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Thomas Koshy | SUMS INVOLVING EXTENDED
GIBONACCI POLYNOMIALS

Abstract: We explore three infinite gibonacci polynomial sums, and their
Pell and Jacobsthal versions.

Keywords: Extended Gibonacci Polynomials, Fibonacci Polynomial, Lucas
Polynomial, Binet-Like Formulas, Jacobsthal, and Jacobsthal-
Lucas Polynomial.

Mathematical Subject Classification No.: Primary 11B37, 11B39, 11C08.

1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zy40(T) = a()z,, 1 (z) + b(z)z,(x), where z is an arbitrary integer variable;a(z),

b(z), zy(x),and z,(x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial ; and when 2,(z) =2 and z/(z) = z,

z,(z) =1 (z), the nth Lucas polynomial.

Clearly, f (1)=F,, the nth Fibonacci number; and [, (1) =L, , the nth
Lucas number [1, 4,].
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On the other hand, let a(z) =1 and b(z) = x. When zy(z) =0 and
z1(x) =1, z,(x) =J,(z), the nth Jacobsthal polynomial ; and when zy(z) = 2
and z(z) =1, z,(z)=7j,(x), the nth Jacobsthal-Lucas polynomial.
Correspondingly, J, =J,(2) and j, = j,(2) are the nth Jacobsthal and
Jacobsthal-Lucas numbers, respectively. Clearly, J,(1) = F,; and j,(1) =1L,
[3, 4].

Gibonacci and Jacobsthal polynomials are linked by the relationships
Ju(z) = 2" D/2f (1 /Vz) and j,(z) = 2"/ 2, (1/Vz) [4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let ¢, = f, or ,, ¢, =J,, or j,, A = Vel +4, E=+z> +1, and
D =<4z + 1, where ¢, = c,(z).

1.1 Fundamental Gibonacci Identities

Using Binet-like formulas, we can establish the following gibonacci
identities [4]:

fla = b (1)

loot +lonr = A%y )
Loy + (D"lsy = Loy 3)
Loy = (D' lacy = APfofy. 4)

Identities (3) and (4) imply that

b, +2(-1)* = 1% (5)
by, —2(-1)" = A’f7. (6)

respectively.

These identities play a major role in our discourse.
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2. Gibonacci Sums

With these identities at our fingertips, we now begin our exploration with the
following result.

Theorem 1: Let
z, if n=1
va(z) = {

1, otherwise.

& an n—1 1
Then D = (7)
lyn +1 A

n=1

Proof: Let m > 2. Using recursion [4], we will first establish that

i anQn—l _ fgm ‘ (8)
ool lon 1 lym +1

To this end, we let A,, denote the left side (LHS) of this equation and B its
right side (RHS). With m > 2, identity (5) yields [,,, = lgmil — 2. Identity (1),

coupled with this result, then gives

_ fgm fgmfl _ fgm (127,,/71 - 1)fgmfl
Bm - Bmfl = - = - ;
lym +1 g1 +1 Ly +1 (lgmt =D (ym-1 +1)

fgm _ (lgm—l - 1)f2m—1 _ me—l
bm +1 (lyme1 =D (ymo1 +1) Ly +17

= Am - Amfl-

With recursion, this yields

Am_BmzAmfl_Bmflz"'zAQ_BQ
_ r L, N
lh +1 Iy +1 Iy +1
=0.

Thus, A,, = B,,, as claimed.



4 THOMAS KOSHY

Since, lim Im
m—o [, +1

desired. |

i the given result now follows from equation (8), as

It follows from equation (7) that [2, 4, 6],

i on—1 \/g ' (9)
ool Lon + 1 5
The next result invokes identities (1), (3), and (5).
Theorem 2:
& 2
on+1 _ Ai . (10)
n=1 f3.2n I3
Proof: With a = 32m-1 and b = 2m-1, it follows from identity (3) that
l2m+1 + lgm = l3.2m71l2m71 . (11)

Using recursion [4] and identities (1), (3), and (11), we will now confirm that

- n l m
Z on+l _ li + li _ 2 , (12)
n=1 fg.gn f6 fG fg'gm

where m > 2, Letting A, = LHS and B = RHS of this equation, we then get

lgmfl lgm lg'gmfllgmfl lgm
By, — Bp-1 = - = -
fg_gmfl fg,gm f3,2m fg,gm
. 12m+1 + lQm _ lQm . lQm+l .
fg_Qm f3.2m fg_Qm
= Ay — Ap-1.

Recursively, this yields
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Am_BmzAmfl_Bmflz"'zAQ_BQ
z(l4+ZSJ_(MJJ?_QJ:(MJF@]_(MJJSJ
fe  fi2 fo fo o fi2 Jo  fi2 fe  fi2
-0,

confirming the validity of equation (12).

Since, lim i _ 0, equation (12) yields the desired result. O

m—>o fgm

It then follows that

i lyn+1 :l4+l2:(l4+58j_(l4+l2_l4J=A2
Joon J6 Jo o fi2 fo fo 2 I3

Consequently, we have [5, 7]

i L2n+1 _ Ll
n=0 F3.2” 4

| ot

S

OOL2+1_

respectively.

The following result showcases an application of identity (5).

Theorem 3:

L A2 +1
N ) o

Proof: Using recursion [4], we will first establish that
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m f2
n-1 1 1 1 1
2 22 T2 a2 2 2 (14)
-1 -1 AP\ B-1 2,

n=1 “on

where m > 2.

With m >2 and a =2m-1, it follows by identities (5) and (6) that

lym —2 = A2 f;mq and [y, +2= 22m71 , respectively. Then

A2 22m71 (122m4 - 1) = (l2m - 2)(l2m + 1) = lQZm - lgm -2= ZQZm - lgmfl .

Let A,, = LHS and B,, = RHS of equation (13). Then

1 1 1 L = Lt
B = B =51 5 T2 - 222 i 2
A2, -1 2 1) A2, -2, - 1)

om—1
_ A? 22m—1 (l22m—1 - 1) B l22m—1
A2, -2, -1 2, —1

=A, —An-1.

Recursively, this yields

Am_BmzAm—l_Bm—lz”'zAZ_BQ
2 2 i
_ 1 N f5 3 1 +i 1 3 1
l22—1 lf—l _l22—1 A2 122—1 l}—l
2 2 i 2 _ 72 ]
_ i n S5 _ 1 n Iy -1

2-1 13-1) |BB-1 A23-1)(@2-1)

o, )L, ARG
I3-1 12-1 13 -1 A2(2 -1)(13 - 1)
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2 2 2
(L B (1, h
-1 2-1) (g-1 12-1

=0,

confirming the validity of equation (14), as desired.

Since lim
m—w [ —
2171

= 0, the given result now follows from: it.

This theorem implies [4, 5, 7],

i Qn o 3
=~ T 20
We now explore the Pell versions of equations (7), (10), and (13).

3. Pell Consequences

Using the Pell-gibonacci relationship b, (z) = g,(2z) [4], we get the desired

counterparts and their numeric versions:

i 2$ pgn 1 _ i i V7L(2)P2n71 _ @ .
S gy +1 2F’ =020, +1 47
i don+1 _ 4F2 . i Q2n+1 _ g .
n=1 P3.on 43 , n=1 PS.Q" 7 ,

© 2 0 2
z Pyn-1 4Bz +1 z P2n*1 _ 9
n=1 qgn -1 4E2(Q% - 1) n=1 4Q22n -1 64

respectively.

Next, we explore the Jacobsthal versions of the gibonacci sums (7), (10), and

(13) using the Jacobsthal-gibonacci relationships in Section 1.
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4. Jacobsthal Consequences

In the interest of brevity and clarity, we let A denote the left-hand side of

ecach equation and B its right-hand side, and LHS and RHS those of the
corresponding Jacobsthal equation, respectively.

angnfl

4.1 Jacobsthal Version of Equation (7): Proof: Let A = l -
+
on

Replacing = with 1/Vz , and multiplying the numerator and denominator of the

resulting expression with 22", we get

Vn (1/\/5)1"(1‘2”_1 _lfgnfl .

b

n—1 n—1
2", + 22

o vn(l/x/E)zJQn_l
LHS = ) — o
n=1 .7271, +T

where g, = g,(1/Yz) and ¢, = ¢, (7).

Now, let B = i Replacing = with 1/ , we get

RHS=E.
D

Equating the two sides, we get the desired Jacobsthal version:

* ‘/_)l'Jgn—l Jr
Z = (15)
n=1 .7271 + 2 D
O
In particular, this yields [2, 4, 6]
i gn-1 \/3
Ly +1 57

as in equation (9).
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l
4.2 Jacobsthal Version of Equation (10): Proof: LetA = 2ntl Now,
3_277,
replace x with 1/vr, and multiply the numerator and denominator of the

resulting expression with z>2" /2 Then

z(2n—1)/2[z2(n+1)/2l

A= on+1 ;
113(3'2 _1)/2f3_2n
o _(2"n-1)/2 ;
LHS = z Z ]2n+1’
n=1 J3.2”

where gn = gn(l/‘/z) and ¢, = Cn(l‘) .

2
Next, we let B = ?— Replacing = with 1/+z, and then multiplying the
3

numerator and denominator with vz , we get

D2

als(1/x)’

D2z

RHS = — .
J3

Equating the two sides yields the desired Jacobsthal version:

2n-1)/2

i 2! Jon+1 _ DQJE' (16)
n=1 J3.9n J3
O
This implies [5, 7],
s Lo 5
nol Fgon 4 ’

as we found earlier.
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Finally, we explore the Jacobsthal counterpart of equation (13).

2
on+1

-1

4.3 Jacobsthal Version of Equation (13): Proof: LetA =
an

Replacing z with 1/vz , and then multiplying the numerator and denominator

of the resulting expression with z2", we then get

2
p2n-li1 [z<2"*1>/2 fynn }
A= 2m /2 ;
(z2"/ Ly )? = 22"

0 $2n—1+1j

LHS =Y — "=
n,zzl J22n _ x27l

2
on—1

where g, = g,(1/vz) and ¢, = ¢, (7).

2
Next, we let B = & Now replace z with 1/vz, and then
A2(13 - 1)

multiplying the numerator and denominator with z2. This gives,
x (D—2 + 1) z2
T

B DQ[($2/212)2 - :1:2] ;

2 2
Rpg - (D* +2)e?
D2(j3 — x?)

Combining the two sides yields the desired Jacobsthal version:

2 BT (D2 4+ o)

ol jgn — 2" l)Q(j%n —-x2)

(17)
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This yields [4, 5, 7]

" 2
3 a3
n=1 Lgn—l -1 20

as found earlier.
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Kejal f;; FUZZY MAPPINGS IN COMPLEX

Sanjib Kumar Datte® VALUED METRIC SPACES

Abstract: The main purpose of this paper is to establish some fixed point
results for fuzzy mappings in complete complex valued metric spaces, The
derived results generalize some theorems as in the existing literature, Some
examples and counter examples are provided to justify the theorem proved
here.

Keywords: Fuzzy Mappings, Fixed Point, Hausdorff' Distance, Complex
Valued Metric Spaces, Fuzzy Fixed Point.

Mathematical Subject Classification No.: 03B52, 03E72, 47H10, 46G20,
58B12.

1. Introduction

Fixed point theory is most interesting and dynamic area of research in
functional analysis. This principal plays an important and key role in investigating
the existence and uniqueness of solution to various problems in mathematics,
physics, engineering, medicines, and social sciences which leads to mathematical
models design by system of nonlinear integral equations, functional equations, and
differential equations. Banach contraction principal has been generalized in different
directions by changing the underlying space.

The concept of fuzzy set was first introduced by Zadeh [10]. Later Weiss [9]
obtained many fixed point results for many fixed point theorems for fuzzy mappings
in metric spaces. Heilpern [5] initiated the idea of fuzzy contraction mappings and
proved a fixed point theorem for fuzzy contraction mappings which is a fuzzy
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analogue of Nadler’s fixed point theorem for multi-valued mappings [7]. Further
work on fuzzy mappings can be seen in [8].

In this paper, we obtain a fixed point theorem and a common fixed point
theorem for fuzzy mappings in complex valued complete metric space. An example
is also given which supports the obtained results.

Here, the obtained results for fuzzy mapping in metric space, fuzzy mapping
in complex valued metric space under certain constrictive conditions are helpful for
Hausdorff dimensions computing which are helpful in high energy physics. In high
energy physics these results are also helpful for solving the arising geometric
problems due to the involvement of fuzzy sets.

2. Preliminaries

Definition 2.1 [3]: Assume € s the set of complex numbers. For

£1, 82 € € we define a partial order 3 on € as follows:

(Pi) &1 2 &2 © Re(1) < Re(£y) and Im(&) < Im{$s);

(Pit) ¢1 < &2 © Re(£1) < Re(y) and Im(¢1) < Im($);

(Piid) 61 3 &» < Re(1) = Re(¢s) and Im(&h) < Im(&a);

(PZ'U) §1 = élz = Re(C_ﬁ) = Re(é'g) and Im(g’l) = Im(gg)

Clearly if a < b = az 3 bz, forall z € € and for all a, b € R. Note that

if £1 # ¢ and one of (Pi), (Pii) and (Piii) is satisfied then ¢) 3 &5 and write
&1 = &y if only (Piv) is satisfied. Note that

D 03¢ 3¢ =|0]<i6] v, & ed;

(i) ¢1 3¢ and &5 <& =& <43, VE, &, {5€ .

Definition 2.2 [3]: Let X be a nonemply set and p: X xX > € be a

mapping which satisfies the following conditions:
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(i) 032 p(z,w), for all 2, we X and p(z,w) =0 if and only if z =w;
(i) plz,w) = plw, 2} for all z, we X;
iy plz, w) 3 plz, 21) + plzg, w), for all z, 21, weX.

Then (X, p) is called a complex-valued metric space.

Example 1: Let X =[0,1], consider a metric p : X x X = C defined
s Ve, peE X,

as plz,yy =z —yl+ilz—y

To verify that (X, p) is a complete complex valued metric space, it is

enough to verify the triangular inequality condition:
p(z,y) =z —y + iz —y
:‘w—z+z-y!+z’{$—z+z—y\
“{le-z[+|z-y}+dlz-2z|+]2-yl}
“{le-zl+ilz—z2}+{lz-y|+i|z-y|}
o plzy) =3 ple, z) + pla, ).
Definition 2.3 [3]: A point z € X is known as an interior point of a set
Z CX,ifwe find 0< ¢ €€ such that

Bz, e) ={weX: plzw) < C 2. (

A point z € Z is known as the limit point of Z, if there exists an open ball
B(z, ) such that
Bz €) N (Z\{z}) = ¢ 2)

where 0 < ¢ € €. A subset Z of X is said to be open if each point of Z is an

mnterior point of Z. Furthermore, 7 is said to be closed if it contains all its limit
points.
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The family
B ={B(z,¢): z€ X,0=< e} 3)

is a sub basis for a Hausdorff topology t on X,

Definition 2.4 [4]: Let (X, p) be a complex valued metric space and

{zn} be a sequence in X . Then,

o {z,}is called a convergent sequence if and only if there exists z € X,
such that for all ¢ =0, 3n(e) € N suckh that for all n = n(e), we

have p(z,,z) < €. So, we write lim z, = z.
>0

o {z,} is called a Cauchy sequence if and only if for all ¢ =0,

3n(e) € N such that for each m, n = n{e), we have p(zn, zm) < €.

o (X%, p) is called complete if every Cauchy sequence in X converges to

apoint ze X.

Definition 2.5 [8]: Let (X, p) be a metric space. We define the
Hausdorff metric on € %(X) induced by p

H(A, B) = max{sup p(z, B), sup p(4, )} , (4)
zcd yeB

for all A, B € €%(X), where €%B(X) denotes the closed and bounded subsets
of X and

ple, B) = inf{p(z, B} : B € B}, (5)
forall z € X.
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sup inf Hz yhep
i X yEY

FABPmaxn {PQ)

{ X

Sup il . ! i
up i Pl ) =

Figure 1: Hausdorff distance between the green line X and the blue line Y.

Definition 2.6 [1]: Let (X, p) be a complex valued metric space. A
nonempty subset A of X is called bounded from below if there emists some
zc €, suchthat z <a forallac A.

Definition 2.7: Let (X, p) be a complex valued metric space. A
nonempty subset A which is bounded from below is said to have the greatest
lower bound property (g.l.b property) on (X, p) if there exists a lower bound
w € € such that z = w where z is any arbitrary lower bound of A in X and

we write it by inf A.

[6] Let (X, o) be a complex-valued metric space. We denote the family of
all nonempty closed and bounded subsets of complex-valued metric space X by
€ %B(X). For v € € we represent

s(v)={z€€:v =<2z} (6)
and for w € X and B € €B(X).

s(w, B) = U s(plw, ﬁ)) = U {z S p(w, B) = Z} (7)
peB BeB

For A, B € € %(X), we denote

s B)=( 0 s p)o [ﬁgas(ﬁ, A)] . ®)
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Remark 2.1 [1]: Let (X, p) be a complex valued metric space. If € = R,
then (X, p) is a metric space. Moreover, for A B€ ¥ B(X),

H{4, B) = inf s (A, B) is the Hausdorff distance induced by p.

A fuzzy setin X is a function with domain X and values in [0,1], F(¥) is
the collection of all fuzzy sets in X . If A is a fuzzy set and z € X, then the function
value A(z) is called the grade of membership of zin A. The a-level set of fuzzy set
A, is denoted by [A|, , and defined as:

[Ale ={z: Az) = &} where @ € (0,1],

[Alo = {z : A(z) > 0}

Let X be any nonempty set and ¢ be a complex valued metric space. A
mapping T is called a fuzzy mapping, if T'is a mapping from X into F{(%). A fuzzy
mapping T is a fuzzy subset on X x % with membership function 7'(z)(y). The

function T'(z)(y) is the grade of membership of y in T(z). For convenience, we
denote the a-level set of T(z) by [Tz], instead of [T'(z)), .

Definition 2.8 [8]: A point z € X is called a fuzzy fized point of a fuzzy
mapping T : X — F(X) if there exists o € (0,1) such that z € |T%], .

Lemma 2.1 [8]: Let A and B be nonempty closed and bounded subsets
of a metric space (X, p). If a € A, then

plo, B) < H(4, B).

Lemma 2.2: Let A and B be nonempty closed and bounded subsets of a
complex valued metric space (X, p). If a € A, then

pla, B) 2 inf s (4, B).
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Proof: The Lemma follows directly as a consequence of Lemma 2.1. ]

Lemma 2.3 [8]: Let A and B be nonemply closed and bounded subsets

of a metric space (X, p) and O<a € R. Then, for a c A, there emists
b € B such that

p(a,5) < H(A, B) + ax.

Lemma 2.4: Let A and B be nonempty closed and bounded subsets of o

complez valued metric space (X, p)and 0 < a € €. Then, for a € A, there
exists b € B such that

pla,b) Xinf s (4, B+ «.
Proof: The Lemma follows directly as a consequence of Lemma 2.3. [l

3. Main Results

Theorem 3.1: Let (X, p) be a complete compler valued metric space.

Let T:X — F(X) be a fuzzy mapping and for z € X, there exist
a(z) € (0,1] satisfying the following condition:

inf s ([T2]a(z), [TYla) = o, [Tlaw) + a0y, [Ty]aw) + as0(z, [T]ag)

pla, [Tla(@) (1 + | ple, [To]a)))

5 a4p(y= [Ty]a x ) + a5p(.’ﬁ, y) +w-
“ 1+ | plziy) |

9)

forall z,y e X. Also 0 < a; € R, where t =1,2,3,...,5 and 0 < w € € with
a1,03,a5+w

|z] < 1, where T = I~Tansa3)

and (aa + ag) # 1. Then, T has o fized point.

Proof: Let z( be any arbitrary point in X, such that z; € [Txo]a(m). Then
by Lemma 2.4 there exists z; € [Ta:l]a(wl) , such that
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p(z1, 73) 2 inf s ([T20]a(zg)s [T21]ate) + (a1 + ag + a5 + w)

= a1p(20, [T20]a(zy)) + @20(21, [T21]a@er)) + asplzo, [T51]a(er))

+ 64 p{21, [T%0] ateg)) + a50(z0, 1)

v plzo, [Tﬁl}]a(a:g))(l + | plzo, [T$0]a(x0))|)
(1 + | p(zq, 21) |

+(G,1+(13 + a5 +L<J)

= a1 p(zg, 21) + agp(zs, zg) + aglp(zo, 1) + p(z1, z3)]
+aso(zy, 21) + wo(ze, 31) + (a1 + ag + a5 + w).

a) tag+a; +w a] +ag + a5 +w

oz, £2) =

To, o) + 10

1—(a2+a3) p( % 1) 1—(0.24—(13) ( )

Let 7= M 29867 % i condition |7] = | DT % Ha W,
1—(@2 +(13) 1—(a2+a3)

and (ag +az) = 1.
Therefore the Equation (10), we have
plz1, 72) = 7p(zg, 21) + 7.

Again by Lemma 2.4, 3 23 € [T2y]4(zy) such that

) (a1 + ag + a5 + w)?
Pz2, 23) 2 inf s ([T%1]agy), [Tz2)aey)) + i~ +5a3) h

= a1p{z1, [Tml]a(zl)) + a?ﬁ(‘“?a [T$2]a(z2)) + azp(x1, [T-'EZ]a(mg))

+ agP(o2, [T21]az)) + asp(21, 22)
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e p($1, [Txl]a(xl))(l i Ip(ml: [Tml]a(l]_))l) " (_a1 + ag -+ a5 + w)2
L+ | p(z1, 22) | 1-(ay + a3)

P2, 23) = a1 p(x1, 2) + agp(xe, 23) + aslp(zy, 22) + p(zy, 3)]

a1 + a3 + a5 + W
+ a5 plon, 12) + wplay, 7p) + AT I8+ 85 T )
1- (ag + 0.3)

a1 +az +ay +w
1—(&2 +G3)

(al + ag + ag +WE
(1 = (0,2 + (13))2

Py, 2) +

2 2
] +ag + a5 +w (a1+a3+a5+w)
oz, 23) = ( J p(%o, T1) + 2[ ] by (10}
( 1— (G,Q + (13) (1 — (ag + 0,3))

s plzazs) = 12p(x0, 1) + 272,

Continuing as in a preceding way, we can obtain a sequence {z,} such that

Tr, € [Tg,.q] (ayy)» VE have
P(Tn; Tns1) 2 770(z0, 71) + NT™. (11)
Now, for any positive integers m, n(n > m), we have
PTm, Tn) 2 [P(Tm, Tms1) + P(Tmat; Ta)l
= [o(Tm, Tme1)] + [0(Zme1, Tmao) + P(Tmans ;)]
2 [p(@ms Tmet)] + {P(@mits Tmaa) } + o+ {P(Eno1, 22) ]
= 7p(zq, 21) + mr™ + T p(zo, 21) + (m + Lzl 4. ..

+707Lp(zg, m) + (n — Nzl by (11)
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n-1
= (L g s o gBTDplog, g ) + Y it
i=m

It follows from Cauchy root test that Z ir* is convergent and hence «,, isa

Cauchy sequence. Since (X, p) is complete then there exists z € ¥ such that
Tp —> Z AS T —> 0.

Now,

oz, [Tz]a(z)) = [p(z, Tnil) T P{Zn4, [Tz]a(z))]

= {p(2 na1) + inf s([T20 oy, [12]ar)]

Using (9) with n — « we get that

(L (a2 +a3))p(z, [Tlay) < 0

So, we obtain that
2 € [T2]a0sy .

Hence, z € X is a fixed point for the fuzzy mapping 7'. O
Example 2: Let X=[0,1] and p(z, y) = {l:c - y| +i|z—y |}, whenever
T,y € X, then (X, p) is a complete metric space.

Define a fuzzy mapping
T:% — F(X) by

L, 0s<t<&

1 Itk

P 4 T g
ORI
D WEYE D

0, %Stﬁl

For all x € X, there exists a(z) = 1 such that [Tx]aq) = [0, §]. Then
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: 1 z, .1 T 1 y 1 Y
inf s(|Tx T Rs-jlg——|+i-jz—=|l+—|y-Z|+i—|y—-=
([ ]a(:c) [ y]a(m)) {51 4| 4| 5L 10'3:’ 4| 110 ly 4|

Y 1 i o1 T
Ll —|y-Z|+i=|y-=
| | y | 20!1: 4:I

1 ¥, .1
+—|z-2|+i—]z-
4 15 4 20 4

15
LN N —
20 ¥ ¥

1|z =gl +ilz =+ A+ {le - { + iz - I}

30 1+ ||z — y| +ilz — y]

Since, all the conditions of Theorem 3.1 are satisfied. Therefore,
0 € X is the fized point of T.
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1. Introduction

In 1961 Ky Fan generalized the KKM Theorem to a subset of any
topological vector space. There are many generalizations and applications of this
theorem in fixed point theory, approximation theory, minimax theory and variational
inequalities. We can mention authors like Prolla [9], Li [8], Carbone [1] extended and
improve KKM theorem in normed linear spaces’. Before we state the theorem we
recall some well known definitions and other relevant results.

Let X be a subset of a vector space E. A map F:X — 2" is called a

KKM-map if co{X,,....x,} € UF(x,) for each finite subset {xi,...,x,} of X.
i=1

For details on KKM maps we refer Granas [2].
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A function f is said to be strongly continuous if x, — x weakly implies
that fx, — fx strongly. A function g: X — E, where X is non-empty convex set,
is said to be almost affine if || g(t) —y || <|| 9(t1) =y || + L= A) || 9(ta) — y || for
all 1,1, e X ,0< A<, t=At, +(1-A)t, and y e E.

Theorem 1.1[8]: Let C be a nonempty convex set in a normed vector space
X and let f: C — X be a mapping such that

(i) for every yeC,{xeC:|[f(x) — y||>||f(x) — x||} is a closed subset
of C;

(i1) there exists a compact convex subset D of C, such that the set

N {xeC:|[f(x) — y||>|[f(x) — x]||}is contained in a compact subset of C.
yeD

Then there exists a point X, € C such that |[f(x,) — Xx,|| = d(f(x,), C) .

Theorem 1.2 [5]: Let Y be a convex set in a topological vector space E and
X a nonempty subset of Y. For each x e X, let F(x) be a relatively closed subset of Y

such that the convex hull of every finite subset {X,,..., X, } of X is contained in the

corresponding union U F(x,). If there is a nonempty subset X, of X such that the
i=1

intersection () F(x) is compact and X is contained in a compact convex subset
xeX,

of Y then | F(x) # .

xeX

Theorem 1.3 [9]: Let C be a nonempty compact convex subset of a
normed space X and g:C—>C a continuous, almost affine, onto mapping.

Then, for each continuous mapping f:C — X there exists x € C satisfying

lg(x) — fx)[| = d(f(x), C).
2. Main Results

In [8], Li studied some applications of KKM theorem to approximation
theory and fixed point there. Here, the author used one map satisfying some
conditions. The aim of this paper is to generalize some results of [8] by using one
more almost affine self map. This work also extends and improve KKM theorem in
normed linear space.
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Theorem 2.1: Let C be a nonempty convex subset of a normed linear space

X and g be almost affine self map of C onto C. Let f: C — X be a map satisfying
the following conditions

(i) forevery xeC, {yeC:lgly) — f(y)ll<[lgx) — fy) } is closed in C;

(ii)) C has a nonempty compact convex subset C, such that the set
{yeC:llgly) - f(yll<llgx) — f(y)l| forall x e Cy} is compact.

Then there will be a point y, € C such that ||g(y,) — f(y,)|| = d(f(y,),C).
Proof: Let F : C — 2% be defined by

Fx)={yeC:llgly) = fyl<llgx) — iy}, forevery x e C.

Then by condition (i), F(x) is closed in C. It is obvious that x € F(x) for all
x € C. Next, we have to show that F:C—>2% is a KKM map that is,

Co{X semr X, } C EJIF(xi) for any finite subset {X,..., X, } of X.

Let z= Zkixi, where 0<A. <1, inz 1,i=1,2,..,n.

i=1 i=1

IfzggF(xi),then le2) — )| > lgx,) — @)} fori=1,2, ...
=\l — @) +..+ A, llg2) — f@)|>1]lgx,) — @) +... +4,]lgkx,) — {2

327‘1||g(2) - f(2)|| > ||lg\x,+ ... + A, x,) — f(z)|| [' gis almost affine map]

i=1

=|lg@) - f@)|>lg@) - @) [since z=» Ax,,> A =1] which is
i=1 i=1

meaningless.

Hence, z € UF(x,). Thus, F : C — 2% is a KKM-map.
1
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By (ii), the set

NFx) ={yeC:llgy) - fyl<llgx) — f(y)l forall x e Cy} is compact.

xeC,

Then by Theorem 1.2, (] F(x) # .

xeC

Therefore, there exists a point y, € C such that y, € (] F(x) which implies
xeC
18(yo) — f(yo)ll <llg®x) — flyy)ll = min | g(x) — f(y,)ll = d(f(y,), C) since g is
onto. Hence proved.

Remark: If g=1, identity map then we get Theorem 1.1 of Li [8] as a
corollary of this Theorem 2.1.

Corollary 2.2: Let C be a nonempty convex subset of a normed linear space
X and g be continuous almost affine self map of C onto C. Let f: C— X be a
continuous map satisfying the condition

(i) C has a nonempty compact convex subset C, such that the set
{yeC:llgy) - f(yll<llgx) — f(y)l| forall x e Cy} is compact.

Then there will be a point y, € C such that ||g(y,) — f(y,)|| = d(f(y,),C).

Proof: For every x € C, let F : C — 2™ be defined by

F(x)={yeC:gly) - {y)ll<llgt) — I}

Since f and g are continuous, F(x) is closed and hence (i) of above Theorem
2.1 is satisfied. Therefore, the result follows.

Remark: In case when C itself is also a compact convex set the above
result reduces to Theoreml.3 (Theorem lof Prolla [9] ). In addition to this,
if g=1, identity function condition, we have the Theorem of Ky Fan [4] (Theorem

2.1,p.74[12])

Corollary 2.3: Let C be a nonempty convex subset of a normed linear space
X and g be strongly continuous, almost affine self map of C onto C. Let f: C > X
be a strongly continuous map satisfying the following condition
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C has a nonempty weakly compact convex subset C, such that the set
{yeC:llgly) — f(y)<|lgx) — f(y)|| forall x e C} is weakly compact.

Then there will be a point y, € C such that ||g(y,) — f(y,)|| = d(f(y,),C).

Proof: Suppose F : C — 2% be defined by

F(x)={yeC:gly) - {yll<llgt) - I}

Since f and g are strongly continuous functions, F(x) is weakly closed in C
and x € F(x) forall x € C. As g is almost affine map, so F is a KKM map.

Also (1 F(x) = {yeC:|lg(y) — fll<llgkx) — f{y)l[ forallxeCy} is

xeC,

weakly compact. Satisfying the above corollary 2.2 for a weak topology of X, the
result follows.

Remark: In case when C itself is a nonempty weakly compact set corollary
2.3 reduces to Theorem 3 of Carbone [1]. Further, when g = I, we have the result of

Kapoor (Theorem 3.25, p.133[12]).

Corollary 2.4: Let C be a nonempty convex subset of a normed linear space
X and g be almost affine self map of C onto C. Let f: C — C be a one to one map
satisfying the following condition

(i) forevery xeC, {yeC:flgly) — fl<llgx) - fy)ll } is closed in C;

(i) C has a nonempty compact convex subset C; such that the set

{yeC:ligy) - f(y)ll<llgkx) - fy)l forall x € C} is compact.

Then there will be a coincidence point y, € C i.e., g(y,)=f(y,) for some
Y, € X.
Proof: Let us define F : C — 2 by

Fx)={yeC:lgly) - fyll<[lgkx) ~ fy)| } forallxeC.

By condition (i), F(x) is closed in C.
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Hence, by Theorem 2.1, [g(y,) — f(y)I| = d(f(y,, C)|
Since f is self map and one to one, for each y, € C implies f(y,) € C.

Hence, we get f(y,) = g(y, ) , that is y, is a coincidence point.
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1. Introduction and Preliminaries

In some of the research works of different researchers in KKM theory we see
that they proved theorems of one set valued map and two set valued map by using
KKM map. In 1968, Browder [2] proved the existence of fixed point for a set valued
map by using the partition of unity. We can mention authors like Brosowski [1],
Granas [5], Yannelis and Prabhakar [8], Lin [6] extended and improved KKM
theorem on set valued maps.

Before giving our main results we quote some related definition, theorems
and corollaries as follows.

By a set valued map F from a set X to a set ¥, denoted by F: X — 2", we
mean a correspondence which with each x € X associates a set F(x)€2" (the
space of subsets of 1).

Let X be a subset of a vector space E. A map F:X —2" is called a
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KKM-map if co{x,,....x,} < UF(x,) for each finite subset {x,,...,x,} of X.
=1
For details on KKM maps we refer Granas [5].

In 1961, Ky Fan [3] gave the following theorem.

Theorem 1.1: (Fan-KKM or KKMF). Let X be an arbitrary subset of a
topological vector space E. To each x € X, let F(x) be a closed in E and let the
convex hull of every finite subset {X,..., X} of X is contained in the corresponding

union U F(x,). If F(x) is compact for at least one x € X then ) F(x)# ¢.
i=1 xeX

It is to be noted that the above theorem has applications in various fields
including fixed point theory, variational inequality and game theory.

In 1968, Browder [2] proves the following theorem.

Theorem 1.2: Let X be a nonempty compact convex subset of Hausdorff
topological vector spaces E. Let T : X — 2% be a satisfy

(1) T(x)is convex and nonempty for each x € X ;
(ii) T"'(y) is open in X for each y € X.
Then there exist an y, € X such that y, € T(y,).

In 1984, Ky Fan [4] gave the following theorem as an extension of Theorem
1.1, where compactness is relaxed. This important result was used by several
researchers in recent years.

Theorem 1.3: Let Y be a convex set in a topological vector space E and X a
nonempty subset of Y. For each x€ X, let F(x) be a relatively closed subset of Y

such that the convex hull of every finite subset {X,,..., X, } of X is contained in the

corresponding union U F(x,). If there is a nonempty subset X, of X such that the
i=1

intersection () F(x) is compact and X, is contained in a compact convex subset

xeX,

of Y then ] F(x)# .

xeX
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In 1985, Yannelis and Prabhakar [8] has given the following result.

Theorem 1.4: Let X be a nonempty compact convex subset of Hausdorff

topological vector spaces E. Let T : X — 2% satisfy

(i) x&co(T(x)) foreach X € X;
(i) T"(y) is openin X for eachy € X .
Then there exist an X, € X such that T(x,)=¢ .

In 1986, Lin [6] gave the following theorem.

Theorem 1.5: Let X be a nonempty convex subset of Hausdorff topological

vector spaces E. Let T : X — 2% satisfy

of (iii).

(i) x¢co(T(x)) foreach X € X;
() T'(y)={xeX|yeT(x)} isopenin X foreach ye X ;

(iii) X has a nonempty compact convex subset X, such that

B={xeX:yegT(x)forallyeX,} is compact.
Then there exist an X, € X such that T(x,)=¢.
The above result remains true if the following condition is given in place
(iii)’ Let X, be a nonempty compact convex subset of X, and K a

nonempty compact set of X. For every x € X K there exists a y € X, such

that y € T(x).

Corollary 1.6 [7]: Let X be a nonempty convex subset of Hausdorff

topological vector spaces E. Let T : X — 2% satisfy

(i) xgT(x) foreach X € X,
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(i) T(x) is convex or empty, for each X € X ;
(iii) T'(y) is openin X for each y e X ;

(iv) X has a nonempty compact convex subset X, such that

B={xeX:yeT(x)forallyeX,} is compact.
Then there exists an x, € X such thatT(x,) =¢.

The following is an extension of Theorem 1.2.

Theorem 1.7[7]: Let X be a nonempty convex subset of Hausdorff

topological vector spaces E. Let S, T : X — 2% satisfy

(i) S(x) € T(x) foreach x € X;

(i) x & T(x) for each X € X ;

(iii)) T(x) is convex or empty for each x € X ;

(iv) S'(y)={xeX|yeS(x)} isopeninX foreach ye X;

(v) X has a nonempty compact convex subset X, such that

C={xeX:yeS(x)forallyeX,} is compact.
Then there exist an X, € X such that S(x,)=¢.

Theorem 1.8[7]: Let X be a nonempty convex subset of Hausdorff

topological vector spaces E. Let S, T : X — 2% satisfy the following conditions.

(i) S(x) © T(x) foreach X €X;
(i) S(x)# ¢ foreach X € X

(iii) T(x)is convex for each X € X |
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(iv) S(y)is open in X for each x € X,
(v) X has a nonempty compact convex subset X, such that
C={xeX:yeS(x)forallyeX,} is compact.
Then T has a fixed point in X.

2. Main Results

We develop KKM-maps using set valued maps. Further, we give theorems,
corollaries and give also results on existence of fixed points under certain condition.

Theorem 2.1: Let X be nonempty convex subset of topological vector
spaces E. Let S, T,R:X —2* be set-valued maps satisfying the following
conditions:

(i Sx) < T(x) < R(x) forevery x e X;

(i) Forevery xe X, x € S(x);

(iii) Forevery ye X, {x € X |ye R(x)} is closed in X;

(iv) Forevery x € X, theset {ye X |y¢& T(X)} is convex or empty;

(v) X has a nonempty compact convex subset X, such that
N {xeX:yeR(x)} is compact.
yeXy

Then there exist an X, € X such that y € R(x,) forevery y e X.

Proof: Let F: X — 2% be defined by F(y) = {x € X : y e R(x)}, for all
y € X. Then F(y) is closed in X by condition (iii). Also y € F(y) and F(y) # ¢
by conditions (i) and (ii). Next we have to prove that F : X — 2% is a KKM-map.

Suppose y,,....y, € X and 0<A <1, 1=1,...,n. Let z :z}\'iyi‘ We need to

i=1

show that ze UF(y,).
i=1
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On the contrary, let zZ¢ HF(Yi) . It implies that

z ¢ Fy)={xeX:y, eR(x)} for each y,,i=1,..,n. Then, y, ¢R(z) ie.,
y; € T(z) for 1=1,...,n by condition (i). By condition (iv) applied to this z, the set
{yeX:ygT(z)} is convex or empty for all ze X . If the set {ye X |y & T(z)}
is empty, the result follows. If not, the set {y € X | y & T(z)} is convex.

Then, z= Y My, €{yeX:y¢T(z)} which implies z¢T(z). So, z&S(z),
P
a contradiction to (ii). Hence, z € HF(yi) i.e.,, F is KKM map. By condition (v),

N F(y) is compact.

yeXy
Hence the conditions of theorem 1.3 are satisfied for the topology of E.
Therefore, Dx Fiy)#p ie, 3Ix,€X st X,€ DXF(y) ie.,
xoeF(y):yeR(x:),V yeX. y

Remark: If X be a non empty compact convex subset of a topological vector
spaces E, the condition (v) is redundant and accordingly may be dropped.

Corollary 2.2: Let X be non-empty convex subset of topological vector
space E. Let S, T : X — 2% be set -valued maps satisfying

(i) S(x) < T(x) foreach x € X;;

(i) Foreach xe X, x € S(x);

(ili) Foreach ye X, theset {x € X|ye T(x)} is closed in X;

(iv) Foreach x € X, theset {ye X |y & S(X)} is convex or empty;

(v) X has a nonempty compact convex subset X, such that

N {xeX: yeT(x)} is compact.

yeX,
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Then there exist an X, € X such that y e T(x,) forevery yeX.

Proof: One can prove very easily by letting S = T and T = R in above
theorem.

Corollary 2.3: Let X be non empty convex subsets of topological vector
spaces E. Let S : X = 2% be set-valued map satisfying the following conditions:

(i) Forevery xeX, x € S(x);
(i) Forevery ye X, theset {x € X |y e S(x)} is closed in X;
(ili) Forevery x € X, theset {ye X | y & S(X)} is convex or empty;
(ivy X has a nonempty compact convex subset X, such that
Q {xeX: yeS(x)} is compact.
yeX,

Then there exists an x, € X such that y € S(x,) forevery ye X.

Proof: By letting S = T =R in above theorem, the proof follows.

Corollary 2.4: Let X be nonempty convex subsets of vector spaces E. Let
S, T,R : X — 2% be set valued maps satisfying the following conditions.

(i) Sx) < T(x) < R(x) foreachx € X;

(i) Forevery xe X, x € S(x);

(ili) Forevery ye X, {x € X :ye R(x)} is weakly closed in X;

(iv) Foreach X € X theset {ye X:y¢ T(x)} is convex or empty;

(v) X has a nonempty compact convex subset X, such that
N {x e X:yeR(x)} is weakly compact.

yeX,

Then there exists an X, € X such that y € R(x,) forevery y e X.
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Proof: Let F: X — 2% be defined by F(y)= {x e X :yeR(x)} for all
y € X. Then F(y) is weakly closed in X by condition (iii). Further by condition (v),
(1 F(y) is weakly compact.

yeX,
Hence the conditions of theorem 2.1 are satisfied for the weak topology of E.
Therefore, there exist X, € X such thatx, e ﬂx F(y). That is x, € F(y)
ye
implies y € R(x,) forevery y e X.

Corollary 2.5: Let X be nonempty compact convex subset of topological
vector spaces E. Let S, T, R : X — 2% be set-valued maps satisfying the following
conditions.

(i) S(x) ¢ T(x) < R(x) foreach x e X;

(i) Foreach xe X ,x € S(x);

(ili) Foreach x e X , {y € X :ye R(X)} is a subset of X;

(iv) Foreach ye X ,theset {x e X :y¢T(x)} is convex or empty.

Then N {xeX:yeRX)}=¢ .

yeX
Proof: Its proof follows from that of Theorem 2.1.

Theorem 2.6: Let X be a nonempty convex subset of a topological vector
space E. Let S, T,R:X—>2% be set valued maps satisfying the following
conditions.

(i) S(x) < T(x) < R(x) foreach x e X;
(i) Foreach ye X, theset {x € X :ye S(x)}is openin X;

(ili)) For each xeX, the set {yeX:yeT(x)} is convex and
{yeX:yeS(x)} isnonempty;
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(iv) X has a nonempty compact convex subset X, such that the set

{xeX:yeS(x) forall ye X,} iscompact.
Then R has a fixed point i.e., X, € R(x,) forall x, € X.
Proof: Let G(x) =X — S(x), H(x) =X — T(x) and I(x) = X — R(x).
Then I(x) © H(x) = G(x). Let F: X — 2% be a map defined by
Fy)={x e X:ye Gx)} ={xeX:yegS(x)} forall ye X.

Then F(y) is closed in X by condition (ii). By condition (iii), the set
{yeX:ygHX)} ={ye X :yeT(x)} is convex for each x € X

By condition (iv), () F(y)={xeX: yeG(x)forallye X}

yeXy

={xeX:yeS(x) forall y e X} is compact.

If we assume that R has no fixed point i.e., X ¢ R(x) for all x € X. Then
x €I(x) for all x € X. Theorem 2.1 implies that there exist an x, € X such that

yeG(x,)ie., yeS(x,) forall ye X.
Therefore, {y € X : y € S(x,)} = @, a contradiction to (iii).

Thus, there exists a X, € X such that x, € R(x,). Hence, R has a fixed

point.

Theorem 2.7: Let X be nonempty convex subset of topological vector spaces
E.Let S, T : X = 2% be set-valued maps satisfying the following conditions.

(i) Foreach x € X,S(x) < T(x);
(i) x ¢ co(T(x)) foreachx € X;

(i) S'(y)={xe X :yeS(x)} is openin X for eachy € X ;



42 L. PRIYANANDINI DEVI AND M. RANJIT SINGH

(iv) X has a nonempty compact convex subset X, such that the set
N {xeX:yg&S(x)} is compact.
yeX,

Then there exists an X, € X such S(x,)=¢.

Proof: Let F(y)=X — S7'(y)={xe X :yeS(x)} for each y € X . Then
F(y) is closed in X for each y € X by condition (iii).

We have to show that F is KKM map. Let z € co{y,,..., ¥, }. Ifzg UFE(y,),
i=1

then z ¢ F(y,) which implies zeS™'(y,) =y, €S(z) =y, € T(z) by condition
(i), for all i=1,..,n. = co{y,,...,y,} €coT(z) which implies zecoT(z) a
contradiction to (ii)

Hence, F is KKM-map. Further, by condition (iv), the set [ F(y) is
yeXy

compact. Therefore, by theorem 1.3, there exists X, € (] F(y) which implies
yeXg

x, &Sy forall y e X. Then, y ¢ S(x,) forall y e X.Hence, S(x,)=¢.
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zp40(2) = a(®)z,,,1(z) + b(x)z,(x), where z is an arbitrary integer variable;a(z),

b(z), z,(z), and 2 (x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=xz and b(z)=1. When zy(z)=0 and z(z)=
z,(x) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and z(z) =
z,(z) =1,(z), the nth Lucas polynomial.

They can also be defined by the Binet-like formulas. Clearly, f,(1) = F,,, the

nth Fibonacci number; and [,,(1) = L, , the nth Lucas number [1, 2].
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In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f,, or [,, A =+vz2 +4 and 2a =z + A .

=0 and

It follows by the Binet-like formulas that lim
m=% Gm+r

Im+r

lim =ar’.

m—o0 gy

1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the
following properties [2, 3, 4, 5, 6, 7]:

In+kIn-k = G (-1)n*tkA2f2 otherwise;
_ [y g, if gy = @)
In+k+rIn-k — In+k9n—k+r = (_1)n+k A2f7>f2k7 otherwise;

where k and r are positive integers. These properties can be confirmed using the
Binet-like formulas.

It follows from these two identities that

; ; .2 (=Dt fR, i gn = fo
2pn+t)k+rY2pn+t-2p)k+r — )k =
(2pn+t)k+r9(2pn pk+r (2pn+t—p)k+r (_1>tk+rA2fp2k7

otherwise;
3)
_ <_1)tkf7’f2pk7 if gn = fn
9@pn+t)k92pn+t-2p)k+r — J2pn+t)k+r9d(2pn+t-2p)k = (—1)tk+1A2f Fook otherwise:
rJ2pk; )
4)

where k, p, r, and ¢ are positive integers and ¢ < 2p [7].

2. A Telescoping Gibonacci Sum

Using recursion, we will now investigate a telescoping gibonacci sum.
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Lemma 1: Let k, p, r, t, and A be positive integers, where t < 2p.
Then

) A A
g(2pn+t72p)k g(2pn+t)k _ gﬁf Ar
Z{ ! - Ik _cpa )

A
n=1 g(2pn+t72p)k+7‘ g(2pn+t)k+r tkr

Proof: With recursion [2, 3], we will first confirm that

) A A A
- g(2pn+t72p)k’ g(2pn+t)k: gﬁ g(2pm+t)k;
2 P o YR ' ©)
n=1 g(2pn+t72p)k’+7‘ g(2pn+t)k:+7‘ Ithar g(2pm+t)k:+7‘

To realize this goal, in the interest of brevity, we let A, denote the left-hand

side of this equation and B,, its right-hand side. Then

By = By = A — A
By recursion, this yields
Ap = Bm =Apn1-Bpa= - =A-B
=0,
establishing the validity of equation (6).

Since, 1jym Im_ _ 1 (-p)r » the given result now follows, as desired. [

M=% Gmyyp ar’
3. Gibonacci Sums

Coupled with identities (3) and (4), Lemma 1 with 4 =1 plays a significant
role in our explorations.

To this end, in the interest of brevity, we now let

A2, otherwise; 1, otherwise.

_ {1’ Z'f In = fn _ {_17 if In = fn
U= and v =
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With these tools at our fingertips, we now embark on our discourse with the
following result.

Theorem 1: Let k, p, r, and t be positive integers, where t < 2p. Then

i (_1)tk,uvfrf2pk G _(_ﬂ)r-

n=1 g(2pn+t p)k+r + (_1)tk+rluvprk Gtk+r

(7

Proof: Suppose g, = f,. Coupled with identities (3) and (4), Lemma 1 then

yields
(—1)tk+1frf2pk _ f(2pn+t)k+rf(2pn+t—2p)k - f(2pn+t)kf(2pn+t—2p)k+r
f(%pnﬂ‘fp)kJrr - (_1)tk+r ])2k f(2pn+t)k+rf(2pn+t—2p)k+r
i (_1)tk+1f f2 k i 2pn+1‘ 2p)k _ f(2pn+t)k

fk+rf2

n=1 f(?pn+t p)k+r _( ) f(2pn+1‘ 2p)k+r f(2pn+t)k+r

On the flip side, let g, = [, . With the same two identities and Lemma 1, we
then get

(_1)tkA2frf2pk _ l(?pn+t)k+7'l(2pn+t—2p)k - l(?pn+t)kl(2pn+t—2p)k+7'
l(22pn+t—p)k+r + (_1)tk+rA2prk l(2pn+t)k+7'l(2pn+t—2p)k+r
i (_1)tkA2frf2pk _ i l(2pn+t—2p)k; _ l(2pn+t)k;
n=1 l(22pn+t—p)k'+r + (—1)tk+TA2fp2k, n=1 l(2pn+t—2p)k’+r l(2pn+t)k:+7’

= pyr
lig+r
The given result now follows by combining the two cases, as desired. O

In particular, with » = 1 and k£ < 3, the theorem yields [3, 4, 7]:
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Casel:Let p=1.Then t < 2. With £ =1, we get

SRR VRS RS S O )
n=1 F22n+1 -1 2 2 ’ n=1 L%n+1 +95 6 10
- 1 1 5 - 1 1 5
Z 2 =-ot Z =00
el Fine +1 3 6 not Ly =5 1230
i 1L _7 5, i 1 __ 3 5
n=1 F6271,+1 4 48 16 n=1 L%n+l +20 112 80
with ¢ = 2, the formula yields
3 : 1 _ 1. ﬁ’ 3 1 1 JE;
not Fppo +1 2 not L3y =5 410
SIS DSOS RS SR I 3
ot Fis +1 30 6 not Ly =5 66 30
i 1 __29+§_i 1 _ 13 5
SRR 44 208 167 22, -20 464 80

y 1L 1.5 y Lo __1,h

n=1 F42n -1 2 6 ’ n=1 L4n +9 18 30 ’

S B S CURN RS SR S

SR +9 21 427 422 -45 84 2107
i 1 _ 7 5 i 1 I S G
S F%, 64 864 228° I, ,+320 10,080 1,440’
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with ¢t = 2, we get

L s e X512 30
nt P 1 =t Lip =5
yoLo__ub $ 5 45
S F3a 9 2100 427 Sz, -45 462 210

i 1 __29+£.§ 1 13 B
~ F2, ., +64 3,744 288 2, —320 8352 1,440

i 1 29 +§. i 1 _ 13 5

n=1 F82n+3 +9 546 42 n=1 F82n+3 — 45 1218 210 ’
i 41 5 i 1 55 . 5
~ R, -64 5280 288  —oI2, ., + 320 35,424 1,440

and finally, letting ¢ = 4, we get

- 1 1145 « 1 5 5

Z 2 - T Z 9 =T o

=t Fingg +1 30 6 =t Liney =5 66 30

i 1 _ 19 +§. i 1 _ 17 5
SRR, +9 357 427 SR, —45 1,596 2107

- 21 s 1 ~ 233 5
SRy o +64 67,104 288 <3 320 150,048 1,440
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3.1 Gibonacci Delights: Using the above results, we can extract delightful
dividends [3, 4].

S g _n
2 P+l O PR+l D FR g+ 30 3
PRI T i O 9 3
n=2 *2n n=1 *4n n=1 *4n+2
ZL2 +5:Z‘L2 +5+ZL2 +5 T 63 15
n=2 ~2n n=1 “4n n=1 “4n+2
Yot Yt -1
n=2 F22n+1 -1 n=1 F42n+1 -1 n=1 F4n+3 1 10 3
n=2 L%n+1 5 n=1 L4n+1 5 n=1 4n+3 -9 44 15
i 1 22: i 1 __ 228 25
n=3 F22n+1 +9 n=1\_i=—1 F 8n+2i+1 +9 1 105 21 ’
y 1 _yly 1] _ 267 245
n=2 L%7L+1 —-45 n=1\_i=—1 F8n+22+1 45 6,061 105
> 1 2 > 2,255 NG
Y aTTRpY "Xy RETETANYTE
n=2 Fgner £64 00 F12n+1 +64 T P, + 64 145, 39
i 1 B i 1 N i 1 _ 2,255 5
n=2 L26n+1 - 320 n=1 L%QnJrl - 320 =1 L12n+7 320 7257 232 720 7
< 1 o 1 < 1 377 J5
2 i 0 Zr, S TR
n=2 F6n+4 - 64 n=1 F12n72 - 64 n=1 F12n+4 64 3,760
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i i i 1 __ 3 5
= (m+4+320 = 12,12+320 oI, + 320 123,984 720

We now conclude our exploration with showcasing the counterparts of
equations (8)-(11) in [7]. They follow from the Theorem by letting ¢t = p;t = p = k;
t =2p;and t = 2p = 2k, respectively.

< (=1)P* v fr fop Ik
2 = (). (8)
n=1 92pnk+r T (-1)» 7ﬂprk 9pk+r
- ,varf 9p2 .
> = S (B 9)
n=1 g2p2n+7 + (_1)}7 o ,LlprZ gp2+7’
& 1% r . .
> MV frfapk A 92k _ (_pyr. (10)
n=1 9 pk(2n+1)+r +(-1) /Uprk 92pk+r
i AV frfop2 992
2 + (2_1)1)7’ viz o = (-p) (D
n=l1 gp2(2n+1)+7‘ # p2 92p2+7’

With the labels

A = 21, 890; C = 284, 240; E = 21,607, 408;

B =252840; D =6350664; F =48, 315,632,

they yield
i 1 9 5 i 1 __ 2
SFR ., —25 440 1107 = I3, +125 495 550
NS SIS R S
= F%.., -1,156 C 5168’ = I3g,., + 5,780 D B’
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1 _ 199 B Z _ 89 5

SRR, —25 9,790 1107 10M+125 A 550

i 1 _ 9349 i 1 _ 4,181 5
oo Faeo — 1,156 E 5168 = L3, .10 — 5, 780 F B
respectively.
It then follows that
« 1 « 1 « 1,597 5
2 =2 L o 2_3;)5167()+5i;
n=2 F5n+1 25 n=1 F10n+1 25 n=1 10n+6 —-25 )

> ey
n=2 F9n+1 1 156 n=1 F128n+1 1 156 n=1 F128n+10 17 156 17’ 476’ 580
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1. Introduction

Extended gibonacci polynomials z,(r) are defined by the recurrence
Zp+2(T) = a(x)2, 41 (x) + b(x)2, (), where x is an arbitrary integer variable;a(z),

b(z), z9(x), and z (x) are arbitrary integer polynomials; and n > 0.

Suppose a(z) =z and b(z)=1. When zy(z)=0 and z(z)=1,
z,(x) = f,(x), the nth Fibonacci polynomial ; and when 2(z) =2 and z(z) =z,

z,(z) =1,(z), the nth Lucas polynomial. Clearly, f,(1)=F,, the nth Fibonacci
number; and [, (1) = L, , the nth Lucas number [1, 3].
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On the other hand, let a(z)= 1 and b(z)=x. When z,(z)=0 and
z(z) =1, z,(x) =J,(x), the nth Jacobsthal polynomial ; and when zy(z) =2
and z(z)=1, z,(z)=y7,(z), the nth Jacobsthal-Lucas polynomial.
Correspondingly, J,, = J,(2) and j, (2) are the nth Jacobsthal and Jacobsthal-

= Jn
Lucas numbers, respectively. Clearly, J,(1) = F,, ; and j,(1) = L, [2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships
Ju(@) =221 /) and G, () = "7, 0/) 13,41

In the interest of brevity, clarity, and convenience, we omit the argument in

the functional notation, when there is no ambiguity; so z, will mean z,(z). In
addition, we let g, =f, or I,, ¢, =J, or j,, A=+z2+4, 2B =0-A,
1-D

D=+Vizr +1,and 2w =1 - D .Then AB(1/z)
20z

sl

2. A Gibonacci Sum: An Alternate Generalization

Before presenting an interesting gibonacci sum, again in the interest of
brevity and expediency, we now let [5, 6]

. . , and
A2 otherwise; L if gn =1y or ¢y = Jn;

{17 Zf gn = fn {_17 Zf gn = fn or Cp = Jn
/j = Vv =

D2, otherwise.

17 ) n:Jn
D*={ if ¢

With these tools as building blocks, we established the following gibonacci
sum in [6], the cornerstone of our discourse.

Theorem 1: Let k, p, r, and t be positive integers, where t < 2p. Then

" itk
S (1" uv ffopr = 9w _ gy (1)

n=1 g(2pn+t7p)k*+r + (_1)tk+rﬂvf]32k Gtk+r
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The objective of our discourse is to explore the Jacobsthal counterpart of this
delightful sum.

3. A Jacobsthal Polynomial Sum

To achieve our goal, we will employ the gibonacci-Jacobsthal relationships
in Section 1. Again, in the interest of conciseness and clarity, we let A denote the

fractional expression on the left side of the given gibonacci equation and B that on its

right side, and LHS and RHS the left-hand side and right-hand side of the
corresponding Jacobsthal equation, as in [4, 5].

With this brief background, we now begin our endeavor.

(=)™ f, fapk
Proof: Case 1: Suppose g, = f,. Wehave 4 = . r ptk -
f(2pn+t7p)k+r - (_1) +Tfpk

Replacing  with 1/+z and then multiplying the numerator and denominator with

gGrrk+r=1 \We then get

(_1) tk+1I(Qpn+t—p)k+r/2[I(r—l)/er] [x(ka_l)/Qprk]

A= |
{I[(2pn+t—p)k+r—1]/2f(2pn+t—p)k+r}2 _ (_1)tk+7~z(?pn+t—2p)k+7,[x(pk_l)/prk]Q
_ (_1)tk+1x(2pn+t—2p)k+r/2jr(]2pk
J(22pn+t—p)k+r - (—1)tk+rz(?pn+t—2p)k+rjik
LHS = i (_1)tk'+1l,(2pn+t72p)k+r/2jr(]2pk
n=1 J(22pn+t_p)k+r — (_1)tk+rx(2pn+t—2p)k+rjgk

where g, = g,(1/vz) and ¢, = ¢, (7).
ik

th+r

Turning to the right side, we have B = - (=p)".

Now, replace z with 1/vz, and then multiply the numerator and

denominator with z(**7=1/2  This yields
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~ :L,r/Q[l,(tk—l)/thk] (_w)r .

[x(tk+7‘fl)/2ftk+r] /2 ’

x24Ty, _ (=w)r

RHS = ’
.CET/Q

th+r
where g, = g,(1/Jz) and ¢, = c,(z).
Combining the two sides, we get the Jacobsthal version of equation (1):

(—1)tk+1$(2pn+t_2p)kj7~J2pk Jur ~ (_w)r (2)

_ (_1)tk+r$(2pn,+t72p)k+r<]}27k, Jihosr 2"

©
2
n=1 J(2pn+t7p)k’+r

where ¢, = ¢, (z).

Next, we explore the Jacobsthal-Lucas version of theorem 1.

D" A%, fopt . As above,

Case 2: With g, =1,,wehave 4 =
+ (_l)thrT A2fp2k

12
(2pn+t—p)k+r

r with 1/Jz but then multiplying the numerator and denominator with
g @PnHt=pk+r e then have

(_l)tkDQ . x(2pn+t—2p)k+r/2[x(r—l)/QfT][x(ka—l)/QfQPk]

{x[(2pn+t_p)k+r]/2l(2p7z+t—p)k+r}2 n (_1)tk+rD2x(2pn+t—2p)k+r[x(pk—l)/prk]Q

b

_ (_1)tk’D2x(2pn+t72p)k+r/2JT’J2pk
j(22pn+t7p)k+r + (_1)tk+rD21,(2pn+t—2p)k+r(]}27k

w (1)t D2 Gnet=2p)ker/2y g

LHS = z '
n=l jépn+t—p)k+r + (_1)tk+rDZx(an+t—2p)k+rJ12)k

where g, = g,(1/Jz) and ¢, = c,(z).
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Correspondingly, we have B = b _ (-=B)" . Replacing z with 1/vz and

ltk+r

(th+1)/2

then multiplying the numerator and denominator with z , we get

_ @ P Ply] ()

- [x(tk+r)/2ltk+r] L2

r/2

/ _
RHS = :L‘- Jtk _ ( w)r
Jtk+r T

where g, = g,(1/vz) and ¢, = ¢, (7).

Equating the two sides yields the corresponding Jacobsthal-Lucas version of
equation (1):

0 (—1)tkD2$(2pn+t_2p>kjrj2pk ~ m ~ (_w)r 3)

-2 Ntk D2, 2pn+t=2p)k+r 72 5o r
n=1 J2pn+t—p)k+r +(=1) D%z ka' Jtk-+r z

where ¢, = ¢, ().

This equation, coupled with formula (2), yields the desired Jacobsthal
counterpart of Theorem 1, as the following theorem showcases.

Theorem 2: Let k, p, r, and t be positive integers, where t < 2p. Then

0 _1\tk p*,,..(2pn+t-2p)k —_ T
Z (-)" D*vx Jrd 2pk _ _Cik _( w) ‘ 4 O

2 th+r my* 2pn+t-2p)k+r 72 r
n=1 C(Qanrt,p)kJrr + (_1) D Vl'( ) ka Ctk+r x

Employing the gibonacci-Jacobsthal relationships in a compact way, we now
present an alternate proof of this theorem.

3.1 A Delightful Alternate Method: To begin, first, we let

0, otherwise.

1—1/:{1/27 ifgnzfn
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It follows from the gibonacci-Jacobsthal links in Section 1 that

e = -22@ gy = 2@ aym) = @)

p(n=D/2”° 227 pn/2-d*

With these tools at our fingertips, we are now ready for a sophisticated proof
of Theorem 2.

Proof: Replacing x with 1/+z in the rational expression on the left side of

equation (1) and using the above substitutions, we get

(1 vl /22 g 2 CPFDI2)

A= ;
@pntt=pktr _ ) L
Comsi-plerr /27 (0 ||
; (2pn+t—p)k+r—2d* -2LErr=2
_ (D)™ pvz > o
Copnst—per (—1)%”uvzKQP”“‘P)’C—M*—(pk—1)+r]J§k
* (2]771,Jr1572p)k+£
_ (-1)* D*va 2], Japi .
2 tk * ) o Vetr 72
C@P"”*p)kw’ + (_1) D V:L‘( pn+t-2p) ”ka
© * 2pn+t—2p)k r
(-DtkD Vx( pr+t=2p) +2‘]7’J2pk

LHS = )’

—(_1\tE *,.Cpnrt—2p)k+r 72
n=1 c(2pn+t7p)k' ( 1) D'vz ka'

where ¢, = ¢, ().

The right side of equation (1) yields

B= T (-p);
Gtk+r
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i /xtk/%d* (—w)

b
ther)/2—d* /2

Ctk+r /.’L'(

RHS = & €tk _ (-w’)

b

Cth+r z"/?
where g, = g,(1/Yz) and ¢, = c,(z).
Combing the two sides yields the same Jacobsthal version, as expected:

(1) D*vaPnrt=2k 1 1o 4 e (-w?)"

0
Z 2 —(_1\tk D*, . 2pntt-2p)k+r 72 - c ‘_ r >
n=1 C(Qpnﬂtfp)k ( 1) Dva ‘]pk thr z

where ¢,, = ¢, (z). d

Finally, we now explore a host of gibonacci and Jacobsthal implications of
Theorem 2. To this end, we define the following labels:

A = 10,080, F = 25840; K = 117,390, Q0 = 1,040,130
B = 13,650, G = 29241; L = 149,872; R = 1,392,300;
C = 15504, H = 30,030, M = 253890, S§ = 7,514,766;
D = 15810, I = 57,330; N = 263,169, T = 8,912,862
E = 15840, J = 67,184, P = 873,810; V = 66,584,322.

3.2 Gibonacci and Jacobsthal Consequences: With J,(1) = F,,
Jn(1) = Ly, Jn(2) = Jpn, jn(2) = jn, Theorem 2 yields

0 (_1)tk+lFrF2pk ~ Ftk ~ (_ﬂ)r ) (5)
F2 _ (_1)tk+rF2 - Fk >
n=1 F(2pntt—p)k+r pk th+r
S ~1)"*5F, F.
z L ( ) rL'2pk — Ltk _ (_ﬂ)r . (6)
F2 -1 th+r 5F2 L ’
n=1 (2pn+t—p)k+r + ( ) pk thtr
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i (_1)t/€+12(2pn+t72p)k JTJQ])k th 1

= J2 B — (-1 tk+r2(2pn+t—2p)k+rj2 J thoir or ’ ( )
(2pn+t—p)k+r pk

o0

(~1)t*g . g@pn+t=2p)k 7 g, Jw 1

‘ = -—. (®)
Tl sty + (FDET 2@k g2 g

In particular, with p € {2,3},k < 3,7 =1, and ¢ <2 equations (5) and
(6) yield

y L 1% $ oL 1B
n=1 F42n -1 2 6 n=1 Lin +9 18 30°
0 1 1 \/g ) 1 1 \/g
et P +9 210 42 SR -45 84 210
i 1 _ 7 _ \/3 . i 1 . 1 N Jg .
SR, ,—-64 864 288° =2, ,+320 672 1,440°
0 1 1 \/5 0 1 1 ‘/3
2 2 =Tt 2 5 =13 30’
n=1 Fipy +1 3 6 n=1 Ly, —5 30
> 16 s 1 _5
SFZL +9 2100 427 SR —45 462 210
oo By 13 5
SR, +64 3,744 288" SI2, . -320 8,352 1,440
y L. _3_ % $ L 1%
SR, -4 16 167 SIE 420 48 80
T S SR S RN SR B I
i PR,y +64 144 2887 Sr2, ,-320 576 1,440
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R SR S U SR T
SR, -1156 C 5168 S I3, 45780 3556 F
o116 $ 1 1%
o o+ 4 8 16° SR, -20 32 807
y_Loo ot sy 1 5B
n=1 F122n—1 + 064 1’ 440 1’ 440 , n=1 L%Qn—l - 320 B 1’ 440 ,

S 15 z 1 13 5
z— -t 5 ZQ— - .
o F 5 +1,156 J 5,168 o g, 5 —5,780 L F

Using equations (7) and (8), we now present their Jacobsthal counterparts:

® 24n—3 1 ® 24n—3 1
ﬁw‘w’ 242+924n2_150’
i 22(4n—3) 1 i 22(471—3) 1
Sg2 4252800 510 g2 —295.255 3,570
i 23(4n—3) i ‘ i 23(471—3) ~ l .
n=1 J12n 2 — 441 - 212n 8 B ’ el ]12n L+ 3,969 - 212n 8 R ’
i 24n—2 1 i 24n—2 1
n=1 J4n+1 + 24" b 30 , n=1 ]3,”1 -9. 24"_1 - 126 ’
i (4n—2) 1 i 22(4n—2) 1
n=1 8n+1 +25- 2871 s 1’ 870 ’ n=1 .78n+1 225 - 28" s D ’
i 23(4n—2) B i ' i 23(4n—2) B l
=1 ‘]12n+1 +441 - 212n ° K’ n=1 j122n+1 - 3,969 - 212n—5 Q ’
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i 26n—5 _ 1

n=1 Jﬁn 1 -9 26”—4 42 ,

22(6n—5) 1

M8

23(6n—5) l .
ot Jlsn 5 -q- 218n 14 P

i 26n—4 1
S 2 49208 126

n—

© 22(6n—4)
2 -
n=1

1
Ji, | +441-2tT  H

o 93(6n—1) 1

3 _ 1

2 18n—-11 >
n=1 ‘]18n—2 +G -2 S

respectively.

w1 I, g + 441212070 " 8,190 °

i 267L—5 _ 1 .

6n . +81- 267L 4 630

22(6n—5) l
=1 ]12n 9 - 3,969 - 912n-9 I

Ms
I

o 93(6n-5)
Z_: =

1
2, o 4 N2 T

882"

22(6n—4) i
— 3,069 212077 M’

23(6n—4)

<[~

]18n ) + N - 2187L—11

Finally, we encourage gibonacci enthusiasts to explore the gibonacci and
Jacobsthal sums with p =5, k,r € {1,2},and ¢ < 5.
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Gollakota V'V | CLASSIFYING NUMBERS USING
Hemasundar | 1yvISOR FUNCTION TO STUDY
HIGHLY COMPOSITE NUMBERS
AND TWIN PRIMES CONJECTURE

Abstract: In this note we classify the positive integers by using divisor
function into different equivalence classes. We connect highly composite
numbers with this definition. We consider pairs of consecutive odd numbers

(2n +1,2n+ 3) with 7(2n +1) = 7(2n + 3) where 7 is a divisor

function in each equivalence class and call the pair as “twin odd numbers
with equal number of divisors” (twin odds with ends). Using these
equivalence classes we generalize the twin primes conjecture and study
some special cases. We also provide computational data using Python to
obtain some interesting results.

Keywords: Divisor Function, Highly Composite Numbers and Twin Primes
Conjecture.

Mathematical Subject Classification (2010) No.: 11A25, 11A41.

1. Introduction

We consider the number theoretic divisor function 7(n) as follows:

Definition 1: We define

7(n) =Z Ld>0

d|n
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From the definition, 7(n) denotes the number of positive divisors of n. We

consider the set of natural numbers N and define an equivalence relation on N as
follows:

Two natural numbers m ~ n are equivalent if and only if m and n have the
same number of positive divisors. Therefore, for m, n € N

m ~n < (m) = 7(n).

Clearly ~ is an equivalence relation. Hence, we have got a disjoint union of
equivalence classes of N and we denote them by Dy, Dy, ... D;... where D;

contains the numbers with j positive divisors. Unless it is mentioned the divisors are
meant to be positive divisors.

Clearly, D; contains only one element 1. D, denotes the set of prime

numbers and D3 contains squares of prime numbers.
Theorem 2: D; is infinite for j > 1.

Proof: Since the number of primes are infinite Dy is infinite. To show D; is
infinite we observe that for every prime p we consider 1, p, p%,...,p’ ' to

conclude D ; 1s an infinite set. [ |

In this note we study the following:

1. We relate highly composite numbers with this definition.

2. We consider subsets TOj of D; which consists of consecutive odd

numbers and analyze them.
3. We generalize the twin primes conjecture on this basis.

Interested reader may refer to [1] to see some special cases of consecutive
integers.
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2. Highly Composite Numbers

In 1915, Srinivasa Ramanujan published a paper in Proceedings of London
Mathematical Society with title “Highly Composite number”. See [2].

A number N is highly composite if M < N implies 7(M) < z(N). We
define it another way with the following notation:

Definition 3: A number N € D, is said to be highly composite if every

number < N lies in Dy, for some k < n.

Example 4: The first few highly composite numbers are

1,2,4,6,12,24,. . . with corresponding number of divisors 1,2,3,4,6,8,. .. .

Theorem 5: There are infinitely many highly composite numbers.

Proof: The proof follows by a simple reasoning. Suppose there is a highly
composite number N € D, with n divisors. Then we choose N + K € D,
which has n + k divisors for some k =1,2,.... Therefore, the next highly
composite number will be the least number with n + k£ divisors. This process can not
be terminated. Hence, there are infinitely many composite numbers. [ ]

The idea of the proof can be well understood from the sequence of highly
composite numbers given in the example above. Once 6 is chosen with 4 divisors the
next number 6 + 6 = 12 has 4 + 2 = 6 divisors. So there is no highly composite
number with 5 divisors !

Suppose we consider the sequence (/;) where [; is the least number from

D . Clearly, highly composite numbers form a sub sequence of [; .

Remark 6: We can define the highly composite numbers is a mazximal

strictly monotonic increasing subsequence of 1; .

Here the word maximal means the strictly monotonic sequence does not
contain in any other monotonic increasing sequence. In the above table the second

column denotes the first number of D and the third column contains the sequence of
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highly composite numbers ! It is clear from the table that there are no highly
composite numbers for, 250 with number of divisors 5, 13, 14, 15, 17, 19.

Table of equivalence classes containing equal number of divisors

First Highly Divisors
number | Composite
Numbers
D1 1 1 1
D2 2 2 2,3,5,7,11,13,17, 19, 23, 29, 31, 37, 41, 43,

47,53,59,61,67,71, 73,79, 83, 89,97, 101,
103, 107, 109, 113, 127,131, 137, 139, 149, 151,
157,163, 167,173, 179, 181, 191, 193, 197, 199,
211,223,227, 229, 233, 239, 241

D3 4 4 4,9,25,49, 121, 169

D4 6 6 6, 8,10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39,
46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86,
87,91, 93,94, 95,106, 111, 115, 118, 119, 122,
123, 125, 129, 133, 134, 141, 142, 143, 145, 146,
155, 158, 159, 161, 166, 177, 178, 183, 185,187,
194, 201, 202, 203, 205, 206, 209, 213, 214, 215,
217,218, 219, 221, 226, 235, 237, 247, 249

D5 16 16, 81

D6 12 12 12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76,
92,98,99,116, 117, 124, 147, 148, 153, 164,
171, 172, 175, 188, 207,212, 236, 242, 243, 244,

245
D7 64 64
D8 24 24 24, 30, 40, 42, 54, 56, 66, 70, 78, 88, 102, 104,

105, 110, 114, 128, 130, 135, 136, 138, 152, 154,
165,170, 174, 182,184, 186, 189, 190, 195, 222,
230,231, 232, 238, 246, 248, 250

D9 36 36 36, 100, 196, 225
D10 48 48 48,80, 112, 162, 176, 208
D11 No numbers found.
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First Highly Divisors
number | Composite
Numbers
D12 60 60 60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156,
160, 198, 200, 204, 220, 224, 228, 234

D13 INo numbers found.
D14 192 192
D15 144 144
D16 120 120 120, 168, 210, 216
D17 INo numbers found
D18 180 180 180
D19 INo numbers found
D20 240 240 240

Generated using Python

3. Generalization of Twin Primes

We consider special pairs of odd numbers which are existing in a very
natural way and generalize the set of twin primes. We feel that these pairs of odd
numbers are interesting and needs attention for further research in this area.
Interestingly, twin primes conjecture turns out to be a special class in this
classification.

Definition 7: We define a pair of two consecutive odd numbers
(2n +1,2n + 3) is twin odd numbers with ends if both the numbers have
equal number of positive divisors.

In an obvious way all twin primes belong to this class of numbers with two
divisors.

Let us denote the set of pairs of odd numbers belonging to the equivalence
class D; by TO;. Therefore, TO; is a subset of D; which contains pairs of

consecutive odd numbers contained in D).

Conjecture 8: (Twin primes conjecture) T'Oy is an infinite set.

See [3].
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Theorem 9: T03= .

Proof: It is easy to see that for any such pair (2n + 1, 2n + 3), the divisors
of 2n + 1 are 1, p,p? and the divisors of 2n + 3 are 1, ¢, ¢> for some odd primes p

and ¢. Even for any twin primes (p, ¢) it follows that ¢% — p? > 2.

Hence, there are no twin odd numbers with 3 positive divisors. [ ]

Theorem 10: 7T0; = J.

Proof: It follows from the observation that the prime factorization of such
numbers can not contain more than two distinct primes. Following in the same

argument as above we can conclude the result. [ ]

Problem 11: TO, = D if kis odd
Remark 12: Above theorems show that TOy, is not always non-empty.

Now we study the structure of the set 7O, . That is, twin odd numbers with

4 divisors. First we give an example to show that this set is non-empty.

For example, (33,35), (55,57)... which are pairs of consecutive odd
numbers with four divisors.

Theorem 13: Any pair of twin odd numbers in TOy will have the

divisor (positive) sets:

X ={Lpi,q, i} and Y = {1, pa, g2, p2g2}

where p1, q1, P2, g2 are distinct primes or q; = pl2 . In the later case only one

of the divisor set is of the form {1, py, p12, pf}

Proof: Let a, b constitute the pair of twin end odds and 7(a) = 4 = 7(b). Let
{1, p1, p2, a} be the set of divisors of a such that



HIGHLY COMPOSITE NUMBERS AND TWIN PRIMES CONJECTURE 73
l1<pi <ps<a

with p; is the least prime divisor. Then if p, is a prime then a is equal to p; - po

and if py is composite then p, = p? which leads to a = p?.

Both the divisor sets can not be of the form {1, py, p12, pf’} for a prime p in

which case ‘a - b‘ > 2 which contradicts the hypothesis ‘a - b‘ =2.

This completes the proof. [ ]
The following tables will illustrate the possible divisor sets for (a, b) € TO;.

Table 1: Divisor sets of Type 1

110 @ »aa (,) P2q2 | P2 | 2

13 |11 33 | (33,35 | 35 | 5 | 7

1|5 |11 55 | (55,57) | 57 | 3 |19

Table 2: Divisor sets of Type 2

1| m| pi | pf (,) Paga | P2 | Q2

1,5 | 5% | 125 | (123,125) | 123 | 3 | 41

1 11| 11% | 1331 | (1331,1333) | 1333 | 3 | 41

119 | 361 | 6859 | (6859,6861) | 6861 | 3 | 2287

Conjecture 14: Is TO, an infinite set ?

Problem 15: Is T Oy, is non-empty for every k € N ¢

With our new notation, generalized twin primes conjecture will be stated as
follows:
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Conjecture 16: (Generalized twin primes conjecture) Is TOo; an

infinite set for every k € N ¢
The following questions will follow naturally.

Problem 17: Find k for which TOy, is an empty set.

Problem 18: Find k for which TOy, is an infinite set.
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