
X/R = {{[0},[2]} A[3].[4]}} . Let G = {[0,[1],[4]},then G =X and G =¢.
Obviously, G is a rough group and also G has no proper rough normal

subgroups. Therefore, G is a simple rough group.

Let 7= {6,G {0} {[1).[2), (41}, {[0),[1).[2),[4]}. Then we get the
induced topology 7 on G is {¢, G , {[0]},{[1],[4]}}. Hence, G is a topological
simple rough group.

Proposition 3.6: Let G be a topological simple rough group and fix
re G
Then

(i) The map L,:G — G defined by L,(y) =2y is one-to-one and

continuous, forall y € G ;

(i) The map R,:G — G defined by R,(y)=yz is one-to-one and

continuous, forall y € G ;

(iii) The map f:G — G defined by f(a)=a"! is homeomorphism, for
all a € G

Proof: (i) Let vy, yo € G . Then L,(y;)= L,(y») implies zy; = zy,.
Since, G is a topological simple rough group andz € G ,2z7' € G CG . Thus,

7 (zy,) = 27 (wy,) which implies 1 = y,. Hence L, is one-to-one. Now let us
prove L, is continuous. Let U be an open set of 2y in G . Then there exists open

sets Vi,V of z,y in G  such that V;V, CU. Since, zV, CV|V, CU,

L,(Vy)=xV, CU.Hence, L, iscontinuous on G

(i1) The proof of R, is similarto L, .
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(iii) Since G is a topological simple rough group, the inverse mapping
f:G — G is continuous. Therefore, f~! is also continuous. Hence,

the map f is homeomorphism of G into G . U

Proposition 3.7: Let G be a topological simple rough group. If U C G

is an open set with e € U , then there exists a symmetric open set Vof ein G such
that VV CU.

Proof: Since G is a topological simple rough group, the mapping
f:G xG@ — G is continuous. Then f~Y(U) is open in G xG  and
(e,e) € fY(U). Therefore, there exists open sets V;,V, in G with e € Vj,e €V,

such that V;V, C U . Also the inverse mapping g: G — G is continuous, so V; !
and V57! are open. Let V4 =V, NV,. Then V5 is openin G and also V3V CU.

Now we consider V = V3 NV;~! beanopensetin G and e € V. Hence, V = V!
and VVQVSVSQU O

Proposition 3.8: Let G  be a topological simple rough group. Then for
every open set Wof ein G, there exists a symmetric open set Vof ein G such

that VV NG CW.

Proof: Let W be an open set of ein G . Then there exists-an open set U of
e in G such that W =UNG . Since the mapping f:G xG —>G is
continuous and the inverse mapping ¢:G — G is homeomorphism, there
exists an open set V of e in G and V =V~! such that VV C U. Hence,
vvnGg Cw. 0

Proposition 3.9: Let G be a topological simple rough group. If G , {e}

are open sets of G, then {e¢}isopenin G and G is a discrete space.

Proof: Since G is a topological simple rough group, the mapping
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f:G xG — G iscontinuousand e € G . Also, {e} isopenin G . Thus, we
get f1({e}) isopenin G xG and ee =e € {e} € 7 which implies UV C {e},
where U,V are open sets in G and ec€U,e € V. Suppose U # {e}, we get
UU ¢ {e}. Hence, U=V ={¢}. Let z€G . Since the mapping
f:G xG — G is continuous at (z,z7'), there exists a neighborhood U of
r€G such that UU™! C{e}. So UU'={e}. Hence, U = {z}. Hence, G is
discrete. U

Proposition 3.10: Let G  be a topological simple rough group. If G is
open in G ,then H =N {U: U € 7(e)} is a topological group.

Proof: Let z,y € H. Then z,y € U and given U € 7(e). Since G is a

topological simple rough group and G is open in G , there exists an open set
V € 7(e) such that VV CU. Thus, zy € VV CU. Therefore, zy € H . Since the

inverse mapping f: G — G is homeomorphism, there exists an open set V of e

in G suchthat V=V"1, |

Theorem 3.11: Let X be a topological group and G be a topological
simple rough group. If H is a topological rough subgroup of G , then the
topological closure of H ,cl(H ),in G is atopological rough group of G

Proof: Let =,y € c/(H ) and U be an open set of xy. Then there exists
open sets V; and V5 of z and y such that V}V, CU. Since H is a topological
rough subgroup of G , there exists an elements a, b € H suchthat a € VN H
and b € VN H . Thus, we get ab € V;V, and ab € H ,thatis abe ViV, N H

So, ViV, N H # ¢ and also U Ncl(H )# ¢.Hence, zy € cl(H ).Let W bean

open set of z7' in cl(H ). Then there exists an open set V of z such that

V-1 CW. Since, z € cl(H ), there exists an element @ of H such that a € V.
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Then a € VN H  which implies a™ ¢ V!N H . So, WNH # ¢ and hence,
z7h ecl(H ). U

Remark 3.12: The topological closure of H ,cl(H ), in G s also a
topological rough subgroup in G

Theorem 3.13: Let G be a topological simple rough group and G be an
open setin G . If Sis a subset of G and U is an open set in G , then the sets
SUNG and USNG are the open sets of Sin G

Proof: Let € S . Then there exists an open set VC U of xin G such that
zVCzUNG . Therefore,Uzes zV CSUNG . Hence, we get SUNG is

an open set of Sin G . Likewise, SU NG isanopensetof Sin G . U
Definition 3.14: Let G be a topological simple rough group and B C 7
be a base for 7. For z € G , the family Bz ={UNG :UeB, zcU}CB

is called abase at zin 7.

Theorem 3.15: Let G be a topological simple rough group and G be an
opensetin G .Let Be be the family of base at ein G . Then, for every z € G,

L, ={(zU)NG :U€B}, R, ={{Uz)NnG :U€B,}
are two families of bases at zin G

Proof: Let U € B, . Since G is a topological simple rough group and G

isanopensetin G ,f:G xG — G iscontinuous at (7,e). Then there exists
an open set V € B, such that V C U and 2V CG . It is enough to prove that

xUNG and UrNG areopensetsin G .Sincethemap L,-1 :G —> G is
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one-to-one and continuous, L', (V) is open in G and zV CG . Then we
get L1 (V)=zVisopenin G .Hence, zV C zU and =V C G which implies

zUNG 1sanopensetin G .Similarly, Uz NG isanopensetin G . U

4. Filter of Identity Neighborhoods

In this section, the filter F, be the set of all identity neighborhoods of G

Proposition 4.1: Let G and H be topological simple rough groups. Then
a rough homomorphism f:G — H is a topological rough group
homomorphism if and only if it is continuous at the identity element.

Proof: Let e,e’ be the identity elements in G and H  respectively.
Suppose f is a topological rough group homomorphism. That is, f is rough
homomorphism and continuous. Since fis continuous, it is continuous at e in G
Conversely, suppose f is continuous at e. Let ¢« € G and V be a neighborhood of
f(a) in H . Let us prove for any neighborhood U of a in G ,f(U)C V. Since f
is a rough homomorphism, f(az) = f(a). f(z), for all z € G . Since fis continuous

at e, there exists a neighborhood W of e such that f(W)CV . Then U =aW is an
open neighborhood of aand f(U) CV . Il

Proposition 4.2: Let G and H be topological simple rough groups and
f:G — H be a topological rough group homomorphism. Then the following

conditions are equivalent:
(i) f is open
(i) Foreach W € F,(G ), theimage f(W) has a nonempty interior

(iii) There is a basis B, of neighborhood W such that f(W) has a nonempty
interior
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(iv) There is a basis B, of neighborhood Win G  such that f(W) is an
identity neighborhood in H

(v) Forall We F (G ),wehave f(W)e F(H )

Proof: (i) = (ii): Let W be an identity neighborhood in G . Since f is
open, f(W) is open. Also, W € (G ). Hence, int(f(W) # ¢.

(ii) = (iii): Suppose f(W) has a nonempty interior, for each neighborhood W of e in

G . Let B, be abasisin G . Let WeB, and W € F,(G ). Then
int(f(W)) # ¢ . Hence, the image f(IV) has a nonempty interior.

(i) = (iv): Let U,V be two identity neighborhoods in G such that
VCint(U) . Then int(f(V)#¢.

Consider z € V and f(z) € int(f(V)) C int f(int(U)).

Let W =int(U)z™! and e e’ be identity elementsin G ,H .

Then e=zzr '€int(U)z~'. So, W is an open neighborhood of identity

elementin G and
e/ = f(z)f(z)™ € int(f(V))f(z)™" € int(f(int(U)))f(z)™

int (f(int(U))f(z)™)

= int(f(int(U)z71)) .
=int(f(W)).
Hence, f(W) is an identity neighbourhood of H

(iv) = (v): From the above proof, f(W)e F.(H ).
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(v) = (i): Obviously, this result follows from (v). [

Proposition 4.3: Let G and H be topological simple rough groups.
Then the topological rough group homomorphism f:G — H is both continuous
and open if and only if f(F,)= F.,, where F, and F, are the filter of identity
neighborhoods in G and H respectively.

Proof: Suppose the homomorphism f is continuous and open. Let prove
f(F)=F,. Since f is continuous, f(F,)C F.. Since f is open, F, C f(Fe).
Therefore f(F,) = F.. Conversely, if f(F,)=F., then f is both open and
continuous. Let U € F, and V € F,,. Then f(U)=V which implies U C f(V).
Since U is an open neighborhood of e in G ,f~'(V) is an open set in G . Also
f(U) € F,, which implies f(U) is an open set containing the identity element e’ in

H . Hence f is both open and continuous. Il

Lemma 4.4: If U is an open neighborhood of the identity element
in topological simple rough group G, then U C cl(U) C UU,cl(U) means closure
of U.

Proof: We know that U C ¢l/(U). It is enough to prove that cl(U) CUU .
Let a € cl(U). Then there exists a symmetric neighborhood Wof ein G such that
WW CU thatis, WCU. Also a € W and aW is an open neighborhood of a. So

aWnNU#¢ and acaWnecllU)#¢.Let beaWNU. Then b =aw, for some
weW which implies a=bw-1. Since W is symmetric and b€ U,

wleWl=WCU and a e UU. 0

Theorem 4.5: (First closure lemma) Let G  be a topological simple

rough group such that G isopenin G .If Sisasubsetof G , then

cd(S)= () SU= [ cl(SU),

UeF UeF,
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where F, be the filter of identity neighborhood in G

Proof: Let a € ¢l(S) and U € F,. Then aU NG  is a neighborhood of @ in
G and aUNS # ¢.Since U=U"', aU'NS is a neighborhood of a. So, let

beaU ' NS that is beaU™ and beS. Then b= au"!, for some ucU.

Therefore, a =bu € SU C cl(SU). Let a € ﬂcl(SU). Let us prove a € ﬂ(SU).
Then there exists an identity neighborhoodV € F, such that VV C U. Therefore,
a €cl(SV)C SVV C SU. Proceeding this process we get, ﬂcl(SU) c ﬂ(SU).
Suppose a € ﬂ(S U). Let W be an identity neighborhood of a in F, and
Wla=UcF,. Since, a€SU, a=hu, for some hecS,uclU. Thus,

h=au—-1€aU! =aa"'W =W which implies h € S N W . Hence, a € cl(S). OJ

Theorem 4.6: Let G be a finite topological rough group with identity e
and let F, be the filter of identity neighborhood in G . Then there exists a
topological  rough  normal  subgroup N in G such  that
F.={UCG /N CU} and the elements are symmetric.

Proof: Consider N = ﬂ Ve U. Since G is finite, N is non empty in
€

F.and e € N .Leta,b € N . Then there exists W € F, suchthat WW=1 C N .
Since N CW,a,beW . Thus, ab™' €eUU ' CN .Hence, ab' € N . Let
geG . Since N €F,gN g'e€F and ¢ 'N g€ F. That implies
N CgN ¢g' and N CgN g¢'. Hence, N is a topological rough normal
subgroup. Il

5. Conclusion

In this paper, we studied topological simple rough group from the simple
rough group structure and given some examples. Further we investigated the basis of
topological simple rough groups and discussed the concept of filters in topological
simple rough groups, which are essential for a deeper understanding of their
topological properties.
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1. Introduction

After the introduction of fuzzy sets [15] and intuitionistic fuzzy sets [4],
Smarandache [10] created a neutrosophic set on a nonempty set by considering three
components, namely membership, Indeterminacy,and non-membership whose sums
lie between 0 and 3. In 2008, Lupiafiez [8] introduced the neutrosophic topology as
an extension of intuitionistic fuzzy topology. Since, 2008 many authors such as
Lupianez [8], Salama et.al. [10, 11], Acikgoz and his coworkers [1], Dhavaseelan
et.al. [5], Al-Musaw [2], and others have contributed to neutrosophic topological
spaces. Recently many weak and strong forms of neutrosophic open sets and
neutrosophic continuity have been investigated by various authors [1, 2, 5, 6, 7, 12—
14]. In this paper, we introduce a new class of mappings called neutrosophic fuzzy
semi J-pre irresolute mappings and obtain some of their characterizations and
properties.



18 M. THAKUR, J. P. BAJPAI, A.S. BANAFAR AND S.S. THAKUR

2. Preliminaries

This section contains some basic definitions and preliminary results which
will be needed in the sequel.

Definition 2.1 [12]: A Neutrosophic set (NS) in X is a structure

A={<z,py(z), @2(2),74(z) >: w € X}

where py : X ->]70,1"[,@A: X ->]0,1*[, and y4:X —] 0,17 denote the
membership, indeterminacy, and non-membership of A, satisfying the condition that
0L puy(z)+a@y(x)+y4a(x) <37, Ve e X

In real-life applications in scientific and engineering problems, using a
neutrosophic set with values from a real standard or a non-standard subset of

J— 0, 1+[ is difficult. Hence, we consider the neutrosophic set which takes the value

from the closed interval [0,1] and the sum of membership, indeterminacy, and
non-membership degrees of each element of the universe of discourse lies between 0
and 3.

Definition 2.2 [10]: Let X be a nonempty set and let the neutrosophic sets
A and neutrosophic set B be in the form A = {< z, uy(z), @ (z),y4(z) >: z € X},

B={<z,pup(z),mp(x),yg(x) >: 2 € X} and let {4 :ieJ} be an arbitrary

family of neutrosophic sets in X . Then:
(@)  Ac Bif py(z) < pp(z),@4(z) < @p(z), and y4(z) = yp(z).

(b) A=Bif AcBand Bc A.
(© A ={<z,y4(2),@4(7),p4(z) >: 7€ X}.
(d) mAi:{<I7/\:U/Ai(x)7/\wAi(x)vvyAi(I)>:$€X}'

@ U4 ={<z,v py(x),va 4(z),Ayu()>:zeX}.

H 0={<z,001>:2eX}and1={<2110>:7e X}
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Definition 2.3 [8, 9]: A neutrosophic topology on a nonempty set X is a
family T of neutrosophic sets in X that satisfies the following axioms.

(NT}) 0andier
(NT5) Finite intersection of members of T is a member of 7

(NT3) Anyunion of members of 7 is a member of

In this case, the pair (X,7) is called a neutrosophic topological space and
each neutrosophic set in 7 is known as a neutrosophic open set in X . The

complement A¢ of a neutrosophic open set A4 is called a neutrosophic closed set in
X.

Definition 2.4 [5]: Let a,n,f €[0,1] and 0 <a+7n+ f < 3. A neutron-
sophic point z(, , g) of X is a neutrosophic set in X defined by

()_ (avnvﬂ) lfyI.T
UMW =0 (0,0,1)  if y#a

Definition 2.5 [1]: Let z,,p be a neutrosophic point in X and
A={<z, g, my,y4 >: 2 € X} is a neutrosophic set in X. Then

T(qnp S Aifandonlyif @ < py(z),7 € @y, and B 2 vy(z).

Definition 2.6 [1]: A neutrosophic point z ) 1is said to be quasi-

a,n.p
coincident (g -coincident, for short) with A, denoted by =z, 94 iff

L(a,n, B) ¢ A If L(qn,p) 18 mot quasi-coincident with A, we denote by
—l(x(aJ]ﬁ)qA) :

Definition 2.7 [1]: Two neutrosophic set A and B of X are said to be
q -coincident (denoted by A, B ) if A Z B°.
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Lemma 2.8 [1]: For any two neutrosophic sets A and B of
X, (A,B) & A c B® where |(A,B) is not g-coincident with B.

Definition 2.9 [9]: Let (X,7z) be a NTS and F € N(X). Then the
neutrosophic interior and neutrosophic closure of A are defined by:

c(F)=n{H : H € NC(X)and F c H}
int(F) =U{K : K € rand K c F}

Definition 2.10 [3]: A neutrosophic set A of a NTS (X, 7) is called
neutrosophic regular open (resp.neutrosophic regular closed) if A = int(cl(A))
(resp. A = cl(int(A))).

Definition 2.11 [1]: The J-interior (denoted byo int) (resp.d-closure
(denoted byodcl)) of a neutrosophicset A of a NTS(X,r) is the union of all

neutrosophic regular open sets contained in (resp.intersection of all neutrosophic
regular closed sets containing) A .

Definition 2.12 [3, 6, 13]: A neutrosophic set A of a NTS (X, 7) is called

neutrosophic semi open (resp.neutrosophic pre open, neutrosophic a-open,
neutrosophic semi preopen, neutrosophic dJ-open, neutrosophic J-preopen,
neutrosophic d-semi open, neutrosophic b-open) if

A < cl(int(A))(resp.A < int(cl(A)),A < int(cl(int(A4))), A < cl(int(cl(A))),
A =06int(A), A c int(5cl(A)),A < cl(5 int(A4)),A < cl(int(A)) U int(cl(A4)).

Definition 2.13 [11]: A neutrosophic set A of a neutrosophic topological
space (X, 7) is called neutrosophic semi J-preopen if there exists an eutrosophic

o-pre open set O in X suchthat O ¢ A < §¢l(0).

The family of all neutrosophic semi J-pre open set so fan neutrosophic
topological space (X, 7) is denoted by NSO PO(X).

Definition 2.14 [11]: A neutrosophic set A in a neutrosophic topological
space (X, 7) is called neutrosophic semi J-preclosed) if A € NSSPO(X). The
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family of all neutrosophic semi Jd-preclosed) sets of an neutrosophictopological space
(X, 7) is denoted by NS6 PC(X).

Remark 2.15 [11]: Every neutrosophic semi preopen (resp.neutrosophic
o-preopen) set is neutrosophic semi J-preopen. But the separate converse may not be
true.

Definition 2.16 [11]: Let (X, 7) be an neutrosophic topological space and A

be an neutrosophic set of X . Then the neutrosophic semi d-preinterior (denoted by
s p int) and neutrosophic semi d-preclosure (denoted by sopcl) of A respectively

defined as follows:
sopint(A) = U {0 : O < 4,0 € NSSPO(X)},
s6pcl(A) =N {0 : 0O o 4,0 € NS6PC(X)} .

Definition 2.17 [11]: Let A be an neutrosophic set A of an neutrosophic
topological space (X, 7) and Z(q,n,p) be an neutrosophic point of X . A is called:

(a) Neutrosophic semi J-pre neighborhood of i, , z)if there exists an

neutrosophic set O € NSSPO(X) such that z, , 3y € O < A.

(b) Neutrosophic semi d-pre () -neighborhood of =, , ) if there exists an
neutrosophic set O € NSOPO(X) such that z(a, 1, f) € O < A.

Definition 2.19 [9,11]: A mapping f : (X, 7) — (Y, o) is called:

(a) Neutrosophic continuous if f~!(4) is a neutrosophic open setin X for each
neutrosophic open set A of Y.

(b) Neutrosophic semi J-pre continuous if f~1(A) € NSSPO(X) for every
neutrosophic open set A of Y.

3. Neutrosophic Semi J-preir Resolute Mappings
In this section, we introduce the concept of neutrosophic semi J-pre

irresolute mappings and study some of their properties in neutrosophic topological
spaces.
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Definition 3.1: A mapping f from aneutrosophic topological space (X, 7)
to another neutrosophic topological space (Y, o) is said to be neutrosophic semi

o-pre irresolute if f'(A) € NSSPO(X) for every neutrosophic set
0 € NSSPO(Y).

Remark 3.2: Every neutrosophic semi J-pre irresolute mapping is
neutrosophic semi d-pre continuous but the converse may not be true.

Example 3.3: Let X = {a,b},Y = {p, ¢}, and neutrosophic sets U defined
as follows:

U ={<a0.50405>,<b0.4,0.4,0.6 >}

let 7 ={0,U,1} and o = {0,1} be neutrosophic topologies on X and Y
respectively. Then the mapping f : (X,7) —> (Y, o) defined by f(a) = p and
f(b) = q is neutrosophic semi J-pre continuous and hence neutrosophic continuous
but not neutrosophic semi J-pre irresolute.

Consider the following example:

Example 3.4: Example 3.4. Let X = {a,b}, Y = {p, ¢}, and neutrosophic
sets V' defined as follows:

V =4{<a,04,0.3,0.6 >,<b,0.50.3,0.5 >}

let 7 ={0,1} and o = {0,V,1} be neutrosophic topologies on X and Y
respectively. Then the mapping ¢ : (X,7) > (Y, o) defined by g(a) = p and

g(b) = ¢ is neutrosophic semi J-pre irresolute but not neutrosophic continuous.

Remark 3.5: Example (3.3) and Example (3.4) show that the concepts of
neutrosophic semi J-pre irresolute and neutrosophic continuous mappings are
independent.

Theorem 3.6: Let [ : (X,7) = (Y, 0) be a mapping then the following

statements are equivalent:



NEUTROSOPHIC SEMI ¢ -PRE IRRESOLUTE MAPPINGS 23

(a) F' is neutrosophic semi o-pre irresolute
(b) If f71(A) € NSSPCO(X) for every neutrosophic set A € NSSPCO(Y).

(¢) For every neutrosophic point x, , g in X and every neutrosophic set
A € NS6PO(Y) such that f(x(y,, p5) € A there is an neutrosophic
set O € NSOPO(X) such that z(,, 5 € O and f(O) < A.

(d) For every neutrosophic point x4, g of X and every neutrosophic
semi d-pre neighborhood A of f(x(4., ), f7(A) is an neutrosophic

semi 6-pre neighborhood of g, p) -

(e) For every neutrosophic point x(,, gof X and every neutrosophic
semi 6-pre neighbor hood A of f(x(4,p p)), there is an neutrosophic

semi 6-pre neighborhood U of ysuch that f(U) < A.

a,n,p

(f) For every neutrosophic point x , gy of X and every neutrosophic set
A € NSOPO(Y) such that f(z(4, p))gA, there is an neutrosophic set
O € NSSPO(X) such that z(a, B)qO and f(O) < A.

(g) for every meutrosophic point x, , z) of X and every neutrosophic semi
d-pre Q -neighborhood A of flz(a,n,B)), f'(A) is an neutrosophic semi
d-pre Q -neighborhood of 4, g) -

(h) for every neutrosophic point z(,, 5 of X and every neutrosophic
semi o-pre @) -neighborhood A of f(:z:(a’n’ﬁ)), there is an neutrosophic
semi pre Q) -neighborhood U of %, gy such that f(U) < A.

(G) f(sépcl(A)) < sSpcl(f(A)), for every neutrosophicset A of X .

G) sopcl(f~H0)) < fsSpcl(0)), for every neutrosophic set O of Y .
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(k) f(sSpint(0)) < sdpint(f~1(0)), for every neutrosophic set O of Y .
Proof: (a)  (b) Obvious.

(a) = (¢) Let 7, , p) be an eutrosophic point of X and A € NSSPO(Y)

such that f(z(,, 5) € A. Put O = f71(A), then by (a),0 € NSGPO(X) such
that 7, , ) € O and f(O) c A.

(¢) = (a) Let A € NSSPO(Y)and ,,, 5y € f7'(A). Then f(z,, ) € A.
Now by (c) there is an eutrosophic set O € NSSPO(X) such that z(a, n, ) € O
and f(0) ¢ A.Then z,, 3 € O < f(A). Hence, f(4) € NS6PO(X).

(a) = (d) Let 7, , 3 be a neutrosophic point of X, and let A be a semi
6-pre  neighborhood of  f(z(,, p)) Then there is an eutrosophic set
U € NS6PO(X) such thatf(z,, 5) € U < A. Now [f(U) e NSSPO(X)

and f~1(U) < f~'(A). Thus, f~'(A) is an eutrosophic semi J-pre neighborhood of
‘T(aﬂﬁﬁ) mnX.

(d) = (e) Let z,, p) be a neutrosophic point of X, and let A be a semi
8-pre neighborhood of f(z(,, p)). Then U = f'(A) is an eutrosophic semi d-pre
neighborhood of i, , 4 and f(U) = f(f7'(4)) < A.

(e) = (¢) Let 7, , p) be an neutrosophic point of X and A € NSSPO(Y)
such that f(7, , 5)) € A. So there is neutrosophic semi J-pre neighborhood U of

T(gy,p) 0 X suchthat 2, , 5 € U and f(U) < A. Hence there is an eutrosophic
set O € NSOPO(X) suchthat z(a,n, f) € O < U andso f(O) c f(U) c A

(a) = () Let (4, 5) be an neutrosophic point of X and A € NSSPO(Y)
such that f(z(,., 5)); € A. Let O = f7}(4). Then O € NSSPO(X), x4 4 5,0
and f(0) = f(f71(4)) = A
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()= (@) Let A € NSSPO(Y)and 1, , 5 € [(A) clearly f(z,,5) € A
choose the Neutrosophic point z¢ defined as

C

Bina) if z =1z
T (anp)(2) = {

(L1,0) if z =z

Then f(2°4..p); A and so by(f) there exists an neutrosophic set

O € NSOPO(X) such that 2, 5, Oand f(O) < A. Now 2, s, O

implies 7, , py € O . Thus, %y, 5 < f'A.Hence, f~1(A) € NSSPO(X).

() = () Let z(,, 3 be an neutrosophic point of X and A be semi
0-Q-neighborhood of f(z(a, 7, f)). Then there is a neutrosophic open set
A € NSO6PO(Y) such that f(z(a,n, f)), < A < A. By hypothesis, there is a
neutrosophic set O € NSSPO(X) such that z(e, n, f)qO and f(O) < 4;. Thus,
T peO S [ (A) < [ (A). Hence, f~'(A) is an neutrosophic semi J-pre
O-neighborhood of 7, , 3 -

(f) = (h) Let z(, , p) be an eutrosophic point of X and 4 be a semi J-pre-Q-

neighborhood of f(z(a, 7, B)). Then U = f~1(A) is aneutrosophic semi J-pre-QO-
neighborhood of z,, ,, 5y and f(U) = f(f7'(4)) < A.

(h) = (f) Let 74, 5 be an eutrosophic point of X and A € NSSPO(Y)
such that f(7(4 ., p))sA- Then A is neutrosophic semi J-pre-Q-neighborhood of

f(z(a, n, B)). So there is an eutrosophic semi J-pre Q-neighborhood U of z(, , s
such that f(U) < A. Now U being an eutrosophic semi J-pre Q-neighborhood of
T(q,p,p) - Then there exists an eutrosophicset O € NSSPO(X) such that

T(an,p)e0 < U . Hence, 74 5,0 and f(O) < f(U) < A.

(b) = (i) Let A be an eutrosophic set of X . Since, A = f~1(f(4)), we have
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A c f(sopcl(f~1(A)). Now sdpcl(f(A)) € NSSPC(Y) and hence,
f1(sSpcl(f(A))) € NSSPC(X). There for esdpcl(A) < f(sdpcl(f(A))) and
f(sopel(A)) < [(f(sdpcl(A))) < sSpel(f(4)).

()= (b) Let A € NSSPC(Y) then f(sSpcl(f~(A))) < sSpcl(f(f1(A)))
c s0pcl(A) = A.Hence, sdpcl(f1(A)) < f(A) andsof~1(A) € NSSPC(X).

(i = (j) Let O be any neutrosophic set of Y, then f~'(0) is an
neutrosophic set of X . Therefore by hypothesis (i), f(sdpcl(f~1(0)))
c sOpcl(f(f~1(0))) < sopcl(O). Hence,sSpel(f~1(0)) < f(sSpcl(0)).

(i) = (i) Let A be any neutrosophic set of X, then f'(4) is an

neutrosophic set of Y ,and by (j),sopcl(f~1(f(A))) < f (sopcl(f(A))). Hence,
f(sopcl(A)) = sopcl(f(A)).

(a) = (k) Let O be any neutrosophic set of Y, then sop int(O) € NSSPOY)
and f~!(s8p int(0)) € NSSPO(X). Since, f'(sdpint(0)) < f1(0), then
[ (s6p int(0)) < sép int(f71(0)).

i = (@ LetO € NS6PO(Y), then sopint(O) =0 and
f10) c spint(f~1(0)). Thus, f10) = sop int(f~1(0)) and
fH0) € NSSPO(X).Hence, f is neutrosophic semi d-pre irresolute

Definition 3.7: A mapping f : (X,7) > (Y, o) is called neutrosophic
R-open if the image of every neutrosophic open set of X is neutrosophic J-open

inY.
Theorem 3.8: [ff : (X,7) > (Y,0) is neutrosophic J-almost
continuous and neutrosophic R-open mapping, then f is neutrosophic semi

o-pre irresolute.
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Proof: LetA € NSSPO(Y). Then there exist aneutrosophic —set
O € IFSPO(X) such thatO ¢ A < 8cl(0), therefore f~1(0) < f~(A)
c f45cl(0)) < cl(f~'(O))because f is neutrosophic R-open. Since [ is

neutrosophic J-almost continuous and neutrosophic R-open, f1(0) € IFSPO(X).
Hence, f~'(4) € NSSPO(X).

Theorem 3.9: Let f: (X,7) > (Y,0) and g: (Y,0) > (Z,n) be
neutrosophic semi d-pre irresolute mappings then gof is neutrosophic semi

o-pre irresolute.

Proof: Let A € NSSPO(Z). Since g is neutrosophic semi J-preirresolute,
g (A) € NSSPO(Y). Therefore, (gof) ™ (A) = f (g7 (4)) € NSSPO(X),
because [ is neutrosophic semi d-pre irresolute. Hence, gof is neutrosophic semi

o-pre irresolute.

Theorem 3.10: Let f: (X,7) > (Y,0) is neutrosophic semi J-pre
irresolute and g : (Y,o0) —> (Z,n) is neutrosophic semi J-pre continuous

mapping, then gof is neutrosophic semi d-pre continuous.

Proof: Let O be any neutrosophic open set of Z . Since ¢ is neutrosophic
semi d-precontinuous g1 (0) € NSSPO(Y). Therefore, (gof)~1(0) = f~(¢7'(0))
€ NSSPO(X) because f is neutrosophic semi J-pre irresolute. Hence, gof is
neutrosophic semi d-precontinuous.

4. Conclusion

In this paper, a new class of mappings called neutrosophic fuzzy semi J-pre
irresolute mappings have been introduced, it is shown by examples that the concepts
of neutrosophic fuzzy semi o&-pre irresolute mappings are stronger than the
neutrosophic fuzzy semi d-pre continuous mappings and independent of the
neutrosophic fuzzy continuous mappings. Several characterizations and properties of
this class of neutrosophic fuzzy mappings have been studied. In the future, we study
the images and inverse images of neutrosophic compact, and neutrosophic connected
spaces under these classes of mappings.
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Purva Rajwade' | A NOTE ON NANO FUZZY CLOSURE

Rachna Navalal?hnecg AND BICLOSURE SPACES

Abstract: The aim of this paper is to present, clarify and analyze Nano
fuzzy closure spaces and Nano fuzzy bi-closure spaces in relation to Nano
fuzzy topological spaces. We have tried to analyze the basic properties of
these new types of spaces.

Keywords: Nano Fuzzy Topological Spaces, Nano Fuzzy Closure Space,
Nano Fuzzy Biclosure Space.

Mathematics Subject Classification (2010) No.: 03E72, 54A05, 54A40.
1. Introduction

Thivagar L. at al. [9, 6] introduced the concept of Nano topological spaces
which were defined in terms of lower approximation, upper approximation and
boundary region of a subset of a universe U using an equivalence relation on it and
also defined Nano closed sets, Nano interior and Nano closure. Further,
Bhuvneshwari K. et al. [2] introduced Nano generalized closed set in Nano
topological spaces in 2014. B. A. Deole [5] has introduced Nano closure and Nano
biclosure spaces in Nano topological spaces.

After the theory of fuzzy sets, given by L. Zadeh [11], fuzzfication of
topological spaces was done. This work is done by C. L. Chang [4] and defined fuzzy
topological spaces.
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R. Navalakhe et al. [7] defined Nano fuzzy topological spaces with respect to
a fuzzy subset 4 of an universe which is defined in terms of lower and upper
approximations of A and studied Nano fuzzy closure and Nano fuzzy interior of a
fuzzy subset. In this article we have presented the idea of Nano fuzzy closure spaces
and Nano fuzzy bi-closure spaces and examined their characteristics.

2. Preliminaries

In this section we have narrated some of the important definition and results
which are helpful in defining Nano fuzzy closure and Nano fuzzy bi-closure spaces
in Nano fuzzy topological spaces.

Definition 2.1 [5]: Let U be a non-empty finite set of objects called the

universe and R be an equivalence relation on U and X € U. Then Nano closure
operator is a function: Nclp: P(X) = P(X) such that forall A € X

LiR(X) lfA c LLR(X)
Nelg = Bir(X)if AS Bir(X)
X;ot erwiseand ¢ if A=¢

where L;’s are elements of Lp(X) and B;’s are elements of Br(X). Which satisfies
three conditions:

1. Nclp(p)=¢

2.A S Nclg(A)

3. Nclg(A B) = Nclz(A) Nclgz(B)

Hence, (X, Ncly) is called Nano closure space.

Definition 2.2 [7, 8]: Let U be the universe, R; and R, be equivalence
relations on U. P; and P, are subsets of U. Then 75, (P;) and 7, (P,) satisfies the
following axioms:

1.U and ETR]_(P]_) and TR2 (Pz)

2. The union of the elements of any sub collection of 75, (P;) is in Tz (P;)
and TR2 (Pz) iS in TR2 (Pz)

3. The intersection of the elements of any finite sub collection of Tz, (P;) is
in T, (P;) and Tty (P,) is in Ty (Py).
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Hence, 7z (P;) and tz,(P,) are called the Nano (74,7,) bitopology on U
with respect to Pyand P, (U, tg,, (X)) is called Nano (74, 7,) bitopological space.

Elements of the 7z ,(X) are known as Nano (1,2) open sets in U and elements of
[Tr, , (X)]¢ are called Nano (1,2) closed sets.

Definition 2.3 [1]: If (U, g, , (X)) is a Nano bitopological space with respect
to X where X € U and if A € U, then

1. The Nano (1,2) closure of A is defined as the intersection of all Nano
(1,2) closed sets containing A and it is denoted by Ntg chl(A). It is the smallest

Nano (1,2) closed set containing A.

2. The Nano (1,2) interior of A is defined as the union of all Nano (1,2)
open subsets of A contained in A and it is denoted by Ntg ,Int(A). It is the largest

Nano (1,2) open subset of A.

Definition 2.4 [5]: Let U be a non-empty finite set of objects called the
universe and R; and R, be two equivalence relations on U and X € U. Then Nano
closure operator is a function: Nclg,: P(X) = P(X) where i = {1,2} such that for all
AcX

LigX)if AS Lir(X)
Nclg, = Bir(X) if AS  Bir(X)
X;ot erwiseand ¢ if A= ¢

where L;’s are elements of Lp(X) and B;’s are elements of Br(X). Which satisfies
three conditions:

1. Nclg, (¢) = ¢ and Nclg,(¢) = ¢

2.A € Nclg, (A) and A S Nclg,(A)

3. Nclg,(A B) = Nclg, (A) Nclg, (B) and
Nclg,(A B) = Nclg,(A) Nclg,(B).

That is there are two closure spaces (X,Nclg,) and (X,Nclg,). Hence,
(X, Nclg,, Nclg,) is called Nano biclosure space.
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Definition 2.5 [5]: Let (X, Nclg,, Nclg,) be a Nano biclosure space. A Nano
biclosure space (Y,Nclg,,Nclg,) is called a Nano biclosure subspace of
(X, Nclg,,Nclg,) if Y € X and Nclg, = Nclg, Y for each i = {1,2}, j = {3,4} and
each subset A C Y.

Definition 2.6 Properties of Fuzzy Approximation Space
[3, 10]: Let R be an arbitrary relation from X to Y. The lower and upper

approximation operators of a fuzzy set R and R satisfies the following properties: for
alla, B € F(X),

(FLD  R(a) = (R(a®))"

(FU)  R(a) = (R(a“))°

(FL2) R(a B)=R(a) R(B)
(FU2)  R(a B)=R(a) R(B)
(FL3) a<f=R(a) <R(B)
(FU3) @« <pB=R(a)<R(p)
(FL4) R(a B) = R(a) R(B)
(FU4)  R(a B)=R(a) R(p)

Definition 2.7 [7]: Let X be a non-empty finite set, R be an equivalence
relation on X, 1 < X be a fuzzy subset and 7z(1) = { 1, OA,B(A),E(A),Bd(A)}.
Then by property (2.6), Tz (1) atisfies the following axioms

i. 0y,1 €1g)(A) where 0;:1 > I denotes the null fuzzy sets and 1:4 - |
denotes the whole fuzzy set.

ii.  Arbitrary union of members of 7(gy(4) is a member of 7z (4) .
iii.  Finite intersection of members of 7(gy (1) is a member of 7(g)(4).

That is, T(gy(4) is a topology on X called the Nano fuzzy topology on X with
respect to A.



A NOTE ON NANO FUZZY CLOSURE AND BICLOSURE SPACES 35

We call (X,7(g)(4)) as the Nano fuzzy topological space (NFTS). The
elements of the Nano fuzzy topological space that is 7(z)(4), are called Nano fuzzy
open sets and elements of [7()(1)]¢ are called Nano fuzzy closed sets.

Definition 2.8 [7]: Let (X, 7(g)(4)) be a Nano fuzzy topological space with
respect to A where A < X and if ¢ < X then the Nano fuzzy interior of u is defined
as union of all Nano fuzzy open subsets of ¢ and it is denoted by N fInt(w). That is,
it is the largest Nano fuzzy open subset contained in y.

Similarly, the Nano fuzzy closure of u is defined as the intersection of all
Nano fuzzy closed sets containing p. It is denoted by NfCI(x) and it is the smallest
Nano fuzzy closed set containing u.

Definition 2.9 [1]: Let X be a non-empty finite set, R; and R, be
equivalence  relations on X, A;,4, <X be fuzzy subsets and
T1,2, (D) = {T1,(41), T2, (42)}. Then 74 5, (A)satisfies the following axioms:

1. 04,1, € 7t1,(A;)where 0; : 4y > I denotes the null fuzzy sets and
13,:41 > I denotes the whole fuzzy set and 0,,, 13, € 75,(4;) where
0,,: 42 = I denotes the null fuzzy sets and 1;,: 4, — I denotes the whole
fuzzy set.

2. Arbitrary union of members of 7;5(4;) and 7,5(4,) are in 715(4;) and
7,5 (4,) respectively.

3. Finite intersection of members of 7;5(4;) and 7,5(4,) are in 713(4,) and
7,5 (4,) respectively.

That is, T1g(4;) and T,£(4;) are called the Nano fuzzy bitopology 74,5, (1)
onX with respect to A, and A,. We call (X ' T1,25 (A)) as the Nano fuzzy
bitopological space (NFBTS). The elements of the Nano fuzzy bitopological space
are called Nano fuzzy (1,2) open sets and elements of [Ty, (D)]€ are called Nano
fuzzy (1,2) closed sets.

3. Nano fuzzy Closure Spaces

Definition 3.1: Let X be a non-empty finite set of objects which called the
universe and R be an equivalence relation defined on X and A be an fuzzy subset of
X. Then Nano fuzzy closure operator is a function NfClg: F(X) = F(X) where F(X)
is the set of all fuzzy subsets of X, such that forall u < 4
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RWifus R
NfClp = Bd;(A)if p < Bd;(4)
Aot erwiseand 0, if u =0,

Where R;’s are elements of R(1) and Bd;’s are elements of Bd(1). Which
satisfies three conditions:

1. NfClz(0,) =0,

2.u < NfClr(w)

3.NfClr(u B) = NfClr(u) NfClg(B)

Hence, (X, NfClg) is called Nano fuzzy closure space.

Definition 3.2: The elements of Nano fuzzy closure space are called Nano
fuzzy open sets in Nano fuzzy closure spaces. The complement of Nano fuzzy open

sets is called Nano fuzzy closed sets with respect to the Nano fuzzy closure space.

Definition 3.3: A fuzzy subset a of a Nano fuzzy closure space (X, NfClg)
is called Nano fuzzy closed if (NfClg(a)) = a.

The complement of Nano fuzzy closed set is called Nano fuzzy open.
4. Nano fuzzy Bi-closure Spaces

Definition 4.1: Let X be a non-empty finite set of objects which is called the
universe and R and R, be two equivalence relations on X and A be any fuzzy subset

of X. Then Nano fuzzy closure operator is a function: NfClg,: F(X) — F(X), where
i = {1,2}, and F(X) is the set of all fuzzy subsets of X, such that for all u < 1

R ifus R
NfClg = Bd;(A) if p < Bd;(2)
A; ot erwiseand 0, if u =0,

Where R;’s are elements of R(1) and Bd,’s are elements of Bd(1). Which
satisfies three conditions:

1. NfClRl(o)l) = Ol and NfCle(o)l) = OZ

2.1 < NfClg, (1) and p < NfClg, (1)
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3.NfClg,(n B) = NfClg, (1) NfClg (B)
and

NfClg,(u B) = NfClr,(w) NfClg,(B)
That is there are two fuzzy closure spaces (X, NfClg,) and (X, NfClg,).

Hence, (X, NfClg,, NfClg,) is called Nano fuzzy biclosure space.

Definition 4.2: The elements of Nano fuzzy biclosure space are called Nano
fuzzy open sets in Nano fuzzy bi-closure spaces. The complement of Nano fuzzy
open sets is called Nano fuzzy closed sets with respect to the Nano fuzzy biclosure
space.

Definition 4.3: Let (X, NfClg,, NfClg,) be a Nano fuzzy biclosure space. A
Nano fuzzy biclosure space (Y, NfClg,, NfClg,) is called a Nano fuzzy biclosure
subspace of (X,NfClg ,NfClp,) if Y €X and NfCle = NfClg, Y for each
i ={1,2},j = {3,4} and each fuzzy subset 1 < Y.

Remark 4.4: 1. Nano fuzzy open sets of Nano fuzzy bi-closure space are
open in both Nano fuzzy closure spaces.

2. A fuzzy subset a of a Nano fuzzy bi-closure space (X, NfClg ,NfClg,) is
called Nano fuzzy closed if NfClg, (NfCle (a)) =a.

The complement of Nano fuzzy closed set is called Nano fuzzy open.

3. a is a Nano fuzzy closed subset of Nano fuzzy biclosure space
(X,NfClg,,NfClg,) if and only if a is Nano fuzzy closed subset of both
(X,NfClg,) and (X, NfClg,).

4. Let @ be a Nano fuzzy closed subset of a Nano fuzzy biclosure space
(X,NfClg,,NfClg,)

The following conditions are equivalent.
L NfClg, (NfClg,(0)) = @

2.NfClg (a) = a,NfClg,(a) = a
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Remark 4.5: Let a be a fuzzy subset of a Nano fuzzy biclosure space
(X, NfClg,, NfClg,). If a is a Nano fuzzy open set in (X, NfClg,, NfClg,), then

NfCle, (NfClg,(12 @) = NfClg, (NfClg, (12 @)

Proposition 4.6: Let (X, NfClp ,NfClg,) be a Nano fuzzy biclosure space
and let a < X. Then

1. a is Nano fuzzy open if and only if a =1, (NfClR1 (NfCle(la a)))

2. If a is Nano fuzzy open and a < p, then a < 1, (NfClR1 (NfCle(l;‘L a))).

Proof: 1. Let (X, NfClg,,NfClg,) be a Nano fuzzy biclosure space and let
1 < X and u is Nano fuzzy open then 1, « is Nano fuzzy closed in Nano fuzzy

biclosure space. So, by definition, NfClg, (NfCle(l;l a))=11 a. This

implies that ¢ = 1, (NfClR1 (NfClR2 (1, a'))).
2. By part (1) obvious.

Proposition 4.7: Let (X, NfClg ,NfClg,) is a Nano fuzzy biclosure space.
If @ and B are two Nano fuzzy closed subsets of (X, NfClg, ,NfClg,). Then @ B is
also Nano fuzzy closed in (X, NfClg ,NfClg,).

Proposition 4.8: Let (X, NfClg ,NfClg,) is a Nano fuzzy biclosure space.
If @ and f are two Nano fuzzy closed subsets of (X, NfClg,,NfClg,) then a B is
Nano fuzzy closed if NfClg, and NfClg, are disjoint.

Proof: Let a and B are two Nano fuzzy closed subsets of
(X, NfClg,,NfClg,).

Then NfClg, (NfCle(a)) = and NfClg, (NfClg,(B)) =
Now,

NfClg, (NfClg,(a B)) = NfClg, (NfClz,(@) NfCle,(8)))
= NfCla, (NfCla,(@)) NfCle, (NfCle,(B)) = B
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Therefore @ f is Nano closed if NfClg, and NfClg, are disjoint.

Proposition 4.9: If (Y, NfClg,, NfClg,) is a Nano fuzzy biclosure subspace
of (X,NfClg,,NfClg,), then for every Nano fuzzy open subset 9 of
(X,NfClg,,NfClg,),¥ Y is an Nano fuzzy open setin (Y, NfClg,, NfClg,).

Proof: Let ¥ be a Nano fuzzy open set in (X,NfClg ,NfClg,), then by
property we can say that ¥ is Nano fuzzy open in both NfClg, and NfClg,.
Thus,

NfCle(Y Y Y)=NfClp,(Y 9 Y) YSNfClr(X 9) Y=X 9) Y=
Y (@ Y) foreachi={1,2},j = {3,4}. Consequently, ¥ Y is Nano fuzzy open in
both (Y,NfClg,) and (Y,NfClg,). Therefore, 9 Y is Nano fuzzy open in
(Y,NfClg,, NfClg,).

Proposition 4.10: Let (X, NfClg ,NfClg,) be a Nano fuzzy biclosure space
and let (Y,NfClg,, NfClg,) be a Nano fuzzy biclosure subspace of
(X,NfClg,,NfClg,). If @ is a Nano fuzzy closed subset of (Y, NfClg,,NfClg,),
then «a is also a Nano fuzzy closed subset of (X, NfClg, , NfClg,).

Proof: Let a be a Nano fuzzy closed subset of (Y, NfClg,, NfClg,). Then
NfClg,(a) = a and NfClg, () = a. Since a is Nano fuzzy closed subset of both
(X,NfClg,) and (X,NfClg,).

Consequently, @ is a Nano fuzzy closed subset of both (X,NfClg ) and
(X, NfClg,). Therefore, a is a Nano fuzzy closed subset of (X, NfClg,, NfClg,).
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V. Jeyanthi' | A COMPARATIVE ANALYSIS OF SELJE
. Sotva Namard | TOPOLOGICAL SPACE WITH OTHER
| TOPOLOGICAL SPACES

Abstract: In recent years, numerous topologies have emerged, including the
newly discovered Selje topology, which builds on micro and nano
topologies. This paper offers a comparative analysis of Selje topology,
emphasizing its real-world applications, particularly in analyzing dynamic
systems such as climate change. The fundamental principles that link Selje,
Micro and Nano topologies are discussed. The analysis demonstrates that
Selje topology provides a more refined and flexible framework, allowing for
greater precision in understanding complex, multifactorial systems. Key
findings highlight Selje’s ability to handle intricate interdependencies and
scalability challenges more effectively than nano and micro topologies,
making it especially valuable for studying large datasets and highly
interconnected systems.

Keywords: Selje Topological Space, Micro Topology, Nano Topology,
Scalability, Precision, Inclusion.

Mathematics Subject Classification: 54A05, 54B05.
1. Introduction

Topology, a branch of mathematics focused on studying properties of space that
remain invariant under continuous deformations, has evolved significantly with the
development of specialized topological structures. These structures have become
essential in analyzing complex, multifactorial systems across diverse fields, such as
engineering, medical sciences and, more recently, climate change analysis. Among
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the notable advancements in topological spaces are nano topology, micro topology
and the newly introduced Selje topology. Each of these topologies offers unique
frameworks for examining spatial relationships, continuity and the interaction of
critical variables within complex systems.

Nano topology [12] introduced by Lellis Thivagar in 2013, relies on lower
and upper approximations, providing a binary classification system that identifies
whether elements belong to a critical or non-critical set. This straightforward
structure excels in isolating key spatial elements in relatively simple systems.
However, nano topology struggles with more complex and interdependent systems,
as it cannot fully capture the wide range of possible relationships between elements.
This limitation becomes especially pronounced in systems where variables interact
dynamically and change over time.

To overcome these limitations, micro topology [10] was developed by
Sakkraiveeranan in 2019. Micro topology builds on the framework of nano topology
by incorporating Levine’s generalized closed sets, which allow for more flexible and
detailed approximations. This extension provides a deeper exploration of open and
closed sets, making micro topology better suited for dynamic systems with greater
complexity. While this approach offers a more refined understanding of spatial
relationships, it still encounters difficulties when handling highly multifactorial
systems with overlapping interdependent variables.

In 2023, Selje topology [5] introduced by Jeyanthi and Selva Nandhini,
emerged as a further refinement of nano and micro topologies. It was developed to
address the challenges posed by complex systems where multiple variables interact in
intricate  ways. Selje topology builds on the strengths of its predecessors,
incorporating Selje-open and Selje-closed sets that provide even finer approximations
of spatial elements. This enhanced framework allows for better handling of set
intersections and scalability, making it particularly effective in studying systems that
involve intricate dependencies and relationships among multiple variables.

While climate change analysis represents a key application of Selje topology,
its usefulness extends beyond this field. The topology’s ability to manage
multifactorial systems makes it suitable for other domains as well, including
biological systems where gene interactions and cellular processes are interdependent.
Similarly, in network analysis, Selje topology can provide insights into the intricate
relationships within social or communication networks, where multiple layers of
connection and influence must be considered. By offering a more refined and
adaptable approach to spatial relationships, Selje topology demonstrates significant
potential for analyzing dynamic, interconnected systems across various disciplines.
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This paper presents a comparative analysis of nano, micro and Selje
topologies, focusing on their respective strengths and limitations in addressing the
complexities of climate change. By examining the foundational theorems of each
topology and applying them to climate change impact analysis, this study aims to
show how Selje topology offers a deeper, more flexible understanding of
multifactorial processes. The analysis highlights the critical role of topological
methods in detecting and analyzing the intricate patterns and relationships that define
dynamic systems, emphasizing the practical utility of these frameworks in
contemporary scientific research.

Preliminaries

Definition 2.1: Let U denote a non-empty finite set of objects referred
to as the universe and let R represent an equivalence relation on U known as
the indiscernibility relation. Elements within the same equivalence class are
considered indiscernible from each other. This pair, denoted as (U, R),

constitutes the approximation space.
Let € be a subset of U .

1. The lower approzimation of & with respect to R, denoted as Lz (€),
consists of all objects that can definitively be classified as belonging
to & under the influence of R . In mathematical terms,

Lr(€)=N{R(X): R(X) C &} where R signifies the equivalence class
determined by €.

2. The upper approzimation of € with respect to R , denoted as Ug(€),
comprises all objects that could potentially be classified as € under the

influence of R . Mathematically, Ug (€) = N{R(X): R(X)NE = ®}

3. The boundary region of & with respect to R, denoted as Bgr(€),
includes all objects that cannot be definitively classified as either
belonging to € or not belonging to € wunder the influence of R . In
mathematical terms, Bg (&) = Ur (€) — L (€)
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Definition 2.2: Let U represent the universe,an equivalence relation
on U denote R and Tr(€)={& 0, L (E),Ur(¢),Br(E)}, where € C Y.
Under these conditions, R(X) Proceeding with the given postulates:

1. @ and U belong to T (€).
2. Any subset of the union of elements T (&) remains within Tr(€).

3. Any finite subset of the intersection of elements T (&) is contained
in Tr(€). In other words, Tr (&) forms a topology on B known as the nano
topology on B concerning €. (B, Tr(€)) constitutes the nano topological
space. The sets within Tr(€) are denoted as nano open sets and the dual

nano topology of [T (€)] is represented by [T (€)] .

In this context, Tx(€) is termed the Nano Topology [5] of the universal
set U with respect to the subset €. The pair (U, TR (€)) constitutes a nano

topological space and its constituent elements are referred to as nano-open

sets.

Definition 2.3: (U, % (€)) creates a nanotopological space. In this
case, the set DR(E) consists of  two groups, namely
MU' NY): NN €Z(&)}. The combination Tp(€) is expressed as the
microtopology Q) ; where ) is not nanotopology elements of T (€).

Definition 2.4:  Micro Topology YDR(E)adheres to the following

postulates:

1. Both the universal set (&) and the empty set ® are elements of
pir (€).

2. Any subset of the union of elements of ur(€) remains within g (€).
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3. Any finite subset of the intersection of elements of ug(€)is contained
within  pur(€). Thus, the Micro topology ugr(€) is defined as
pr (@) ={MUM' N )} for M and N € ur(€), where u ¢ Tp(€).

This constitutes the Micro topology on the set U concerning €.

The trio (B, T (€), ur(€)) is denoted as the Micro topological space
and the elements of ugr(€)are known as Mic-open sets. Moreover, the

complement of a Mic-open set is defined as a Mic-closed set.

Next, YDr(€)is called the microtopology of € and U. Triple
(&, TR(€),DR(€)) called micro-topological space. Elements in Yr(E) are

slightly open and their complements are slightly off.

Definition 2.5: Consider the microtopological space (B,Yr(€)) and
Selje topology be defined as SJgx(€)={(S—-J)U(S—-J):S € Yr(€) and for
fived J,J ¢ Pr(€),JUJ =T}

Definition 2.6: The Selje topology SJr (€) satisfies the following axioms

1. Both the universal set B and the empty set ® are elements of T (€).

2. Any subset of the union of elements from SJg(€) remains within

ST ().

3. Any finite subset of the intersection of elements within SJp (&) is
contained within SJg (€) .

The triplet (€,Yx(€),SJz(€))is labeled as Selje topological space.

Then, the components of Selje topology are Selje-Open (SJ -Open) sets and
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their complements are Selje-closed (SJ -closed) sets. The collection of Selje
closed sets of Selje topology is denoted as SJCL(€) .

3. Theoretical Foundations and Comparative Analysis of Nano, Micro and Selje
Topologies

The theorems compare nano, micro and Selje Topological Spaces, showing
that Selje Topology offers finer approximations, better scalability for complex
systems and generalizes the other two. They demonstrate why Selje Topological
Space is superior for handling complex, multifactorial applications with improved
precision and flexibility.

Theorem 3.1 establishes a hierarchical relationship between nano, micro and
Selje Topological Spaces, showing that Selje topological space provides the most
refined approximations, followed by micro and nano topologies. The inclusions
between closures and interiors reflect the increasing precision of each space.

Theorem 3.1: Inclusion in Nano, Micro and Selje Topologies: Let X CU
be a subset in the universe U. The relationships between the approximations in

nano, micro and Selje topologies are given by:

Lp(X) C Mic—cl(X) C SJp—cl(X)
and

SJp—int(X) C Mic—int(X) C Up(X)

where LR(X) and UR(X) are the lower and upper approximations in nano

topology, Mic—cl(X) and Mic—int(X) are the micro closure and interior in
micro topology and SJr —cl(X)and SJp —int(X) are the Selje closure and

interior, respectively.
Proof: In nano topology, Lp (X) C X CUr(X).

In micro topology, Ly (X) C Mic—cl(X) and Mic—int(X) C UR(X).
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In Selje topology, Mic—cl(X) C SJp —cl(X)
and SJp —int(X) C Mic—int(X).
Thus, the theorem follows. O

Lemma 3.2 states that if a function is continuous in nano topology, it will
also be continuous in both micro and Selje topologies. This is because micro and
Selje topologies generalize the structures of nano topology, preserving the continuity
of functions across these spaces.

Lemma 3.2 Preservation of Continuity in Micro and Selje Topologies: If
f:U >V s continuous in nano topology, then f is continuous in both micro

and Selje topological spaces.

Proof: In nano topology, f~(V') € rz(U) for any nano-open set V' C V. In
micro topology, since micro-open sets are unions or intersections of nano-open sets,
f*W') € pug(U). Similarly, in Selje topology, f~1(S") € SJR(U). Hence, f is

continuous in both micro and Selje topologies. (]

Theorem 3.3 demonstrates that Selje Topological Space scales better than
nano and micro topologies. As system complexity increases, Selje retains higher
precision in approximating sets, making it ideal for complex systems.

Scalability here refers to how well the different topologies handle an increase
in system complexity. As the complexity of the dataset (e.g., the number of variables,
the amount of data) increases, the precision of approximations made by each
topology changes.

Theorem 3.3 Scalability of Approximations: For any subset A C U, we
have:

lim precision(SJp —cl(A)) > precision(Mic—cl(A)) > precision(Lp(A))

complexity(A)—>o

. Lp(A
Proof: 1. In nano topology, precision(Lp(A)) _ e} tends to O as

| A

| A|— oo.
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| Mic—cl(A) |
2. In micro topology, precision (Mic—cl(A)) = T , which is more precise
than in nano topology.
: . | STp—cl(A)[ . :
3. In Selje topology, precision (SJ—cl(A)) = T, which remains precise
even as complexity increases. Il

Theorem 3.4 shows that the intersection of Selje-open sets provides a finer
approximation than nano-open or micro-open sets. Selje Topology captures more
intricate relationships, making it more powerful for handling complex data.

Theorem 3.4 Finer Set Operations in Selje Topology: For any subsets

A, BC U, the intersection of Selje-open sets provides a finer approzimation

than the intersection of micro-open or nano-open sets:
SJp—int(AN B) C Mic—int(AN B) C Lr(AN B)

Proof: 1. In nano topology, Lp(ANB)={zcU |z € Ly(A)NLy(B)}.
2. In micro topology, Mic—int(AN B) ={x € U | x € Mic—int(A) N Mic—int(B)} .
3. In Selje topology, SJr—int(ANB)={z €U |z € SIz—int(A)NSJIp—int(B)},

thus, providing a finer approximation. [

The below corollary states that Selje Topological Space generalizes both nano
and micro topologies, but not all Selje-open sets are nano-open or micro-open,
offering a broader and more flexible structure.

Corollary: (Generalization of Nano and Micro Topologies). Selje
Topological Space generalizes both nano and micro topologies. Every nano-
open and micro-open set is a Selje-open set, but not every Selje-open set is

nano-open or Mmicro-open.

Proof: By the definition of Selje Topology, 75(U) C ug(U) C SJz(U),
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meaning all nano-open and micro-open sets belong to the Selje Topology. However,
Selje-open sets can contain additional elements that nano and micro topologies

cannot capture. O

4. Topological Analysis of Climate Change Impact: A Comparative Study Using
Nano, Micro and Selje Topologies

This application focuses on differentiating three topological spaces-nano
topology, micro topology and Selje Topology-through the lens of climate change
impact analysis. Climate change, a multifactorial process, affects various sectors like
agriculture, health and the economy, with factors such as temperature rise, rainfall
patterns and sea level rise influencing different regions in diverse ways.

By modeling these factors within each topological space, we aim to identify
which regions and sectors are most affected. The process involves analyzing key
climate-related variables, applying each topological method to assess their
significance and comparing the results to determine how each topology captures
critical factors. The comparison highlights the strengths of each topology, with
special focus on how Selje Topology refines the relationships between variables,
offering a more detailed and precise analysis compared to nano and micro topologies.
In the end, the betterment of each topological space is analyzed, showing how they
differ in precision, scalability and flexibility in identifying the most impactful factors
of climate change on different regions.

4.1 Methodology for Topological Analysis of Climate Change Impact:
The following structured steps outline the methodology used for applying nano,
micro and Selje topologies to analyze climate change impacts:

Data Preparation: Collected and standardized climate data, focusing on critical
factors such as temperature rise, rainfall patterns, sea level rise, greenhouse gas
emissions, deforestation and other socio-economic variables across various regions
and sectors. This data was organized to ensure consistency and comparability across
different regions.

Topological Space Application: Applied nano, micro and Selje Topological
Spaces to the climate data to assess the relationships between the key factors. The
topologies were used to study how these factors interact and influence one another in
various regions, allowing for the identification of underlying patterns in the data.
Special attention was paid to how the different topological spaces handle these
relationships, particularly their set approximations and scalability.
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+  Critical Factor Identification: Determined the most significant climate-related
factors for each region by analyzing the topological spaces. The analysis focused on
identifying which variables-such as temperature rise, rainfall variability, or
deforestation-had the greatest impact on environmental, economic and health
outcomes in specific regions.

+  Visualization and Analysis: Generated diagrams, tables and comparative metrics
to visualize the relationships between climate factors and the regions they affect.
These visualizations highlight the differences in performance between nano, micro
and Selje topologies. (Add visual aids such as graphs comparing factor influence
across regions for each topology to show how Selje provides deeper insights.)

« Comparison of Topologies: Compared the efficiency and flexibility of nano,
micro and Selje Topologies in analyzing the climate change impact. This comparison
focused on determining which topology provided the most accurate and scalable
analysis for multi- factorial climate systems. Results showed that while all three
topologies identified key variables, Selje topology allowed for more detailed insights
into variable interactions, offering superior scalability and precision in the analysis of
complex datasets.

4.2 Topological Analysis of Climate Change Impact: The table below
presents the data collected for climate change impact analysis. This data is then
processed to compare the performance of nano, micro and Selje Topological Spaces.

Region | Temp- |Rainfall| Sea GHG | Defores-| Agri. | Health| Eco-| Impact
rature | (Ra) | Level | Emis- |tation(D)| Prod. [Impacts nomic | Rate(Ir)
(Te) (SI) | sions (Ap) | (Hi) | Costs
(GHG) (Ec)

Coastal
Regions Medium
(Cn)
Agri
cultural Medium
Lands
(AD
Forested
Areas High
(Fa)
Urban
Areas High
(Ua)
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Region | Temp- |Rainfall| Sea GHG | Defores-
rature | (Ra) | Level

Agri. | Health| Eco-| Impact
(Te) (SD

Emis- |tation(D)| Prod. |Impacts nomic | Rate(Ir)

sions (Ap) | (Hi) | Costs
Island

Nations
(In)
River
Basins
(Rb)
Energy
Sector High
(Es)
Fisheries .
(Fs) High
Tourism
Indus-
try (T1)

Medium

High

High
Health
care Sys-

tems
(Hs)

Medium

Table 1: Impact of Climate Change on Various Regions and Sectors

Let the set of region be € = {Cr,Al,F,Ua,In,Rb,Es,Fs,Ti,Hs}
and

® = {Te,Ra,SI,GHG,De,Ap,Hi,Ec,Ir}.

It splits into two cases where
$H = {Te,Ra,SI,GHG,De,Ap,Hi,Ec} and J = {Ir}
The group of Equivalence types 0/ corresponding to §) is given by

/9 = {{Cr},{ALIn},{Ua},{Fa,Rb,Es},{Ti},{Fs,Hs}},

¢ = {Fa,Ua,Rb,Es,Fs,Ti}

Case 1: When Impact level is High



52 V. JEYANTHI, AND N. SELVA NANDHINI
Tr(€) = {9,°0,{Fa,Ua,Rb,Es,Ti},{Fs,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs} }

Up(&) = {90, {Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},{Al Fs,Hs},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs}}

SJ(€) = {9,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs},

{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Ti},
{Cr,Al,Fa,In,Es,Ti},{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es, Ti},
{AlL,Ua,In},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{AlLFa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},

{ALFs,Hs},{Cr,Al Fa,In,Es,Fs,Hs},{Al Fa,EsFs,Ti,Hs},
{Ua,Rb,Fs,Hs},{Cr,Fa,Ua,In,Rb,Es,Ti,Hs},{Fa,Ua,Rb,Es,Fs, Ti,Hs} }

Phase I: Te is removed

TR(E) = {9,0,{Fa,Ua,Rb,Es},{Al,Fa,Ua,In,Rb,Es,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs} }

Ur(€) = {9,0,{Al},{Fa,Ua,Rb,Es},{Al,Fa,Ua,Rb,Es},
{Al,Fa,Ua,In,Rb,Es,Fs,Ti,Hs} }

SJy(€) = {9,0,{Al},{Al,Fa,Es},{Al,Fa,Es,Ti},{Cr,Al,Fa,InEs,Ti},{Ua,Rb},
{Fa,Ua,Rb,Es},{Fa,Ua,Rb,Es,Ti},{Cr,Fa,Ua,In,Rb,Es,Ti},{Al,Ua,Rb},
{Al,Fa,Ua,Rb,Es},{Fa,Es},{Fa,Es,Ti},{Cr,Fa,n,Es,Ti},
{Al,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},
{Fa,Es},{Fa,Es,Ti},{Al ,Fa,Ua,Rb,Es,Ti},{Cr,Al,Fa,Ua,In,Rb,Es,Ti}}

Phase II: Ra is removed

Tr(®) = {927, {Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}}

Ur(€) = {9,0,{Al},}Fa,Ua,Rb,Es, Ti},{Al ,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs} }

SJy(€) = {D,3,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALUa,Rb,Fs,Hs},
{ALFa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{ALFa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es, Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es Fs,Ti,Hs},{ALFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs}
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Phase III: Sl is removed

TR(E) = {90, {Fa,Rb,Es,Ti},{Cr,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs}}

Up(€&) = {90, {Al},{Fa,Rb,Es,Ti},{Al,Fa,Rb,Es,Ti},{Cr,Fa,Ua,Rb,Es,Fs,Ti,Hs},
{Cr,Al,Fa,Ua,Rb,Es,Fs, Ti,Hs},{Cr,Ua,Fs,Hs},{Cr,Al,Ua,Fs,Hs} }

Sy (€) = {9,0,{Al},{Al,Fa},{AlFa,Es,Ti},{Cr,ALFa,Es,Ti},{Cr,Al},
{Cr,Al,Fa,In,Es,Ti},{Rb},{Fa,Rb},{Fa,Rb,Es,Ti},{Cr,Fa,Rb,Es,Ti},
{ALRb},{AlLFa,Rb},{Al,Fa,Rb,Es,Ti},{Cr,Al,LFa,Rb,Es,Ti},
{Cr,Al,Rb},{Cr,Al,Fa,In,Rb,Es,Ti},{Al,Ua,Rb,Fs,Hs},
{Al,Fa,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},
{Cr,Al,Fa,Ua,Rb,Es,Fs, Ti,Hs},{Ua,Fs,Hs},{Fa,Ua,Fs,Hs},
{Fa,Ua,Es,Fs,Hs},{Cr,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs},
{Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Al,Ua,Fs,Hs} {AlLFa,Ua,Fs,Hs}
{Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Ua,Fs,Hs},
{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs},{Fa},{Fa,Es,Ti},{CrFa,Es,Ti},{Cr},
{Cr,Fa,In,Es,Ti},{Cr,Al,Ua,Rb,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs}}

Phase IV: GHG is removed
Tr(€) = {9,20,{Fa,Rb,Es,Ti},{Fa,Ua,In,Rb,Es,Fs,Ti,Hs},{Fa,Ua,Rb,Fs,Hs} }

Uz(€) = {®,20,{Al},{Fa,Rb,Es,Ti},{Al,Fa,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},
{AlLFa,Rb,Es, Fs,Ti,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al ,Fa,Ua,Rb,Es,Fs,Hs}}

SJ(€) = {@,%0, {Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Fa,Es},{Al,Ua,Rb,Fs,Hs},
{Al,Fa,Ua,Rb,Es,Fs,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},
{Cr,Al,Fa,In,Es,Ti},{AlFa,Es,Ti},{AlLFaEs},{Rb},{CrFa,In,Rb,Es,Ti},
{Fa,Rb,Es,Ti},{Fa,Rb,Es},{AlLRb},{Cr,Al,Fa,In,Rb,Es,Ti},
{AlLFa,Rb,Es,Ti},{AlFa,Rb,Es},{Ua,Rb,Fs,Hs},

{Cr,Al,Fa,In,Rb,Es,Fs, Ti,Hs},{Al,Fa,Rb,Es,Fs,Ti,Hs},
{AlL,Fa,Rb,Es,Fs,Hs}}

Phase V: De is removed

Tr(€) = {9,°0,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs} }
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Ur(€) = {D,0,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al ,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs} }

SJy(€) = {D,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALUa,Rb,Fs,Hs},

{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es, Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es, Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{ALFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs} }

Phase VI: Ap is removed

Tr(€) = {9,°0,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs} }

Ur(€) ={D U, {Al},{Fa,Ua,Rb,Es,Ti},{Al ,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs} }

SJ(€) = {9,3, {Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs},

{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es, Ti},{Fs,Hs},
{Cr,Fa,In,Es, Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{AlLFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs} }

Phase VII: Hi is removed
Tr(€) = {D,0,{Fa,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Ua,Fs,Hs}}

Ur(€) = {D0,{Al},{Fa,Rb,Es,Ti},{AlLFaRb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},
{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Ua,Fs,Hs},{Al,Ua,Fs,Hs}}

SJy(€) = {2,0,{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},{Rb},{Fa,Rb,Es,Ti},
{Cr,Fa,In,Rb,Es,Ti},{Al,Rb},{Al,Fa,Rb,Es,Ti},Cr,Al,Fa,Ua,In,Rb,Es,Ti},
{Ua,Rb,Fs,Hs},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Cr,Fa,Ua,In,Rb,Es,Fs,Ti,Hs},
{ALUa,Rb,Fs,Hs},{Al,Fa,Ua,Es,Fs,Ti,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs},
{Fa,Es,Ti},{Cr,Fa,In,Es,Ti}}
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Phase VIII: Ec is removed
Tr(®) = {9,270, {Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs} }

Up(€) = {®,7, {Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}, {ALLFs,Hs} }

SJy(€) = {9,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALLUa,Rb,Fs,Hs},

{ALFa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{AlFa,Es,Ti},{Cr,AlFa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es, Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{AlLFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs} }

Following the aforementioned analysis of CrRase Cr, it has been determined
that the principal factors affecting climate change impact are Rainfall, Deforestation,

Algricultural Productivity and Economic Crosts.

Case 2: When Impact level is Normal
Tr(€) = {9,°0,{Cr,Al,In},{Cr,Al,In,Fs,Hs},{Fs,Hs} }
Ur(€) = {9,0,{Al},{Cr,Al,In},{Cr,ALIn,Fs,Hs},{Fs,Hs},{Al,Fs,Hs} }

SJ(€) = {®,2,{Al},{Cr,Al},{Cr,ALIn,Ti},{Cr,Al,Fa,In,Es,Ti},{AlLFs,Hs},

{Cr,Al,Fs,Hs},{Cr,AlIn,Fs,Ti,Hs},{Cr,Al,Fa,In,Es,Fs,Ti,Hs},
{Fs,Hs},{Cr,Fs,Hs},{Cr,In,Fs,Ti,Hs},{Cr,Fa,In,Es,Fs,Ti,Hs},

{Cr},{Cr,In,Ti},{Cr,Fa,In,Es,Ti},{Al,Ua,Rb,Fs,Hs},
{Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Ti,Hs} }

Phase I: Te is removed

Tr(€) = {9,°0,{Cr},{Cr,Al,In,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs}
Un(€) = {9,9,{Al},{Cr},{Cr,Al},{Cr,Al,In,Fs,Ti,Hs},{Al,In,Fs,Ti,Hs}

SJy(€) = {®,0,{Cr,Fa,In,Es,Ti},{Cr},{Cr,In,Ti},{In,Ti},{Al,Ua,Rb,Fs,Hs},
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{Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Ti,Hs},

{Al,Ua,In,Rb,Fs, Ti,Hs},{Al},{Cr,Al,Fa,In,Es,Ti},{Cr,Al},{Cr,AlIn,Ti},
{AlIn,Ti},{Al,Fs,Hs} {Cr,Al,Fa,In,Es,Fs,Ti,Hs},{Cr,Al,In,Fs,Ti,Hs},
{ALIn,Fs, Ti,Hs},{Cr,Al,Fs,Hs}}

Phase II: Ra is removed

Tr(®) = {9,20,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}

Ur(€) = {90, {Al},{Fa,Ua,Rb,Es,Ti},{Al Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs} }

SJi(€) = {®,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{Al,Ua,Rb,Fs,Hs},
{AlL,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al,Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},
{Al,Ua,Rb},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},
{Fs,Hs},{Cr,Fa,In,Es Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{Al,Fs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs} }

Phase III: Sl is removed

TR(E) = {9,0,{AlIn} {Cr,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs}}

Ur(&) ={D U, {Al},{Al,In},{Cr,UaFs,Hs},{Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs} }

SJy(€) = {9,%5,{Cr,Fa,In,Es,Ti},{Cr},{In},{Cr,In},{Al,Ua,Rb,Fs,Hs},
{Al,Ua,In,Rb,Fs,Hs},{Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Hs},
{Al},{Cr,ALFa,In,Es,Ti},{Al In},{Cr,Al},{Cr,Al,In},{Ua,FsHs},
{Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Ua,In,Fs,Hs},{Cr,Ua,Fs,Hs},
{Cr,Ua,In,Fs,Hs},{Al,Ua,Fs,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs},
{Al,Ua,In,Fs,Hs},{Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs} }

Phase I'V: GHG is removed

Tr(€) = {9,95,{Cr,ALIn},{Fa,Rb,Es,Fs,Hs},{Cr,Al,Fa,In,Rb,Es,Fs,Ti,Hs} }

Ur(€) = {D,7,{Al},{Cr,Al,In},{Fa,Rb,Es,Fs,Hs},{Al,Fa,Rb,Es,Fs,Hs},
{Cr,Al,Fa,In,Rb,Es,Fs,Hs} }



A COMPARATIVE ANALYSIS OF SELJE TOPOLOGICAL SPACE 57

SJy(€) = {9,0,{Al},{Cr,Al,In},{ALFa,Es},{ALFa,In Es},{Cr,Al,Fa,In,Es,Ti},

{Rb,Fs,Hs},{Cr,In,Rb,Fs,Hs},{Fa,Rb,Es,Fs,Hs},{Fa,In,Rb,Fs,Hs},
{Cr,Fa,In,Rb,Es,Fs,Ti,Hs},{Al,Rb,Fs,Hs},{Cr,Al,In,Rb,Fs,Ti,Hs},
{Al,Fa,Rb,Es,Fs,Hs},{Al Fa,In,Rb,Es,Fs,Hs},
{Cr,Al,Fa,In,Rb,Es,Fs,Ti,Hs},{Cr,In},{Fa,In},{Fa,In,Ti},
{Cr,Fa,In,Es,Ti},{Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,Fs,Rb,Fs,Hs},
{Al,Fa,Rb,Es,Fs,Hs},{Al Fa,In,Rb,Es,Fs,Hs}}

Phase V: De is removed
Tr(€) = {9,20,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}

Up(€) = {®,9,{Al} {Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},
{AlL,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{Al,Fs,Hs}}

SJy(€) = {D,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALUa,Rb,Fs,Hs},
{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{Al Fa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{AlFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs} }

Phase VI: Ap is removed

TR(€) = {9,0,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}}

Un(€) = {97, {Al},{Fa,Ua,Rb,Es,Ti},{Al ,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al ,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs}}

SJy(€) = {P,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALUa,Rb,Fs,Hs},
{ALFa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{AlFa,Es,Ti},{Cr,AlFa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},
{Al,Ua,Rb},{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{AlLFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs}}

Phase VII: Hi is removed
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Tr(€) = {9, {Cr,ALIn},{Cr,Al,Ua,In,Fs,Hs},{Ua,Fs,Hs} }
Un(€) ={D,0, {Al},{Cr,ALIn},{Cr,Al,Ua,In,Fs,Hs},{Ua,Fs,Hs},{Al,Ua,Fs,Hs} }

SJy(€) = {,0,{Cr,Fa,In,Es,Ti},{Cr},{Cr,In},{Al,Ua,Rb,Fs,Hs},
{Cr,Al,Ua,Rb,Fs,Hs},{Cr,Al,Ua,In,Rb,Fs,Hs},{Al},{Cr,Al,Fa,In,Es,Ti},
{Cr,Al},{Cr,Al In},{Al,Ua,Fs,Hs},{Cr,Al,Fa,Ua,In,Es,Fs,Ti,Hs},
{Cr,Al,Ua,Fs,Hs},{Cr,Al,Ua,In,Fs,Hs},
{Ua,Fs,Hs},{Cr,Fa,Ua,In,Es,Fs,Ti,Hs},{Cr,Ua,Fs,Hs},
{Cr,Ua,In,Fs,Hs}}

Phase VIII: Ec is removed

Tr(€) = {9,0,{Fa,Ua,Rb,Es,Ti},{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs}}

Ur(€) = {D,0,{Al},{Fa,Ua,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},
{Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Fs,Hs},{ALFs,Hs} }

SJy(€) = {2,0,{Cr,Fa,In,Es,Ti},{Fa,Es,Ti},{ALUa,Rb,Fs,Hs},
{Al,Fa,Ua,Rb,Es,Fs,Ti,Hs},{Al},{AlFa,Es,Ti},{Cr,Al,Fa,In,Es,Ti},
{Ua,Rb},{Cr,Fa,Ua,In,Rb,Es,Ti},{Fa,Ua,Rb,Es,Ti},{Al,Ua,Rb},
{Cr,Al,Fa,Ua,In,Rb,Es,Ti},{Al,Fa,Ua,Rb,Es,Ti},{Fs,Hs},
{Cr,Fa,In,Es,Fs,Ti,Hs},{Fa,Es,Fs,Ti,Hs},{ALFs,Hs},
{Cr,Al,Fa,In,Es,Fs,Ti,Hs}}

From both Case 1 and Case 2, it is clear that Rainfall, Deforestation,
Agricultural Productivity and Economic Costs play a crucial role in driving climate
change outcomes.

Visualization and Analysis

To provide a clear comparison of the performance of nano, micro and Selje
topologies in identifying critical climate factors, a heat map was generated (see
Figure 1). This visual repre- sentation compares the ability of each topology to detect
key factors, such as temperature rise, rainfall variability and deforestation, across
various regions including Coastal, Agricultural, Urban, Forested and Island regions.
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Heak Map of Topology Performance by Resgion

Teopolegy

Coastal Agriculiural R_a;m Forested slands
Figure 1: Heat Map of Topology Performance by Region

The heat map shows the performance score of each topology, with darker shades
representing better performance in terms of accurately identifying impactful factors.
As seen in the heat map, the Selje topology consistently demonstrates superior
performance across all regions, particularly in complex environments like urban and
forested areas, where multifactorial dependencies are prevalent.

5. Results and Discussion
Comparison of Nano, Micro and Selje Topological Spaces

In this analysis, nano topology, micro topology and Selje topology were
applied to climate change impact factors to assess their efficiency in identifying
critical variables. While all three topologies consistently identified Rainfall,
Deforestation, Agricultural Productivity and Economic Costs as major factors, the
depth of analysis, precision and flexibility differed significantly across the topologies.

Nano Topology
Strengths: Nano topology provides a simple binary classification of critical

climate factors, making it effective for identifying whether a factor is part of a critical
set.
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Weaknesses: Its binary approach cannot capture the complexities of
dynamic systems, leading to limitations in handling multifactorial relationships,
scalability and interdependencies.

Micro Topology

Strengths: Micro topology refines nano topology by introducing micro-open
and micro closed sets, allowing for more nuanced classifications and adaptable
relationships between factors.

Weaknesses: While an improvement, micro topology still struggles with
highly multifactorial systems, lacking the precision needed to fully address the
complex, interconnected nature of climate factors.

Selje Topology

Strengths: Selje topology generalizes both nano and micro topologies,
providing superior flexibility and precision. It uses Selje-open and Selje-closed sets
to capture intricate relationships between climate factors, even in dynamic and
multifactorial systems.

Theorem 1: Demonstrates finer approximations through better handling of
closures and interiors.

Theorem 2: Highlights Selje’s superior scalability, enabling it to handle
complex systems more effectively.

Theorem 3: Proves Selje topology’s ability to capture interdependencies
through finer approximations of set intersections.

Better Performance: Selje topology offers deeper insights into the
variability of climate impacts across regions. Unlike nano and micro, which treat
factors as static, Selje allows for a dynamic understanding of how these factors
fluctuate under different conditions and regions.

Weaknesses: The complexity of Selje topology may be unnecessary for
simpler systems where its precision is not required.

Selje Topology’s Superiority
While all three topologies identified the same major factors, Selje topology

stands out due to its enhanced precision, scalability and ability to capture complex
relationships.
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Precision in Complex Systems: It handles intricate, multifactorial
environments like climate change, providing a finer analysis of the interactions
between key factors.

Scalability: As demonstrated in Theorem 3.3, Selje topology scales well with
system complexity, retaining accuracy even as more variables are introduced.

Handling Nuanced Relationships: Theorem 3.4 shows that Selje topology
excels in analyzing overlapping and interdependent factors, offering a more detailed
understanding of cumulative impacts.

Flexibility: Unlike nano’s rigid binary classification, Selje topology adapts to
uncertainties and changing conditions, making it more versatile for dynamic systems.

6. Conclusion

While nano, micro and Selje topologies all identified the same key climate
factors, Selje topology offers greater analytical power due to its flexibility, precision
and scalability. These qualities make it the optimal choice for analyzing complex,
multifactorial systems like climate change, where relationships between factors are
dynamic and interdependent. Future research could explore Selje topology’s
application in other fields, such as optimizing smart grids or analyzing healthcare
systems, where multifactorial interactions are critical. Its adaptability and precision
make it well-suited for real-world applications in dynamic environments, providing
deeper insights and better handling of complex systems.
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Abstract: The aim of this paper is to introduce a novel concept known as
the Heptapartitioned Neutrosophic Pythagorean Topological spaces and
discussed the fundamental aspects and key properties. This new concept
integrates with existing mathematical structure and its significance in the
broader field of Topology.
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1. Introduction

The fuzzy [15] set concept was introduced by Zadeh in 1965. Later,
F. Smarandache introduced the neutrosophic set, which is a mathematical tool
designed to address problems involving imprecise, indeterminate and inconsistent
data. Smarandache’s neutrosophic set allows the indeterminacy membership function
to operate independently from the truth and falsity membership functions. This
theory has been extensively explored by researchers and has been applied to various
real-life situations that involve uncertainty. Rajesh Chatterjee pioneered the concept
of quadripartitioned single-valued neutrosophic sets. Recently, Das [1] and his team
introduced Quadripartitioned Neutrosophic Topological Spaces by applying topology
to these quadripartitioned neutrosophic sets. Rama Malik [5] and Surapati Pramanik
introduced the concept of the pentapartitioned neutrosophic set and its properties. In



66 V. JEYANTHI AND T. MYTHILI

this set, indeterminacy is divided into three components contradiction, ignorance and
unknown membership functions.

In 2021, R. Radha and A. Stanis Arul Mary [7,8] expanded on the concepts
of pentapartitioned and quadripartitioned neutrosophic sets to develop the
heptapartitioned neutrosophic set [6]. This advancement brought a new dimension to
handle complex indeterminate data by introducing a seven-part partitioning system.
Building on this foundation, V. Jeyanthi and T. Mythili [4] made further strides in
2023 by introducing heptapartitioned neutrosophic topological spaces. Their work
applied topological principles to the heptapartitioned neutrosophic sets, enhancing
their utility in various scientific and mathematical applications. These developments
mark significant progress in the field, offering more sophisticated tools for dealing
with uncertainty and indeterminacy. As a result, researchers now have better methods
to address real-world problems involving complex data. In 1995, F. Smarandache
[14] introduced Seven Symbol-Valued Neutrosophic Logic. When the elements

Ty, T, Fy, Fr, U, C, and G are considered as subsets of [0, 1], this logic evolves into

a numerical system with seven distinct values. This system provides the foundation
for defining the Heptapartitioned Neutrosophic Set and examining its characteristics.
Each of these symbols corresponds to a specific type of membership: absolute truth,
relative truth, contradiction, unknown, ignorance, relative falsity, and absolute falsity,
respectively.

Building on Heptapartitioned Neutrosophic Topological Spaces, the authors have
extended their research to the Heptapartitioned Neutrosophic Pythagorean Set,
incorporating it into the framework of topological spaces. This extension allows us to
explore the properties and implications of this set within the broader context of
topology. Our work now integrates these concepts, offering new insights into their
interaction and application in topological settings.

2. Preliminaries

2.1 Basic Concepts

Definition 2.1.1: Let X be a universe. A Neutrosophic set 4 on X can be
defined as follows:

A={(¢,Tu($), 1a($), Fu(§)) : ¢ € X}

Where TA7]A7FA : X—)[O,l] and OSTA(QI)-I‘IA(Q/)-FFA(Q/)SS

Here, 7,({) is the degree of membership, I,4(¢) is the degree of
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indeterminacy, and F;(¢{) is the degree of nonmembership.

Moreover, T4(¢) and F,({) are dependent neutrosophic components, while

I4(z) is an independent component.

Definition 2.1.2: Let X be a universe. A Quadripartitioned Neutrosophic Set

A with independent neutrosophic components on X is defined as follows:

A={(¢,Ta($);Ca(&),Ua(&), Fa(w)) : & € X}

where TA,CA,UA,FA : X—)[O,l] and OSTA(§)+CA(§)+UA(§)+FA(§) <4.

In this context, T4(¢) represents the degree of truth membership, C4(&)
represents the degree of contradiction membership, U4({) represents the degree of

ignorance membership, and F,({) represents the degree of false membership.

Definition 2.1.3: Let X be a non-empty set. A PNS A over X characterizes
each element { in X by a truth-membership function 7, a contradiction
membership function C,, an ignorance membership function U,, an unknown

membership function K4, and a falsity membership function F,. These functions
satisfy the condition:

0<Ty()+Cald) + KalQ)+Ua(S) + Fa(d) <5
foreach § € X.

Definition 2.1.4: Consider R to be a universe. Then G, a HNS over R is
defined as:

G ={(¢T6(¢), Mc($),Ca($),Ua($), 1c($), Ka(&), F($)) - ¢ € Ry,

where the values 7;(¢), Mg($),Cq($),Uq($),16(S), Kq($), Fp (&) correspond to

the absolute truth membership, relative truth membership, contradiction membership,
unknown membership, ignorance membership, relative falsity membership, and
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absolute falsity membership of ¢, respectively. Here, ¢ is an element of the set R
and each membership value belongs to the interval [0, 1]. Thus,

0<Te(S)+ Mg(S) +Ca(8) +Ua(&) + 16(8) + Ka(§) + Fp(§) <7, V& € R.

Definition 2.1.5: Let X be a universe. A Heptapartitioned Neutrosophic
Pythagorean Set G with T;, Mg, Cg; and Ug as dependent neutrosophic

components and [/, K;, and F; as independent components for G on X is an
object of the form:

G ={(¢,T6(¢), M (<), Ca(£),U(¢), Ic(£), Ka(&), F5(£)) - ¢ € X}

where To(¢) + Fa($) <L Mg(¢)+ Kg($) <1 ,and

(T(9))? +(Ma(9))* +(Ca(&) + (U (&) +Ua(9) + (E(S))? + (F(£)) <3

Here, TG({) represents the degree of absolute truth membership, Mg (<)
represents the degree of relative truth membership, C;({) represents the degree of
contradiction membership, U ({) represents the degree of unknown membership,
I;(&) represents the degree of ignorance membership, K (<) represents the degree

of relative falsity membership, and F;(¢) represents the degree of absolute false
membership.

Definition 2.1.6: A Heptapartitioned Neutrosophic Pythagorean Set (HNPS)
A is contained in another Heptapartitioned Neutrosophic Pythagorean Set B (denoted
as A C B) if and only if the following conditions hold for every element

CeX:Ty(g)<Tp(&), Mu(Q)<Mp(S), Ca(d)<Cp(E), Ual&)2Up(S),
I14(8) 2 Ip(¢E), Ka(¢) < Kp(¢) and Fy(¢) < Fp(4)

Definition 2.1.7: The complement of a Heptapartitioned Neutrosophic
Pythagorean Set (F,G) on X, denoted by (F',G)°, is defined as:

(F,A)°(¢) ={(¢, F6(£),Uq(£),1 - 16(¢),C6(€), T6(&), Mg (§), K (E))} : ¢ € X}
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Definition 2.1.8: Let X be a non-empty set, A and B are two
Heptapartitioned Neutrosophic Pythagorean sets. Then

AUB =[{(max(Ty,Tp), max(My,Mp), max(Cy,Cg), min(Uy, Up),
min(l,, Ig), min(Ky, Kg), min(Fy, Fg): { € X]

AN B =[{(min(Ty, Tp), min(My, Mp), min(Cy, Cp), max(Uy, Up),
max(Iy, Ig), max(Ky, Kp), max(Fy, Fg): ¢ € X]

Definition 2.1.9: A Heptapartitioned neutrosophic set G is called an absolute

Heptapartitioned neutrosophic set if and only if it’s absolute truth-membership,
relative  truth-membership, contradiction-membership, ignorance-membership,
unknown-membership, absolute falsity-membership, and relative falsity-membership
are defined as follows:

To(&)=1, Mg(g)=1, Cg)=1, Ug(()=0, I5({)=0,
Kq(@)=0, and Fy(g)=0

Definition 2.1.10: A Heptapartitioned neutrosophic set G is called a relative
Heptapartitioned neutrosophic set if and only if its absolute truth-membership,
relative  truth-membership, contradiction-membership, ignorance-membership,
unknown-membership, absolute falsity-membership, and relative falsity-membership
are defined as follows:

T;(&)=0, Mg(g)=0, Cg()=0, Ug@)=1, Ig(¢)=1,
Kq(@)=1, and Fy(g)=1

3. Heptapartitioned Neutrosophic Pythagorean Topological Spaces

Definition 3.0.1: A Heptapartitioned Neutrosophic Pythagorean topology on
a non-empty set W is a 7 of Heptapartitioned Neutrosophic Pythagorean sets
satisfying the following axioms.

@ O, 1y €7

(ii) The union of the elements of any sub collection of 7 isin 7.
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(iii)  The intersection of the elements of any finite sub collection 7 is in
The pair (W,7) is called an Heptapartitioned Neutrosophic Pythagorean
Topological Space over W.

Note 3.1: 1. Every member of 7 is called a HNP open set in W.

2. The set Ay is called a HNP closed set in W if A4y € 7¢, where
¢ Z{AWCZAW GT}

Example 3.1: Let W ={c¢,c,c3} and Let Ay, By,Cy be

Heptapartitioned Neutrosophic Pythagorean sets where

Aw ={(c1,0.4,0.2,0.5, 0.3, 0.1, 0.6, 0.2) (cy, 0.6, 0.4, 0.3, 0.2, 0.5, 0.7, 0.1)
(c3,0.5,0.3,0.4, 0.1, 0.2, 0.6, 0.3)}

By ={{c;,0.3,0.5,0.2, 0.4, 0.6, 0.2, 0.7)(cy, 0.7, 0.3, 0.5, 0.1, 0.4, 0.6, 0.2)
(c3,0.6,0.2,0.3,0.5,0.1,0.4, 0.3)}

Cw = {(c;, 0.5, 0.4, 0.6, 0.2, 0.3, 0.7, 0.1){cy, 0.4, 0.6, 0.5, 0.3, 0.2, 0.1, 0.7)
(c3,0.7,0.5,0.3,0.6,0.4, 0.2, 0.1)}

In this example, 7 ={Ay, By, Cyw, Ow,1w} forms a Heptapartitioned
Neutrosophic Pythagoreantopology on W.

Proposition 3.2: Let (W,m) and (W,7y) be two Heptapartitioned
Neutrosophic Pythagorean topological space on W, Then T NTy is an
Heptapartitioned  Neutrosophic  Pythagorean  topology on W  where
71 N7y = {4y : Ay € 71 and Ay € 19}

Obuviously Oy, Ly € 7.
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Let Aw, BW €711 N7y
Then Ay, By € 11 and Ay, By € 19

We know that 7, and 1o are two Heptapartitioned Neutrosophic

Pythagorean topological space W.

Then AW OBW Sl and AW OBW € Ty
Hence, Ayy N By e 11 N1y

Let 7 and 7 are two Heptapartitioned Neutrosophic Pythagorean

topological spaces on W.

Denote Ty v 1 ={Ay UBy : Ayem and Ay €} 7y a1y = {4y N

BW : AWefl Lmd AWeTQ}.

Example 3.3: Let Ay and By be two Heptapartitioned Neutrosophic
Pythagorean topological space on W.

Deﬁne = {OW7 1W7 AW}
7y ={Ow, Ly, By }

Then 71 N1y ={0y, Ly} is a Heptapartitioned Neutrosophic
Pythagorean topological space on W.

But T Uty = {0W7 AW7 BW7 1W}7 T NTg = {0W7 AW? BW7 1W7 AW U BW}
and 71 Vv Ty = {0, 4y, By, Ly, Ay N By}  are not  Heptapartitioned
Neutrosophic Pythagorean topological space on W.
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4. Properties of Heptapartitioned Neutrosophic Pythagorean Topological Spaces

Definition 4.0.1: Let (W,7) be a Heptapartitioned Neutrosophic
Pythagorean topological space on W and let Ay belongs to Heptapartitioned
Neutrosophic Pythagorean set on W. Then the interior of Ay is denoted as
HNPInt (Ay, ) . It is defined by HNPInt (4y ) =U {By € 7: Ay C By }

Definition 4.0.2: Let (IV, 7) be a Heptapartitioned Neutrosophic Pythagorean
topological space on W and let A4y belongs to Heptapartitioned Neutrosophic
Pythagorean set W. Then the clo sure of Ay is denoted as HNPC (4y ). It is

defined by HNPC(Aw) =N {BW eTt: AW - Bw}

Theorem 4.1: Let (W,T) be a Heptapartitioned Neutrosophic
Pythagorean topological space over W. Then the following properties are hold.

(i) Oy and ly are Heptapartitioned Neutrosophic Pythagorean closed

sets over W.

(ii)  The intersection of any number of Heptapartitioned Neutrosophic
Pythagorean closed set is a Heptapartitioned Neutrosophic

Pythagorean closed set over W.

(iii) The union of any two Heptapartitioned Neutrosophic Pythagorean
closed set is an Heptapartitioned Neutrosophic Pythagorean closed

set over W.
Proof: It is obviously true. [

Theorem 4.2: Let (W,7) be a Heptapartitioned Neutrosophic
Pythagorean topological space over W and Let Ay € Heptapartitioned

Neutrosophic Pythagorean topological space. Then the following properties
hold.
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(i)  HNPInt(4y) C Ay
(ii) Ay C By implies HNPInt (Ay ) C HNPInt(By) .
(ili) HNPInt(4,)e .
(iv) Ay is a HNP open set implies HNPInt (Ay) = Ay .
(v) HNPInt( HNPInt(AW)) = HNPInt(Ay)
(vi) HNPInt(0y) = Oy, HNPInt(Ly) =Ly .

Proof: (i) and (ii) are obviously true.

(iii) obviously U{By € T: By C A, } €T
Note that U {By, € 7: By C A,} = HNPInt (4y)
Therefore, HNPInt(A4y ) € 7

(iv) Necessity: Let Ay be a HNP open set. ie., Ay € 7 By (i) and (ii)
HNPInt (4y) C 4, .

Since 4y € 7 and Ay C A,
Then Ay U {By € 7: By C A,} = HNPInt (4y)
Ay € HNPInt (4y)

Thus, HNPInt = 4,,.

Sufficiency: Let HNPInt (4, ) = A,
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By (iii) HNPInt(A, ) € 7 ie., A, is a HNP open set.
(v) To prove HNPInt (HNPInt(A,)) = HNPInt(A,)
By (iii) HNPInt(A4,) € 7.

By (iv) HNPInt (HNPInt(4,)) = HNPInt(4,).

We know that Oy, and 1y, arein 7

By (iv) HNPInt (Oy ) = Oy, HNPInt (1) = 1y .

Hence, the result.

O

Theorem 4.3: Let (W,7) be a Heptapartitioned Neutrosophic

Pythagorean topological space over W and Let Ay, is in the Heptapartitioned

Neutrosophic Pythagorean topological space. Then the following properties

hold.

(1)

(i)

(iii)

(iv)

)

(vi)

Ay C HNPCI (Ay)
Ay C By implies HNPCI(Ay) C HNPCI(By,).

HNPCI(Ay ) €.

Ay is a HNP closed set implies HNPCIl(Ay ) = Ay .

HNPCI(HNPCI(Ay)) = HNPCI(Ay)

Proof: (i) and (ii) are obviously true.
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(iii) By theorem, HNPCl (ch) eET.
Therefore, [HNPCI(Ay)] = (N{By € 7° : By C A,})"
= U{By €7:By C A} = HNPInt(4;°).
Therefore,[HNPCI1 (A )] € 7.

(iv) Necessity:

By theorem, Ay C HNPCI(4y)

Let Ay be a HNP closed set. ie., Ay € 7¢
Since, Ay € 7 and Ay C A,

HNPCI (4y) =N {Byez: 4y C A,}
HNPCI (Ay ) C A,

Thus, A, = HNPCI1(A4,)

Sufficiency: This is obviously true by (iii)

(v) and (vi) can be proved by (iii) and (iv).

75

U

Theorem 4.4: Let (W,7) be a Heptapartitioned Neutrosophic

Pythagorean topological space over W and Let Ay, By

are

m

Heptapartitioned Neutrosophic Pythagorean topological space W. Then the

following properties hold.

(1)

HNPInt (Ay) N HNPInt (By) = HNPInt (Ay 0 By )
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(i)  HNPInt(Ay)U HNPInt(By) C HNPInt (Ay U By)
(iiiy HNPCI(Ay) U HNPCI(By) C HNPCI(Ay U By)
(iv) HNPCI(Ay U By) C HNPCI(Ay) N HNPCI(By)
(v) (HNPInt(Ay))° = HNPCI(Ay©)

(vi) (HNPCI(Ay)) = HNPInt(Ay°)

Proof: (i) Since Ay N By C A, for any win W

By theorem, HNPInt (Ay N By ) € HNPInt (Ay )

Similarly, HNPInt( 4y N By ) € HNPInt ( By )

HNPInt (4y N By ) € HNPInt (4y) N HNPInt (By)

By theorem, HNPInt (A ) C AW and HNPInt(By ) C By
Thus, HNPInt (Ay N By) C Ay N By

Therefore, HNPInt (4y,) N HNPInt (B, ) = HNPInt (4 N By)
Similarly we can prove (ii),(iii) and (iv).

(v) (HNPInt(4y))" = (N{By € 7: By C 4,})4,

=N{By €7°: Ay° C B,}

= HNPCI(A,°)
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Similarly we can prove (vi). (]

Example 4.5: Let W ={c, &} and Let Ay, By, Cy be

Heptapartitioned Neutrosophic Pythagorean sets where

Ay ={{¢1,0.3,0.2,0.1,0.4, 0.3, 0.2, 0.1){cy, 0.4, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2)}
By ={{¢;,0.2,0.3,0.2,0.3,0.2, 0.1, 0.2)(cy, 0.3, 0.4, 0.1, 0.4, 0.3, 0.2, 0.1)}
Cyw ={{c;,0.4,0.3,0.2,0.3,0.2,0.1, 0.3)(¢y, 0.3, 0.4, 0.1, 0.3, 0.2, 0.1, 0.2)}

7 ={4y, By, Cw, Ow, Ly} is an Heptapartitioned Neutrosophic Pythagorean

topology on W.

(i)  HNPInt(A4y ) = Oy = HNPInt (4y)
Then Ay U By =Cy
HNPInt (4y ) U HNPInt (By,) = Oy U Oy = O
And HNPInt(Ay U By ) = HNPInt(Cy) = Cy
HNPInt (4y ) U HNPInt(By ) # HNPInt (Ay U By )

(il) HNPCI(By ) = (HNPCI(By))® =0y° =1y
HNPInt (Ay ) N HNPInt (By ) =1y N 1y =1y,
Similarly, HNPCI(A4y° N By ) = HNPCI(4y° N By©)
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= Oy*
HNPCI(Ay® N By®) # HNPInt (4y)° N HNPInt (BW)°

5. Conclusion

Here, the authors explore the properties of Heptapartitioned Neutrosophic
Pythagorean Topological Spaces. They delve into the theoretical aspects of these
spaces, examining their unique characteristics and behavior. Here also applied in real
life problems, demonstrating its practical utility. By integrating these topological
spaces into various real world scenarios, they showcase the versatility and
effectiveness of Heptapartitioned Neutrosophic Topological Spaces in solving
complex issues. The research highlights the potential of this novel approach in both
theoretical and applied contexts.
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Abstract: This paper presents a novel fixed-point framework on Hilbert
manifolds, called Axion. The local and global structure of manifolds can be
better understood by using contraction mappings to define axion points. By
using an Axion structure (a, W,T"), where W is a diffeomorphism and I" is
its inverse meeting a contraction condition, the Axion Fixed Point Theorem
extends conventional fixed-point findings to infinite-dimensional spaces. By
establishing the existence and uniqueness of axion points, this approach
advances our knowledge of fixed points in functional spaces.
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1. Introduction and Preliminaries

A Hilbert space is an infinite-dimensional generalization of Euclidean space,
equipped with an inner product that induces a norm and a complete metric topology.
Fixed point theorems are essential in analysis, topology, and geometry, providing
fundamental results in nonlinear functional analysis, differential equations, and
dynamical systems. The Banach Fixed Point Theorem, one of the most well-known
results, guarantees the existence and uniqueness of fixed points under contraction
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mappings in complete metric spaces. In 1956, Nash established the fundamental
theory for embedding abstract Riemannian manifolds into Euclidean spaces, which
remains a cornerstone in differential geometry [10]. A few years later, Hamilton
(1982) contributed critical insights into curvature evolution, significantly influencing
modern perspectives in differential geometry and general relativity [6]. In 2006,
Chavel provided an extensive treatment of modern Riemannian geometry, focusing
on embedding theorems and geometric flows [5]. Lee (2013) presented a
contemporary perspective on smooth manifolds and Lie groups, which has been
instrumental in advancing research in differential structures [8]. Between 2020 and
2024, significant progress was made in isometric embeddings and Hilbert manifold
structures. Chattopadhyay ef al. (2020) investigated the isometric embeddability of
S into Sy, contributing to a deeper understanding of embeddings between finite-
dimensional spaces [4]. In 2024, Capdeville examined the isometric embeddings of
n-point spaces for n < 4, laying the groundwork for further studies in discrete metric
spaces [3]. Looking ahead to 2025, Madhan Velayuthan and Jeyanthi Venkatapathy
have extended embedding theories by addressing diffeomorphic embeddings of
higher-dimensional Hilbert manifolds into Hilbert spaces. Their work introduces
innovative techniques for handling infinite-dimensional structures and preserving
geometric and topological properties [9].

Definition 1.1 ([8]): A topological space M is called an n-dimensional

manifold if:

1. Local FEuclidean Property: Vp € M,3 a neighborhood U C M

and a homeomorphism o :U — V CR", such that o and o -1 are

continuous.

2. Hausdorff Property: M is Hausdorff, i.e., ¥Vp, ¢ € M, p # ¢q,3

disjoint open sets U,, U, such that p €U, and ¢ €U, .

3. Second-Countability: The topology of M has a countable basis.

If, in addition, M is equipped with an atlas {(U;,0;)}ey such that

for any two overlapping charts (U;,0;) and (Uy, o), the transition maps
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o} © 0]71 co;(U; NU,) = o (U; N Uy) are infinitely differentiable (C*), then

M is called a smooth manifold.

Definition 1.2 ([5]): A Hilbert manifold H,, is a smooth manifold
modeled on an Hilbert space H . Specifically, H y, satisfies:

1. 3 an atlas {(Uy, 064)} aecu such ~ that  each  chart

o,:U, >0,U,) CH is a bijective homeomorphism mapping onto

an open subset of 'H .

2. Transition maps between overlapping charts,
opoo, 10,U, UUg) > 05U, NUp), are infinitely differentiable
(C”).

3. The topology of H,, is induced by H, i.e.,, ACH,, is open if and

only if o,(A) is open in H for each chart o, .

Definition 1.3 [9]: Let M and N be Hilbert manifolds. A mapping
U: M—> N is called a diffeomorphism if it satisfies the following

conditions:

1. Bijectivity: The map ¥ is a bijection, meaning it is both injective

and surjective.

2. Smoothness: The map WV is infinitely differentiable, i.e.,
UelC?(MN).

3. Smooth Inverse: The inverse mapping V' : N' > M exists and is
also smooth, ensuring that W establishes a smooth one-to-one

correspondence between M and N .
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If such a map exists, we say that M and N are diffeomorphic,
denoted as M= N .

Definition 1.4 [8]: Given a local chart ¢, : U, —>V, CH, the induced
metric on U, is defined by dpy(z,y) =l 9o (2) = 9o (y) [l 3, where ||-lly

denotes the norm in the Hilbert space H.

Theorem 1.5 ([8]): Let S; be a complete metric space and let

C:S;—>S; be a contraction mapping, i.e, 3Jce€[0,1] such that
d(C(h),C(t)) < c-d(h,t),Yh, t€S;. Then, C has a wunique fized point
h* € Sd'

2. Axion Fixed Point Theorem

This section presents new definition Axion and Axion fixed point theorem.

Definition 2.1: Let M be a Hilbert manifold modeled on a Hilbert
space H, with an atlas{(Uy,, ¢4)} aca- An Azion is an ordered triplet

(a, ¥, T) satisfying:

1. Accumulation: a € M is an accumulation point of S C M, i.e.,

VUI'CM,acU =UNS =@ .

2. Smooth Chart: 3 a chart (Uy,p,) with a €U, and a smooth
diffeomorphism ¥ :U, — V¥ (U,) C H .

3. Imnverse Mapping: T =V~! :W(U,)— U, is smooth.

The set of all Azions X ={(a,V,1)|V:Ua —>VY{U,) is a
diffeomorphism, T' = U1},
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Theorem 2.2 (Axion Fixed Point Theorem): Let (a, ¥, ") be an Azion in

a Hilbert manifold M with respect to a chart (U, ¢, ), where:
1. v:U, -V ({U,)CH is a smooth diffeomorphism.
2. T':¥v(U,)—>U, isthe inverse of ¥, i.e.,I' = ¥~! .

3. I' satisfies the contraction condition: 3 a constant ¢ € [0,1) such

that dp(I(2),I(y)) < c-dp(z,y), Vo, y€U,.
Then, 3 a unique fized point a* € U, such that T'(a*)=a".

Proof: The local chart ¢, : U, — V, C 'H induces a metric on U, defined
by: dy(z,y) =1l ¢ (z) — s (y) ll3¢, where |||l is the norm in . This metric

provides a distance measure for elements of U, . To apply the Banach Fixed

Point Theorem, we must show that (U,, d,) is a complete metric space. Let (z,,)

be a Cauchy sequence in U, with respect to d,,. By definition,

d/\/l(xnv xm) =l Soa(xn> - Soa(xm) Il

Since, (x,,) is Cauchy in U, , the sequence ¢, (z, ) is Cauchy in H . Since,
‘H is a Hilbert space, it is complete, and thus, 3 a limit point y € H such that:

©g(T,) >y as n — . Since, ¥ = ¢, "isa diffeomorphism. By the continuity of

Uz, =¥(p,(x,)) > ¥(y) as n —> o. Since y € ¥(U,), we have ¥(y) € U,,
proving that U, is complete. By assumption, Jc¢€[0,1) such that:

dp(T(z),T(y)) < c-dpy(,y), Ve, yeU,. This confirms that ' is a strict

contraction mapping.

Since (U,,dy,) is a complete metric space and I' is a contraction, the

Banach Contraction Theorem guarantees the existence of a unique fixed point
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a* € U, such that: T'(a*) = a*. Suppose there exist two fixed points a;, ay € U,

such that I'(a;) = a; and T'(ay) = ay .
Then, dy(ay, ag) = dp(I(ar), I(ag)) < c-dpy(ay, ag) -
Since, ¢ € [0,1), it follows that dy(a;, ay) = 0, implying a; = a,.
Thus, the fixed point is unique. (]

3. Conclusion

The Axion triplet (a, ¥, I') is introduced in the Axion fixed point Theorem,

which extends the standard Banach fixed point theorem to Hilbert manifolds. This
framework preserves the underlying geometric structure of the manifold while
enabling the analysis of contraction mappings inside local charts. In order to provide
stability under smooth transformations, the theorem ensures that fixed points for such
mappings exist and are unique. The Banach contraction theorem is used in the proof
to demonstrate convergence, taking use of the contraction quality of I and the
completeness of the induced metric space.
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Abstract. In this paper we investigate properties of para-Sasakian manifold
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Key words and phrases: Para-Sasakian Manifold, Schouten-van Kampen
Connection, Conformal Ricci Soliton, Conformal
n-Ricci Soliton.

Mathematics Subject Classification (2020) No.: 53C15, 53C25.
1. Introduction

In 1979, the notion of para-Sasakian (briefly, P-Sasakian) and special para-
Sasakian (briefly, SP-Sasakian) manifolds were introduced by Sato and Matsumoto
[28]. Later, Adati and Matsumoto investigate some interesting results on P-Sasakian
manifolds and SP-Sasakian manifolds in [1]. The properties of para-Sasakian
manifold have been studied by many authors. For instance, we see [2, 16, 17, 19, 27,
30] and their references.

The notion of Schouten-van Kampen connection (shortly, SVK-connection)
was introduced in the third decade of last century for a study of non-holomorphic
manifolds [29, 37]. In 2006, Bejancu [3] studied Schouten-van Kampen connection
on Foliated manifolds. Recently, Biswas and Baisya [4, 5] investigated some
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properties of pesudo symmetric Sasakian manifolds with respect to SVK-
connectiopn. Most recently, this connection has been introduced on para-Sasakian
manifold by Sundriyal and Upreti [31]. They studied projective curvature tensor,
concircular curvature tensor and Nijenhuis tensor for the para-sasakian manifold with

respect to this connection. SVK-connection (V) for an n-dimensional almost contact
metric manifold M equipped with an almost contact metric structure (¢,&,7,9)
consisting of a (1, 1) tensor field ¢, a vector field £, a 1-form 7 and a Riemannian
metric g , is defined by

VxV =VxY +(Vyn)(YV)E—n(Y)VyE, (1.1)

forall X,Y € y (M), where y(M) is the set of all vector fields on M and V being

the Levi-Civita connection on M .

The concept of Ricci flow was first introduced by R. S. Hamilton in the early
1980s. Hamilton [13] observed that the Ricci flow is an excellent tool for simplifying
the structure of a manifold. It is the process which deforms the metric of a
Riemannian manifold by smoothing out the irregularities. The Ricci flow equation is
given by

og
— =-29, 1.2
Py (1.2)

where ¢ is a Riemannian metric, S is Ricci tensor and ¢ is time. The solitons for the

Ricci flow is the solutions of the above equation, where the metrices at different
times differ by a diffeomorphism of the manifold. A Ricci soliton is represented by a

triple (g,V,4), where V is a vector field and A is a scalar, which satisfies the
equation
Lyg+25+24¢9g=0, (1.3)

where S is Ricci curvature tensor and I;,g denotes the Lie derivative of g along the
vector field V. A Ricci soliton is said to be shrinking, steady, expanding according

asA <0, A=0, A>0, respectively. The vector field V is called potential vector
field and if it is a gradient of a smooth function, then the Ricci soliton (g,V, 1) is

called a gradient Ricci soliton and the associated function is called the potential
function. Ricci soliton was further studied by many researchers. For instance, we see
[18, 25, 35, 36] and their references.
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In 2005, Fischer [12] introduced conformal Ricci flow which is a general-
isation of the Ricci flow equation that modifies the unit volume constraint to a scalar
curvature constraint. The conformal Ricci flow equation is given by

9 9)__
Py +2(S+nj Dg (1.4)
r(g) =-1 (1.5)

where 7(g) is the scalar curvature of the manifold, p is a non-dynamical scalar field

and n is the dimension of the manifold. In 2015, corresponding to the conformal
Ricci flow equation, Basu and Bhattacharyya [7] introduced the notion of conformal
Ricci soliton as a generalisation of Ricci soliton and it is given by

ng+25+{2/1—(p+2ﬂg=0, (1.6)
n

where A is a constant.

As a generalization of Ricci soliton, the 7 -Ricci soliton was introduced by

Cho and Kimura [9]. This notion has also been studied by Célin and Crasmarearu
[10]. Later, remarkable studies on 7 -Ricci soliton have been made by Blaga [6] and

Prakasha [24]. Let M be a Riemannian manifold with structure (¢, &, 7, g) . Consider

the equation
Lyg+25+24g+2un®n =0, (1.7)

where S is Ricci curvature tensor, Ljg denotes the Lie derivative of ¢ along the
vector field V', A and p are real constants. The data (g,V, A, 1) which satisfies the
equation (1.7) is called an 7 -Ricci soliton on M . In particular, when p =0, the

notion of #-Ricci soliton simply reduces to the notion of Ricci soliton. And when
w#0, (g,V,A, ) is called proper 7 -Ricci soliton on M .

In 2018, Siddiqi [34] introduced the notion of conformal 7 -Ricci soliton as
ng+254{2/1—(p+zﬂg+2ﬂn®n=0, (1.8)
n

where Ly g denotes the Lie derivative of g along the vector field V, A4 and § are real
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constants and p is a non-dynamical scalar field.

Definition 1.1: Let F and Q be two tensors of rank 4. A Riemanian
manifold (or, pseudo Riemannian manifold) M is said to be ) -semisymmetric

type if F(X,Y).Q =0 for all smooth vector fields X, Y on M, where F acts on

Q as derivation of tensor algebra.

In the above definition if we consider F =) = R, then the manifold M is
called semi-symmetric [32]. Semi-symmetry and other conditions of semi-symmetry
type are studied in detail in [8, 15, 20, 33]. In 2013, Kundu and Shaikh [26]
investigated the equivalency of the various geometric structures depending on
conditions of semi-symmetry. They have established the following conditions

(i) EER=0, EEP=0, EE=0, E.P=0, EM=0, EW, =0 and

EW7i=0 (forall i=12,...9) are equivalent and named such a class by

Cy;

(i) R.R=0, R.P=0, RE=0, R.P=0, RM=0, RW;=0 and
R.W3i=0 (forall i=12, ...... 9 ) are equivalent and named such a class

by Cy;

(i) R.K =0 and R.C =0 are equivalent and named such a class by Cj;

(iv) E.C =0 and E.K = 0 are equivalent and named such a class by Cj;

where the symbols C, E, P, K, M and Wi stand for conformal curvature tensor [11],

concircular curvature tensor [38], projective curvature tensor [38], conharmonic
curvature tensor [14], M-projective curvature tensor [22], Wi -curvature tensor [21,

22, 23] and W -curvature tensor [22], respectively.

C(X,Y)=R(X,Y)
1

n—

r

2{(X/\g QY)+(QX A, Y)+n_1

(XA, Y)} , (1.9)
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r

E(X,Y)=R(X,Y)- (XA, Y),

n(n —1)

L xn, ).

n—1
1

n —

P(X,Y)=R(X,Y)-

K(X,Y)=R(X,Y)-

5 (XA, QY)+(QX A, Y],
1
2(n-1)

1

n—1

M(X,Y) = R(X,Y) - [(X Ay QY)+(QX A, Y],

Wy(X,Y) = R(X,Y) -

(X Ay QY),

Wi(X.Y) = RIX.Y) + —— (X A, QY),
n_
L (xns 1),

n-—1

W (X,Y)=R(X,)Y)-

1
(X NgY),
n—1

WIHX,Y) = R(X,Y)+
Wy(X,Y) = R(X,Y)
1

n—2

Wi(X,Y)=R(X,Y)

[(QX A, Y)+(X A, QY)=(X AgY)],

+

[(QX A, Y)+(X A, QY) = (X Ag V)],

n—2
1
n—1
1
n—1
1
n—1
1
n—1
1

n—1

Ws(X,Y)=R(X,Y) - (Y n, QX),

WE(X,Y) = R(X,Y) +

¥ A, QX),

W (X,Y) = R(X,Y) - (X Ay QY) = (X Ag Y],

WEX,Y) = R(X,Y) +

(X Ay QY) = (X Ag Y],

W(X,Y) = R(X,Y) +

[(QX Ay Y) = (X Ag Y],

93

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)
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WEX,Y) = R(X,Y) -
W(X,Y)Z = R(X,Y)Z -
WiH(X,Y)Z = R(X,Y)Z +
We(X,Y)Z = R(X,Y)Z -
Wi(X,Y)Z = R(X,Y)Z +
We(X,Y)Z = R(X,Y)Z -
WHX,Y)Z = R(X,Y)Z +
Wo(X,Y)Z = R(X,Y)Z -

WX, Y)Z = R(X,Y)Z +

where

1
n—1
1

n —

[(QX A, V)= (X As Y)],

1[9(X»Z)QY—9(X»Y)QZ],

[g(X,Z)QY—g(X,Y)QZ],

n—1
1
n—1
1
n—1
1
n—1
1

n—1

[S(X,Z)QY—g(X,Y)QZ],

[S(Y7 Z)X - g(X, Y)QZ] P

[S(YvZ)X —g(X,Y)Z],

[S(Y,Z)X—g(X,Y)Z],

[S(Xv Y>Z - g(Y7 Z)QX],

n—1

[S(X? Y)Z - g(Y, Z)QXL

n—1

(X Ap Y)Z=D(Y,2)X - D(X,2)Y .

A. MANDAL, A.H. SARKAR, M. MALLIK, A. DAS, & S.K. DATTA

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

for all X,Y,Z € y(M), where R is the Riemannian curvature tensor of type (1, 3)
and r is the scalar curvature.

Definition 1.2:

manifold if its Ricci tensor is of the form

SY.,Z)=kg(Y,Z),

forall Y.Z € y(M), where k being a scalar.

manifold if its Ricci tensor is of the form

S, 2)=hg(Y,2)+bn(Y)n(2),

A para-Sasakian manifold M is called an Finstein

Definition 1.3: A para-Sasakian manifold M is called an 7 -Einstein
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forall Y,Z € y(M), where Iy, b, are scalars.

Definition 1.4: A para-Sasakian manifold M is called a generalized

n -Einstein manifold if its Ricci tensor is of the form
SY,2)=kg(Y,Z)+ kyn(Y)n(2) + k39(Y, 9 Z),

forall Y,Z € (M), where ky, ky and k3 are scalars.

This paper is structured as follows:

First two sections of the paper has been kept for introduction and
preliminaries. In Section-3, we study properties of para-Sasakian manifold with
respect to SVK-connection. In Section-4, we introduce conformal Ricci soliton on
para-Sasakian manifold with respect to SVK-connection. In Section-5, we study
conformal #-Ricci soliton on para-Sasakian manifold with respect to
SVK-connection. Section-6 concerns with conformal #-Ricci soliton with respect to

SVK-connection on para-Sasakian manifolds of class C;, Cy, C5 and C}.
2. Preliminaries

Let M be an n-dimensional differentiable manifold with structure (¢, &, 7),
where 7 is a l-form, &£ is the structure vector field, ¢ is a (1, 1)-tensor field
satisfying [28]

¢P*(X) = X -n(X)&, n(¢)=1 (2.1)
¢(&) =000 =0, (2.2)

for all vector field X on M is called almost paracontact manifold. If an almost
paracontact manifold M with structure (¢,&,7) admits a pseudo-Riemannian metric

g such that [39]
9(0X,9Y) = —g(X,Y) +n(X)n(Y), (2.3)

then we say that M is an almost paracontact metric manifold with an almost
paracontact metric structure (¢, £, 7, g) . From (2.3) one can deduce that
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9(X,9Y) =—g(¢ X,Y), (2:4)
9(X;¢) = n(&). (2.5)

An almost paracontact metric structure of M becomes a paracontact metric
structure [39] if

9(X,¢0Y) =dn(X,Y),

for all vector fields X ,Y on M , where

1
dn (X,Y) = A Xn (V) =Y (X) = ([X,Y])}-
The manifold M is called a para-Sasakian manifold if

(Vxp)Y =—g(X,Y)E+n(Y)X, (2.6)
for any smooth vector fields X,Y on M .

In a para-Sasakian manifold the following relations also hold [39]

(Vxn)Y =g(X,0Y),Vx&=-0X, 2.7
n(R(X,Y)Z)=g(X,2)n(Y)=-g(Y,Z)n(X), 28
RX,Y)E=n(X)Y -n(Y)X, 29
R(EX)Y =-g(X,Y)S+n(Y)X, (2.10)
R(X,Q)Y =g(X, V)5 -n(Y) X, 211
R(¢,X)¢=X-n(X)¢, (2.12)
S(X,¢) == (n-Dn(X), (2.13)
5(,¢)==(n-1), Q== (n-1)¢, (2.14)

S@X, ¢Y)=S(X,)Y)+(n-)n(X)n). (2.15)
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for any smooth vector fields X,Y,Z onM .

3. Schouten-Van Kampen Connection on Para-Sasakian Manifolds

In this section we get the relation between SVK-connection and Levi-Civita
connection on para-Sasakian manifold M . Then we obtain Rie-mannian curvature
tensor, Ricci curvature tensor, Ricci operator and scalar curvature of M with respect
to the SVK-connection. We also establish here the first Bianchi identity with respect
to SVK-connection on M .

In view of (1.1), (2.7) and (2.5), we get the expression for SVK-connection
in a para-Sasakian manifold M as

VxV =VxY +g(X,0Y)E+n(Y)o X, 3.1
with torsion tensor

T(X,Y)=29(X,0Y)E+n(Y)oX —n(X)oY .
On para-Sasakian manifold the connection V has the following properties
Vx&=0,(Vxn)Y = g(¢X.,Y), (3.2)
(Vxg)(Y,2) = g(¢X,Y)n(Z) + g (oY, Z)n (X). (3.3)
forall X,Y € y(M).

Proposition 3.1: The SVK-connection on a para-Sasakian manifold is
non metric compatible connection.
Proposition 3.2: The SVK-connection on a para-Sasakian manifold is

non symmetric connection.

Proposition 3.3: The structure vector field of a para-Sasakian manifold

1s parallel with respect to SVK-connection.

Let R be the Riemannian curvature tensor with respect to SVK-connection
on a para-Sasakian manifold defined as



98 A. MANDAL, A.H. SARKAR, M. MALLIK, A. DAS, & S.K. DATTA
R(X,Y)Z =VxVyZ-VyVxZ -Vixy\Z. (3.4)

Then using (2.6), (2.7) and (3.1) in (3.4) we get

R(X,Y)Z =R(X,Y)Z+g(Y,Z)n(X)§-g(X,Z)n(Y)&
+g(X7¢Z)¢Y_g(Y7¢Z)¢X
+n(Y)n(2)X —n(X)n(2)Y . (3.5

Writing the equation (3.5) by cyclic permutations of X,Y and Z and using
the fact that R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0, we have

RIX.Y)Z+R(Y,Z)X+R(Z,X)Y =0,
forall X,Y,Z € y(M).

Taking inner product of (3.5) with a vector field U and contracting over X
and U we get

where S denotes Ricci curvature tensor with respect to V and 1 = trace(¢).

Proposition 3.4: The SVK-connection on para-Sasakian manifold

satisfies the first Bianchi identity.

Lemma 3.5: Let M be an n-dimensional para-Sasakian manifold

admitting SVK-connection, then
R(X,8)Z =-29(X,2)¢ +n(2)X], (3.8)

§(X,8)=0=5(Y), (3.9)
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QX =QX +(n-1)n(X)E+9Xyy, QE=0, (3.10)
F=r+(mn-1-y2, (3.11)

for all X,Y,Z € y(M), where R, Q and T denote Riemannian curvature

tensor, Ricci operator and scalar curvature with respect to V , respectively.

Remark 3.6: Figen value of Ricci operator with respect to SVK-

connection corresponding to the eigen vector & is zero.

4. Conformal Ricci Soliton on Para-Sasakian Manifold with Respect to
SVK-Connection

In this section we find a para-Sasakian manifold M admitting conformal
Ricci soliton with respect to SVK-connection in which the potential vector field
being pointwise collinear with the structure vector field of M .

Let V = a¢é, where a is some non-zero smooth function. Taking covariant
derivative of V' in the direction of X and using (2.7) we get

ViV=X(a)é-apX. 4.1
In view of (3.1) and (4.1) we have

ViV=X(a)&-adX + g(X,¢V)E+n(V)oX. (4.2)

Writing equation (1.6) with respect to SVK-connection we have

0= (Tyg)(X,Y) +25 (X,Y) + [2,1 - (p +%ﬂg(X, Y)

=g(VxV,Y)+g(X,VyV)

L25(X,Y) + {u - ( p+ gﬂ g(X,Y). (4.3)

n

Using (4.2) in (4.3) we get
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0=X(a)n(Y)+Y(a)n(X)

125(X,Y) + {u - ( p+ gﬂ g(X,Y). (4.4)

n

Setting X = & and using (3.9) in (4.4) we get

0=é‘(a)ry(Y)+Y(a)+{2/1—(p+%ﬂn()/). 4.5)
Replacing Y by & in (4.5) we obtain
&a) = Kﬁ + l} - 1} . (4.6)
2 n
Using (4.6) in (4.5) we get
Y(a) = [(ﬁ . l} - /1} . @4.7)
2 n

Therefore we have the following theorem

Theorem 4.1: Let M(¢,&,1n,9) be a para-Sasakian manifold admitting
conformal Ricci soliton (g,V,A) with respect to SVK-connection. If V is

pointwise collinear withé , then V' is a constant multiple of & provided

1=

o s

+1.
n
Now setting V' = & in (4.3) we have

0=2S(X,Y)+ [2,1 - (p + zﬂ g(X,Y). (4.8)

n
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Using (3.6) in (4.8) we get

S(X,Y)z{(nglJ—l}g(X,Y)

n

—(n=1)nX)n ) +¢g(X,0Y). (4.9)

Corollary 4.2: If a para-Sasakian manifold M admits conformal Ricci
soliton (g,&,4) with respect to SVK-connection, then M is generalized

n -Einstein.

5. Conformal #-Ricci Soliton on Para-Sasakian Manifold with Respect to
SVK-Connection

Writing equation (1.6) with respect to SVK-connection we have
0= (f;g)(X,Y) +25(X,Y)
{u - (p ¥ %ﬂg(X, Y)+287(X)n(Y).  (5.0)
Expanding (5.1) we get
0=g(Vx&Y)+g(X,Vyé)+25(X.Y)
4{2/1—(p+%ﬂg(X,Y)+2ﬁ77(X)77(Y). (52)

Using (3.2) in (5.2) we obtain
0=25(X,Y)+ {2,1 - (p + 2ﬂg(x, Y)+28n(X)n(Y). (5.3)

n

Setting X = & in (5.3) we have

ﬂ=(§+—J—ﬂ. (5.4)

Hence, we have the following theorem
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Theorem 5.1: If an n-dimensional para-Sasakian manifold admits a
conformal 1 -Ricci soliton (g,&, 4, f) with respect to SVK-connection, then

the relation between the soliton scalars are given by

Using (3.6) in (5.3) we obtain

S(X,Y)z{(nglJ—ﬂ}g(X,Y)

n

—(n+B-Dn(X)nY)+¢g(X,0Y), (5.5)

which shows that M is generalized 77 -Einstein manifold.

Corollary 5.2: If an n-dimensional para-Sasakian manifold M contains
a conformal n-Ricci soliton with respect to SVK-connection, then M is

generalized 1 -Einstein manifold.

Contracting (5.5) over X andY we get
rzg(p—z)—;tmﬂw?m. (5.6)

Corollary 5.3: If an n-dimensional para-Sasakian manifold M contains
a conformal 1 -Ricci soliton with respect to SVK-connection, then the scalar

curvature of M is given by equation (5.6).

6. Conformal 7 -Ricci Soliton with Respect to SVK-Connection on Equivalence
Classes C'},C,,C5 and O

In this section we consider 7 -Ricci soliton (g, &, 4, §) with respect to SVK-

connection on the manifolds belong to the equivalence classes C},Cy,C3and C,and
obtain the relation between the soliton constants.
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Conformal 7-Ricci soliton with respect to V on class C; : The condition
that must be satisfied by the Riemannian curvature tensor (R) is

(B X).R)(Y,Z2)V =0, (6.1)
forall XY, Z)V € y(M).

Equation (6.1) gives

E(&X).R(Y,2)V = R(E(&X)Y,2)V
+R(Y,E(EX)Z)V +R(Y,Z)E(EXWV.  (62)

Setting V' = & and using (1.10), (2.9)-(2.11) in (6.2) we get
O=[r+n(n=-D][g(X,Y)Z-g(X,2)Y]|-[r+n(n-1)]R(Y,Z)X. (6.3)

Taking an inner product of (6.3) with a vector field U we get

0 =[7“+TL(TL—1)] [g(X7Y)g(Z7U)_g(XvZ)g(YvU)]
- [r+n(n-1)]g(RY,2)X,U). (6.4)

Contracting (6.4) over Z and U we have

S(X,)Y)=-(n-1)g(X,Y), (6.5)

if r#-n(n-1).

In view of (5.5) and (6.5) we obtain

O=H§+1J—ﬂ+n—l}g(X,Y)

n

~(n+B-n(X)n(Y)+vg(X,¢Y). (6.6)

Setting Y = & in (6.6) we have

Z=(£+lJ—ﬂ. (6.7)
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Thus, we have the following theorem:

Theorem 6.1: Let M(p,&,n,9) be an n-dimensional para-Sasakian
manifold of class Cy. If M admits a conformal n-Ricci soliton with respect

to SVK-connection, then the soliton constants are given by

provided r # —n(n—1).

Corollary 6.2: A para-Sasakian manifold of class C); is Finstein

manifold if r#-n(n-1).

Corollary 6.3: If a para-Sasakian manifold of class C; contains
conformal n -Ricci soliton with respect to SVK-connection, then the manifold

is generalized n -Finstein, provided r # —n(n —1).

Conformal 7 -Ricci Soliton with Respect to Von Class C,: The
condition that must be satisfied by the Riemannian curvature tensor (R) is

(E(&X).R)(Y,Z2)V =0,
forall X|Y,Z, Ve y(M)

R(&X).R(Y,Z)V=R(R(&EX)Y,Z)V
+RY,R(&EX)Z)V+R(Y,Z)R(&EX)V . (6.8)

Setting V' = & and using (2.8)-(2.11) in (6.8) we get
0=[9(X.Y)Z~g(X,2)Y]-R(Y,Z)X. (6.9)

Taking an inner product of (6.9) with a vector field W we get

0=[9(X,Y)g(Z,W)-g(X,2)g(Y,W)]-g(R(Y,Z) X,W). (6.10)
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Contracting (6.10) over Z and W we have

S(X,Y)=-(n-1)g(X,Y), 6.11)

In view of (5.5) and (6.11) we obtain

O=[[§+%J—l+n—l}g(X,Y)

—(n+B-Dn(X)n(Y)+1g(X,0Y), (6.12)

Setting Y = & in (6.12) we have

This leads to the following theorem:

Theorem 6.4: Let M(p,&,nm,9) be an n-dimensional para-Sasakian
manifold of class Cy. If M admits a conformal 1 -Ricci soliton with respect

to SVK-connection, then the soliton constants are given by

Corollary 6.5: A para-Sasakian manifold of class Cy is always Finstein

mamnifold.

Conformal ;-Ricci Soliton with Respect to V on Class C;: The condition
that must be satisfied by conformal curvature tensor (C) is

(R(£X).C)(Y,Z)V =0, (6.13)

forall XY, Z)V € y(M).

Equation (6.13) gives
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R(&X).C(Y,2)V = C(R(EX)Y,Z)V
+C(Y,R(EX)Z)V +C(Y,Z)R(EX)V.  (6.14)

Setting V' = ¢& in (6.14) we have

R(é?X)'C(Y?Z)g = C(R(§7X)Y7Z)§
+C(Y,R(&EX)Z)E+C(Y,Z)R(E,X)E. (6.15)

Using (1.9), (2.9)-(2.11) in (6.14) and taking inner product of (6.15) with a
vector field U and then contracting over Z,U we get

S(X,Y) = [%}goc Y)- [%}nmn (¥).  (6.16)

In consequence of (5.5) and (6.16) we obtain

0=H§+ij—z—w}g(x,y)

n n—1
nZ—n+r
+—

1 —”—ﬂ+1}7(X)77(Y)+wg(X,¢Y), (6.17)

Setting Y= & in (6.17) we have

which gives the following theorem:

Theorem 6.6: Let M(¢,&,17,9) be an n-dimensional para-Sasakian
manifold of class Cs. If M admits a conformal n -Ricci soliton with respect

to SVK-connection, then the soliton constants are given by
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Corollary 6.7: a para-Sasakian manifold of class Cg is always an

n -Einstein manifold.

Conformal 7-Ricci soliton with respect to V on class C,, : The condition
that must be satisfied by conformal curvature tensor (C) is

forall X,Y,Z,V € y(M).
Equation (6.13) gives
E(.X).CY,2)V = C(EEX)Y,Z)V
+C(Y,E(&EX)Z)V+C (Y, Z)E(&EX)V . (6.19)

Setting V' = £ in (6.14) we have

E(f?X)'C(Y7Z)§: C(E(ij)Y7Z)§
+C(YE(&EX)2)E+C(Y,Z)E(E,X)E. (6.20)

Using (1.9), (1.10), (2.9)-(2.11) in (6.14) and taking inner product of (6.15)
with a vector field U and then contracting over Z, U we get

S(XY) = {Lﬁl}g(x, V)~ {m}?()@ﬂ(y),

n— n-—1

if 7#-n(n-1).

In view of (5.5) and (6.16) we obtain

0=H§+%—1—L7"Il}g(x,y)

n n —

TLQ—TL-F’F
4+ —

o1 ‘”—ﬂ“}?(X)U(Yng(X,ch), (6.22)
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Setting ¥ = £ in (6.22) we have

which gives the following theorem:

Theorem 6.8: Let M(¢,&,17,9) be an n-dimensional para-Sasakian
manifold of class Cy. If M admits a conformal 1 -Ricci soliton with respect

to SVK-connection, then the soliton constants are given by

provided r # —n(n —1).

Corollary 6.9: A para-Sasakian manifold of class Cy is an n-FEinstein

manifold if r # —n(n —1).
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Abstract: The purpose of this article is to study new subclasses of bi-
univalent functions related to the Miller-Ross type Poisson distribution,
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1. Introduction

We begin by considering that 28 represents the class of analytic functions
defined as

T(z)=z+2d,‘z” z€e D, (1.1)
r=2

those are analytic in open unit disk © = {z : z € C,|z| < 1}. Let us denote the &

as the family of all analytic and univalent functions in O .
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Koebe one-quarter Theorem [11] states that, the image of © under any
univalent function 7 € & contains the disk of radius 1/4. As a result, every function

T has an inverse 7! given by

T2) = G(2) = w — dyw? + (2d3 — dg)w? — (5d§ — Hdydy + dy)w? +- - -

A function 7 € & is bi-univalent in £ if both 7 and 7! are univalent in

) . Let us denote X as the class of bi-univalent functions.

Assume that ¢g; and g, are analytic functions that are defined in © . We say

that ¢, is subordinate to g, i.e.¢;(z) < g¢»(2z), when we can identify a function w

with analytic properties in domain 9, as follows:

w(0) = 0,|w(z)] <1 and g,(2) = go(w(2)).
In particular, g, is univalent in £ then the below equivalence is obtained.

g1 = g < q1(0) = g2(0) and g;(D) C g»(O).

A function 7 : 6 —» C belongs to the class of concave functions if 7T
satisfies conditions listed below:

e T isanalyticin © and satisfying normalization conditions
7(0) = 7'(0) -1 = 0.

e T maps O conformally onto a set whose complement with respect to C is
convex.

e The opening angle 7(O) at oo is less than or equal to 7zv, ¥ € (1,2].

The class CV(¢¥) represents the class of concave analytic and univalent

functions (for details, see [5; 3; 4; 25; 24]) and the functions of this class satisfy
below inequality:
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%(1+MJ<O z €9
7'(2)

Bhowmik B., Ponnusamy S., Wirths K. [7] established that a function maps O onto
an angled concave domain 7¢ if and only if

9‘{{ 1 (19+1)(1+z)_1_z7'”(z)}>0‘
9-1  2(1-2) T'(2)

Numerous studies on bi-univalent function subclasses may be found in the
varied publications [9; 8; 16; 21]. Motivated by works [27; 30; 28; 31; 20; 2], we
analyze the novel subclasses of concave and bi-close-to-convex functions.

Let us consider the Miller-Ross function [17] (also see [15; 29]) and is denoted as

0
U,7 =zvz v,n,z € C

0, u,z € C,R{6, u} > 0.

For i = 1, we have the Mittag-Leffler function [18],

Z —~ 0,2 € C,R{6) > 0.
o T@r+1)
The Miller-Ross function [12] can be represented as

Gv,ﬂ(z) = 2051,1+u(772> :

Recently, Seker et al. [26] represented a power series with the corresponding
coefficients are the Miller-Ross type Poisson distribution, which is as shown below:
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© Gv(no.y—l
° (2) =z P4 z€ ODv>-1,n>0. 1.2
&) Z:z L(r + v)G,,(0) " (2

Now, consider the convolution of functions (1.1) and (1.2), an operator

MG, B — B written as:
MT,T(2) = QT 4(2) * T(2)
0 v r—1
=z + a’(no) d.z"
o2 L + v)G, (o)
=Z+Zcprd,,zr, z€ Ov>—-1,n7>0.
r=2
v r—1
where, ¢, = o' (no) )
L(r +v)G, ,(0)
In particular,
oy = c'(no) and gy = o'(no)? ‘ (13)
r(2 + U)gv,n(a) F(3 + U)ng(O')

1.1 Involution Numbers: Considering the involution numbers (that are also
referred to as telephone numbers (TN)), the recurrence relation is

Vir)=V(r -1+ -D)V(r-2), r=>2,
with V(0) = V(1) = 1.

New generalized telephone numbers (GTNs) were recently identified in 2019
by Bednarz and Wolowiec-Musial [6] and are represented as

Vi) =Wr-D+er-0)Wr-2), r=>2e>1,

with 12(0) = V(1) = 1.
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GTNs are presented in exponential series form by

= Z V.(r) j—rl, e>1.
r=0

Thus, for € = 1 , we have TNs V(r) and for specific values of r, ) (r) is
provided as

L. V(0) =V =1,

2. V(2) =

3. V3) =1+ 3e,

4. V(4) =1+ 6e + 32,
5. V(5) = 1+ 10e + 15¢2.

Let us consider the function

—ltz+ 1+ + #(1+ 6+ 3¢%) Lot oo

=+ 1+ 3e)

o+
For z € 9. (seealso [19; 10])

We introduce two novel subclasses of bi-univalent functions connected with
the Poisson distribution of Miller-Ross type that are subordinate to GTNs in our
current paper. In addition, we estimate the Fekete-Szego mequahty and the Taylor-
Maclaurin coefficients

2. Ozaki-type Bi-Close-to-Convex Functions

In 1952, Kaplan [13] introduced the class & of close-to-convex functions. In
1935, Ozaki [22] had already identified these functions, satisfying the following
inequality:
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m(1+L’(2)J>—1, e 9. 2.1)
T(z)

Kaplan [8] states that the function which satisfy inequality (2.1) are close-to-
convex functions and which are categorized under class &. The Ozaki inequality
was further generalized by Kargar and Gebadian [14]. (For details see [22; 1]) A
function 7 € B is locally univalent and is said to be Ozaki close-to-convex
function if it satisfy the condition:

2T'(2)
7(z)

1 11
9{[1+ J>§—’L9, ZGD,’&G(—E,E].
Definition 1: The class OBCVs(9, 0,v,n) includes all functions

T € B if it satisfies the following subordination conditions:

_ MG, T(2))) |
20 -1 2 [((z ST g, o)
20+1 29 +1 (MgnT(z))'
and
_ M3 ]
20-1 2 [((w D9 | e, o)
20 +1 2090 +1 (Mang(w))'
where T H(w) = G(w) and % <Y<,

Remark 1: For o =% , the class OBCVs(9, o,v,17) = CVs(¥9)

includes all functions T € X if

(M7 ,7(2))) - ). nd ((wMZ ,G(w))) - )
(MZ,T(2)) (M G(w))

where T~ w) = G(w).

The following lemma [23] will be necessary for proving the main findings.
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Lemma 1: If h € P, then |c,| < 2 for each k, where P is the family
of all functions h, analytic in O, for which R[h(z)] > 0 (z € O), where

h(z) =1+ ¢z + e +--- (2 € O).

Theorem 1: A function T € B form (1.1) ids in class
OBCVs(Y,0,v,n), then

.20 +1 29 +1
|dy| < min ; ,
der 2,20 + 1)(3¢s - 203) + 2(1 — )3
2.4)
and
2 2
dy] < min 219+1+(219+1),219+1+ (29 +1)
12¢; 1202 1205 4[29 + 1)(3ps — 202) + 2(1 - €)¢p3
(2.5)
where 3 and @3 are as giwen in(1.3).
Proof: Let us consider s(z) and #(z) as
s(z) = L+ 1(z) =1+ 82+ 82° + -, (2.6)
1-1(z)
t(w) :H—m(w): 1+ tw + tw? + -, (2.7)
1 - m(w
or, equivalently,
_ 52
I(z) = s(2) = 1 =— |82+ 8 — ML , (2.8)
s(z) +1
and
tw) -1 t12 2
m(w) = = —|tw + - = |w* + , 2.9
(w) Hw) + 1 { 1 [tQ 5 (2.9)
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Then s(0) = ¢(0) = 1 , and s(z) and #(z)are analytic in © with a positive
real partin O .

Now consider,

3
83 5159 81 3
+ | = 4+ —1)—= +(1—-—3€e)— |22 + ---. 2.10

Similarly,
tf

U (m(w)) = 1+%w+{%+(1—€)§}”2
3
+[%+(6—1)%+(1—36)i—;}w3+~-. (2.11)

From (2.2) and (2.3), we have

20-1, 2 [((ZM%”T(ZW)/] = W(I(2)), 2.12)
20+1 29 +1 (Mgﬂq-(z))’

and
20 -1 2 | (wMZ,Gw)) |
w+1+w+1[¢Mmqmy]_wmmm' @13

Using (2.10), (2.11) in (2.12), (2.13) and comparing the coefficients, we the
following relations

4 51
=5 2.14
219+1d2<p2 9 @14
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4 S S
3dypy — 2d293) = 2 + (e — 1) —,
219+1( 3¥3 2@2) 9 ( )8
4 4
[219+1Jd2¢2 S 97
1 (32d2- dylpy — 2d202) = 2 4+ (c - 1)&
20 + 1 2 2T g 8

From (2.14) and (2.16), it follows that
s = — tl .
Squaring and adding (2.14) and (2.16), we obtain that

128 9 9 9
(29 + 1)?

Now, applying Lemma 1 to (2.19), we get

29 +1

2

ldy| <
4ps

Adding (2.15) and (2.17), we can find out that

4
29 +1

s2 + 2
[6p3d3— 4p3d3] = %He—l)[ : 3 1}-

If we use (2.19) in (2.21), then we have

) _ (32 + )(20 + 1)
21620 + 1)(3p3 — 202) + 201 — e)p2]

121

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Employing Lemma 1, we obtain

29 +1
2J20 + D3y — 203) + 21 - )p3 |

| <

Subtracting (2.17) from (2.15) and using (2.18), it follows that

24 S9 — &
d _d2 — 22 2’
219+1(3 2)@3 —2

1.€.,

_(p =)@+

a2,
48903

Substituting the value of d3 from (2.19) in (2.23), we obtain

L (-t (si—t1)(20 + 1)?
’ 485 12803
Applying Lemma 1, we obtain

219+1+(2’L9+1)2
g 1203

|ds| <

Using (2.22) in (2.23), we obtain

(s + )20 + 1) . (85 + t5)(20 + 1)

- 4804 16[(29 + 1) (33 — 202) + 2(1 — €)p?]
Using Lemma (1), it follows that

20 + 1 (29 + 1)?
|ds| < + :
1205 4[(20 + 1)(3ps — 203) + 2(1 — €)p3]

(2.23)

(2.24)

. (2.25)
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Lemma 2 [I3]:

Let b,y € R and
lal,le| < ¢, then

¢, € C. Suppose that

210118, by |2y
| (b +By)ep + (b —by)ey | < {2|b2|§» by < by,

Theorem 2: A function

T e€B form (L.1)
OBCVs(V,0,v,n) and T € R, then

s in  class

20 +1

0 < (19 ) < 20+1
) - Z 77—76
|dy — Td3| < {3

4| 79, 7, €),

48¢3

20+1
x(0,1,€) 2 B

Proof: From (2.22) and (2.23), we have
dy —rd3 = (1- a3 + 2020+ 1)
48@3

_ (s + 1)1 = 7)(20 + 1)? L (2 -H)@0+ 1)
16[(29 + 1)(3¢3 — 2(,0%) +(1- e)gp%] 485

20 +1 20 + 1
= Z('ﬁ777€)+ 48 S + /1/(1977—76)_ ty s

¥3 483
where

_r 2
o) — 1= )20 + 1) 2
1620 + )35 - 203)+ (1 - )3

Applying Lemma 2, we deduce that
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20+1 20 +1
4 a2 < 0< 209,76 <
3 — T3] <

4|Z(197 T, €)|7 Z('ﬁ, T, 6) > .

4843
20+1

Corollary 1: A  function T € B form (1.1) is in
OBCVs(Y,0,v,n), then

|d3—d§|£219+1.
12(103

3. Bi-concave Functions

Definition 2: A function T € B is belongs to the
BCV5 (9, 0,v,n) if it satisfies the following subordination conditions:

2 [(1 rolte) AMG"T(2))"

< ¥(2),
e-11 201-2 (MYT(2)) ]

and

2 |Q+olrw) | _ w(Mg"T(w))" < Yw)
e-11 2(1-w) (MG"T(w))

where T~ Hw) = G(w) and 1 < o < 2.

class

class

3.1)

(3.2)

Theorem 3: A function T € B form (1.1) is in class BCVs(o, o, v, 1),

then

2
|dy| < min M’
16@%

1
1 3@2—29—1+(€_1)Q2+Q 2
(0 -~ D203 — 3p3) + 2(1 — ¢) 4 03 ’

(3.3)
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and

2 —
|d3|Smin{9Q +6Q+1+Q 1

1602 123 °
2 _ 9, _ _
1 S m20-1 _py2trelo 1},(3.4)
(0 = 1)(203 = 3p3) + 21 —¢) 4 vy | 120
where 1 < o < 2 and ¢y and 3 are as given in (1.3).
Proof: From (3.1) and (3.2), we can write
2(MZTT(2))!
2 |(+ol+2) | ( (2)) < W), (33)
e-1] 201-2) (MG"T(2))

and

2 [(1 tolrw) | w(Mg"G(w))"

U(m(w)). 3.6
o—-1| 201 -w) (MUTG(w)) ]<< (m(w)) (3.6)

Using (2.10), (2.11) in (3.5), (3.6) respectively and equating the coefficients,
we obtain

2 S
ST+ 0 = 2mb] = 5 3.7)
2 272 ) 312
—— (1 + 0) + 4p3d5— 6p3ds] = =+ (e = 1) =, (3.8)
o-1 2 8
2 t
_F[(l +0) = 2pydy] = 51, (3.9)
2 292 2 t? tl2
;[(1 o)+ dpad; - 6py(2d5- dy)] = -+ (e D) (3.10)

From (3.7) and (3.9), it follows that
S = tl . (31 1)
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From (3.7) and (3.9), we can write

o =1re_le-Da (3.12)
29 8y
g = Lte, le-Dh (3.13)
29 8o
Squaring and adding (3.12) and (3.13), we obtain
2, 42 2
) (si+ e~ 1" (0 - 1(s - 1) G.14)
4¢3 1283 163
1.€.,
2, 42 2
Grrtle -7 o, (+of (- —t) 3.15)
6403 T2 85
Applying Lemma 1 to (3.14), we have
90% + 60 + 1
> < 2202
16¢3
Adding (3.8) and (3.10), we obtain
s+ 12
P % {20+ 0) + 80303~ 123d3} = (CRl) ; b) 4 e - 1)[ 18 1}. (3.16)

Implies that,

(0-D(s+t) , le-Dle- Dt 1) (0 +1) |

203 — 3p3)d3 =
(902 903)2 16 64 9

Multiplying both sides by (¢ 1), thus, we get

(0= V(s + 1) (€ -Dle 1P+ 1) (02 +1)
16 64

(0 = 1)(2¢5 — 3p3)d3 = . (3.17)
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Using (3.15) in (3.17), we obtain

(0 - D@6} - 3e)d3 + 21 - = @=L 1)y (L2 o]
2¢3

re-n@ =D —tl)_(w].

82 2

Thus, we have

2 - L {@—D%@+b)
© o - D263 — 3p5) + 21 - )] 16

(L+ o) (0 - 1) (¢ - 1)
—(e - 1) 2%29 + (e = 1) 98%2 (sl—tl)—(g ﬂ

Applying Lemma 1 to (3.19), we obtain

1 2 -2 -1 2
A2 < {39 ¢ -1 ”’]

(0 - 1)(203 — 33) + 2(1 — €) 4 03

Now, subtracting (3.10) from (3.8) and using (3.11), we get

(s —B)e-1
5 —dy = T

Using (3.14) in (3.20), we find that

(+op  GI+DE-1 @-nE-) (5-t)e-1

d3 =
42 12843 163 483

According to Lemma 1, we deduce that

2 _
90 +6Q+1+Q 1

|d3| < 5 .

127

(3.18)

(3.19)

(3.20)

. (3.21)
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Next we use the value of di form (3.19) in (3.20), we obtain

ds = 1 {(9_1)2(52 + 1)
[(0 = D)(2¢5 — 3p3) + 2(1 = ¢)] 16

A L) A Ut N [—(QQ - ”H _eotle-l)
25 85

Using Lemma 1, we get

2 _ _ 2 _
dg < 5 L [3Q 20 1+(e—1)g ;Q}+Q 1
[(0 = 1)(263 — 3p3) +2(1 — €)] 4 ©3 12¢3

O

A
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Valani Darshana K' | EDGE ODD GRACEFUL LABELING OF

Kanani Kailasa 111(6g SOME SNAKE GRAPHS

Abstract: An edge odd graceful labeling of graph G is a bijection f from
the edges of the graph to {1, 3, ..., 2¢ — 1} such that, when each vertex is

assigned the sum of all the edges incident to it mod 2¢ the resulting vertex

labels are distinct. A graph is called an edge odd graceful graph as it admits
an edge odd graceful labeling. It was intoduced by Solairaju and Chithra in
2008. In this research paper, Edge odd graceful labeling of some snake

graphs such as double alternate triangular snake DA(7},), double alternate

quadrilateral snake DA(Q), ) and alternate pentagonal snake A(PS,,) have

been discussed.

Keywords: Edge Odd Graceful Labeling, Edge Odd Graceful Graph, Snake
Graphs.

Mathematics Subject Classification (2000) No.: 05C78.
1. Introduction

In this research article, all graphs G = (V(G), E(G)) are finite, simple,
connected and undirected. Here V(G) be the vertex set and E(G)be the edge set of a

graph. Graph labeling is an assignment of integers to edges or vertices or both,
subject to certain conditions. For an extensive survey on graph labeling and
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bibliographic references, we refer to Gallian [2]. A graceful labeling of a graph G,
which was introduced by Rosa [6] in 1967, is a injection f from the vertices of the

graph to the set {1,2, ..., ¢} such that the induced function f* from the set of edges
to the set {0,1,2,...,¢q} defined as f*(e = wv) = f(u) — f(v)], is bijective.

Soleha et al. [10] have proved that the alternate triangular snake and alternate
quadrilateral snake graphs are edge odd graceful.

Definition 1.1 [9]: A function f is called an edge odd graceful labeling
of a graph G if f: EG)—> {1,3,...,2¢ — 1} s bijective and the induced

function f*:V(G) > {0,1,2,...,2¢ — 1}, defined as f*(u) = z

uv)

weB(G) f(

(mod 2q) is injective.

A graph which admits an edge odd graceful labeling is called an edge
odd graceful graph.

Definition 1.2 [1]: An alternate triangular snake A(T),) is obtained
from a path P, with vertices wuy, uy,...,u, by joining wu; and u; +1
(alternatively) to mew wvertex v;, where 1 < i < n—1 for even n and for

1<i< n—2 for oddn.
That is every alternate edge of a path P, is replaced by Cl5.

Definition 1.3 [1]: A double alternate triangular snake DA(T,) is
obtained from a path P, with vertices wy, uy,...,u, by joining u; and u;

(alternatively) to two new vertices v; and w;, where 1 < i < n —1 for even

n and for 1 < i < n—2 for odd n.

In other words, the double alternate triangular snake DA(T,) consists

of two alternate triangular snakes that have a common path.

Definition 1.4 [1]: An alternate quadrilateral snake A(Q,) is obtained

from a path P, with wvertices uy,uy,...,u, by joining u; and U
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(alternatively) to two new vertices v; and w; , respectively and then joining v;,

and w; where 1 < i < n—1 forevenn and for 1 < i < n —2 for odd n.

That is every alternate edge of a path P, is replaced by C| .

Definition 1.5 [1]: The double alternate quadrilateral snake DA(Q,)
obtained from a path P, with vertices uy, ug, ..., u, by joining uw;, and u; + 1
(alternatively) to two new vertices v;, w; and v;,q, w;,, respectively and then
joining v;, v;.; and w;, w;.;, where 1 < i< n—-1 for even n and for

1<i<n—-2 foroddn.

In other words, the double alternate quadrilateral snake graph
DA(Q,) consists of two alternate quadrilateral snakes that have a common

path.

Definition 1.6 [8]: An alternate pentagonal snake A(PS,) is obtained
from a path P, with vertices wuy,ug,...,u, by joining wu; and wu; +1
(alternatively) to new vertices v; and w; respectively and then joining v; and

w;to the mnew wertex x;, where 1< i< n-1 for even n and for

1<i< n—-2 forodd n.
That is, every alternate edge of path P, is replaced by a cycle Cs .
2. Main Results

Theorem 2.1: The double alternate triangular snake DA(T,) is an edge
odd graceful graph for all n > 2.

Proof: Let G be a double alternate triangular snake DA(T,) which is
obtained from a path P, with vertices uy, us,...,u, by joining w; and wu; +1

(alternatively) to two new vertices v; and w;, where 1 < ¢ < n — 1 for even n,

1<i<n-2foroddnand 1< j<|[5].
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Therefore
V(@) = {uv5,w; /1 <i<nl<j<|2]}
E(G) = {uuy /1 < i <n =1 U {0y /1 < i <[5} U /1 <0 <[5}
U {ugiqw; /1 < < 5]} U {ugw; /1 < i <[5}
Here note that

2n, if n =0 (mod 2)
2n —1, if n =1 (mod 2)

V(G| = {

3n -1, if n =0 (mod 2)

|E(G)| = {Sn -3, if n =1 (mod?2)

Case1: n = 0,2 (mod 4)
Subcase1: n = 2
Vi

4
/\
9
Wy S 9 w
\/
2

Wi
Figure 1: Edge odd graceful labeling of double alternate triangular snake DA(T;)

Here Figure 1 shows that the double alternate triangular snake DA(T5) is an
edge odd graceful graph.

Subcase 2:n = 0,2 (mod 4) and n # 2

Define edge labeling f : F(G) — {1,3,5,...,6n — 3} is as follows:
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flu ) =4n —2i -1, 1<i<n—-1
flugiqv;) = 41 =3, 1 <i <%
flugivy) = 4i =1, 1 < i <5
flug;_qw;) = 6n —4i+1; 1 <1 <%

fluggw;) = 6n —4i -1 1 <i <%

The corresponding labels of vertices u; and v;,7 = 1,2,3... mod (6n — 2)

are
[f(w) = fluw) + fluv) + fluw) = 4n - 3;
fru;) = fluiyw;) + flugug) + f(uzvr%j) + f(uz‘wr%j)

= -4i+2 2<i<n-1

Frlun) = flunqup) + flugon) + flugwn) = 2n +1;

[w) = flugiqvi) + flugivy) = 8i— 4 1 < i< §

[i(w;) = flugi_qw;) + flugw;) = 6n =8 +2; 1 <0 <

o3

The labels of edges are in the set {1,3,5,...,6n — 3}. Then the labels of
vertices are in the set

{4,12,...,4n — 4} U {4n — 3} U {2n — 6,2n — 10,...,4n + 4} U {2n + 1}
U {6n — 6,6n —14,...,2n + 2}.

Here Vi # j, f(v;) # f(v;).

Therefore, the induced function f* : V(G) — {0,1,2,...,2¢ — 1} , defined
as f*(u) = ZWGE(G) f(uv) mod (6n — 2) is injective.
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Case2: n = 1 (mod 4)
Define edge labeling f : E(G) — {1, 3,5,...,6n — 7} is as follows:
flujuip) =4n +2i—3; 1 <i<n—2
flunqu,) = 2n = 1;
flugiyv;) = 4i = 3; 1 < i <[]
flugy) = 4i = 1; 1 < i < 5]

flugi_qw;) = 4n —4i +1; 1 < i < | 5]

f(UQZ"LUZ-) :47L—4i—1; 1<i< L%J

The corresponding labels of vertices w; and v;,7 = 1,2, 3... mod (6n — 6)
are

[w) = fluug) + fluvy) + fluywy) = 8n — 3;

()

fQuiywg) + fugugyg) + f(uﬂ)r%ﬂ + f(Uf;’wr%ﬂ

on +41—4; 2<i<n—2

fun1) = flu,gup 1) + fup_yu,) + f(unfle%J) + f(unngj) = 6n -4
f(uy) = fluy_yuy) = 2n —1;
F) = flugiogv;) + flugwy) = 8i = 4 1 < i < 5]
F(w;) = flugi—ywi) + flupw;) = 2n = 8i +6; 1 < i < |3]
The labels of edges are in the set {1, 3,5,...,6n — 7}. Then the labels of

vertices are in the set {4,12,...,4n — 8} U {2n + 3} U {6n + 4,6n + 8,..., 4n — 6}
U{2n -1} U {2n —2,2n - 10,...,4n + 4}.
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Here Vi # g, f(v;) # f(v;).

Therefore, the induced function f* : V(G) - {0,1,2,...,2¢ — 1}, defined
as f*(u) = ZuveE (@)f(uv) mod (6n — 6) is injective.

Case3: n = 3 (mod 4)
Define edge labeling f : F(G) — {1,3,5,...,6n — 7} is as follows:
flu) =2n+2i -3, 1<i<n-1

f(“?i—lvi) = 42—3’ ; 1<i< L%J

flugv;) = 4i =1, 1 < i < L%J
n

f(UQi,le‘) = 4n + 47 — 7, 1 g 7 < L?J

n

The corresponding labels of vertices u; and v;,7 = 1,2,3... mod (6n — 6)

arc

[H(w) = fluug) + f(uyvy) + flugw,) = 6n - 3;

;) = fluiw) + fluuig) + f(uz‘vr%ﬂ + f(uz‘wréﬂ
=2n+8 -8 2< 1< n-1

f*(un) = f(un—lun) =4n - 5;

F ) = flugiyvy) + flugivy) = 8i— 45 1< i < 5]

frw) = flugioqw) + flugiw;) =5 1< i < 5]
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The labels of edges are in the set {1,3,5,...,6n — 7}. Then the labels of
vertices are in the set {4 12,...,4n — 4} U {6n — 3}
U{2n+82n+16,...,4n — 10} U {4n — 5} U {2n + 2,2n + 10, ..., 6n — 10}.

Here Vi # j, f(v;) # f(v;).

Therefore, the induced function f* : V(G) — {0,1,2, ...,2¢q — 1}, defined
as f*(u) = ZWEE(G) f(uv) mod (6n — 6) is injective.

Example 2.2: The edge odd graceful labeling of double alternate
triangular snake DA(Ty), DA( Tg ) and DA(T};) is shown in Figure 2, 3, and 4.

\-f \f

Figure 2: The edge odd graceful labeling of double alternate triangular
snake DA(Ty)

P R L uA /A\u- 17

Figure 3: The edge odd graceful labeling of double alternate triangular
snake DA(Ty)

5 7
. uee 2 R o VR LI P o o8
48 a7 \‘v/ \vj v

Figure 4: The edge odd graceful labeling of double alternate triangular
snake DA(T};).
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In each possibility the graph under consideration satisfies the vertex
conditions and edge conditions for an edge odd graceful labeling. Hence, the double

alternate triangular snake DA(T),) is an edge odd graceful graph forall n > 2. [

Theorem 2.3: The double alternate quadrilateral snake DA(Q,) is an
edge odd graceful graph for all n > 2.

Proof: Let G be a double alternate quadrilateral snake DA(Q,) which is
obtained from a path P, with vertices wuy, uy,...,u, by joining w; and w;,.q
(alternatively) to two new vertices v;,w; and v,,.;, w,;,; respectively and then
joining w;, v;,; and w;, w;,;, where 1 < ¢ < n—-1 for even n and for
1<i<n-2foroddn.

Therefore,

V(G) = {u, v, w; /1 < i < nj

E(G) = {uui1 /1 < i < n =1 U {ug_vp; /1 <0 < [ 5]}

U {wy; qwy; /1 < i < 9]} U {uw; /1 < i < n} U {vw; /1 < i < n}.

Here note that

Vo 3n, if n =0 (mod 2)
V@) = 3n -2, if n =1 (mod?2)
B = dn -1, if n = 0 (mod 2)
B@)] = 4n — 4, if n =1 (mod 2)

Casel: n = 0 (mod 2)

Subcase1: n = 2
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Figure 5: Edge odd graceful labeling of double alternate quadrilateral snake
graph DA((y)

Here Figure 5 shows that double alternate quadrilateral snake DA(();) is an
edge odd graceful graph.

Subcase2: n = 0 (mod2) and n # 2

Define edge labeling f : E(G) — {1, 3,5,...8n — 3} is as follows:
flujuip)) =3n+2i—1;, 1<i<n—-1
flugiqvg_1) =60 =5 1<i< 3

flugiv;) = 6i —1; 1 < i <

o3

flovi) =61 —3; 1 <4 <%
flugiqwy; 1) =8n —6i+3; 1<i<

flugwy) =8n —6i—-1; 2 < i< 4§

flww; ;1) =8n —6i+1 1< 1 g%

The corresponding labels of vertices u; and v;, i = 1,2, 3... mod (8n — 2)
are

[w) = fluug) + flwv) + fluywy) = 3n + 1
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;) = fluiw) + fluuie) + flu) + fluw) = 6n+4i—4 2 <i<n—1
frun) = flw,quy,) + fugv,) + fluw,) = 5n =3
[io1) = flugiogvgio1) + flogiqvy) =120 = 8 1 < i < §

[r(vi) = flugiqvg) + flogiug;) = 120 = 43 1 < i <§
Jrwyioy) = flugiqwyi) + flwyqwy;) = 8n =12 + 6, 1 < i < 3
[Hwy) = fwaiqwy;) + flwgiug;) = 8n —12i + 2 1 < i < §

The labels of edges are in the set {1, 3,5,...,8n — 3}. Then the labels of
vertices are in the set {4,16,...,6n — 8} U {8,20,...,6n — 4} U {3n + 1}
U {6n +4,6n+38, ....2n — 6} U {in — 3} U {8n — 6,8n —18,...,2n + 6}

U {8n - 10,8n — 22,...,2n + 2}. Here Vi # j, f(v;) # f(v;).

Therefore, the induced function f* : V(G) - {0,1,2,...,2¢ — 1}, defined
as f*(u) = ZWGE(G) f(uv) mod(8n — 2) is injective.

Case2: n = 1 (mod 2)

Define edge labeling f : F(G) - {1,3,5,...8n — 9} is as follows:
flujui) =6n+2i -7, 1<i<n-1

flug vy 1) = 4i =3 1< i <[3)

n

flupv;) = 4n +4i =7 1 < i < |3

n

fovi) =2n+4i -5 1< i< |35]

n

flug;_qwy;_q) = 4n + 4i = 5; 1 < i < [ 3]
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n

flugwg;) = 41— 1; 1 < i < 3]

n

flwpw; ) = 2n + 4i —3; 1 <4 <|5]

The corresponding labels of vertices u;and v;, ¢ = 1,2,3... mod (8n — 8)
are

[H(w) = fluug) + fluyvy) + flugwy) = 2n + 3;

[ (ugio1) = flugi_oug;_q) + flug;_qun;) + fugi_qvai1) + fugi_ywai_1),
— 8n +16i - 20; 2 < i < | 52|

[(ug) = flugi—qug;) + f(ugitig;pr) + flugive;) + flugiwy;)

=8n +16i —16; 1 < i < |5]
f*(un) = f(un—lun) =8n -9

[ (vaim1) = flugqvai1) + f(vgiqwn;) = 20 + 81 =8 1 < i < L%J

n

[ (ve;) = flugivg;) + flug_ qwm;) = 6n + 8 =12, 1 <4 < [3]

n

i (wyi1) = flugqwe;_1) + flwy_qwy;) = 6n +8i =8 1< 1 < [3]

n

[H(wy;) = fluggwy;) + flwe_qwy;) = 2n + 8 —4; 1 < i < [3]

The labels of edges are in the set {L, 3,5,...,8n — 9} . Then the labels of
vertices are in the set {2n, 2n + 8,...,6n — 12} U {6n — 4,6n + 4,...,2n — 8}
U {2n + 3 U{8,24,...,8n — 16} U {2n + 3} U {20, 36, .., 8n — 20} U {8n — 9}
U {6n,6n + 8,...,2n — 4} U {2n + 4,2n + 12,...,6n — 8}.

Here Vi = g, f(v;) = f(v;).

Therefore, the induced function f* : V(G) —» {0,1,2,...,2¢ — 1}, defined
ff(u) = ZMGE(G) f(uv) mod (8n — 8) is injective.
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Example 2.4: The edge odd graceful labeling of the double alternate
quadrilateral snake DA(Qg) and DA(Qy) is shown in the following Figure 6
and 7.

Figure 6: The edge odd graceful labeling of double alternate quadrilateral
snake DA(Q6)

Figure 7: The edge odd graceful labeling of double alternate quadrilateral
snake DA(Q;).

In each possibility the graph under consideration satisfies the
vertex conditions and edge conditions for an edge odd graceful labeling. Hence,
the double alternate quadrilateral snake DA(Q,) is an edge odd graceful graph
forall n > 2. O

Theorem 2.5: The alternate pentagonal snake A(PS,) is an edge odd
graceful graph for all n > 2.

Proof: Let G be a alternate pentagonal snake A(PS, )which is obtained
from a path P, with vertices vy, us, ..., u, by joining u; and w,;,; (alternatively)

- to the new

to new vertices v; and w; respectively and then joining v; and w;

J
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vertex ;, where 1 < i< n-1 for even n,1 <7< n—-2 for odd n and

1<j<3] .
Therefore,

V(G) = {u;, vj,wj, 2, /1 < i <1 < j <[]}

EG) = {uui /1 < i< n =1 U {uy v /1 <0 < [ 2]} U {v /1 < i < [9]}

<Lz}

~

.

U {zw; /1 < i <[5} U {wuy; /1 <

Here note that

2, if n =0 (mod2)
|V(G>| = 5n .
| 5] +1, if n =1 (mod2)

E(G 37'L_1, lf’I’LEO(mon)
|E(G)| = 3n —3, if n =1 (mod?2)

Case1: n = 0 (mod 2)

Subcase 1: n = 0 (mod 6)

Define edge labeling f : E(G) - {L,3,5,...,6n — 2} is as follows:
flujujp) =4n +2i-1;, 1 <i<n-1

flugi_1v;) = 2n + 4i = 3; 1 < 4 <2

flor) =4i -3, 1<i< ¥

flwz;) = 2n + 41 — 1; 1<i<?

flugw;) = 4i -1, 1< i < §
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The corresponding labels of vertices u; and v;, 7 = 1,2, 3... mod (6n — 2)

are

(w) = fluuy) + fluv) = 6n + 2

Fr(ugi) = flugiyugi) + flugiugin) + flugw;) = 2n +12i = 3 1 < i < 252
[Hugior) = flugimqug;) + f(ugiuigir) + flugiqv;) = 4n +12i = 9; 2 < i < &
Fruy) = fQu,qw,) + f(wy ou,) = 8n — 45

[ () = flugiorv;) + f(viw;) = 2n + 80— 6; 1 < i < §
[ (x) = flvz;) + flrw;) =2n + 81 -4 1 < i < §

[rw) = flmw) + flwug) =2n+8 -2, 1 < i< §

The labels of edges are in the set {1, 3,5,...,6n — 3}.Then the labels of
vertices are in  the set {6n +2} U{2n +9,2n + 21,...,2n — 13}
U{dn +15,4n + 27,....4n -7} U {2n - 2} U {2n + 2,2n + 10,...,6n — 6}
U{2n +4,2n +12,...,6n — 4} U {2n + 6,2n + 14,...,6n — 2}.

Here Vi = g, f(v;) = f(v;).

Therefore, the induced function f* : V(G) - {0,1,2,...,2¢ — 1}, defined
as f*(u) = ZWEE(G) f(uv) mod (6n — 2) is injective.

Subcase 2: n = 2,4 (mod 6)

Define edge labeling f : E(G) — {1, 3,5,...,6n — 2} is as follows:
flujuin)) =4n +2i -1, 1<i<n-1
flugiovy) =8i -7, 1< i< ¥

flo) =8 =5 1<i< ¥
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flwr) =8i -3 1 <i< ¥
flugw;) = 81 =1, 1< i < 4

The corresponding labels of vertices v; and v;, i = 1,2, 3... mod (6n — 2)

are

(w) = fluuy) + fluy) = 4n + 2

J(ug;) = flugiugiiy) + flugi—qug;) + flugiw;) = 2n + 160 — 3; 1 < i < 252
fH(ugioa) = flugiqug;) + flugigin) + flugiqv;) = 2n +16i —13; 2 < i < 5
frun) = [, quy) + fwypu,) = 4n = 2;

[r(v) = flugioqv) + flom) =160 —12; 1 < i < &
Fr@) = floz) + flow) =160 — 8 1 < i <%

[rw;) = flzw;) + flwug;) =160 — 45 1 < i < §

The labels of edges are in the set {1,3,5,...,6n — 3}. Then the labels of
vertices are in the set {4n + 2} U {2n +13,2n +29,...,4n — 17}
U {2n + 19,20 + 35,...,4n — 11} U {8,24,...,2n — 6} U {12,28,...,2n — 2}.

Here Vi # g, f(v;) # f(v;).

Therefore, the induced function f* : V(G) - {0,1,2,...,2¢ — 1}, defined
as f*(u) = ZWEE(G) f(uv) mod (6n — 2) is injective.
Case2: n = 1 (mod 2)
Here note that
V(@) = 505] +1

|E(G)| = 3n - 3
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Define edge labeling f : E(G) — {1,3,5,...6n — 7} is as follows:
fluju;p) =6n—2i -5 1<i<n—-1
flugi_yv;) = 4 = 3; 1 < i < [7]
fm) = 2n + 4i -5 1 < i < [3]

flwz;) = 4 -1, 1 <4 < | 2]

n

flugyw;) = 2n + 40 - 3; 1 <4 < |2

The corresponding labels of vertices u; and v;,¢ = 1,2, 3... mod (6n — 6)

arc

frw) = flu) + fluw) = 6n = 6;

F*(uz) = flugitigi 1) + flugiyug) + flugw;) = 2n = 4i+1; 1 < < [3]
Frugicn) = fugioqugg) + flugguniyr) + flugi_qvy) = 6n —4i = 1; 2 < i < 3]
frw) = fluqu,) = 4n = 3;

fr(u) = flugiav) + flog) = 2n +8i = 8 1 < i < 3]
fr(zi) = flom) + flaw) = 2n + 80— 6, 1 < i < [3]
frw) = flzw;) + flwpug;) = 20+ 8i = 4; 1 <4 < 3]

The labels of edges are in the set {1, 3,5, ..., 6n — 7}.

Then the labels of vertices are in the set {6n — 6} U {2n — 3,2n —7,...,6n — 3}
U{6n —9,6n—13 ....,4n + 1} U{4n — 3} U {2n,2n + 8§,...,6n — 12}
U {2n + 2,2n + 10,...,6n — 10} U {2n + 4,2n + 12,...,6n — 8}.

Here Vi# j, flu;)) # f(v;).
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Therefore, the induced function f* : V(G) — {0,1,2, ...,2¢q — 1}, defined
as f*(u) = ZuveE(G) f(uv) mod (6n — 6) is injective.

Example 2.6: The edge odd graceful labeling of the alternate pentagonal
snake A(PSg), A(PSyg) and A(PSy)is shown inFigure 8,9 and 10.

Figure 10: The edge odd graceful labeling of alternate pentagonal snake
graph A(PSy)
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In each possibility the graph under consideration satisfies the
vertex conditions and edge conditions for an edge odd graceful labeling.
Hence, the alternate pentagonal snake A(PS,) is an edge odd graceful graph for
all n > 2. |

3 Conclusion

In this paper, it is proved that double alternate triangular snake DA(T,,),
double alternate quadrilateral snake DA((Q),) and alternate pentagonal snake
A(PS,,) are edge odd graceful graphs. To derive new families of graphs that admit
edge odd graceful labeling is an open area of research.
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Chirag Barasara' | ANTIMAGIC LABELING OF LINE

and
Palak Prajapati2 GRAPH OF SOME GRAPHS

Abstract: Motivated from the study of magic square, Hartsfield and
Ringel defined antimagic labeling as a bijection

[ EG) - {1,2,3,...,|E(G)} such thatVu,v € V(G),uf # v, sum
of f(e) for all e incident to w is different from sum of f(e)for all e

incident to v . In this paper, we discussed antimagic labeling of the line
graph of armed crown, double comb, ladder, wheel and tadpole.

Keywords: Graph Labeling, Antimagic Labeling, Graph Operation, Line
Graph.

Mathematics Subject Classification (2020) No.: 05C78, 05C76.
1. Introduction

All the graphs considered in this paper are simple, finite, connected and
undirected. A graph G = (V(G), E(G)) with ¢ edges is said to be antimagic, if
there exist a bijective labeling f from edge set of G to 1,2, 3,..., ¢ such that the

sums of the labels of the edges incident to each vertex is distinct. Hartsfield and
Ringel [12] in ‘Pearls in graph theory’ introduced antimagic labeling and conjecture

that ‘every connected graph different from K, is antimagic’.

Many authors have tried to attack antimagic conjecture, Alon ef al. [1] have
derived conditions on degree of a vertices for graph to be antimagic. Arumugam
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et al. [2] have shown that various pyramid graphs are antimagic graphs. Cheng [6]
has proved that Cartesian products of two or more regular graphs are antimagic.
Joseph and Kureethara[15] have investigated that Cartesian product of wheel
graph and path graph is antimagic. Baca et al. [3] as well as Wang et al .[24]
have discussed antimagic labeling for some join graphs. Latchoumanane and
Varadhan [17] have studied antimagicness for tensor product of wheel and star.
Lozano et al. [18] have proved antimagic labeling of caterpillars. Sethuraman and
Shermily [21] have verified binomial tree and Fibonacci tree are antimagic. Barasara
and Prajapati [4, 5] have obtained antimagic labeling of some degree splitting graphs
as well as for some snake graphs. Although researchers applied various techniques,
still antimagic conjecture remains open.

A detailed survey on antimagic labeling can be found in Jin and Tu [14].
While survey on graph labeling is carried out by Gallian [10].

In this paper, we study antimagic labeling in the context of line graph
operation.

2. Preliminaries

Definition 2.1 ([7]): The line graph L(G) of a graph G is the graph
whose vertex set is E(G) and two vertices are adjacent in L(G) whenever they

are incident in G .

Definition 2.2 ([23]): The armed crown AC, is a graph in which path
P, is attached at each vertex of cycle C,, by an edge.

Definition 2.3 ([19]): The Cartesian product of graphs G, and G,
denoted by GGy is the graph with vertex set

V(G) x V(Gy) = {(u,v)/u € V(G,) and v € V(Gy)} and (u,v) is adjacent
to (u',v") if and only if either u = u' and vw' € E(Gy) or v =v' and

uu' € E(Gy).

Definition 2.4 ([11]): The ladder graph L, is defined as L, =P,00K, .
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Definition 2.5 ([9]): Let G and H be two graphs. The corona product
of G and H, denoted by G © H , is obtained by taking one copy of G and
\V(G)| copies of H, and by joining each vertex of the i" copies of H to the i"

vertex of G, for 1,2,3,...,|V(Q)].

Definition 2.6 ([13]): Let P, be a path graph with n wvertices. The
double comb graph is defined as P, © 2Kj.

Definition 2.7 ([22]): The graph obtained by joining cycle C, to a path
P,, with an edge is called tadpole graph. It is denoted by T(n, m).

Preposition 2.1 ([1]): If G has n > 4 wvertices and A(G) > n — 2 then

G is antimagic.

Preposition 2.2 (Exercise in [12]): The cycle C,, is antimagic.
3. Main Results

Theorem 3.1: The armed crown graph AC,, is an antimagic graph.

Proof: Let AC, be an armed crown graph with
VIAG,) ={v, v, 4 /i=12...,n} and E(AC,) ={vv,/i=12..,n—-1}

Uy, } U{v; /i =1,2,...,n} U{v)/i =12 ...,n}.
Then |V(AC,)| = 3n and |E(AC,)| = 3n.

We define f : E(AC,) — {1,2,...,3n} as follows.
f(vlvn) =2n+1,

flowi) =3n—i+ 1 For1 <i<n-1,
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flvi) = n +3;

fwivf') = i;

Forl1<i<n,

Forl <i<n.

Above define edge labeling function will generate distinct vertex labels for
all the vertices of AC,,. Thus, f is an antimagic labeling.

Hence, the armed crown graph A C), is an antimagic graph.

Ilustration 3.1: The graph ACy and its antimagic labeling is shown in
Figure 1.

Figure 1: AC5 and its antimagic labeling.

Theorem 3.2: The graph L(AC,) is an antimagic graph.

Proof: Let AC, be an armed crown graph with V(AC),) = {v;, v}, v} /i =
L,2,...,n} and E(AC,) ={¢ = vv; 1 /i =12,....,n -1} U{e, = vuv,}
Ude = /i =1,2,...,n} U {ef

= vy

/i =12,...,n}.To construct L(AC,),
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let the vertices corresponding to e; be z;, ¢; be z; and e; be x; for each i. Then
[V(L(AC,)| = 3n and |E(L(AC,)| = 4n .

We define f : E(L(AC),)) > {1,2,...,4n} as follows.

flziz)) = 1; Forl<i<n,

flapmy) = n +1,

flexi ) =n+1+74; Forl1<i<n-1,
flziz;) = 3n +1—-1; For1 < i < n,
flzmi) =3n+1+1; Forl<i<n-1,

f(zz,) = 3n + 1.

Above define edge labeling function will generate distinct vertex labels for
all the vertices of L(AC,,). Thus, f is an antimagic labeling.

Hence, the graph L(AC,)) is an antimagic graph. U

Ilustration 3.2: The graph L(ACg) and its antimagic labeling is shown
wn Figure 2.

Figure 2: L(ACg) and its antimagic labeling.
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Theorem 3.3: The graph L(P, © 2K,) is an antimagic graph.

Proof: Let P, © 2K, be a double comb graph with V(P, O 2K;) =
{vj, vj,vf /i = 1,2,...,n} and E(P, © 2K;) ={¢; = vjv;,1 /i = 1,2,...,n -1}

Ude =vwj/i =12...,n}U{e) =vo//i=12/..,n}. To construct

L(P, © 2K;), let the vertices corresponding to e; be z;, €; be z; and €] be z; for
each 4. Then |V(L(P, © 2K;)| = 3n — 1 and |E(L(P, © 2K;)| = 6n — 6.

We define f: E(P, © 2K1) —> {1,2,...,6n — 6} as per following two
cases.

Casel: For n = 2.

The graph L(P, © 2K;) has 5 vertices and A(L(P, © 2K;)) = 4. Thus,
by Preposition 2.1, L(P, © 2K)) is an antimagic graph.

Case 2: For n > 3.

flaiai) = 1,

f@yzy) =2,

flzz)) = 2i + 15 For1<i<n-1,
flo;_qxp) = 24, For2 <i<n,
flz;z) = 4n — 2i; For1<i<n-1,
flzz)y) = 4n — 1 — 24 For1<i<n-1,
floxiq) = bn —4 + 14, Forl1<i<n-2,
flziz]) = 4n — 3 + 1, For2 <i<n-1.

Above define edge labeling function will generate distinct vertex labels for
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all the vertices of L(P, © 2K;). Thus, f is an antimagic labeling.
Hence, the graph L(P, O 2K;) is an antimagic graph. U

Ilustration 3.3: The graph L(P; © 2K,) and its antimagic labeling is

shown in Figure 3.

Figure 3: L(P;, © 2K,)and its antimagic labeling.

Theorem 3.4: The graph L(L,) is an antimagic graph.

Proof: Let L, be a ladder graph with V(L,) = {v;,v; /i = 1,2,...,n} and
EL,) ={e; = vvz1 /i =12,....,n =1} U{e; = vuj /i = 1,2,...,n}
U {ej = vjvj,1/i =12,...,n —1}. To construct L(L,), let the vertices

corresponding to e; be z;, e; be x; and e} be z; for each 3.
Then |V(L(L,)| = 3n — 2 and E(L(L,)| = 6n — 8.
We define f : F(L(Ln)) = {1,2,...,6n — 8} as per following four cases.
Case 1: For n = 2.

The graph L(L,) is also known as cycle C,. Thus, by Preposition 2.2,
L(Ly) is an antimagic graph.
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Case2: Forn = 4.

The antimagic labeling of graph L(L,)is demonstrated in following Figure 4.

Figure 4: L(L,) and its antimagic labeling.

Case3: Forn = 0,1,3(mod 4) and n # 4.

flzzy) = i, For1<i<n-1,
fiqx) =n -1+ 1, Forl<i:<n-1,
flzz]) = 2(n — 1) + i3 Forl<i<n-1,
flzqz)) = 3(n = 1) + i; Forl1<i<n-1,
flzjzi ) = 4(n - 1) + i, Forl1<i<n-2,
flajz},1) = 5(n—-1) -1+ 1; Forl<i<n-2

Case 4: For n = 2(mod 4) and n # 2.
flzz)) = i3 For1 < i

N
3
|
—_

flzqx) = 2(n = 1) + 4 Forl <1

N
3
I
—

flmz)) =n -1+, For1 < ¢

N
3
I
—
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flzqz)) = 3(n = 1) + i For1<i<n-1,
f@izi) = 4n - 1) + 1, Forl<i<n-2,
f@iaisy) = 5(n — 1) =1+ i; For1<i<mn-2.

Above define edge labeling function will generate distinct vertex labels for
all the vertices of L(L,). Thus, f is an antimagic labeling.

Hence, the graph L(L,,) is an antimagic graph. Il

Ilustration 3.4: The graph L(Lg) and its antimagic labeling is shown

in Figure 5.

Figure 5: L(Lg) and its antimagic labeling.

Theorem 3.5: The graph L(W,)) is an antimagic graph.
Proof: Let I, be a wheel graph with V(W) = {v,v; /i = 1,2,...,n} and
EW,) ={e =vv/i=12...,n-1}U{e, = vu,} U{e, = w; /i =12 ...,n}.

To construct L(WW,,), let the vertices corresponding to e; be z; and €; be z;

for each 7.
2
Then [V(L(W,)| = 2n and |E(L(W,)| = %

2
We define [ : E(L(W,)) > {1, 2, ,%} as follows.
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f(fl?z‘l'7;+1) =Z, FOI‘ng’gn—l,

f(xnx1)=n,

flax)) =n +1i; Forl << n,
f@izi) = 3n +1-1; For1<i<n-1,

flzpzy) = 2n + 1,

’o . . 1<’L<27
fizi ;) =i(n = 1) +2n + j + 1; For l<i<n—i

- . . 1—1)(G -2 3<i<n-1
f(:EZ-:I:H]-)=z(n—1)+2n+]+1——( )2( );For {1<j<n—z’,

Above define edge labeling function will generate distinct vertex labels for
all the vertices of L(W,,).

Thus, f is an antimagic labeling.

Hence, the graph L(I¥,)) is an antimagic graph. 0]

Ilustration 3.5: The graph L(W5) and its antimagic labeling is shown
in Figure 6.

Figure 6: L(WW;)and its antimagic labeling.
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Theorem 3.6: The graph L(T(n, m)) is an antimagic graph.
Proof: Let 7T(n,m) be a tadpole with V(T(n, m)) = {v, va, ..., Uy 40}

andE(T(n, m)) = {e’i = U’ivi+1/7;:17 2,...,n + m} U {€n+m = Un+mvm+1}'

To construct L(T'(n, m)), let the vertices corresponding to e; be x; for each 7.

Then |V(L(T(n,m))| = n + m and |E(L(T(n,m))| = n + m + 1.

We define f : E(L(T(n,m)) - {1,2,...,n + m + 1} as per following
seven cases.

Casel:Forn =3andm > n —1.

flom ) = i; Fori1<i<n+m-1,
J@pim@y) = n+m,
J@p1%p1m) =+ m+1.
Case2:Forn >4 and (m > n—-1orm =n - 3).
flomq) = i; Forl<i<n+m-1,
f@ysm®p) = n+m,
f@p1Zyom) = n+m+ 1.
Case3:For (n =3 orn =4)and m =n — 2.
flom ) = i; Forl<i<n+m-1,
f(@pomTm) =n+m+1,
J@mi1@nem) = n +m.

Cased4:Foroddn > 5 and m = 1.

- ) +
f@imig) = n — 20+ 2; For2<z<n2m
+
f(#;241) = 20 = (n + m); FOrn m+1<i<n+m—1

2
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fmzy) = n+m,

f(xll‘ner) =n+m+1,

@y i) =mn+m—1.

Case5: Forevenn > 6 and m = 1.

f(xizi) =n — 20 +2; For2<i<%m_l
T:T1) = 26— (n + m); ForwéiénﬁLm—la
f(zz+1> 2

f(myzy) = n +m,
f(xlxn+m) = n+m+1,

@y i) =n+m-1.

Case 6: For n >5 and (1 <m <n—-4orm=n-2)and n+m is

even.
. . n+m
f(@241) = 2i; Forl1 < i < 5 ,

n+m

flzz;y) =2i — (n+m) —1; For +1<i<n+m-1

f(l‘nerxm) =n+m-1,
f(xm+lxn+m) =n+m+1.

Case7: Forn >6 and 1 <m<n-4orm=n-2)and n+m is

odd.
flzz; ) = 24, For1l < i < %erl
+m +1
flexiq) =2i—(n+m)—2; For 227 L 1<i<n+m-1

2

f(xn+mxm> = n+m—2,

f(merlajner) =n+m.
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Above define edge labeling function will generate distinct vertex labels for
all the vertices of L(T'(n, m)). Thus, f is an antimagic labeling.

Hence, the graph L(T'(n, m)) is an antimagic graph. U

Hlustration 3.6: The graph L(T(5,5)) and its antimagic labeling is

shown in Figure 7.

"l'-L 'r_?l .1I.-: 'TI
 O———0O——0——0

Figure 7: L(T(5, 5)) and its antimagic labeling.
4. Applications of Antimagic Labeling

Labeled graph has many applications in computer science, applied sciences,
social sciences and cryptography. Development of encryption and decryption
algorithm using antimagic labeling was studied by Krishnaa [16], Femina and Xavier
[8] and Selvakumar and Gupta [20].

5. Conclusions
It is quite difficult to verify that the given connected graph admits antimagic
labeling. Many authors [3, 4, 6, 15, 17, 24] have studied antimagic labeling for

various graph operations.

While in this paper, antimagic labeling for the line graph of armed crown,
double comb, ladder, wheel and tadpole is verified.
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R. Ponraj' | VECTOR BASIS S-CORDIAL LABELING
« ,2"d| OF FRIENDSHIP GRAPH, FAN GRAPH,
9 AND LILLY GRAPH

Abstract: Let G be a (p,q) graph. Let V be an inner product space with
basis S. Let @ :V(G) > S be a map. For each xy assign the label
< z,y >, where < x,y >denotes the inner product of z and y. We say that

@ is a vector basis S-cordial labeling if |¢, —¢, |<1 and
|y — Vi | <1 where ¢, denotes the number of vertices labeled with the

vector z and y; denotes the number of edges labeled with the scalar 7. A
graph with a vector basis S-cordial labeling is called a vector basis

S-cordial graph. In this paper, we investigate the vector basis S-cordial
labeling of certain graphs like friendship graph, fan graph, lilly graph,
bistar graph, crown graph and armed crown graph where

S ={(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)} is a basis in R* .

Keywords: Friendship Graph, Fan Graph, Lilly Graph, Bistar Graph, and
Crown Graph.

Mathematics Subject Classification (2020) No.: 05C78.
1. Introduction

In this paper, we consider only finite, simple and undirected graph
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G =(V(G), E(G)) where V(G) and E(G) respectively, denote the vertex set and
edge set of G. Note that p =|V(G)| and ¢ =| E(G) | denote the number of vertices

and edges of G respectively. The idea of graph labeling was first introduced by Rosa

in 1967 [16]. Vertex odd graceful labeling has studied in [5]. Baskar Babujee and
Shobana [3] have examined the prime and prime cordial labeling for some
special graphs. Radio geometric mean labeling of some star like graphs have
investigated in [8]. Parmar [18] proved that for the wheel, fan and friendship graphs
are edge vertex prime.

The join G; + Gy [6] of two graphs G; and Gy is defined as the graph whose
vertex set is V(G;) + V(G,) and the edge set consists of these edges which are in G
and in G, and the edges contained by joining each vertex of G| to each vertex of G, .
The fan graph F;, [18] is a graph that is constructed by joining all vertices of a path

P, to a further vertex, called center. That is, F;, = K; + P, . Amutha and Uma Devi

[1] have explored the super graceful labeling for some families of fan graphs.
Barasara [2] proved that the comb is an edge and total edge product cordial. For a
dynamic survey on graph labeling, we refer to Gallian [6].

The friendship graph C5(n) [6] can be constructed by joining n copies of the
cycle graph C3; with a common vertex, which becomes a universal vertex for the
graph. The corona G; © G, [6] of two graphs G| and G, is obtained by taking one
copy of Gy and | V(G;)| copies of G, and joining each vertex of the i'" copy of

G, to the i vertex of Gj.

The concept of cordial labeling was first introduced by I. Cahit [4]. Mitra and
Bhoumik [11] have introduced the tribonacci cordial labeling of graphs. Parthiban
and Sharma proved that the Lilly graph is a prime cordial graph in [13]. The Lilly

graph I,,,n > 2 [13] can be constructed by two star graphs 2K ,,,n > 2 joining two

paths 2P,,n > 2 with sharing a common vertex. That is, [, = 2K, ,, + 2F,. For the

terminologies and different notations of graph theory, we refer the book of Harary [7]
and of algebra; we refer the book of Herstein [9]. Sum divisor cordial labeling of
theta graph was examined by Sugumaran and Rajesh in [17]. Difference cordial
labeling for plus and hanging pyramid graphs have studied in [12]. Prajapati and
A. Vantiya have proved that the triangular snake, double triangular snake,
quadrilateral snake, double quadrilateral snake are SD-prime cordial in [14]. Kaneria
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et al. [10] have investigated the balanced mean cordial labeling and graph operations.

We have introduced new labeling called vector basis S-cordial labeling in

[15] and investigated the vector basis vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0),
(1,0,0,0)}-cordial labeling behavior of some standard graphs like path, cycle, comb,
star and complete graph. In this paper, we investigate the vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of certain graphs like friendship graph,
fan graph, lilly graph, bistar graph, crown graph and armed crown graph.

2. Vector basis S-cordial labeling

Definition 2.1: Let G be a (p,q) graph. Let V be an inner product space
with basis S. Let ¢ : V(G) — S be a map. For each xy assign the label< z,y > ,
where < z,y > denotes the inner product of x and y. We say that ¢ is a vector basis
S-cordial labeling if | @, — ¢, [<1 and | y; —y; | <1 where ¢, denotes the number
of vertices labeled with the vector x and y; denotes the number of edges labeled with
the scalar 7. A graph with a vector basis S-cordial labeling is called a vector basis

S- cordial graph.

Theorem 2.2: [15] The set S = {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)} is a

basis for R* over R.

Theorem 2.3: [15] A graph G is vector basis {(1,0),(0,1)}-cordial if and only
if Gis a cordial graph.

Theorem 2.4: [15] The path P, is a vector basis {(1,1,1,1), (1,1,1,0),
(1,1,0,0), (1,0,0,0)}-cordial graph forall n > 1.

Theorem 2.5: [15] The cycle C,, is a vector basis {(1,1,1,1), (1,1,1,0),
(1,1,0,0), (1,0,0,0)}-cordial if and only if n =1,2,3 (mod4).

In this paper, we consider the inner product space Rn and the standard
inner product < z,y >=xY + Toyy + -+ 2y, Where z=(z,29,...,7,),

Y=Y Un)s TinY €ER.
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3. Main Results

In this section, we consider the basis S = {(1,1,1,1), (1,1,1,0), (1,1,0,0),
(1,0,0,0)}.

Theorem 3.1: The friendship graph C5(n) is a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} -cordial if and only if n =0,1,2 (mod4).

Proof: The friendship graph C5(n) is a planar, undirected graph with 2n + 1
vertices and 3n edges. Let V(C5(n)) = {u,u; |1 <i<2n} and E(C3(n)) = {uug;_q,
Uy, Up;_1Un; | 1 <1< n} respectively be the vertex and edge sets of Cs(n).Then
| V(Cq(n)) |=p=2n+1 and | E(C5(n)) |= ¢ = 3n . There are four case arises.

Case (i): 7 = 0 (mod 4)

Letn = 4k. Then, p =2n+1 =8k + 1. Next, we assign the vector (1,1,1,1)

to the vertex u. Assign the vector (1,1,1,1) to the vertices wuy, ug, ..., us;, . We assign
the vector (1,1,1,0) to the next vertices gy, 1, Uspya, .-, Ugs . Lhen assign the vector
(1,1,0,0) to the next vertices uyj, 1, Uspias --- , Ugi - Also assign the vector (1,0,0,0)

to the remaining vertices gy, , Ugpi2y --- 5 U -
Case (ii): n =1 (mod 4)

Let n =4k +1. Then, p = 8k + 3. Now, we assign the vector (1,1,1,1) to the

vertex u. So assign the vector (1,1,1,1) to the vertices wuy,us, ..., Uy, . Assign the
vector (1,1,1,0) to the next vertices gy 1, Uspio,--->Us;- WE assign the vector
(1,1,0,0) to the next vertices wyj,.i, Ugpio,---,Ug,. Further, assign the vector

(1,1,1,0) to the vertex ug;,, . Assign the vector (1,0,0,0) to the vertex ug;,o. Then
assign the vector (1,1,0,0) to the vertex ug,, 3. Finally, assign the vector (1,0,0,0) to

the remaining 2k — 1 vertices gy 4, Ugprss --- » Usk+3 -
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Case (iii): 7 =2 (mod 4)

Let n =4k +2. Then,p = 8k + 5. Also, we assign the vector (1,1,1,1) to the

vertex wu. Assign the vector (1,1,1,1) to the vertices wuy,uy, ..., Uss, 1. We assign the

vector (1,1,1,0) to the next vertices uyy.9, Up 3,---,Usrso- Lhen assign the vector

(1,1,0,0) to the vertices yj.3,Uspsas ---,Ugpes - Moreover, assign the vector

(1,0,0,0) to the remaining 2k vertices tgj., 4, Ugp+5, «- - » Ukt -
Case (iv): n =3 (mod 4)

Let n=4k+3. Then p=8k+7 and ¢ =12k +9. If we assign vector
(1,1,1,1) to the vertex v and we have to assign (1,1,1,1) to the 2k + 1 vertices, then

7y = 2k+ 1+%<2/{:+1+/{:+1 <3k +2, a contradiction. But y, =3k +1 or
y4 =k +1 according as the vertex u receive the vector (1,1,1,1) or not. This is a

contradiction since the size of C3(n) is 12k +9.

Clearly the above labeling pattern provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the friendship graph Cj5(n) if
n=0,1,2 (mod 4).

Theorem 3.2: The fan graph F, is a vector basis {(1,1,1,1), (1,1,1,0),
(1,1,0,0), (1,0,0,0)}-cordial if and only if n =0 (mod 4).

Proof: Let V(F,)={u,u; |1<i<n} and E(F,)={uy; [1<i<n}U
{uu;,1 |1<i<n—1} respectively be the vertex and edge sets of Fj,. Then

|V(Fn)| =p=n+1 and E|(F,,)| = ¢ =2n — 1. There are four cases arises.
Case (i): 7 =0 (mod 4)

Let n =4k. Then, p =4k +1. Next, we assign the vector (1,1,1,1) to the

vertex u. Assign the vector (1,1,1,1) to the first k vertices uy, us, ..., ;. Then, assign
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the vector (1,1,1,0) to the next k vertices w1, U 9, ..., Uy, - Also, assign the vector
(1,1,0,0) to the next k wvertices ugy,1,Usgt2, ---, U, - Moreover, assign the vector
(1,0,0,0) to the remaining k& vertices U1, Usg49, --- » Uaf; -

Case (ii): n» =1 (mod 4)

Let n=4k+1. Then p=n+1=4k+2=(k+1)+(k+1)+k+k and
g=2n —-1=8k+1=2k+1)+2k+2k+2k. Clearly, y,=2k-1 or y, =k

according as the vertex u receive the vector (1,1,1,1) or not. This is a contradiction

since the size of F),is 8k +1.
Case (iii): 7 =2 (mod 4)

Let n=4k+2. Then p=4k+3=(k+1)+(k+1)+(k+1)+k and
q=8k+3=02k+1)+2k+1)+(2k+1)+2k. Thus, y,=2k-1 or y;=k
according as the vertex w receive the vector (1,1,1,1) or not. We get a contradiction

since the size of F}, is 8k + 3.

Case (iv): n = 3 (mod 4)

Let n=4k+3. Then p=4k+4=(k+1)+(k+1)+(k+1)+(k+1) and
q=8k+5=02k+2)+(2k+1)+(2k+1)+(2k+1). Hence, yy=2k—-1 or y, =k
according as the vertex u receive the vector (1,1,1,1) or not. We get a contradiction

since the size of F,, is 8k +5.

Clearly the above labeling method provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling for the fan graph F, if n=0
(mod 4).

Example 3.3: The following Figure 1 illustrates the vector basis
{(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling fan graph F; .
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(]".‘]".‘]".‘]')

(1,1,1,1) (1,1,1,0)

(]' ?]‘7070)

(1,0,0,0)

Figure 1
Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of F .

Theorem 3.4: The Lilly graph [, is a vector basis {(1,1,1,1), (1,1,1,0),
(1,1,0,0), (1,0,0,0)}-cordial graph forall n > 2.

Proof: Consider the Lilly graph I,,n>2.

Let V(L) ={uwu;v; |[1<i<n—-1} U{z;, y, |1<i<n} and

E(I,) = {ux;, uy; |1 < i <n}U{uo, uug, ug g, 00,1 |1 <7< n—2} respectively

be the vertex and edge sets of I,,. Then |V(In)| =p=4n-1 and |E(In) =q=4n-2.

First, we assign the vector (1,1,1,1) to the vertex u. Assign the vector

(1,1,1,1) to the vertices wuy,us, ...,u,_;. Then, assign the vector (1,1,1,0) to the
vertices vy, s, ..., U, _1 - Also, assign the vector (1,1,0,0) to the vertices z;, x, ..., T,

. Moreover, assign the vector (1,0,0,0) to the vertices ¥y, ya, ..., ¥, -

Hence, the above labeling technique provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} - cordial labeling for the Lilly graph I, .

Example 3.5: The following Figure 2 illustrates the vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} -cordial labeling of Lilly graph 1.
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(1,1,0.0) (1,1,0,0)

(1,1,0,0)

(1.1,0.0)

(1.1,1,1)

[ B B i (1.1,1.,0)

(L, 1,151 (1,1,1,0)

(1,0,0.0)

(1,0,0,0)

(1,0,0,0) (1,0,0,0)

Figure 2
Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling of I, .

Theorem 3.6: The crown graph C, © K; is a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial if and only if n is odd.

Proof: Consider the crown graph C, © K;. Let (, be the cycle
Wy ... uu . Let V(C, O Ky) =V(C,)U{y; |1<i<n} and E(C, © K;) = E(C)U
{uv; |1 <i<n} respectively be the vertex and edge sets of C, © K;. Then
|V(C, OK,)|=p=2n and | E(C, © K;)|=q =2n. We have considered the two

cascs.

Case (i): p =0 (mod 4)

Let p = 4k. To get the edge label 4, the vector (1,1,1,1) should be assigned

to the consecutive vertices of C,, © K. As the size of C,, © K; is 2n = p = 4k, the
maximum edges with label 4 is k£ — 1, a contradiction arises.

Case (ii): p =2 (mod 4)

Let p=4k+2. Then, assign the vector in the following order

Upy Uy .. Uy, U1, Vo, ... Uy, . We assign the vector (1,1,1,1) to the first £+ 1 vertices

Uy, U,y ..., Uppp. Also, assign the vector (1,1,1,0) to the next k& vertices
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Uy, Upygs --- 5 Uy, . We assign the wvector (1,1,0,0) to the k+1 vertices
v, Vg, ..., Upy1- Moreover, assign the vector (1,0,0,0) to the next k vertices
Uk+25 Vk435 -5 Up -

Thus, the above labeling technique provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0) } -cordial labeling for the crown graph C, © K .

Theorem 3.7: The armed crown graph AC, is a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} -cordial if and only if n =1,2,3 (mod 4).

Proof: The armed crown graph A C,, is the graph obtained from the cycle
Wy ... uyuy With V(ACn) =V(C,)U {v;, w; |1 <i<n} and E(AC,) + E(C,) U
{u;v;, v;w; | 1 < i < n}respectively be the vertex and edge sets of AC,. Then

‘V(A Cn) = ¢q = 3n . We have considered the four cases.

= p=3n and ‘E(AC,,,)

Case (i): p =0 (mod 4)

Let p = 4k . To get the edge label 4, the vector (1,1,1,1) should be assigned

to the consecutive vertices of the graph. AC,, As the size of AC,, is 3n =p =4k,
the maximum edges with label 4 is £ — 1 , a contradiction.

Case (ii): p = 1 (mod 4)

Let p = 4k + 1. Then, assign the vector in the following order uy, us, ... u, ,
Uy, Wy, Vg, W, ... Uy, W, . We assign the vector (1,1,1,1) to the first £+1 vertices.

Next, assign the vector (1,1,1,0) to the next k vertices. Also assign the vector

(1,1,0,0) to the next k vertices. Further, assign the vector (1,0,0,0) to the remaining %
vertices.

Case (iii): p =2 (mod 4)

Let p = 4k + 2. Then, assign the vector in the following order wu;,us, ... u, ,
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vy, Wy, Ug, W, ... Uy, W, . Now, assign the vector (1,1,1,1) to the first k + 1 vertices.

So assign the vector (1,1,1,0) to the next £ vertices. Next, assign the vector (1,1,0,0)

to the next %k +1 vertices. Finally, assign the vector (1,0,0,0) to the remaining %
vertices.

Case (iv): p = 3 (mod 4)

Let p = 4k + 3. Then, assign the vector in the following order uy,us, ... u,,
Uy, Wy, Vg, W, ... Uy, W, . Also, assign the vector (1,1,1,1) to the first k£ +1 vertices.

Assign the vector (1,1,1,0) to the next k vertices. Then, assign the vector (1,1,0,0) to

the next %+ 1 vertices. Moreover, assign the vector (1,0,0,0) to the remaining % + 1
vertices.

Therefore, the above labeling method provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} -cordial labeling for the armed crown graph A C,, .

Theorem 3.8: The bistar graph B, ,, is a vector basis {(1,1,1,1), (1,1,1,0),
(1,1,0,0), (1,0,0,0)} -cordial graph for all n.

Proof: Let V(Byn)={uu,u;,v; [ 1<i<n} and
E(B,.,) = {uv,uu;,vv; | 1 < i < n} respectively be the vertex and edge sets of B, ,, .
Note that ‘V(Bn, n)‘ =p=2n+2 and ‘E(Bnn)

the two cases.

=q=2n+1. We have considered

Case (i): p =0 (mod 4)

Let p =4k. Next, we assign the vector (1,1,1,1) to the vertices u and v.

Assign the vector (1,1,1,1) to the vertices wuy,us, ..., u,_o. Then, assign the vector
(1,1,1,0) to the vertices wuy_q,uy, ..., Uy._o . Also, assign the vector (1,1,0,0) to the

next k vertices vy, vy, ..., v, . Moreover, assign the vector (1,0,0,0) to the remaining %

vertices.
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Case (ii): p =2 (mod 4)

Let p = 4k + 2. Now, we assign the vector (1,1,1,1) to the vertices « and v.
Assign the vector (1,1,1,1) to the vertices uy,uy, ..., u,_; . Next, assign the vector
(1,1,1,0) to the vertices wy,ug.q, ---,Ugp_1- SO, assign the vector (1,1,0,0) to the
next k vertices vy, s, ...,v;,. Further, assign the vector (1,0,0,0) to the remaining

vertices.

Clearly the above labeling method provides a vector basis {(1,1,1,1),
(1,1,1,0), (1,1,0,0), (1,0,0,0)} -cordial labeling for the bistar graph B, .

4. Conclusion

Vector basis {(1,1,1,1), (1,1,1,0), (1,1,0,0), (1,0,0,0)}-cordial labeling
behavior of certain standard graphs like friendship graph, fan graph, lilly graph, bistar
graph, crown graph and armed crown graph have been investigated in this paper. The
investigation of different kinds of families of graphs for existence of vector basis

S-cordial labeling is an open problem.
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Z,40(T) = a()z,,,1(z) + b(2)z,(x), where z is an arbitrary integer variable;a(z),

b(x), zy(z),and z () are arbitrary integer polynomials; and n > 0.

Suppose a(z)=x and b(z)=1. When z,(z)=0 and 2z(z)=1,
z,(z) = f,(x), the nth Fibonacci polynomial, and when z,(z) =2 and z,(z) =z,

z,(z) =1,(z), the nth Lucas polynomial.

They can also be defined by the Binet-like formulas. Clearly, f,(1) = F,,
the nth Fibonacci number; and [, (1) = L, , the nth Lucas number [1, 2].
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Pell polynomials p, (x) and Pell-Lucas polynomials q,(z) are defined by
=1

p,(z) = f,(2z) and q,(z) =1,(2z), respectively [2, 6].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z).
In addition, we let g, = f, or [,; b, = p, or q,; A=+Jz2 +4 and 2a =z + A
[6, 7].

1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the
following properties [2, 3, 4, 5, 6, 7]:

(_1)n+k+1fk2 if g, = f
x n n
In+k9n—k — 972L = ntk A2 12 . (1)
(=1)"*FA% L2, otherwise;
(_1)n+k+1f;“f2k7 if 9n = fn (2)
In+k+rIn—k In+k9n—k+r = (_1)n+kA2frf2k, otherwise;
A_12 [2l2n+7‘ — (—1)n+kl2klr]7 if 9n = f;L (3)
_5 + _ =
In+k+r9n—k In+kGn—k+r 2L2n+r " (—1)n'+k&2klr, otherwise,

where k and r are positive integers. These properties can be confirmed using Binet-
like formulas.

Consequently, we have

_pyntk+1 nik .
%[QZQHJM’ - (_1) +kl2k;l7‘:| ka.ﬁa if 9n = ﬁz

(_1)n+k;A2[2l2n+r + (_]‘)n+kl2k’l7‘:|fl2k-f;‘7 otherwise.
(4)

2 2 2 2 _
Invk+r9n-k = In+kIn—k+r =

Again, in the interest of brevity and convenience, we now let

A= 2L2(2pn+t—p)k+r - (_1)tkl2pklr; and B = 2l2(2pn+t—p)k+7’ + (_1)tkl2pklr'

It follows identities (1) and (4) that
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2 _ (_1)tk+1f1)2k7 if 9n = j;L
92pn+t)k92pn+t-2p)k — g(Qpn+t_p)k = (—1)tkA2 9

o otherwise;

&)

(_1)tk+1 .
A2 Aprk:fra if g, =/,

(1" A’Bfy,.f,, otherwise,
(6)

2 2 _ 2 2 —
g(? pn+t)k+7’g(2 pn+t—2p)k g(?pn+t)kg(2pn+t—2p)k+r -

respectively, where k, p, r, and ¢ are positive integers and ¢t < 2p [6].

2. A Telescoping Gibonacci Sum

Using recursion, we established the following telescoping sum in [6]. In the
interest of brevity, we omit its proof here.

Lemma 1: Let k, p,r,t , and A be positive integers, where t < 2p .

Then
0 A A
z g(2pn+t72p)k+r _ g(2pn+t)k+r _ g,ﬁﬁr g %
2 2 A '
n—1 g(2pn+t72p)k' g(2pn+t)k’ Itk

3. A Family of Gibonacci Sums

This lemma, coupled with identities (5) and (6), played a major role in the
development of the following theorem. To present it in a concise fashion, we now let:

N_{l, ngn:fn " ?7 lfgnzfn

A2, otherwise; A%, otherwise;

otherwise.

-1 1 n = Jn
- U:{l if g, =1

These tools served as building blocks in the development of the theorem [6].
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Theorem 1: Let k, p, v, and t be positive integers, where t < 2p . Then

i 1 tk * 212 2pn+t—p)k+r + (_ )tkUZQPkl ]prkfr = gt2k+7‘ — OCQT (8)

[g(pn+t p)k +( ) L, k]2 thk

The objective of our discourse is to confirm this result using graph-theoretic
techniques. To this end, we now present the needed tools.

4. Graph-Theoretic Tools

Consider the Fibonacci digraph in Figure 1 with vertices v; and v,, where a

weight is assigned to each edge [2, 5]. It follows from its weighted adjacency

1
matriz () = 0 that

Figure 1: Weighted Fibonacci Digraph

fnJrl fn
fn fn—l

b

Q?L —

where n > 1 [2, 3, 4, 5]. We extend the exponent n to 0, which is consistent with
the Cassini-like formula f,,1f,_1 — f> = (=1)", where f, =1 [2,5].

A walk from vertex v, to vertex wv; is a sequence

J j-1 Y

; of vertices v, and edges ¢, where edge ¢, is

incident with vertices v, and v, ;. The walk is closed if v; =wv.; and open,

j 7
otherwise. The length of a walk is the number of edges in the walk. The weight of a

walk is the product of the weights of the edges along the walk.
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The 4jth entry of Q™ gives the sum of the weights of all walks of length n
from v; to v; in the weighted digraph, where 1 < i, j < n [2, 3, 4]. Consequently,
the sum of the weights of closed walks of length n originating at v; in the digraph is
f.+1 and that of those originating at v, is f,_;. So, the sum of the weights of all

closed walks of length n in the digraphis f,.; + f,_1 = I, [2,5].

Let A and B denote sets of walks of varying lengths originating at a vertex
v. Then the sum of the weights of the elements (a,b) in the product set A x B is

defined as the product of the sums of weights from each component [3, 4]. This
definition can be extended to any finite number of component sets. In particular, let
A, B,C, and D denote the sets of walks of varying lengths originating at a vertex

v, respectively. Then the sum of the weights of the elements (a, b, ¢, d) in the
product set A x B x C x D is the product of the sums of weights from each

component [3, 4].
We now make an interesting observation. Let A = {u} and B = {v},
where wu denotes the closed walk v; — v; and v denotes the closed walk

v, — v — v, . The weight of the element (u, u) in A x A is x%, and thatin B x B
is 1. Consequently, the sum w of the weights of the elements in

C*=(Ax A U(BxB)U(BxB)U(Bx B)U (B x B) is given by
w =12 +4 = A2,

These tools play a major role in the discourse. With them at our finger tips,
we are now ready for our pursuit of the graph-theoretic confirmation.

5. Graph-Theoretic Confirmation

Let 7, denote the set of closed walks of length 7 in the digraph originating
at v;, and U, the set of all closed walks of the same length n in the digraph.
Correspondingly, let 7, denote the sum of the weights of all elements in 7, , and

U, that of those in U} . Clearly, T,, = f,,; and U, = f,.1 + f,_1 = 1, [2, 5]

With this brief background, we now begin the proof of the gibonacci sum (8) in two
cases, where k, p,7,t > 1 and t < 2p.
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Proof: Case 1: Suppose g, = f,. The sum of the weights of the elements in

the product set Ty, y x )y is Ty 1T—1 = fopifys the sum of those in

: 2 — f£2 . H
Tél)”"'t—P)k—l x T(zpn‘*'t—P)k—l 1 T(2pn+t—p)k—1 - fi?pn+t—p)k’ and that of those in
: 2 _ £2
T;k,71 X T;kfl 1S Tpk—l = Jpk -
We now let

—1)*+12U. — (-1 Ty pi—1T,
pn+t- 1
( ) [ 22pn+t—p)k+r ( ) U2pkUT:| 2pk—-1+r-1

w[T2

S, = -
2pn+t—p)k (_1)tkTka—l]2

(_l)tk+1[2l2(2pn+t7p)k’+7‘ - (_1)tkl2pkl7‘]f2pk’f;‘
A? [fgpn,ﬂfp)k' a (_1)tk f}?k]2

With identities (3) and (4), and Lemma 1, this yields

(_1)tk+1[Aprkﬁ’ _ (%anrt)kJrrf(%anpr)k - fépn,th)kf(ganrthp)k’Jrr
A? [ﬁ%p7l+t7p)k - (_1)fkf172k]2 f(%pn/th)kf(%pn,thpr)k
i (_1)tk[Af2pkf;" _ i fgpn+t—2p)k+r _ fépn+t)k+r
n=1 A? U&%pn+t—p)k - (_1)tkf]72k]2 n=1 f(%pn+t—2p)k f(%pn+t)k
2
= —ft’“;r - a”. ©9)
Ji

We now turn to the next case.

Case 2: Let g, = [, . Recall that the sum w of the weights of the elements
in C* is given byw = 2> + 4 = A?, and that of the elements in the product set
C* x Ty x T}y is given by wTy,;_1T,_; = A’foif, . The sum of the weights of
the elements in  the product set  Ubpnit—pik X Ubpnt—py 1S

U(22pn+t—p)k =

2 ) : ) _ g2
lopn+t-pyi > and that of those in Ty x Tpp_1 is Ty g = fopp -
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As above, we now let

(_1)tk+1w [2U2(2pn+t—p)k+r + (_1)tk U2pkUr]T2pk—1Tr—1

[U(22pn+t—p)k + (‘DtkWTka—l]Q

S, =

(_l)tk+ A2 [2l2(2pn+t7p)k+r + (_1)tk l2pk'l7’ ] prkf;

[l(22pn +t—p)k + (_1)tk AprQk ]2

It then follows by identities (3) and (4), and Lemma 1 that

(_1)tk+1A2Bprkf;’ _ Z(QQanrt) l(22pn+f 2p)k+r l(22pn+f)k+rl(22pn+t 2p)k
[l(22pn+t p)k + (_1)tkA2prk]2 l(22pn+f) l(22pn+t 2p)k
i (_l)tk-'—lAQBprkfr Z 2pn+t 2p)k+r l(22pn+t)k+r
k
n=1 [ZQanHf pk t Azf n=1 l(22pn+t 2p)k l(22pn+t)k
l2
— k+r 0!27’. (10)
I

This equation, coupled with equation (9), yields Theorem 1, as desired. [
Interestingly, equation (9) can be rewritten in terms of graph-theoretic tools.

To realize this goal, we define Ty, =1, Uy = 2; H, =T, or U,;

‘ pto=
w, otherwise;

1, if H, =T, " i? if H, =T,
Bo= .
w, otherwise;

{—1, if H, =T, . {1 if H, =T,
vV = v =

1, otherwise; -1 otherwise;
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ol = -1, if Hn =Tn
0, otherwise.

With these new tools, and integers &, p, r, and ¢ as before, we now present
the graph-theoretic version of equation (8):

i (_1)tku*‘/*[2U2(2pn+t—p)k+r + (_DthUZpkUr]TZpk—lTr—l _ H),‘Qk+r+v’ _ aQr
n=1 [H(22pn+t—p)k—v + (_1)tkMVTka—1]2 Ht2k+v’
(11)

Next, we turn to the Pell implications of the graph-theoretic techniques.

6. Pell Consequence

With the gibonacci-Pell relationship b,(z) = g, (2x), we can construct the
graph-theoretic proof of the Pell version of Theorem 1 independently by changing the
weight of the loop at v; from z to 2z. We encourage gibonacci enthusiasts to
explore this path.
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Abstract: This paper is focused on collecting a different sort of rectangle
called Exponential Diophantine Rectangles over Star and Pronic Numbers.
We demonstrated that there is only one Exponential Diophantine Rectangle
over the Star numbers and no Exponential Diophantine rectangles over the
Pronic numbers. Python programming is provided for the existence of such
rectangles.
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1. Introduction

An exponential Diophantine equation is a special type of Diophantine
equation where the variables exist in exponents. Many authors solved the different
forms of exponential Diophantine equations. In particular, William Sobredo Gayo, Jr.
and Jerico Bravo Bacani [12] solved the exponential Diophantine equation of the

form My + (M, + 1)V = 2% and Mahalakshmi, M. et al. [5], [6], and [7] solved

various Diophantine equations to collect various geometrical shapes, including peble
triangles and almost equilateral triangles.

We define and collect the exponential Diophantine rectangle over Special
numbers (ED Rectangles over Special numbers), inspired by the above. In this paper
we deal only with two types of special numbers especially star and Pronic numbers.
After the introduction basis preliminaries provided. In section (3), the definition
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of ED Rectangles over Star numbers (S5,,) and the lemmas needed for the main

theorem, while subsections establish theorems for the existence of solutions to the
Exponential Diophantie equations. Python code is displayed for the existence of such
rectangles. Section (3) provides the definition theorems and Python programming for
the existence of exponential Diopahantine Rectangles over Pronic numbers.

2. Preliminaries

This section contains basic definitions and lemmas required for this article.

Lemma 2.1 (Catalan’s Conjecture): (3,2,2, 3) is the unique solution for

the exponential Diophantine equation a* — bY = 1, where a,b,z,y € Z such

that min{a, b, z, y} > 2.

Definition 2.1 (Binomial Ezpansion): For z € Z and n € N, the

epansion. for  (L+ ) is  Lene+ MGHa? 4 and  for
(1-2)" is 1—ng + M0 g2
21
n n
In general, (z + y)" = Z nCra" Fyh = Z nChzhyn=F .
k=0 k=0

Definition 2.2: The m™ Star number (S,) is given by

S, =6m?>—-6m+1, form e N.
Example 1: S| =1, 5); = 541.

Definition 2.3: The m™ Pronic numbers (P,) are of the form

P, =m? +m, forall m € N:

Definition 2.4: An Ezxponential Diophantine rectangle is defined as a
rectangle with the length (I) and breadth (b) as (I,b) = (rp + (r = 1)(z + y),
qr =1 +(r+2)(x +vy)) where p,q,r € N and z;y are non-negative

integers such that



DIOPHANTINE RECTANGLES OVER STAR AND PRONIC NUMBERS 193
3. Exponential Diophantine Rectangles over Star Numbers

This section defines Exponential Diophantine Rectangles over S, , provides

some lemmas for solving exponential Diophantine equations, and is divided into two
subsections that examine some theorems. The existence of Exponential Diophantine

Rectangles over S, is proved by python programming with certain limits.

Definition 3.1 (Ezponential Diophantine Rectangles overS,,): An
Exponential Diophantine rectangle over star numbers (S,,) is defined as a
rectangle with the length (1) and breadth (b) as
@, 0) = ((m +1)S,,.1 + m(z +y), mS,, + (m + 1)(x +y)) where m € N and

x,y are non-negative integers such that

Spe1 + S = (m +1)Y 2
or

Spa1 = Sm = (m + 1) 3)

Notation: Exponential Diophantine Rectangles over star numbers - ED
Rectangles over 5,, .

Lemma 3.1: The inequality (1 + n)* > 2 holds for all n,z > 1.

Proof: Let us show this by using induction hypothesis on n. Now, for
n = 2, the inequality becomes 3* > 2. This is true for x > 1. Now, assume that

the inequality (1 + n)Y > 2 holds for n = k. That is, (k + 1)V > 2 for k > 1.
We have to show that the given inequality holds for n = k& + 1. We know that
(k+2) > (k+1) implies (k + 2)V > 2,forall k,y > 1. U

Lemma 3.2: The equation b* — 6b*> + 4b3 + 4b — 1 = 0 has no positive

integer solution for b > 1.
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Proof: The equation b* — 66> + 4b3 + 4b — 1 = 2,3 (mod 4), which is an

absurd one. O

Lemma 3.3: If y > 2, the inequality (1 + n)! > 4n  holds for all
n > 1.

Lemma 3.4: The equation m'? + 12m!! + 66m!° + 220m°? + 495m8
+ 792m" + 924m5S + 792m° + 495m* + 220m3 + 66m? +1 =0 has  no

solution Ym € N.

Proof: The  equation — m' + 12m! + 66m!0 + 220m° + 495m?

+ 792m" + 924mS + 792m® + 495m* + 220m3 + 66m? +1 0 (mod 10)
Hence it has no solution. U
3.1 The exponential Diophantine equation S ., + S = (m + 1)V:

The existence of the solution to the equation S” ., + S = (m + 1)V is
discussed here.

Theorem 3.1: The exponential Diophantine equation
St o+ Sy =(m+1)Y has only one solution (z,y,m) = (0,1,1) for all

r,y € Z* U{0} and m € N.

Proof: Consider the exponential Diophantine equation

ST .1+ Sk = (m + 1)V and solve this in various possibilities.
Possibility 1: For x = 0 and y = 0, the equation (2) has no solution.

Possibility 2: If z = 0 and y = 1, then we obtain m = 1 from the exponential
Diophantine equation.
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Possibility 3: If z = 1 and y = 0, the equation becomes 12m? = —1 which

has no solutionas m € N.

Possibility4: For = =y =1, it reduces to a quadratic equation

12m? — m — 1 = 0. On solving this we obtain m = i ¢ N

Possibility 5: When 2z = 0 and y > 1, the equation becomes (m + 1) = 2.
This is not possible by lemma (3.3).

Possibility 6: For z > 1 and y = 0, the equation becomes (6m? + 6m + 1)
+ (6m? — 6m + 1) = 1. Here S% + S™ 0 (mod 2) which

z+1 =

is an absurd one.

Possibility 7: For z = 1 and y > 1, we get 12m? + 2 = (m + 1)Y. By using
definition (2.1) and equating the coefficient of m?, we get the
value y = 4. Putting the value of y in 12m? +2 = (m + 1)

implies (m + 1)* = 12m? + 2. By lemma (3.2), it has no
solutions.

Possibility 8: Now 1z >1 and gy =1, the equation changes into

Sy + Sy, —m-=1=0.For m =1, it reduces to 13" =1,
which is an impossible one as z > 1. Now, m > 1 for,

S, +8,.1 <m+1=12m> —m +1<0. This is not
possible as m > 1 .

Possibility 9: Here z,y > 1 and m = 1, the equation has no solution by lemma
(2.1). Now for =x,y,m > 1, this possibility fails by using
definition (2.1).

Hence, there is only one solution for the Diophantine equation
St +8Sh =(m+ 1)V (ie,(z,y,m) =(0,1,1)). O
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3.2 The exponential Diophantine equation S’ , — S = (m + 1)V:
This subsection provides the theorem for determining the solution for the equation
ST o+ Sk = (m+1)yY.

Theorem 3.2: No integral solution exists for the exponential

Diophantine equation SE ., — St = (m + 1)V Vo, y € Z+ U {0} and m € N.

Proof: Consider the exponential Diophantine equation

St .1+ Sy = (m + 1)V and solve this in various possibilities.
Possibility 1: For x = 0 and y = 0, this possibility fails.

Possibility2: # = 0 and y =1, the equation becomes m = —1, which

contradicts.

Possibility 3: Here z = y = 1, then on solving the above equation, the value of

m obtained as ﬁ Z N.

Possibility 4: For z = 1 and y = 0, we obtain m ¢ N.
Possibility 5: Now z =0 and gy > 1, then from the equation we obtain
(m + 1) = 0,as m > 1. This possibility fails.

- ST

m=1"

Possibility 6: When z > 1 and y = 0, the equation becomes S”
But S*_ , —S¥ = 1(mod 2). This is not possible.

m+1

Possibility 7: For x =1 and y > 1, now by the definition (2.1) we get
y = 12.1If y = 12, then this possibility fails by lemma (3.4).

Possibility 8: When y =1 and x > 1, the equation reduces into

m+1>S5,. -8, whichimplies 11m < 1.

Possibility 9: = > 1 and y > 1, This possibility also fails by Binomial
Expansion.
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Therefore the given equation has no solution. Il

Theorem 3.3: (27, 1) is the only one ED Rectangle over S, .

Proof: By the theorem (3.1) and (3.2), there exists only one (z,y, z) and so

there only one ED Rectangle exists over 5,), . Il

3.3 Python Programing for Existence of ED Rectangles over S, : In this
section, we provided the python programming for the existence and non existence of
the ED Rectangles over S,

1 # ED rectangle over Star number

2 import math

3 def rectangle ():

4 print (x\ty\Mn\tSm\tSn\t(1,b)”)

5 forxinrange (0,m+1):

6  foryinrange (0,m+1):

7 forninrange (1, m+1):

8 Sm=6*n**2+6*n+1

9 Sn=6*n**2-6*n+1

10 1=Sm*(@n+1)+n*x+y)

Il b=n*Sn+(n-1)*x+y)

12 if (Sm)**x + (Sn)**x == (n+ 1) **y:

13 print (x,"\t", y,"\t’, n,’\t’, Sm ,’\t’, Sn ,"\t” ,(1, b))
14 m = int ( input (" Enter the maximum range :"))
15 # m is the maximum range

16 rectangle ()

Coding 1: Calculating the solution for S, + S ., = (m + 1)
Enter the maximum range:200
X y n Sm Sn (1,b)

0 1 i 13 1 (27, 1)
>>>

Figure 1: Output: Coding 1
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18 # ED rectangle over Star number

19 import math

20 def rectangle ():

21 print Cx\ty\tn\tSm\tSn\t(1,b)")

22 for x inrange (O,m+ 1) :

23 foryinrange (O,m+1):

24 for nin range (1,m+ 1) :

25 Sm=6*n**2+6%n+1

26 Sn=6*n**2-6*n+1

27 1=Sm*m+1)+n*x+y)

28 b=n*Sn+(n-1) *(x+y)

29 if (Sm)**x - (Sn)**x ==(n+ 1) **y:

30 print (x,”\t’,y,”\t’,n,"\t”, Sm ,"\t’,Sn ,"\t’ ,(1,b))
31 m=int ( input (" Enter the maximum range :"))
32 #m is the maximum range

33 rectangle ()

Coding 2: Calculating the solution for S, — S¥ | = (m + 1)Y

Enter the maximum range:100
X y n Sm Sn (1,b)
>>>||

Figure 2: Output: Coding 2
4. Exponential Diophantine Rectangles over Pronic Numbers

This section includes defintion of Exponential Diophantine Rectangles over

P, and also contains three subsections. First two subsections provide the theorems

for solving the exponential Diopahntine equations. In the final subsection the python
programming is provided for the existence of Exponential Diophantine Rectangles

over P, within a specific limit.

Definition 4.1: An Fzxponential Diophantine rectangle over Pronic
numbers P, is defined as a rectangle with the length (I) and breadth (b) as
(@, 0) = (Bpam+1) +m(z+y), mP, + (m—-1)(x+y) where m € N

and x,y are non-negative integers such that
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P+ PB: =(m+1)yY 4)
or

Py~ By = (m+ 1y 5)

Notation - Exponential Diophantine Rectangles over Pronic numbers- ED
Rectangles over P, .

4.1 The exponential Diophantine equation P’ , + P = (m + 1)V: This
subsections contains the theorem for finding the solution for the exponential
Diophantine equation P? , + B% = (m + 1)V.

Theorem 4.1: The only solution for the Exponential Diophantine
equation P? , + BE = (m + 1)V are (z,y,m) € {(0,1,1)} with m € N and
z,y € Z* U {0}.

Proof: Consider the exponential Diophantine equation

P . + Py = (m + 1)V and solve this in various possibilities.
Possibility 1: Wheneverz = y = 0, there is no possibility.

Possibility 2: Here x = 0 and y = 1, we obtain m = 1.

Possibility 3: Suppose = 1 and y = 0, the equation 4 reduced to 12m? = 1
which is an impossible one.

Possibility 4: Now z = y = 1, the equation (4) reduces to a quadratic equation

2

2m* + 3m + 1 = 0 and it is not solvabe over N .

Possibility 5: z = 0 and y > 1 the equation (4) reduces(m + 1) = 2. For
m =1, it becomes y =1 which is contradiction to our

assumption. For m > 1, (m + 1)V is always greater than 2. This
possibility fails.
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Possibility 6: For y =0 and =z > 1, the equation (4) reduces to

Pr , +PF; =1. Thus, P’ , + P =0 (mod2). We get a
contradiction.

Possibility 7: Whenever z =1 and gy > 1, the equation reduced into

2m? + 4m + 2 = (m + 1)Y. By using Binomial Expansion we
get y = 2. Now for y = 2, the equation reduces into a quadratic
equation 2m + 1 = 0 and it is not solvable.

Possibility 8: Here y =1 and =z > 1, we have m +1 > P, ,; + P, implies

2

1 > m* + 3m + 2. This is an impossible one.

Possibility 9: When z,y > 1 Now for m = 1, we obtain an impossible one. If
m > 1 and by using the definition 2.1, the possibility fails.

.. The given equation has only one solution. (]

4.2 The exponential Diophantine equation P’ , — P’ = (m + 1)V : This

subsection discusses about the solution for the equation P’ , — P = (m + 1).

Theorem 4.2: There is no solution exists for the FExponential
Diophantine equation Pz, — Pr = (m + 1)V with m € N and
z,y € Z* U {0}.

Proof: Consider the equation P? P} = (m + 1)Yand deal with

m+l — m
different possibilities.

Possibility 1: Wheneverz = y = 0, this is one fails.

Possibility 2: Suppose =z = 0 and y =1, we obtainm = —1. This is a

contradiction.

Possibility 3: If z =1 and y = 0,then m ¢ N.



DIOPHANTINE RECTANGLES OVER STAR AND PRONIC NUMBERS 201

Possibility 4: Forx = y = 1, we obtainm = —1.

Possibility 5: When z = 0 and y > 1, the equation becomes (m + 1) = 0.
This is impossible.

Possibility 6: Now y = 0 and z > 1, we deal with two possibilities. For
m = 1, we obtain a contradiction. For m > 1, then by lemma
(2.1) B,,.; and P, are obtained as 3 and 2 respectively, which
contradicts.

Possibility 7: For x = 1 and y > 1, by using Definition (2.1) we obtain y = 2
. This is an absurd one.

Possibility 8: Here z > 1 and y = 1, the equation becomes m + 1 > 2m + 2
(not possible).

Possibility 9: x,y > 1, When m = 1, we get an impossible one and m > 1
this possibility fails (by Definition 2.1)

Hence, the Diophantine equation P?., — B} = (m + 1) has no solution. []

Theorem 4.3: There is no ED Rectangles over Pronic numbers exists.

Proof: By the above two theorems (4.1) and (4.2), we get the side of ED
rectangle over P,, is (13, 0), this is not possible and conclude that there is no ED
rectangles over Pronic numbers.

4.3 Python Programing for Existence of ED Rectangles over P, : The

Python programming for the existence and nonexistence of the exponential
Diophantine equation solution is provided in this part; however, the ED rectangle

over P, , does not exist.

4 #ED rectangle over Pm

3s import math

36 def rectangle ():

7 print Cx\ty\tm\tPm\tPn\t(1,b)’)
33 for x inrange (0,n+ 1) :

3 foryinrange (0,n+1):
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s forminrange (1,n+1):

4 Pm=(m+1) *(m+2)

2 Pn=m*@m-1)

4 1=Pm*@m+1)+m*(x+vy)

4 b=m*Pn+(m-1)*x+y)

45 If (Pm)*x + (Pn)**x ==(m+ 1) **y :

46 print (x,’\t’,y,"\t’,m,’\t’, Pm ,"\t’,Pn ,"\t’ ,(1,b))
sn=1nt (input (" Enter the maximum range :"))
ss#n is the maximum range

s rectangle ()

Coding 3: Calculating the solution for P? , + Py = (m +1)Y

Enter the maximum range:200

® y m Pm Pn (1,b)

0 1 1 6 0 (13, 0)
>>>

Figure 3: Output: Coding 3

s0#ED rectangle over Pm

st import math

s> def rectangle ():

53 print Cx\ty\tm\tPm\tPn\t(1,b)”)

s4+  for x in range (O,n +1) :

ss  foryinrange (O,n+1):

so  forminrange (1,n+1):

7 Pm =(m +1) *(m +2)

58 Pn=m*(m -1)

59 [=Pm *(m +1) +m*(x+y)

60 b=m*Pn +(m -1) *(x+y)

61 if (Pm)**x -( Pn)**x == (m +1) **y:

6 print (x,”\t’,y,"\t’,;m,"\t’, Pm ,’\t’,Pn ,’\t’ ,(Lb))
o3n = int (input (" Enter the maximum range :"))
64 #n is the maximum range

os rectangle ()

v

Coding 4: Calculating the solution for P? | — Py = (m + 1)V
Enter the maximum range:100
b3 y m Pm Pn (1,b)

>>> ]

Figure 4: Output: Coding 4
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Since the sides of the rectangles are positive, but we have [ = 13 and b = 0 and
therefore does not exists ED rectangle over P, .

5. Conclusion

Finally we infer that there exists only one ED Rectangle over Star numbers
and there is no ED Rectangles over Pronic numbers. In the future, this could be
employed in cryptographic concepts like it helps to develop efficient algorithms.
Additionally, it can be applied to furnishings design (making tables, chairs, etc.),
building construction, graphic design (such as creating logos), etc. One can also work
on these topics using various types of equations.

REFERENCES

[1] Abdelkader Hamtat (2023): An Exponential Diophantine equation on Triangular numbers,
Mathematica Applicanda, Vol. 51(1), pp. 99-107.

[2] Kannan, J. and Manju Somanath (2023): Fundamental perceptions in contemporary
number theory, Nova Science Publisher, New York.

[3] Kannan, J, Manju Somanath and Raja, K. (2019): On the class of solutions for the
hyperbolic Diophantine equation, International Journal of Applied Mathematics,
Vol. 32(3), pp. 443-449.

[4] Kaleeswari, K., Kannan, J. and Narasimman, G. (2022): Exponential Diophantine
Equations Involving Isolated primes, Advances and Applications in Mathematical
Sciences, Vol. 22(1), pp. 169-177.

[5] Mahalakshmi. M, Kannan. J and Narasimman, G. (2022): Certain sequels on almost
equilateral triangle, Advances and Applications in Mathematical Sciences,
Vol. 22(1), pp. 149-157.

[6] Mahalakshmi, M., Kannan, J., Deepshika, A., and Kaleeswari, K. (2023): 2-Peble
triangles over figurate numbers, Indian Journal of Science and Technology,
Vol. 16(44), pp. 4108-4113.

[7] Mahalakshmi, M., Kannan, J., Deepshika, A., and Kaleeswari, K. (2023): Existence and
Non-Existence of Exponential Diophantine triangles over triangular numbers, Indian
Journal of Science and Technology, Vol. 16(41), pp. 3599-3604.

[8] Manju Somanath, Kannan, J. and Raja, K. (2017): Exponential Diophantine equation

in three variables 7% + 7%Y = 22, International Journal of Engineering Research
Online, Vol. 5(4), pp. 91-93.



204 A. DEEPSHIKA AND J. KANNAN

[9] Manju Somanath, Raja, K., Kannan, J. and Nivetha, S. (2020): Exponential Diophantine

equation in three unknowns, Advances and Applications in Mathematical Sciences,
Vol. 19(11), pp. 1113-1118.

[10] Titu Andreescu, Dorin Andrica and Ion Cucurezeanu (2010): An introduction to
Diophantine equations: a problem-based approach, Birkhauser Boston.

[11] Telang, S. G. (1996): Number Theory, Tata McGraw-Hill Publishing Company
Limited, New York.

[12] William Sobredo Gayo. Jr and Jerico Bravo Bacani, (2021): On the Diophantine equation

My + (M, + 1)V = 2%, European Journal of Pure and Applied Mathematics,
Vol. 14(2), pp. 396-403.

1, 2. Department of Mathematics, (Received, January 8, 2025)
Ayya Nadar Janaki Ammal College, (Revised, January 20, 2025)
(Autonomous, affiliated to Madurai
Kamaraj University, Madurai),

Sivakasi- 626 124, Tamil Nadu, India.

1. E-Mail: deepshi20mar@gmail.com
2. E-Mail: jayram.kannan@gmail.com


mailto:deepshi20mar@gmail.com

Journal of Indian Acad. Math. ISSN: 0970-5120
Vol. 47, No. 1 (2025) pp. 205-229

Ras Bihari SO”ilza DUALITY CRITERIA INVOLVING
Dharamender Smf:d ®, ¢, d)-INVEXITY AND (P, ©, d)
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OPTIMIZATION PROBLEMS

Abstract: In this present research work, study of duality associated with a
special class of multiobjective optimization that include the interval valued
components is delt. We define (p,o,d)-Invexity and (p,p,d-Pseuodinvexity,
which are connected with an interval valued multiple integral functional.
For such class of variational problems, we write dual problem associated
with primal problem. We prove weak, strong and converse duality theorems
for this type of variational problems. A brief comparison with existed
methods have been done to show the importance of this research work.
Additionally, numerical examples have been displayed at the appropriate
places to support the results which shows the significance of our Study.

Keywords: Multiobjective Optimization, (p, ¢, d)-Invexity and (p, @, d)-
Pseuodinvexity, Duality.

Mathematics Subject Classification (2010) No.: 58E17, 65K05, 90C46,
90C29, 26B25, 49K20,
49N15.

1. Introduction and Literature Review

Mathematical optimization problems involving multiple objective functions
that must be optimized simultaneously fall under the purview of multi-objective
optimization, also known as Pareto optimization or multi-objective programming,
vector optimization, multicriteria optimization, or multiattribute optimization. Several
scientific domains, such as engineering, economics, and logistics, have used multi-
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objective vector optimization to make optimal judgments when there are trade-offs
between two or more competing objectives. Multi-objective optimization issues with
two or three objectives include things like optimizing performance while limiting fuel
consumption and vehicle emissions, and minimizing cost while maximizing comfort
while purchasing an automobile. There may be more than three objectives in practical
tasks.

The application of duality theory to more general classes of functions has
grown as a result of its success in mathematical programming. Kumar et al. [1] have
considered multiobjective semi-infinite variational problem (MSVP) and generalised
the concept of inveity. Kumar et al. [2] defined certain conditions on the functionals
of multi-objective fractional variational problem in order that it becomes F-Kuhn
Tucker pseudo invex or F-Fritz John pseudo invex. Bhardwaj and Ram [3]
established the relationships between a class of interval-valued vector optimization
problems and interval-valued vector variational-like inequality problems of both
Stampacchia and Minty kinds in terms of convexificators.

Upadhyay et al. [4] dealt with a certain class of multiobjective semi-infinite
programming problems with switching constraints (in short, MSIPSC) in the
framework of Hadamard manifolds. Sahay and Bhatia [5] introduced new classes of
higher order generalized strong invex functions under non-differentiable settings.

Soni et al. [6] discussed optimization problems with multiobjective functions
and their applications in engineering field.

Zalmai [7] established global semiparametric sufficient efficiency results
under various generalized (F,b, ¢, p, @) -univexity assumptions for a multiobjective

fractional subset programming problem. Hachimi and Aghezzaf [8] generalized a fairly
large number of sufficient optimality conditions and duality results previously
obtained for multiobjective variational problems. Treanta [9] introduced
necessary efficiency conditions for a class of multi-time vector fractional variational
problems with nonlinear equality and inequality constraints involving higher-order
partial derivatives. Treantda [10] introduced a generalised condition on the
functionals involved in a multidimensional vector control problem and prove
that a (strongly) b-V-KT-pseudoinvex multidimensional control problem is
characterized so that all Kuhn-Tucker points are efficient solutions. Kim [11]
formulated duality for nondifferentiable multiobjective variational problems and
established the weak, strong, and converse duality theorems under generalized
(F, p)-convexity assumptions. Gulati et al. [12] obtained Fritz John and Kuhn-

Tucker type necessary optimality conditions for a Pareto optimal (efficient) solution
of a multiobjective control problem are by first reducing the multiobjective control
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problem to a system of single objective control problems, and then using already
established optimality conditions. Nahak and Nanda [13] presented the sufficient
optimality criteria for a class of multiobjective variational control problems under the
V-invexity assumption. They also proved duality results under a variety of V-invexity
assumptions.

Antczak and Jiménez [14] generalized the notion of B-(p, r)-invexity and
proved sufficient optimality conditions under the assumptions that the functions
constituting them are B-(p, r)-invex. Antczak [15] extended the notions of
(@, p)-invexity and generalized (®, p)-invexity to the continuous case and we use
these concepts to establish sufficient optimality conditions for the considered class of
nonconvex multiobjective variational control problems and established several mixed
duality results are under (@, p)-invexity. Khazafi ef al. [16] introduced the classes of
(B, p)-type I and generalized (B, p)-type 1, and derived various sufficient optimality
conditions and mixed type duality results for multiobjective control problems under
(B, p)-type I and generalized (B, p)-type I assumptions. Zhang et al. [17] extended the
vector-valued G-invex functions to multiobjective variational control problems, by
using this concept, a number of sufficient optimality results and Mond-Weir type
duality results were obtained for multiobjective variational control programming
problem. Treanta and Arana [18] defined a Kuhn-Tucker (KT)-pseudoinvex
multidimensional control problem and introduced a new condition on the functions,
which were involved in a multidimensional control problem proved that a
KT-pseudoinvex multidimensional control problem is characterized such that a KT
point is an optimal solution. Mititelu [19] established necessary conditions for normal
efficient solutions of a class of multiobjective fractional variational problem (MFP)
with nonlinear equality and inequality constraints using a parametric approach to
relate efficient solutions of fractional problems and a non-fractional problem and
established the sufficiency of these conditions for efficiency solutions in problem
(MFP) using the (p, b)-quasiinvexity notion.

Mititelu and Treantd [20] formulated and proved necessary and sufficient
optimality conditions in multiobjective control problems which involve multiple
integral and under (p, b)-quasiinvexity assumptions, sufficient efficiency conditions
for a feasible solution were derived. Treantd and Mititelu [21] introduced several
results of duality for a class of multiobjective fractional control problems involving
multiple integrals and under (p, b)-quasiinvexity assumptions, they formulated and
prove weak, strong and converse duality results. Treanta [22] formulated and proved
efficiency conditions for the considered uncertain variational control problem and
established sufficiency of Karush-Kuhn-Tucker conditions under some invexity and
(p, b)-quasiinvexity assumptions of the involved functionals. Treanta [23] formulated
and proved weak, strong, and converse duality results for the considered class of
variational control problems by using the new notion of (p,y,d)-quasiinvexity
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associated with an interval-valued multiple-integral functional. Treantd [24]
investigated some connections between an LU-optimal solution of a variational
control problem governed by interval-valued multiple integral functional and a
saddle-point associated with an LU-Lagrange functional corresponding to a modified
interval-valued variational control problem.

In contrast to earlier studies, the current work addresses the duality study
related to a novel class of multiobjective optimization problems that involve interval-
valued ratio vector components. When taken into account simultaneously, these three
emphasized components are completely novel in the relevant literature. Additionally,
numerical example is given to show how useful the conclusions drawn in the study
are.

The following table compares our study with the available literature in this field

S . Invexity Inverval .
Research Article Muﬂ.ml.)" ec.t tve and Valued Du.allt.y
Optimization . . Criteria
Pseudoinvexity |Components
Kumar et al. [1] Yes Generalilsed No No
Invexity
Generalised
Bhardwaj et al. [3] No Approximate Yes No
Invexity
Upadhyay et al. [4] Yes No No Yes
Hachimi and
Aghezzaf [8] Yes No No Yes
Kim [11] Yes No No Yes
Gulati et al. [12] Yes No No Yes
Nahak and Nanda [13] Yes V-Invexity No Yes
.Eklrit]czak and Jiménez Yes B-(p, r)-Invexity No Yes
Antczak [15] Yes No No Yes
Khazafi et al. [16] Yes Yes No No
Mititelu [19] Yes No No No
Treanta and .. .
Mititelu [21] Yes (p, b)-Q uasiinvexity No Yes
Treantd [23] Yes (b, v, d)- Yes Yes
Quasiinvexity
Treanta [24] Yes (p, b, d)-Invexity Yes No
Both (ps(pod)'
Invexity and
Our Proposed Paper Yes Yes Yes
P P (P, 0,d)-
Pseuodinvexity
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In the field of multiobjective optimization, somewhere invexity or
pseudoinvexity were discussed, somewhere mutliobjective optimization with interval
valued components were discussed, while somewhere duality results were discussed.
To the best of our knowledge, all four components simultaneously with
(p,¢,d)-Invexity and (p, ¢, d)-Pseuodinvexity were not discussed, so there was a
research gap in this field.

The structure of the paper is as follows: The problem formulation,
preliminary mathematical tools, and notations are included in Section 2 of this article.
The key findings are presented in Section 3 of this document. Results for Mond-Weir
weak, strong, and converse duality are developed and demonstrated for the recently
introduced category of multiobjective optimization problems. The paper is finally
concluded in Section 4.

2. The formulation of Problem and Notations

This part presents the definitions, notations, and preliminary findings that
will be utilized in the follow-up. Given this, we take into account:

Let us assume € be a compact domain which is a subset of Euclidean space

R™ and a point in this compact domain Q is represented by t = (t%) where
a=L12......m.

Now, following continuous differentiable functions are defined
X =(X,):QxR*"xRFf - R™ where i = 1,2....nand & = 1,2.......m
V= (Y,Y.....Y,) = (Y5) : @ x R" x R¥ — R where f =1,2....4
It is assumed that the functions that are continuously differentiable
X, =(X.): QxR* xRFf - R™ where i = 1,2....nand @ = 1,2.......m
Satisfy the complete integrability conditions (closeness conditions)

D,X!, = D, X! where a # 7, a,7 =12...... mandi=12.... n

Where D, represent the total derivative operator.
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If we consider any two vectors d = (d;, dy.....d;) and e = (e, €,.....e;) in

R?, then following partial ordering is used

d=e<s d.=¢

T T
d<e<d.<e,, d=esd <e,d #e,r=12...... s

Now let us assume that K is the set of all closed and bounded real intervals,

we represent a closed and bounded interval by F = [f fU], where f* and fY

are the lower and upper bounds of F', respectively. The interval operations covered
in this paper can be carried out in the following ways:

(1) F=G=f'=g"and fU =g¢Y;

) if ff£=fV=FfthenF =[ff]=Ff;

3 F+G=[f+g" " +g"];

@ —F == =

(5) Forany h € Rh+F = {h+ fL h+ fU];
(6) Forany h € Rand h > 0, hF = [hf* nfU];
(7) Forany h € R and h < 0,hF = [hfV hfl];
®  F-G=[f"-g"f" -]

O  F/G=1[f"/g" f"/g"] where g*, " > 0.

Now we have some following definitions

Definition 1: If /' and G are two closed and bounded real intervals, i.e.
F,G € K, then we have

F<G o fl <g¥and fU < gV

Definition 2: If /' and G are two closed and bounded real intervals, i.e.
F, G € K, then we have

F<Geo fl<gVand fU < gV
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Definition 3: Interval valued Functions

If we define a function f from QxR"xRF to K, ie.

f:QxR" x R¥ - K such that

F(tb(1), ct)) = [FF (5, b(2), (b)), fU (2, b(t), ()], where ¢ € Q

Where both f% (¢, b(t), c(t)) and fU(t, b(t), c(t)) are real valued functions

and the condition f(t,b(t), c(t)) < fU(L b(t), c(t))Vt € Q is satisfied , then f is
said to be an interval valued function.

The following (per Mititelu and Treantd [19], and Treanta [21]) was used to
formulate and demonstrate the primary findings of this work, now we are going to
introduce (p, @, d)-Invexity and (p, ¢, d)-Pseuodinvexity with the help of functional
which is interval valued multiple integral.

For this first we consider an interval-valued function which is continuously
differentiable

h:Qx R"x R™ x R¥ — K such that

ho= W, b(t), b (1), e(t)) = [A2 (L b(1), by (1), (), hY (£ B(1), by (1), (1))
Where b, (t) represents partial derivative of b(¢) with respect to t* i.e.

ba(t) = %(t»

Now for any b € B and ¢ € C', we define following interval-valued
multiple integral functional:

H : BxC — K such that
H(b, ¢) = [ h(t,b(t), b (1), c(t))dt
= [.[Q h* (,0(t), by (1), c(t) )dt, .[Q hY (L, b(t),by (1), c(t))dt]

If p is a real number and ¢ : Bx C x Bx C — [0,%) be a positive

functional and (d(b, c), (b°, ¢")) is a real valued function defined on(B x C)? .
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Definition 4: (p, ¢,d)-Invexity and (p, ¢,d)-Pseudoinvexity

(i) Now if there exists a functional such that

E:Qx R" x RF x R" x R¥ — R” such that

E = E(t,b(1), c(t), b0(t), (1)) = (&(t,b(t), c(t), b0(t), °(t))) where i =1,2.....n,
of the C! class functional with (¢, b(t), c(t), b°(t), °(t)) = 0, Vit € Q, &|sq = 0,

and another functional such that

7:QxR" x RF x R" x R¥ - RX  such that

0 = nlt, bt), c{t), B08), €2(8)) = (my(, bE), e(t), BO(8), (1)) where j = L2....k
of the C” class function with 7(t, b(t), c(t), b°(t), c°(t)) = 0, Vt € Q, 7]s9 = 0
such that for each (b,¢) € B x C':

H(b,c) < H(bY, V)
= (b, ¢, 8%, ) [E(E,B0(0), B(8), €(6)), B (1, 0°(0), BE (1), °(¢)) gt

s, 00, O] (AL (6°(2), B2(0), (1)), AL (¢, 0°(0), (1), (1)) D dt
b, ¢, 00, )} [RE(E00(0), B3(0), (1)), AV(1,60(1), BQ(1), (1)) e
+pp(b, ¢, b°, c")d?((b, c), (B°, ")) < 0

Or in other words

plb. e, 0, )] [hE (1 O(E). B, (). hf (1, b°(0)., B2(), (1) )t
sl 00, O] [AE (1.6°(6), B2(0), (1)), AL (¢, 0°(0), BO(1), (1)) D, dt

+p(b, ¢, b7, Co)fg') [h&(8,00(2), b (1), (1), he (¢, 00(), b5 (1), < (1)) Indt

+po(b, ¢, b7, ")d?((b, ¢), (0, ")) > 0 = H(b,c) > H®, ")
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In this case H is called as (p, @, d)-Invex at point (b, c?)eB x C' with
respectto £ and 77.

(i1) Now if there exists a functional such that
E:QxR" x RF x R x R¥ — R”" such that

E = Et,b(t), c(t),b0(t), 1)) = (&(t, b(t), c(t),b0(t), (t))) where i = 1,2.....n,
of the C' class functional with &(t, b(t), c(t), b°(t), °(t)) = 0, Vt € Q, &E|pq = 0,

and another functional such that
7:QxR" x RF x R" x R¥ — RX  such that

n =t b(t), c(t), 00(t), (1)) = (m;(t, b(2), c(t), b°(t), c°(¢))) where j = 1,2....K,
of the C¥ class function with 7(t, b(t), c(t), b°(t), c°(t)) = 0, Vt € Q, n]s0 = 0
such that for each (b, c) # (b°,¢c%) € Bx C:

H(b,c) < H(bY, )
= (b, ¢, 8%, ) [E(LB0(1), B3(8), (1)), B (1, 0°(0), BE (1), (1))t
by e, 00, )\ [hE (8,80(1), B8(1), (1)), bl (8,60(2), B (1), (1)) 1Dyt

+p(b, ¢, b, CO)L2 [h& (8, 00(2), b (1), (1)), he (¢, 00(2), b5 (1), < (1)) Indt

+pplb e, 0, )d2((b. ). (9, ) < 0

Or in other words

plb e, 0, ) [hE(1.00(0), B3(0), (). h (¢ 00(0), (1), (1))l
s, 00, O] (AL (6°(2), B2(0), (1)), AL (£, 0°(0), BO(1). (1) Dt

(b, ¢, 00, ) IR BO(1), 05(1), (1)), hY (1, 5°(1), B5(1), (1)) Indt

+po(b, ¢, b7, c")d?((b, ¢), (0, ")) = 0 = H(b,c) = H', ")
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In this case H is called as (p, ¢, d)-pseudoinvex at point (b°, c)eB x C
with respect to £ and 7.

Definition 5: Now if we consider a vector valued continuously differentiable
function A such that

h:QxR"x R™ x Rfx — KP? such that

h = h(t,b(t), by(t), c(t)) where r =12...... D

= ([h{(t (1), by (1), c(t)), B (¢, b(t), by (1), c(t))]

Now we define vector multiple integral functional H with the help of above
continuously differentiable function

H : Bx(C — KP? such that

Hb,¢) = [ hlt,b(t), ba(t), oft) )dt

([ [0, PE(b(0), b (1), e(t))dt, [ A (2, b(2), ba (1), c(t))dt} o
[ Q Rl (2, b(t), by (t), c(t) )dt, jﬂ Wl (£, b(t), by(t), c(t))dtD

Now this vector valued multiple integral functional H is said to be (p, ¢,d)-

Invex or (p, ¢,d)-Pseudoinvex at point (b°, c”)eB x C' with respect to & and 7 if
each of the interval valued component of the vector is (p, ¢,d)-Invex or (p, ¢, d)-

Pseudoinvex respectively at point (b, c?)e B x C with respect to & and 7.
Now consider a vector valued continuous differentiable function g such that
g =1(91,99cee-- g,) where g, : Qx R" x RF x K7, r=12.... D

We may now design a new class of multiobjective variational control
problems with interval-valued components that we refer to as Primal Problems
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(abbreviated PP for short)

ming ) {G(b, ¢) = ( L‘Z g1t b(t), c(t)dt, ........ j{‘) g, (t, b(t), c(t)dtj}

subject to

;L;(t) = Xi(t,b(t),c(t), i =1,2...mnand @ = 1,2.......m and t € Q (1)
Y(t,b(t), c(t)) <0, teQ )
b(t)lan = w(t) = given 3)
Now for 7 = 1,2........p we have
fQ 9-(t,b(t), c(t)dt = [JQ g7 (£, 0(t), c(t)dt, gf (t, b(t), c(t)dt]
or G (b, ) = [GF (b, ¢), G (b, )]

The set of all feasible solutions in primal problem is defined by

D ={(b,¢)| b € B and ¢ € C} satisfying equations (1), (2) and (3).

Definition 6: A feasible solution (b, c’) € D in primal problem is said to
be an LU-optimal solution if there does not exist any(b,c) € D  such that

G(b,c) < G@O°, V).

Constrained by certain qualification assumptions, if (b°, ") € Dis an LU-
Optimal solution of the variational control, then Treanta [21] and Mititelu and
Treanta [19] can be considered. According to this there exists piecewise
smooth functions @, # and A, with 0(t) = (6(t), 8Y(t)), u(t) = (£ (t)) and

A(t) = A%(t) such that
0X}

l
a%@, (), () + 20 (1,10(0), (1)
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0A¢

Bt £, b9(¢), Ot t) = 0. 4
o () L 000, ) + () )
Where 7 = 1,2......... nand! =L U.
Tag’lf 0 0 a aXét 0 0
022 (1,0°(0), (1) + 25() 2 (1, 10(0), (1)
v w0 2L (4,100, (1) = 0. )
oc’
Where j = 1,2......... kand!l = L U.
And uP (£)Y5(t,b0(t), (t)) = 0 (no summation) O(t), () > 0 (6)

forall ¢ € Q) except at the point of discontinuities.

Definition 7: For the primal problem an LU-Optimal solution (", ¢’) € D

is called an normal LU-optimal solution if above necessary LU-optimality conditions
in equation (4) to (6) are satisfied.

3. Dual problem associated with Primal problem

Suppose that the set P = {l,2.....q} 1is partitioned into the set

{P, P, ........ P}, where s < ¢. Using the same notations as in Section 2, we relate

the next multiobjective variational control problem with interval-valued vector
components, known as the Dual Problem (DP), to the above primal problem for
(a,u) € BxC:

ming, ,) {G(a, u) = ( j{‘) ai(t, at), u(t)dt, ........ j{‘) g,(t, a(1), u(t)dtj}

subject to
l i
0722 (1, afe) u() + A6 2 (1), u(0)
w18 28 1 a(r), ue)) + 1) = 0. ™

oa’ ot*
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Where 7 = 1,2......... nand ! = LU

l i
072 (1 alt). ult) + 250) T (1 afe) ()
- w0222 (o) ) = 0. ®)

Where j = 1,2......... kand!l = L, U.

Bl
ot*

A%(t) | XL (¢, alt), u(t)0 — (t)| = 0. )

And u* 0(t)Yp,(t a(t), u(t)0 = 0 where 6 = 1,2........ s (10)

Where 6 = (07) 2 0, u(t) = (£P(t)) 2 0,  a(t)|sn = Y(t) = given
l=LU. (11)

And the expression is u/? (t)Yp, (t, a(t), u(t)) is

0 ()Y p, (¢, alt = 2. pepy POV p(t alt), u(®))

In this section, we prove that, under (p, ¢, d)-Invexity hypotheses, the
multiobjective optimization problems with interval-valued components, Primal
Problem and Dual Problem, are a Mond-Weir dual pair. Moreover, keep in mind that
y is the collection of all feasible solutions related to dual problem.

Now we formulate and establish the initial duality result, which is also
known as weak duality.

Weak Duality theorem-For any multiobjective variational problem with
interval-valued components (Primal Problem), let (b, ¢) € D be a feasible solution;
similarly, let (a,u, 8, A, ) € y be a feasible solution for the multiobjective

variational problem with interval-valued components (Dual Problem). Furthermore,
keep in mind that the following prerequisites are satisfied:
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(i)  For each r, the functional

g b c) = fQ 9, (£, b(t), c(t)dt r=112...p and [ =LU is

(p', ¢, d)-Invex at (a, u) with regard to & and 7 or in other words, each
interval-valued multiple-integral functional

P, c) =g, e), grpb o)), r=12...pis (p', 9, d)-Invex at
(a,u) withregardto & and 7.

o
ot

(i) The functional X(b,c) = J‘Qxlf‘(t) XL (t, b(t), c(t), (t) | dt is
(02,0, d)-Invex at (a, u) withregard to & and 7.

(iii) Each functional

Y, (b, c) = j{‘2 1 ()Y, (8, b(t), c(t)dt O = L2....s is (p},¢.d)-

Invex at (a, u) with respectto & and 7.

(iv) With regard to & and n , at least one of the functionals provided in (i) to
(iii) is (p, ¢, d)-Pseudoinvex at (a, u), where p = pl, p* and pj.

(v)  For the given
07 pt + p* + 22:1 ps 20 where pl, p*and pj € R.

Then, supremum of dual problem is less than or equal to the infimum of
primal problem.

Proof: The values of primal problem at (b,c¢) € Dand dual problem at
(a,u, 6, A, u) € y are denoted by (b, ¢) and 7z(a, u, 8, 1, u) respectively. Contrast
to the result, if possible, suppose that 5(b, ¢) < 7z(a, u, 6, 4, 1).

Now, take into consideration the following non-empty set for
r=12... p,l=LUand 8 = 1,2,........... s:
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S ={(bc) € BxClg ) (bc) < g/f,’f(a, u), X(b,¢) < X(a,u), Yy(b, c) < Yy(a,u)}

Tl

Now by using above (i) for (b,c) € S and 7 = 1,2...... pand [ = LU,
we have

g i) < grila,u) =
o(b, ¢, a,0) [ (gh)a(t, alt), u(t)Edt + @b, e a,w) | (gh). (¢, alt), u(t)pdt

< —p}go(b, ¢ a, u)dQ((bv C) (av u))

Now we multiply this by & = ¢/ > 0 where | = L,U and take summation
over 7 = 1,2...... p, we get the following

o(b, ¢ a,0) [ 0 (g)a(t, alt), u(t)edt + p(b, e a,w) [ O (gh),(t, alt), u(t)pdt

< =0/ pro(b, c, a, w)d*((b, ¢)(a, u)). (12)

Now since for each (b, ¢) € S, the inequality X(b,c) < X(a,u) satisfies,
now according to (ii), we have the following

olb, ¢ a,w)[, [AE(0)(XE)ats alt), u(t))€ = A%(0)Da + AL()(XE)u(t, alt), u(t)ryldt
< —p%p(b, ¢, a, u)d*((b, ¢)(a, u)). (13)
Similarly, for each (b,c) € S, the inequality Yy(b,c) < Yy(a,u) for

0=1,2...... s exists, now using (iii) , we have the following

¢(b7 ¢ a, ’LL)J.Q [IUQH (t> (YQg )a (t7 a(t> ) u(t))f + /UQH (t) (YQQ )u (t7 a(t) ) u(t) )U]dt

< —pg(p(b, ¢, a, u)d?((b, ¢)(a, u)).

Now, taking the summation over € = 1,2...... s, we have
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¢(b7 ¢ a, U)J.Q [:uﬁ(t) (Yﬂ)a (tv a(t)7 u(t) )98 + ,uﬁ(t) (Yﬂ)u (t7 a(t)v u(t) )U]dt

<=3 phplts e 0, (b, c)(a, ) (14
0-1

Now, adding equations (12),(13) and (14) and taking condition (iv) under
consideration, we have

o(b,c.a,w) [, 07 (gh)a(t, alt), u(t))édt
(b, ¢, a, )| (A4 (X0t alt), u(t) + 1P (1) (Y)a(t, alt), u(t))dt
+ob, ¢, a, ) [ 67 (g),(t a(t), u(t) ndt

+o(b, ¢, a, U)Iﬂ [A8(6)(XE)u(t alt), u(t)) + uP (£)(V)u(t, a(t), u(t))ndt

~plb, .0, )] [27(1)D, £l < —{e,pr SRt Zpz]ab,c,a,u>d2<<b,c),<a,u)>

6=1

Where | = L, U .

Since, ¢(b, ¢, a, u) > 0, using this, we have the following
AT u(t))£dt
+JQ E(0(XE)a(t alt), u(t)) + 1P (1) (Yp)a(t, alt), u(t))]Edt

+ fQ 6/ (91 (t, a(t), u(t))ndt

+ [ RO (X2t alt), u(®)) + 2P (1) (V) ts alt), u(t)) Indt

—j [A%(t)D,Eldt < — [erpr+p +Zp€J (b, ¢, a, w)d*((b, ), (a, v)).
6=1

Where =L, U.
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Now using the constraints (7) and (8) of dual problem, we have

—[ (€D A% (1)t = [ [A%(0)Deldt + 0

< - Lﬁfpi + P2+ ) pé] o(b, ¢, a, u)d*((b, ¢), (a, u))
0=1

Where l=1L, U.
By direct formula of derivative, we know that

DoleA%(t)] = 2% (1)Dgs + §DaA%(1)

§Du A% (1) = Do[A%(8)] = 2% (1) Das

Now applying integral over the region Q2 , we have
[, 6D 2%t = [ Dolea*()dt — [ [2*()Do&ldt

Using the condition &|;, = 0 and applying the flow-divergence formula,
we get

. Dalga“(t = [ 1&2“(Wyiido = 0

Where 7 = (n), where o = 1,2...... m , is the unit normal vector to the

hyper surface 052, now it follows that

[, ED,ax (0t = [ [4=()D, it
—fg ED, A% (t)dt — _[Q [A%(t)D,&)dt = 0.

Therefore, we have

0< —[0}‘/3% + P2+ ) pg}o(b, ¢, a, u)d*((b, ¢), (a, u)).
f=1
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Where l=1L, U.

Now applying the condition (v) and d?((b, ¢), (a, u)) > 0, we get a
contradiction. Therefore, supremum of dual problem is less than or equal to the
infimum of primal problem.

The following outcome proves a strong duality between the two
multiobjective optimization problems with interval-valued components under
consideration.

Strong Duality theorem-If we consider the same (p, ¢, d)-Invexity

hypotheses mentioned in above weak duality theorem, if (b°,c’) € D is a normal
LU-optimal solution of the given primal problem, then 3 6°, £°(¢) and A°(¢) such

that (67, c?, 8%, A%, 4°) € y is an LU-optimal solution of the dual problem, and the
values of corresponding objective functions are equal.

Proof: Consider that (b°,c’) € D is a normal LU-optimal solution of the
primal problem, the necessary LU-optimality conditions mentioned in equations (4)

to (6) involve that 3 °, 1°(¢) and A°(¢) such that (b°,c%, 6°, 2%, %) € ¥ is an

feasible solution for dual problem.

abOi
ot”

(t) = XL(t,0°(t),c (t)) for i = 1,2,..c..m, @ = 1,2.....m t € Q

Now by equation (6)
P ()Yt 00, (t), °(£)0 = 0, (summation is taken over #) and t € Q.

Therefore, the value of objective function of dual problem has the same
value of objective function of primal problem. Hence by weak duality theorem

(Y, ¢, 8% 29, 11%) € y is an LU-optimal solution of dual problem.

A converse duality conclusion related to considered multiobjective
optimization problems with interval-valued components is formulated in the
following theorem.
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Converse Duality theorem-Assume that the LU-optimal solution of dual

problem is (8%, ¢°, 8°, A%, %) € y. Furthermore, presumptively the following
circumstances hold true:

1) (b,T) € D is anormal LU-optimal solution of the given primal problem.

(i1) For (b°,c?,0°, A0, "), the hypotheses of weak duality theorem are met.

Consequently, the corresponding objective values are equal and
(b,2) = (" c").

Proof: In contrast to the outcome, let's assume that (b, ¢) # (b°, c°)and

that (6%, c") is not a normal LU-optimal solution of primal problem. According to
Treantd and Mititelu and Treantd, since (b, ¢) € D is a normal LU-optimal solution
of primal problem, there exist &, %(t) and A(t), satisfying equations (4) to (6) and
definition of normal LU-optimal solution. Consequently

2o | Xt 5o, 20 - ()] 2 0,

ot*

where (b,C, 0,4, 1) € y as aresult. Additionally, 5(b,¢) = (b,¢, 0,4, 1) € y
is present. We obtain (b, ) > z(b°, ¢, 8°, 2%, 4°) in accordance with weak
duality theorem, or 7(b,¢, 8, A, i) > #(b°, 0, 6°, A%, 4V). The maximal LU-
optimality of (b°,¢c?,8°, A% 4") is in conflict with this. As a result, the
corresponding objective values are identical and (b, ¢) = (b°, c¥).

Illustrative instance: The following two-dimensional interval-valued
variational control problem is taken into consideration:

i ' t, b(t), c(t), dt
mm(”@fsz(&g) g(t, b(t), e(?)

= “5(0_3) (c2(t) — 8c(t) + 16)dt'dt?, L’Z(Og) (cQ(t)dtldtQ},
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Subject to
ob ob
— () = =—(t) = 3 —¢c(t) where t = (t,t?) € Q
0= (t (', £) € Qg
81 -b%t) <0 where ¢ = (t',1?) € Q3
b(0) = b(0,0) = 6, b(3) = b(3,3) =8

where t, = (#},%3) = (0,0) and # = (t,¢}) = 33 in R? are the diagonally
opposed points that fix the square b : Qg3 — R., ¢ : Qg3 — {—%,%} and

Q4

( oth): 9(0'3) '

Furthermore, we consider that in the examined variational control problem in
which affine state functions are the only ones that interest us. It is possible to
demonstrate by direct computation that the feasible point

BO(1) = %(tl f2)+6, A1) = % E= (1 12) € Qs

12

is a normal LU-optimal solution with 4 = (4!, A2) = (1, 3), 0= (0" 6Y) = (1,1)

and u = 0 for the optimization problem under consideration. Moreover, the
(p, 1, 0)-invexity (with p € R) of the functionals involved (refer to weak duality
theorem) at (b°, c”) with regard to & and 7 may be easily verified as follows: Given

by &1 Q> (R x R)? - R

b(t) = 0°(t),  t € int(Qs)
0, t € 69(03)

c(t) = (), teint(Qqy)
0, t € 69(03)
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where int(€2(3) and 0(€2(o3)) represent interior region and boundary of 3

respectively.

Therefore, by strong duality theorem [é (' + %) + 6, 2 , (L, 1), (1, g), Oj

will be an LU-optimal solution for the dual problem mentioned below

‘ t,a(t), u(t), dt
mex g, o 9 al®), u®),

= 2(t) — 8u(t) + 16)dt'dt?, | 2(t)dt dt?
[y, (20 - Su) 4 10000 [ aoarar
subject to

oAl . aa?

—2ut)a(t) + — () = =— () =0 where t = (t},t2) € Q
u(t)a(t) mlo mQU (t',t%) (0.3)

200 u(t) — 8% + 20Vu(t) — AL(t) — A%(t) = 0 where ¢ = (t',1%) € Q3

ot o

ﬂa{g—mo-ﬁﬂ@]+ﬂu{3-mw-ab@]zo
where t = (1}, #%) € Q3

u(t)(81 — a?(t)) = 0, where ¢ = (t}, %) € Q3

0 =06 >00,0], ult)=0, a0)=a00) =6, b3) =533 =S8.
and the values of objective of both primal and dual problem are equal.

4. Conclusions

In this paper we have formulated and proved Mond-Weir weak, strong, and
converse duality theorems for a completely new concept of multiobjective
optimization problems having interval-valued components, based on the completely
new notion of (p, ¢, d)-Invexity and (p, ¢, d)-Pseudoinvexity related with an interval-
valued multiple-integral functional. Considering the relevance of interval analysis
and duality theory to optimization and control, this work constitutes a significant
contribution for applied sciences researchers and engineers.
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Future Scope

This paper can be extended from numerous points of view for additional
exploration. In this paper we have studied for one parameter t, which can be
generalised for two or three parameters. On the other hand, here, we have studied
Both (p, ¢, d)-Invexity and (p, ¢, d)-Pseuodinvexity for multiobjective optimization,
which can also be studied for fractional programming or Inverse optimization. So,
this study has great future scope.
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CONVECTIVE BOUNDARY CONDITIONS

Abstract: This study examines the effects of thermal radiation and heat
generation along a stretching surface. The power-law non-Newtonian model
under the influence of Brownian motion and thermophoresis for nanofluids
is analysed for determining their effects on various parameters of nanofluid
like temperature, velocity etc. The uniform magnetic field and boundary
conditions for convective mode are also considered for nanofluid flow. The
objective of similarity invariants is to convert non-linear partial differential
equations into ordinary differential equations invariantly. The numerical
results of the investigation for the impacts of various parameters on skin
friction coefficients, Nusselt-Sherwood numbers are determined. The
behaviour of different physical factors on skin friction coefficients in  and
1y directions, on the local Nusselt number, and on the Sherwood number is

analysed. An increment in the power-law index increases the Nusselt
number. The results of the experiment indicates that an increase in the heat
generation parameter will result in a drop in the Nusselt number and an
increase in the Sherwood number. Sherwood number will decrease and
Nusselt number will increase with an increase in thermal radiation
parameter.

Keywords: MHD Nanofluid; Non-Newtonian Power-law Model; Heat
Generation and Radiation; Similarity Invariants; Convective
Boundary Condition.
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1. Introduction

The dispersion of nanoparticles in a base fluid, such as water, ethylene
glycol, or oil, is known as nanofluid. It was introduced and studied by Choi(1995). In
his experimental research, he also noticed that heat transfer was enhanced in
nanofluid compared to regular fluids. There are many attractive applications of
nanofluid like coolants, brake fluid, gear lubrication in automobile industries. It is
useful in solar devices, as delivery of cancer drugs in the medical field, and coolants
in electronic devices. So, it is an essential to study the influence of different physical
factors and various physical situations on nanofluid flow.

Tesfaye et al. (2020) analysed the erratic flow of Williamson nanofluid over
a stretched sheet under the influence of a magnetic field, heat radiation, and chemical
reaction. Kalidas er al. (2018) examined heat generation/absorption effects for
Oldroyd-B type nanofluid, two-dimensional flow over a permeable stretching surface
under the effect of magnetic field and slip velocity. Umadevi and Nithyadevi (2016)
investigated two-dimensional nanofluid flows under uniform heat generation or
absorption with a uniform magnetic field for different thermal boundaries. Bilal et al.
(2018) examined the impact of the various physical factors for three-dimensional
Maxwell nanofluid MHD flow passing through a bidirectional stretching surface
under nonlinear thermal radiation. Hayat ef al. (2017) addressed three-dimensional
Maxwell MHD nanofluid flow under the influence of heat generation-absorption and
thermal radiation on a stretching surface. Burger’s nano-liquid flow over a stretching
sheet was studied by Ganesh et al. (2018) with the impact of non-linear radiation and
non-uniform heat generation and absorption. The thermal radiation effects on the
MHD stagnation point, the two-dimensional flow of a non-Newtonian Williamson
fluid, over a stretching plate, were examined by Hasmawani et al. (2019) by applying
similarity transformations. The two-dimensional flow of Maxwell nanofluid on a
linearly stretching surface under heat generation and absorption impacts was
investigated by Awais et al. (2015). The two-dimensional flow passing over an
exponentially stretching sheet of MHD Casson fluid was studied with internal heat
generation by Animasaun et al. (2016).

Wagas et al. (2017) modelled and analysed Oldroyd-B nano-liquid two-
dimensional flow over a moving sheet with heat generation and absorption effects
using the Homotopy analysis method. The MHD nanofluid three- dimensional flow
over a shrinking sheet under viscous dissipation and heat generation and absorption
with entropy generation was examined by Hiranmoy et al. (2019). The solution for
unsteady, two-dimensional nanofluid flow over a stretching surface was studied
numerically by utilising the fourth-fifth order RKF technique under the influence of
radiation, thermophoresis, and heat generation and absorption by Pandey and Manoj
(2018). Ahmed et al. (2019) examined MHD Maxwell nanofluids flow over a
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stretching surface under the influence of heat generation-absorption and non-linear
thermal radiation in the porous medium by applying similarity variables and the
shooting technique. Kalpna and Sumit (2017) investigated two- dimensional (MHD)
Jeffrey nanofluid flow in the presence of thermal radiation, heat
generation/absorption, and viscous dissipation over an impermeable surface by
assuming similarity transformations and applying the Homotopy analysis method.
Makinde (2011) introduced similarity variables and used the fourth-order Runge-
Kutta method and the shooting method to examine the impacts of internal heat
generation on two-dimensional boundary layer flow on a vertical plate with a
convective surface boundary condition. Lalrinpuia and Surender (2019) used the
homotopy analysis approach to assess MHD nanofluid flow in a saturated porous
medium, in an inclined channel with a heat source/sink, accounting for hydrodynamic
slip and convection at the boundary. Khan et al. (2014) analysed the impacts of heat
generation/ absorption on the 3-D flow of an Oldroyd-B nanofluid over a sheet
stretching in both x and y directions. They applied similarity transformations.

The influence of heat generation, radiation, and viscous dissipation on the
flow of MHD nanofluid over a sheet stretched exponentially in a porous medium was
studied by Thiagarajan and Dinesh Kumar (2019). The MHD-Carreau nanofluid flow
over a radially stretched sheet under the influence of chemical reaction, nonlinear
thermal radiation, and heat generation/absorption was examined by Dianchen ef al.
(2018). The second grade Cattanco-Christov two-dimensional fluid flow caused by a
linear stretched Riga plate was studied under the impact of heat generation/absorption
by Aisha ef al. (2018). Abdul Khan et al. (2018) analysed Williamson nanofluid flow
in three dimensions across a linear porous stretching surface for the impact of thermal
radiation. Sulochana et al. (2016) investigated Newtonian and non-Newtonian,
3-D magnetohydrodynamic fluid flow across a stretched sheet. Chuo-Jeng and Kuo-
Ann (2021) examined the effects of zero nanoparticle flux, internal heat generation,
nonlinear radiation, and changing viscosity on free convection on a non-Newtonian
power-law nanofluid flowing via a vertical truncated cone embedded in a fluid-
saturated porous medium. Considering thermal radiation and heat
absorption/generation, Mabood et al. (2020) investigated MHD Oldroyd-B two-
dimensional, thermal stratified flow across an inclined linearly stretched sheet.
Recently, Newtonian and various non-Newtonian fluid models like Sisko, Powell-
Eyring, Power-Law Model, Prandtl-Eyring were analysed using invariant analysis via
the group- theoretic technique by deriving dependent and independent invariants.
(Patel et al. 2015, Shukla et al. 2017, 2018, 2020). Impact of heat
generation/absorption in the context of nonlinear thermal radiation on
magnetohydrodynamic stagnation-point two-dimensional Newtonian nanofluid flow
across a convective stretching surface were examined by Feroz et al. (2018). Shukla
et al. (2020) analysed flow over linearly stretching surface for 3-D Power-low
nanofluid.
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Due to the significance role of heat generation and thermal radiation on
nanofluid flow, we have extended the work done by Shukla et al. (2020) and
considered the influence of heat generation and thermal radiation. In this paper, we
have studied a power-law fluid flow in three dimensions on a linearly stretched sheet.
A survey of the literature shows that most studies have focused on flows in two
directions, X and Y. The scenario is more real in three dimensions, X, Y, and Z. We
have also examined the effects of thermophoresis, magnetic field, and Brownian
motion on heat generation and thermal radiation. The convective boundary conditions
have been considered for the analysis of the present non-Newtonian fluid flow model.
Various parameters like Nusselt number, skin friction coefficients, and Sherwood
number have been considered for analysing the flow. Similarity-dependent and
independent invariants have been used with the aim of transforming the nonlinear
PDEs into ODEs invariantly.

2. Governing Equation of the Boundary Value Problem

Here, we have considered the three-dimensional power-law nano non-
Newtonian fluid model. The flow is incompressible, steady, laminar over a linearly

stretching sheet with the velocity u, = ar and v, = by in X and Y-direction

respectively. Here, the stretched sheet is exposed to a homogeneous magnetic field B
that is directed in the surface's normal direction. The conditions of convective
boundaries are considered for the flow analysis. Heat generation/absorption impacts,
as well as the impact of thermal radiation, are also considered in the heat transfer
study.

We have taken the following parameters for the flow analysis.

T, - Temperature at Infinite distance from the sheet's surface
C,, - Concentration at Infinite distance from the sheet's surface
hy - Heat transfer coefficient

hy - Convective mass transfer coefficient

Convective heat transfer mode is used to heat or cool the sheet's surface by
maintaining a hot fluid temperature 7 and a convective concentration of fluid C' .

We have used the following boundary value flow governing equations.

ou Ov Ow

=0 1
ox 0y 0Oz o
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ou ou ou A0 ou o B?
U—F+v—+w—=-——|-—1 - 2)
ox oy 0z p 0z 0z Vo
ov v v Aol ou) lov| oB?
U—+v—+w—=—-———|| —— — | -— 3)
ox oy 0z p 0z 0z 0z P
orT orT orT o*T oT oC Dy (0T ’
U—+Vv—+w—=a——+7|Dpg| —— |+ —| —
ox oy 0z 022 0z 0z T, \ 0z
+&(T—Tw)—L% 4)
o, pc, 0z
2 2
ox oy 0z 022 T, 0z°
Boundary values for convective mode are given by
oT oC
U =u, =ar,v =10, =by, w=0,-k— =h(T; - T),-Dp — = hy(C; = C
Yy o (T = T),—Dp 5 (Cy - 0)
atz=0u=0v=0w=07T=1T,C=0C,atz =wo (6)

Where,

u - Velocity in the z direction, v-Velocity in the y direction, w -Velocity in
the z direction

T -Fluid temperature, (' -Fluid concentration, p-Fluid density, t-Heat
capacitance ratio

Dy - Thermophoresis diffusion coefficient, Dy -Brownian diffusion coefficient,
n : flow index

A (> 0) - Rheological constant, g-electrical conductivity of the fluid, a-thermal
diffusivity

@)y : coefficient of internal heat generation, g, -radiative heat flux.
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—40*T,? a4
3k* 0z

g, is defined as ¢, =

Where o* - the Stefan-Boltzmann constant, k™ - absorption coefficient.

Now, expanding 7% about T, and neglecting higher terms, we get following
expression:

T4 = T, + AT, 3T — 4T, T,

8q, 8 [—40"L* a4
0z 0z| 3k oz

aq,  ~160°TS 7

0z 3k* 07>
(7)
. 0q, . . . .
By putting o in equation (4), we get the following equation.
z
9 2
ua_T+Ua_T+wa_T= aa_T_lr_T DB a_Tﬁ + &a_T
ozr oy 0z 022 0z 0z T, 0z
-160*T.,3 52
g gy T

pc, £C, 3k* 022
3. Invariance Analysis by Generalized Group Theoretic Method
We have used the following dependent and independent absolute invariants

to convert governing partial differential equations into ordinary differential equations
invariantly. (Shukla et al. 2020)
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7 = ds(z)ion

Hy(n) = gux

Hy(n) = dBLy

Hy(n) = Wn_l
dg(z)1+n

Hil) = 0 = 7=

Hsln) = 6 = =

We have assumed the following values for the coefficients and parameters.

1 1
n+1 m
2—n n—2
a =2 dy=a dy =b, dy = —a|
P 2
2—-n 2
pr = pcpuqux (R );2’ Re _ (’U,w) mnp, M O'B
k n+1 1 ,0
h c, -C, _ 3
Biy = M a(rey =L, N, = rpy G ZCe) o AOLE G
k n+1 o Sk* pacp
(10)

Where Re-local Reynolds number, pr -generalised Prandtl number, Le -the
Lewis number, N, -Brownian motion parameter, N,-thermophoresis parameter B,
and Bi,-generalised Biot number. We have taken skin-friction coefficients C'y, and

Cy, along the z - and y-axes, the Nusselt number, and the Sherwood number for
analysing the fluid flow. We have used the following equations for above parameters:

1
(Re)n+1Cy, = =(H,(0))" (11)

1
(Re)n+10fy

— o (H}(0))" ! Hy(0) (12)
uﬂ)
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(Re)TNu, = (1 + By)H}(0) (13)

(Re)"‘1F1 Sh, = —Hg(0) (14)

Differentiating absolute invariants of equation (9) with respect to similarity
independent variable 7 and applying on governing equations (1 to 5, 8), we obtain

following equations.

- n

aH, + bHy — aH} + ! anH, = 0 (15)
1+n

a(H))? — aHHy + 1 — " anHH, — na(—H,""'H + MH, = 0 (16)
+n

"

% anHyH, + a(n - 1)(=Hy)"~2 HyH,

b(H,)? — aHyHy + i

+n

—a(—H))""'Hy + MH, = 0 (17)

p?"Hlng - pr N —n nHlH; + HX - RdHX + 4LH,y + NbH;Hé + Nt(Hll)2 =0

+n
(18)
I Nt " ! ! 1 - 77/ !
H5 + —H4 + pTL€H5H3 — p?“Le 77H1H5 =0 (19)
Nb 1+n

Similarly, we have obtained the following equations of boundary conditions
from equation (6).

Atn =0, H, =1, Hy =1, Hy =0, Hy = -Bi(1 — Hy), Hy, = -Bi,(1 — H;),
Atﬂ:w,H1=H2=H3=H4=H5:O. (20)

The following equations are obtained from equations (15-19)

Hy =Gy Hy = Gy, Hy = 2 G + LG, + 12250, 1)

1+n
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aG\ P ~bG] G — 2 aGiG ~ na(~G{)""'G{'+ MG = 0, (22)

b(G) — Gy G — 2= aGyG —aln - 1)(=G1)"*G4G1

—a(=G " 1GY+ MG, = 0, (23)
H) & NHGH & NP + 2 pril 6, + = prGoH, - BH, + A, 4)
a n
oo N mg Y pepr g + 2 prLeGHL = 0 (25)
b a 1+n

4. Numerical Solution

We have transformed the aforementioned system of equations into a system
of first order differential equations in order to use Bvp4c - MATLAB software.

By replacing functions gl? g,17 gl”a g?? g,27 g2”7 H47 Hé’l? HS? Hg') by Yis for
1 =12 ...,10 respectively, we get the following equations.

!

Y1 =Y (26)

!

yh = us 27)

3 (aly2)® = bysys - 12T"n ayrys + Mys)

" na(oyy)"? “
Yy = Us (29)
Y's = Y (30)
Jh = b(ys)? — bysys — 12_T”n ayys — aln — 1)(=y3)" 2y'sys + Mys 1)

a(=ys)" !

Y7 =y (32)
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= Nyysyio — Nilys)? = L pryays — 25 pryys — Ay

y's =
s 1- R,
Y9 = Yo
N b 2n
Yo = __ty,B —— Leprysyio — prLeyyo
N, a 1+n

n=0=uy =y =0,y =y; =1
ys = —Biy(1 — y7(0)), 1o = —Bir(1 — 59(0))

n=wo=1y =0y =0y =0y =0

We have obtained the following equations from equations (11-14)

(R0 = — (O = — (GO = - (w(O)n

(R 10y, = 2 () H3(0) = - (G 0) G310

w

Uy — a n—1
—= (Re)n+1CYy, = —Z(?J?,(O)) Y6(0)

/U’U)

_1
(Re) 7L+1Nuz

—(L+ Ry)H;(0) = —(1 + Ry)ys(0)

1
(R€> n+1 Shz

—H;5(0) = —y,0(0) (40)

6. Results and Discussion

(33)

(34)

(35)

(36)

(37

(38)

(39)

We have used MATLAB bvp4c solver for analysing fluid flow problem.
Tables 1 and 2 show the values for Skin friction coefficients, Nusselt number, and

Sherwood number.
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Table 1: Skin friction coefficient values for various parameters in the x and y

directions

n|a|b|PT| N, |Ny| M |Ry|Le| A Ct, Cy,

1{1]1/1]01/01[05] 0 (02| 0 | 1.7538893508 | 1.7538893508
1{1(1/1]02/01[05] 0 (02| 0 | 1.7538897120 | 1.7538897120
1(1]1/1]03/01[{05] 0 (02| 0 | 1.7538902961 | 1.7538902961
1{1(1/1]01/01[05] 0 (02| 0 | 1.7538893508 | 1.7538893508
111(1/1]01/02[05] 0 (02| 0 | 1.7538895038 | 1.7538895038
1(1(1/1]01/03[05] 0 (02| 0 | 1.7538896175 | 1.7538896175
1/1(1/1]01/0.1{05] 0 {02 0 | 1.7538893508 | 1.7538893508
1{1(1/1]01/01[12] 0 (02| 0 | 19058126194 | 1.9058126194
111/ 1]01/01[15] 0 (02| 0 | 19704591416 | 1.9704591416
1{1(1/1]01/01[05] 0 {0.2/0.2| 1.7538900002 | 1.7538900002
1(1]1/1]01/0.1[{05]0.1{0.2/0.2| 1.7538901651 | 1.7538901651
1/1(1/1]01/0.1{05]02]0.2]|0.2| 1.7538907395 | 1.7538907395
1(1]1/1]01/01[{05] 0| 0 |0.2| 1.7538899995 | 1.7538899995
111(1/1]01/0.1[05] 0 |0.1]0.2| 1.7538899984 | 1.7538899984
1{1]1/1]01/01[05] 0 {0.2/0.2| 1.7538900002 | 1.7538900002
110{2/2]0.1/0.1[0.5]0.1{0.2]|0.2| 1.5511878626 | 1.8971685570
110{42(0.1/0.1[0.5]0.1]{0.2]|0.2| 2.8042554030 | 1.3992670114
110{62]0.1/0.1[05]0.1]{0.2]|0.2| 3.1138892553 | 1.1463275550

From Table 1, it is observed that the value of skin friction coefficient in X
and Y direction both enhances with rising values of the thermophoresis parameter

N, as well as thermal radiation R, . The reason behind it is that if the thermophoresis

parameter is increasing the temperature and concentration, differences between the
surface of the semi-infinite vertical plate and the ambient fluid are increasing and
hence accelerates the heat transfer rate. Table 1 shows the skin friction coefficient

for various values of the Brownian motion parameter N, .
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The skin friction coefficient in both directions is seen to grow with
increasing values of the Brownian motion parameter N, and opposite behaviour

observed for Lewis number Le. The skin friction coefficient increases as the
magnetic field parameter M increases because it reflects an increase in surface
velocity gradients. A similar phenomenon is noticed in Table 1. Effect of stretching
ratio parameter significantly affects skin friction coefficient. An increase in
parameter b, the skin friction coefficient in the X direction rises, whereas the Y
direction exhibits the opposite behaviour.

Table 2: Sherwood number and Nusselt number Values for different parameters

n|{b|n| N, |N,|M|P"|Le| A |Rd Sh, Nu,

111} 1]01(01/05|1]02| 0 | 0 | 0.1055262378 | 0.3824750511
111} 1]02(01|05|1(02| 0| 0 |-0.0451858252| 0.3801468924
111} 1]03(01|05|1(02| 0| 0 |-0.1918276471 | 0.3777829817
111} 1]01(01/05|1(02| 0 | 0 | 0.1055262378 | 0.3824750511
111} 1]01(02|05|1(02| 0 | 0 | 0.1838693036 | 0.3801079022
111} 1]01103|05|1(02| 0| 0] 0.2099947839 | 0.3777045682
111} 1]01(01/05|1(02| 0 | 0 | 0.1055262378 | 0.3824750511
111} 1]01(01|12]1(02| 0| 0] 0.1066120068 | 0.3811253420
1|11} 1]01(01|15|1(02| 0 | 0 | 0.1070520017 | 0.3803950922
111} 1]01/01]05]0.7{02| 0 | 0 | 0.6808097648 |-0.0591201311
111} 1]0101/05]|1.2/02| 0 | 0 | 0.4517559332 | 0.0767238041
111} 1]0101|05]|1.7{02| 0 | 0 | 0.1075016163 | 0.4341594390
111} 1]01(01|05]1| 0 (02| 0 | 0.0640340920 | 0.3645373365
111} 1]01(01|05]|1(0.1/02| 0 | 0.0926736299 | 0.3644023170
111} 1]01(01/05|1(02| 0 | 0 | 0.1055262378 | 0.3824750511
111} 1]01(01|05]1(02(02| 0 | 0.1210982576 | 0.3642872395
111} 1]01101|05]|2]02/02|0.1] 0.1154854564 | 0.4960100946
111(12]01(01|05|2]02(0.2|0.1|0.1151724519 | 0.4966261688
111(13]01(01|05]|2]0.2[0.2|0.1| 0.1150959844 | 0.4968748668
111(14]0101|05]|2(02|0.2|0.1]| 0.1150477775 | 0.4970963117
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Table 2 indicates the effect of various parameters on the Sherwood number
and Nusselt number. Growing thermophoresis parameter values are accompanied by
decreasing Sharwood and Nusselt numbers. Table 2 demonstrates that when the
Brownian motion parameter increases, the rate of heat transmission slows down,
resulting in a fall in the Nusselt number and an observed increase in the Sherwood
number. It is observed that the Nusselt number decreases and the Sherwood number
increases with an acceleration of the magnetic parameter .

The Lorentz force is increased when the magnetic parameter increases,
slowing down fluid motion and lowering the rate of heat flux in the process. By
increasing the value of the Lewis number, nanoparticle volume fraction distribution
decreases, because of reduction in mass diffusion. This, in turn, increases the
Sherwood number, with the opposite effect being seen on the Nusselt number. Based
on the table's numerical values, it can be determined that as the radiation parameter is
raised, the Sherwood number falls and the Nusselt number rises. An analogous result
was noted with the Prandtl number. The Sherwood number rises, the heat generation
parameter lambda increases, and the Nusselt number decreases. The Sherwood
number decreases as n (the power-law index) increases, but the Nusselt number
increases.

Figures 1 and 2 depict, how the Lewis number changes the Nusselt and
Sherwood numbers in response to thermophoresis and thermal radiation, respectively.
The Nusselt number decreases as the thermophoresis parameter and Lewis number
grow, while inverse patterns are seen as the thermal radiation parameter increases. As
thermophoresis and Lewis numbers rise, Sherwood number tends to increase;
conversely, as the thermal radiation parameter increases, it tends to decrease.

Figures 3 and 4 show the impact of the heat source/sink parameter under the
influence of thermal radiation and thermophoresis parameter on the Nusselt number
and Sherwood number. Figures 5 and 6 demonstrate the influence of the Brownian
motion parameter, the thermophoresis parameter, and the thermal radiation parameter
on the Sherwood number and Nusselt number respectively. Sherwood number
decreases as thermal radiation parameter value increases. Nusselt number increasing
as a result of the thermal radiation parameter increasing.
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5. Conclusion

We have used both similarity dependent and independent invariants to get a
similarity solution for the boundary value problem associated with power-law
nanofluid flow. The power-law nanofluid problem's governing equations have been
converted into ordinary differential equations with the help of invariants. The
numerical solutions of derived ordinary differential equations are utilized by using
MATLAB bvp4c software to find the effects of various parameters like Nusselt
number, Sharwood number and Skin friction coefficients on fluid flow. The
following are the findings of the analysis of the fluid flow using invariants.
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. The findings indicate that an increase in the Lewis number Le results in a
drop in the coefficient of skin friction in the z and y directions, an increase

in the Sharwood number, and a decrease in the Nusselt number.

. An increase in the magnetic parameter M causes the skin friction coefficient
to increase in both the x and y directions, the Nusselt number decreases,

and the Sharwood number increases.

. A rise in the power-law index , a fall in the Sherwood number, and an
increase in the Nusselt number.

. The Sherwood and Nusselt numbers decrease with an increase in the
thermophoresis parameter.

. As the radiation parameter increases, the Nusselt number rises while the
Sherwood number reduces.
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Sayantan Sil' | EXACT SOLUTION FOR FLOW
irondra k@] THROUGH POROUS MEDIUM OF A
5| ROTATING VARIABLY INCLINED

MHD FLUID BY MAGNETOGRAPH
TRANSFORMATION

Abstract. An analytical study of the motion of a steady, homogenous,
incompressible, plane rotating MHD fluid flow through a porous medium
for exact solutions is carried out. The velocity vector of the fluid particle is
thought to be variably inclined to the magnetic field vector at every point.
The flow of fluid is governed by non-linear partial differential equations.
These governing equations are converted into a system of linear partial
differential equations by means of transformation technique known as
magnetograph transformation. The two components of the magnetic field in
the physical plane and two independent variables are switched around using
the magnetograph transformation. Further, the flow equations have been
derived using the Legendre transform of the magnetic flux function. Finally,
several examples have been used to apply and illustrate the developed
theory and exact solutions have been determined. The expressions for the
components of velocity vector, components of magnetic field vector,
magnetic lines and pressure distribution are obtained and analyzed
graphically.

Keywords: MHD, Exact Solution, Magnetograph Transformation,
Magnetic Flux Function, Legendre Transform Function,

Porous Medium.

Mathematics Subject Classification (2020) No.: 35F05, 35Q30, 35Q35.
1. Introduction

The governing equations for the flow of non-Newtonian fluids give rise to
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systems of non-linear partial differential equations; these equations have no general
solution. The several approaches used to solve these equations and their applications
have received excellent coverage from Ames [1]. Hodograph transformations, as
employed by Martin [2] in fluid mechanics, are a class of transformations that change
variables from the physical plane to the velocity plane.

The magnetograph transformation- a method for accurately solving non-
linear partial differential equations- which govern the steady flow of a homogeneous,
incompressible, viscous fluid with finite electrical conductivity in a porous medium
in a rotating reference frame-is the subject of the current study. It is common practice
to solve non-linear partial differential equations using transformation techniques. The
magnetograph is a curve formed by the extremities of the magnetic field vectors
when they are extended from a given point. An equivalent linear system is produced
by using the magnetograph transformation to switch the roles of the independent and
dependent variables. In other words, the transformations that are used to switch the
roles of the two independent variables in the physical plane and the two components
of the magnetic field are known as magnetograph transformations.

The governing non-linear equations are transformed into a linear form that
may be solved by using the magnetograph transformation. Using magnetograph
transformation, several researchers have studied MHD fluid flow and discovered
precise answers. In order to investigate orthogonal MHD flow, S. N. Singh [3]
invented and used magnetograph transformation. Researchers Venkateshappa,
Siddabasappa, and Rudraswamy [26] as well as C. S. Bagewadi and Siddabasappa
[4], looked on rotating MHD ow that was variably inclined in the magnetograph
plane. Exact solutions were found by M. Kumar and S. Sil [5] after studying aligned
MHD flow in the magnetograph plane.

The study of fluid flow in a rotating frame is important for many technical
applications that are directly affected by the coriolis force created by the earth’s
rotation. Examples of these applications include spin coating, the creation and use of
computer disks, rotational viscometers, centrifugal machinery, the pumping of liquid
metals at high melting points, the growth of crystals from molten silicon, turbo-
machinery etc. The coriolis force is shown to have a significant impact when
compared to the viscous and inertial forces in the equations of motion.

The coriolis force has a major impact on the hydromagnetic flow in the
liquid core of the earth, which is essential to the mean geomagnetic field [6]. Because
of its role in solar physics and its relationship to the formation of sunspots and the
solar cycle, the theory of rotating fluid is also significant. Several studies with
rotating fluid have been carried out [9, 11, 10, 12, 7, 8, 13, 26]. Many works have
been conducted on various types of flows for both non-MHD and MHD.
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In the study of soil percolation in hydrology, the petroleum industry,
agricultural engineering, and many other significant fields, the flow of a viscous fluid
through a porous material is crucial. Numerous authors [17, 19, 14, 20, 21, 23, 22,
16, 15, 24, 25, 18, 28, 29] have investigated fluid flows across porous media and
discovered an exact solution.

The objective of this research is to analyze the motion of a rotating, steady,
homogenous, incompressible, variably inclined MHD plane flow through a porous
medium in order to obtain exact solutions. The fluid flow equation is described by
nonlinear partial differential equations. The magnetograph transformation helps the
nonlinear partial differential equations turn into a system of linear partial differential
equations. Two independent variables and the two components of the magnetic field
in the physical plane have been swapped out using the magnetograph transformation.
Moreover, the magnetic flux function’s Legendre transform function has been
utilized to illustrate the flow equations. Finally, a few examples have been used to
clarify the proposed theory and exact solutions have been found.

The expressions for the pressure distribution, magnetic lines, velocity vector
components and magnetic field vector components are obtained and graphically
examined. We first consider the appropriate steady flow equations in a rotating frame
of reference, which includes coriolis force and centrifugal force with non-uniform
angular velocity. Using a Legendre transform of the magnetic flux function and
rewriting all of the equations in terms of this transformed function, the exact
solutions are found by switching the dependent and independent variables in the
magnetograph plane. Examples are considered to point out the usefulness of the
method. The geometry of streamlines and magnetic lines are discussed. The general
solution for angular velocity is also found with the variation of pressure and angular
velocity is discussed by plotting various graphs for some different form of suitable
examples.

2. Basic Equations
The fundamental equations that regulate the steady flow of a homogeneous

incompressible viscous fluid with finite electrical conductivity in a porous medium in
the presence of a magnetic field in a rotating reference frame are

V -V =0, (Continuity equation) (D
P(VV)+202xV+Qx(Qxr1)) =-VP +7V3V + uQ x H

iy , (Momentum Equation) 2)
K
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Vx(VxH)=Vx(ugVxH), (Difusion equation) 3)
V-H=0, (Solenoidal equation) (4)

where V = velocity field vector, P = fluid pressure, H = magnetic field vector,
Q = current density, 4 = magnetic permeability, ¢ = electrical conductivity of the
fluid, p = the constant fluid field density, €2 = angular velocity, # = coefficient of
viscosity, k = permeability of the medium, r = radius vector and yH = magnetic
viscosity, 2 x ({2 x{) = centripital acceleration, 2€2 x V = coriolis acceleration.

On introducing the function

w = Qv _0ou , (vorticity function) &)
or Oy
Q = offy _ o, ,  (Current density function)  (6)
ox oy
1 1 9 . .
B = 5 pVe + P+ 3 |2 x r[*, (Bernoulli function) @)

2

where V2 = @2 + 9, P’ is the reduced pressure and P’ = P — % |2 x r> and

the last term being the centrifugal contribution of the pressure. The above system
reduces to

08,0t _ . ®)
or 0y
9B 9% 9pi0 — puwi + niQ + i = 0, ©)
oz oy K
@_na_a’_Qp@Q—pwﬁ+nH1Q+zﬁ=0, (10)
oy oy K
o0H, oH,

e (11)

aH, — vH, =
2 1 VH or By
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0H, 0H,

=0, 12

ox oy (12)
0H, oM,

z,y) = —2 — —L 13

Qz,y) P o (13)

ot oi
w(z,y) = — — — | 14
(z,9) oz oy (14)

of seven partial differential equations in eight unknown functions, o, H,, H,,
Q, w,@ and B which are functions of(z,y). In addition, ¢ is an arbitrary

integration constant that may be found using the diffusion equation (3). Martin [2]
has successfully employed a first-order system similar to this one to investigate
viscous non-MHD flows.

Let @ = a(z,y) be the variable angle such that a(z,y) = 0 for every
(z, y) in the region of flow. Equation (11) yields

@H, — 9H, = UH sina = ¢ + yHQ, (15)
aH, + 5H, = UH cos a = (¢ + yyQ) cot a, (16)

where H = \/(H,> + H,?) . Considering these as two linear algebraic equations in

the unknown’s u and v, we solve (15) and (16) in terms of H,, H,, and a.

- H, + H, cot «

i = (c+ yyQ) % , (17)
Hi{ + Hj

- H, cota — H

7= (c+ypQ) % (18)
H{ + Hj

we can eliminate @ and v from the system (8)-(14) by using equations (17) and (18)
and then obtaining a system of equations to be solved for ﬁl, FIQ, QO w, B,Q and
a as functions of x and y, this approach leads to the study of system (8)-(14) in the
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magnetograph plane. By using (17)-(18) and removing « and v from the system of
(8)-(14) we get the system of six partial differential equations as under,

o o, 1
ox oy
52 H, cota + H,
—_— = w+2§2 c + —_—
n o( )[( VHQ){ TN E H
=~ H, + H, cot « 0B
+77QH2+2(C+7HQ) % =-—, (20)
K H{ + H; ozr

of2 H, + H, cot «
n—— plw+20)| (c +ygQ %
oy ( >[( H)[ a2 + iz

~ n H, cot o — H; 0B
+nQH, + -+ (c + —— | = —, 21
nQH, + = ( mQ)[ FTNE J o 1)
~ Ocota ~ Ocota
(c +yu@Q) | H; H,
ox oy

N ofl, o, 03 - 03 - 20,0, cot a
or oy H

N 0H, 0H,\| H} cot a — H3 cot a + 2H,H, cot &
dy O A% + A3

+}/H |:(H2 + Hl cot a)% + (H2 + Hl cot a) a j| 0 (22)

0H, 0H,

ox oy =@ 23)
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Hoy cot a—H Ho+Hy co
0 {(c + 70Q) [22 iamlﬂ 0 [(c + yuQ) [; jH;aﬂ
1+ H3 3 1+ Hj
ox oy

= w, (24)

3. Magnetograph transformations

As mentioned in the equations of flow H, = H,(z,vy), Hy = Hy(z, y)the
Jacobian

_ 0H, 0H, 0H, 0H,

J(z,
(=9) ox 0Oy oy Ox

£ 0 (25)

Let z and y be functions of A, and H,, that is, z = z(f,, A?),
Yy = y(ﬁl7ﬁ2)'

Given these assumptions, we may have the following relations:

5H1 - J 534 ,aHQ - _J ay ,ﬁHl - _J af' ,aHQ - J a:{J (26)
Further,
~ ~ -1
o(H,, H. o(z, P
o) = A Ll i,
8(x, y) a(Hlv HQ)

of _; oty of _; dw)) 27)
ox o(H,y, Hy) Oy O(Hy, Hy)

where f(H,, H,) is transformed function of continuously differentiable function of
f inthe H,H, -plane.

4. Flow Equations in Magnetograph Plane

Applying the aforementioned transformation relations to the system of
equations (19)-(24) in the magnetograph plane, or (FII, ﬁg) plane, for the first order
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partial derivatives results in the transformed system of partial differential equations
being

O L0y . (28)
0H, 0H,

. O(z, w) oy H, cot o — H,
nj ————"2— + — — p(w + 29| (c + ypQ)| =———""—1
o(f,, i) of, ( )| e+ 7a@) a2+ i3

+nQH, + g(c + 7uQ) %J = —j% , (29)
1 9 1, 452
. O(w,y) 90) Hy, + H, cot a
" S, ) plw + )[(C + yHQ)[ A7 A2 J]
~ A - A o(z, B
T e = ST
AN
](aﬁg 0FIJ Q. 1)
[dle ozl oleles ol
’ oy, ) ) o, ) -
(32)

% |:(C + Q) {Hf cot @ — H3 cot a + 2H,H, cot + H,H?> 6(;:0:5 a}

1 1

00 - ]
+H?%yy —= (Hycota — H
VH 8H1( 2 1)}

+a%?[<c 4 740) {ﬁf Y N Ve "‘}

2 1
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o0Q , ~ ~
+H?%yy; — (H, — H, cot «
VH 8H1( 1 2 )}
oy ~ ~ ~ ~ 0 cot
+—=(c + H2 — A? + 2H,H, cot @ + H,H? _
of, [( 7HQ>{ 2 1 1412 1 od, }

00 - ]
+H?%yy — (H, cot @ + H
VH 6H2( 1 2)}

oy ~ ~ 0 cot
+—1| (¢ + H? cot @« — H? cot o + 2H,H, + H H? ~
o, {( 7HQ){ 2 1 1412 1 of, }

+H?%yy %(ﬁl cot a — ﬁg)} = 0. (33)
1

5. Legendre Transform of Magnetic Flux Function

The solenoidal equation (19) verified the existence of the magnetic flux
function ¢(z, y) and is such that

d6 = —fyde + Bdy  or 2% - [, %% _ @, (34)
or oy

Similarly, for the magnetic flux function ¢(z, y), equation (28) verified the

existence of the function L(H;, H,), also known as Legendre’s transform function.
It is such that

oL 0L
om, o,

dL = —ydH, + zdH, or =z, (35)

and these two equation are connected by L(H,, Hy) = Hyx — Hyy + o(z, y).

Introducing L(H,, ) into the system of equations (28)-(33) it follows that

equation (28) is identically satisfied with j given by (27) and the system is substituted
by

a(-9L ) N _
. 0Hy oy Hy cot a—Hy

, 72 L 72
1 H1 +H2
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L 0B, 2L
~ Hy + H| cot ,  oH
ey + e+ ) S < (36)
K a2 + A3 o(Hy, Hy)

Y AfT ) I—jf ,Er t
. OH- + cot o

~ H,cota — H
+nQH, —%(CJf}’HQ)[ QﬁQ T IJ =
1 2

o q(c + 75Q) (Wﬂ 7 j;lj o (;Fg 7 |:(c + 7,0) (WJD
= w7

at+ a3
o(H,, H,)

g o, 1)
(38)

2 2
j[aL aLJ:Q’ 9

0 cot a}

2 ~ ~ ~ ~ ~
a L (C + }/HQ> {H% — H% + 2H1H2 cot + H2H2 aﬁ
1

O%L ~ ~ L~ ~ 0 cot «
— (¢ + H? — H2 + 2H,H, cot + H,H? -
GH%( YHQ){ 1 2 1412 2 of }

1

o0Q , ~ ~
+H2 —_— H cot o +H
YH 6H1( 2 ) 1}
2 ~
+ .,ay,.. (C+}/HQ)H2 acqta _Hl aco.,ta
O0H,0H, 0H, o0H;
0Q - . 0Q - _
+H? — (Hy cota — Hy) — —— (H, cot a + H.
YH {GHQ( 2 1) aHl( 1 2)}
+(c + ypQ)(2H? cot @ — Hicot a + 4H H, + ﬁlHQ)] =0 (40)
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9 -1
- | @’L 8L 0%L
T =\ T ~2_(~ ”] J (41)
0H? oM, OH,\0H,

for the seven functions L(H,H,), B(HH,), w(if,), jHH,),a(HH,),
J(ﬁlﬁQ)and Q(ﬁlﬁQ)

Introducing polar co-ordinates (H, 8)H, = H cos 8 and H, = H sin 6

o(F, Q)

a(F*, G¥)

1
o, H,) H o(H,, H,)

0 0 sin @ 0
—— =cos @ — — —
0H, OH H 06

0 . 0 cos @ 0
—— =sinf — —
o0H, OH g 00

where  F(H,, H,) = F*(H,0); G(HH,) = G*(H,6) are continuously
differentiable functions in (H, @) coordinates, the equation (40) takes the form

1 o2rf 1 or 0y
=+ — Hyy — —(c +
(HQ Y TE 80}[ YH oH ( 7HQ):|

+(i_azﬁ _iaﬁJ{(c+yHQ)£2cota* _Hécg;{a J - cota*HyH@} =0.

6. Applications

Example 1: Let
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L(H,H,) = N; tan™ (%J + Ny, a(Hy, Hy) = cot™ (NgH? + N3H3)  (43)
1

form a set of solution of the partial differential equation (40) when N; # 0, N, and

Ns are arbitrary constants. As N5 is arbitrary, there are two cases of the solution
which may considered by (43).

1) If N3 # 0 i.e., variably inclined flows and
(i1) If N3 = 0 i.e., crossed flows.
When (i) N3 # 0.

Using (43) in (35) we have
~ Nz - N
Hy(z,y) = =55 Hy(wy) = =20, 12 = a2 + 42, (44)
r r

This represents radial flow and magnetic field profile is thus the arc of a
rectangular hyperbola, using (44) we obtain

~ 2 2 ~ ¢ 2 2
4 = yr + NgNix) , 0 = N3Nty — xr?),
pex i) L0 = < (NN = ar®)
_ N2N.
w(z,y) = -2 Q=0, a(z,y) = cotl{ - SJ (45)
Nl 7’2
With the help of (45) and integrability condition on B i.e.,
0°B _ 0*B
oxdy  Oyor
from equations (9) and (10) we get angular velocity
(e + ) + Noga ] S8 = [ata? + ) - NNy ]S = 2 4 42) = 0
ox oy kp

(46)
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263
The Lagrange form of solution of this equation is
Q= -NyN?tan' L + ¢, where N2N; = L | (47)
T

the streamlines are given by (2% + %) + N;N; tan™! g

constant , the magnetic

T
flux function is

tan~!

and from (9) and (10) we have

= = constant
T

2
B(z,y) = [4,002]\[3 + ;TC 2ne N3Ny - ﬂ} tan—! L p—CQ( 2

+ 22+ 9?)
1 K 1 T ]
2
+776$ ey N3N, | tan™! A
kN, K x

2
+p_02 (z* + ) tan™! y_n N3Ny In(z? + y?) + constant, (48)

7 r K

and hence the pressure

P(.’L’,y) =B _%pVQ’
is

2 2
P(z,y) = [4,002N3 +k7776 +£N3N1 _ Z;tha 1Y, P

> + y?)P(x,
T " NQ( y*)P(z, )

1

Ui NyNy In(z? + 4%)
K

2
+77 770+NN ( 1£J +£(z2+y2)(tan1£J
kN, Kk T N?

X

1 ¢’ (22 + y?) - 1 P N3N,
2

+ constant
2 2(2% + ¢?)

(49)

and
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(i1) for N3 = 0 i.e., crossed flows, the value of u, v, @ calculate similarly

by putting N3 = 0 in equation (6.1).

By putting N3 = 0 in equation (6.4) we get

QzCl—llny
pk

Again, B and P can be calculated by putting N3 = 0 in equations (6.6)
and (6.7) respectively.

Figure 1: Streamlines for example 1
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Figure 2: Magnetic lines for example 1

e P 2P

1o 20 an &0 50
L

Figure 3: Variation of angular velocity versus = for example 1

265
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Figure 5: Variation of pressure versus x at y = 2 for porosity variation for

examplel

Example 2: Another solution of equation (5.7) is

L(H,, Hy) = My(H} + H}) + My, a(HH,) = cot™{(M3H? + M3H3 + M,)
(50)
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Where M; # 0, M,, M5 and M, are arbitrary constants.

We have

dL dL
= = _y7 ~ =7,
df, df,

We examine the case where M3 and M, are arbitrary constants. When
flows are variably inclined, M5 # 0, i.e. The resulting flows are crossed if
M3 = M, = 0 and constantly inclined if M5 = 0,M, # 0. Now consider the
case when M3 # 0,M, # 0. Using (49) in (35) we obtain

r = 2M1,Er2, Yy = —2M1[:j1
and therefore
~ ) ~ -

= > HQ = D
oM, 2M,

(51

This indicates that the radial distance from the central axis directly affects the

magnetic field H = —.
2M,

The changing angle between the velocity and magnetic fields in the physical
plane is given by

1

M 2
a(z,y) = cot™! 374 M,
AM?
and hence vorticity, current density and velocity components are given by

M
My M, M,

- 5

o ( .\ 7_Hj {2M1<x — Myy) ng} ,
(3”2 + yQ) 2M,
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G = (C N 7_HJ 2M,(z — Myy) Mgy ' (52)
M1 (1‘2 + y2) 2M1

It is to be noted that velocity of the fluid is infinite when r» = 0 i.e., when
H = 0. And fluid velocity is zero when the radial distance is infinite and so the
velocity of the fluid decreases as the 7 -increases. From (48) and integrability
condition on B equations (9) and (10) yields the angular velocity 2 as

My (o? + 37) + 4M3(y + M) 51+ [AMF = Myy = My +22) 5
+% (2 + %) = 0. (53)
The solution to this problem in Lagrange form is
Q = 4M?tan™ % —2M3My In(2? + ¢?) — (22 + ¢?) w,
where A = l, (54)
M, pk

The streamlines are provided by
8M?tan™ g_ 8M? M, In(z* + y*) + M3(2* + y?) = constant,
x

the magnetic flux function is

22 + y? = constant

and (54) yield the energy function B as

B(z,y) = pw| ¢+ pain —4M; tan™! L 2My My In(2? + %) + Ms (2% + 1)
Ml T 2M1
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M3 2 M3M
+2p (c + ZH j [8—1(tan1 EJ -8 1—4‘5211&*1 2hq(:c2 + %) + 2Myay

1 M3 xz M3 T
3

_ 2 2 1Y M 2 212 2 2

2M(z* + y*) tan + 2 In(z® + ¥y + MiMy(z® +y

1
Z M3

I (2% + %) + My ¢+ ZH xy + constant . (55)

4M? kM, M,

And pressure is
P(z,y) = (c + —j —4M, tan™t = + 2M My In(2? + %) + %(ﬁ + yQ)}
1

y 2 Mi”M4 y
+2p | ¢ + nt -8 ———tan! ZIn(2? + ¢?) + 2M7y
M3 T

—2M; (2% + y?) tan~! 449

(In(2® + 9?)f + MyMy(a? + y?
T M3

M3M, )]

- 772 (2% + %) +—7ﬂj\j\jg [c +y—Hme
AM? :

21 4M(1 + M?)
—%p(e+y—HJ [ v, My (22 + y2) + 2M3M, | + Py.
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Figure 7: Magnetic lines for example 2



EXACT SOLUTION FOR FLOW THROUGH POROUS MEDIUM 271

F£]

-i00

-1z0F

140

-1E0
— -5 L] 5 o

Figure 8: Variation of angular velocity versus = for example 2

— pymi*i0®
— ke 0"

Figure 9: Variation of pressure versus = at y = 2 for 2L variation example 2
KR
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Figure 10: Variation of pressure versus = at y =2 for x # variation example 2

Example 3: Consider
L'(H,0) = A0 + Bln H + D (57)

In (H, ) coordinates, where D is an arbitrary constant and A and B are
real values that are not zero. Applying this in (42) we have

Bi cota—AHicota+2Acota+2B =0
00 oH

This has solution

B
cota = vy + MH,, M, = arbitrary constant

and
L'(H,0) = A + Bln H + D,
and

a* = cot™! —§+M1H2 ,
A
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forms a solution set of the partial differential equation (42). If M; = 0 the flows are
constantly inclined with

* -1 _E
a” = cot [ AJ’ (58)

and when M; # 0, the flows are variably inclined, we have

Hy(w,y) = LQB?J ; Hy(wy) = Bm;QAy, r? =2 + 2. (59)
r r
docld Az By [ a (M(dy + Bo)) |
A r2 A 72
—2c
) =T =0.
Wiz, y) = — Q

Now integrability condition for B yields

(e + %) + MA(Aa - By)} 52— {AM;(Bs + Ay)

“a? 42 - L) =0 (60
y kp

The Lagrange form of solution of this equation is

Q = MA? tan~' L + M{AB In(a? + y2), where A2M, lk (61)
z p

the streamlines are given by

M, A? tan™! LA MAB 1In(z? + y?) + (2% + ¢?) = constant
T

and the magnetic flux function is

Atan! ¥ + Blnr = constant.
T
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Now equation (9), (10) and 2 gives us the energy function

c? M z
B(z,y) = pE{—( 2492+ 71(14 + B)In(2? + 9?) + M, tan™! —}
Y

P P y mid?
+2pc 3 M Axy + 3 MA(z? + y?) tan™t £ +

T () [tanl EJ

X

[(mB  MpaB
2 2

Jln(ac2 + ¢?) tan™! ¥
T

MB
+y2)+Tl(x + %) +

(22 + 9*) In(z

(In(a? + y2))2}

+ 260 o oM Btan L | + P. (62)
K A Y

And hence, the pressure function is

c? M, x
P(x,y) = p—1{—(2% + %) + 7(14 + B)In(2? + 9?) + Mytan™! =

A Y
m? A2
+2pc 2 M, Azy + 2 MA(x? + y?) tan™! LA (1+ A)| tan™! 4
3 3 x 2 z
M?A’B
_| MiB 4 L In(z? + y?) tan™ ¥
2 2 T
M2A?
FE @ 4 ) (e + ) + TLE (P 4 g?) 4 S (InGe? + W}

2 2 2 2
+£(—2%+2M13tanlfj—%pc[(z ) ap At —2MlB} + B
K y
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-0 -5 o 5 L
b |

Figure 12: Magnetic line for example 3
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-5
=10 -5 a 5 1}
£

—id i & i
-100 -50 [} 50 100

Figure 14: Variation of pressure verses x at y = 2 for T Jariation
K

for example 3
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— =500

-i00 =50 o 50 (20}

Figure 15: Variation of pressure verses « at y = 2 for fluid density variation
for example 3

7. Conclusion

In this work, an approach has been carried out where magnetograph
transformation method has been applied for the exact solution of the equations
governing the flow of a homogeneous, incompressible viscous fluid through porous
media of a variably inclined rotating MHD with finite electrical conductivity. We
have utilized magnetograph transformation in this problem to reformulate the
governing non-linear equation into linear once. Three different forms of Legendre
transform function of the magnetic flux function have been considered as examples
to illustrate the technique of solving for the exact solution. The expressions for
streamlines, magnetic lines, angular velocity and pressure distribution are found out
in each case. The main results are listed below:

e In example 1 the streamlines are given by (22 + y?) + N, N; tan‘“é =

Y

constant and magnetic lines are given bytan™ £ = constant .
T

1

<

e In example 2 streamlines and magnetic lines are given by 8M? tan™

—8MEM, In(z? + y?) + M3(2* + y?) = constant and 2% + y?

= constant respectively.
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e In example 3, the streamlines are given by M;A? tan‘1%+ M,AB

In(z? + %) + (2% + y?) = constant and magnetic lines are given by

Atan™! ¥ + Blnr = constant.

T

Also for example 1 components of velocity are independent of permeability of
porous medium and angular velocity of rotating frame. The vorticity function
is constant and current density is zero. Pressure depends on angular velocity,
permeability of the medium and the fluid density.

In example 2 for the form of Legendre transform function we find that the
magnetic field varies with the radial distance from central axis. Current
density function is constant and verticity function containing magnetic
viscosity term is also a constant. The components of velocity depends on
magnetic viscosity and current density function. Also, velocity of the fluid
decreases with radial distance. Magnetic viscosity, current function, angular
velocity, permeability of the medium and fluid density affects the pressure
function.

For the form of Legendre transform function considered in example 3 verticity
function is constant, components of velocity does not involve permeability of
medium and angular velocity. Pressure depends on angular velocity,
permeability of medium and fluid density.

Angular velocity depends on permeability of porous medium for all examples.

In example 1 angular velocity for positive N12N3 decreases with x and for

negative increases z becoming almost constant beyond x = 7 for both
cases. For the form of Legendre transform function represents radial flow and
magnetic field profile is arc of a rectangular hyperbola.

In example 2 angular velocity is found to increase with x in the beginning
and shoots up at x = 100 and decreases afterward in Figure 4.

In example 3 angular velocity is found to decrease with z in the beginning
shoot up at x = 0 and shows varying trend there afterwards (Figure 8).

In example 1 (Figure 2) pressure increases at constant % for different fluid of

different densities. For different 2 values at constant fluid density p the
K
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pressure shows parabolic variations with = and is almost symmetric about
z = 100.

e In examples 2 (Figure 5) Pressure varies linearly with z for different values
of % at constant fluid density. For fluid of different densities at constant %

pressure declines initially and increases rapidly with large z values.

e In example 3 pressure has a inverted parabolic variation (Figure 8 and 9) with

x for different % at constant density p as well as different fluid density at

constant % which are symmetric aboutz = 0 .
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