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1. Introduction and Motivation

In recent years, various operators of fractional calculus (that is, operators of
integrals and derivatives of any real or complex order) has received considerable
attention because mainly of their demonstrated applications in the modeling and
analysis of applied problems and real-world situations occurring in numerous
seemingly diverse and widespread fields of science and engineering. These operators
do indeed provide several potentially useful tools and techniques for solving
differential and integral equations, and various other problems involving special
functions of mathematical physics as well as their extensions and generalizations in
one and more variables (see, for details, [8], [9], [11] and [12]; see also [4], [6]
and [26]).

Traditionally (and by far the most commonly used), the operators of
fractional-order integration and fractional-order differentiation are defined by means

of the right-sided Riemann-Liouville fractional integral operator RLy J. and the left-
sided Riemann-Liouville fractional integral operator RL /. and the corresponding

Riemann-Liouville fractional derivative operators DX and Bl D# | as follows
(see, for example, [3, Chapter 13], [8, pp. 69-70] and [13]):

-1
R AT M (CU BT R N
-1
(LN = ) 0l @ <an@>0 Q)
and
(L@ =[] W O =)D, 0

Here, and in what follows, the function fis locally integrable, 93(x) denotes
the real part of the complex number p € C and [R(u)] means the greatest integer in
MR(u), and T'(2) denotes the classical (Euler’s) Gamma function defined by
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jgo ettt (R(z) > 0)

I'(z) = 4
) nl_“lz +n) (2 e C\Zgy; n e N), @

(z+7)

=0

.

which happens to be one of the most fundamental and the most useful special

functions of mathematical analysis, N and 7Z, being the sets of positive and non-

positive integers, respectively.

Our main object in this article is investigate some general families of
fractional-order kinetic equations involving the Riemann-Liouville right-sided

fractional derivative operator RL (D§.f)(z), which is given (for convenience) by (3)

for a = 0, as well as including a remarkably general class of functions as a part of
the non-homogeneous term. Our main results (Theorem 1, Theorem 2 and Theorem 3
in this article) are capable of yielding solutions of a significantly large number of
simpler fractional-order kinetic equations.

2. Definitions and Preliminaries

First of all, it is easily observed that most (if not all) of the various claimed
one-variable and multi-parameter (or multi-index) “generalizations” of the familiar

Mittag-Leffler function E,(z) and its two-parameter extension E, z(z), which are

defined as follows:

and

)

Z:: ak+1) Z:: ak—i—ﬂ)

are no more than fairly obvious special or limit cases of the substantially much more
general Fox-Wright function pYq (p,q e Ny) or p\PZ (p, q € Ny), which
happens to be the Fox-Wright generalization of the relatively more familiar

hypergeometric function pF q (p,q € Ny), with p numerator parameters ay,- - -, a,

and q denominator parameters by,- - -, b, such that

ajeC(j=1-+ p) ad b;eC\Z; (j=1L---,q).
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These general Fox-Wright functions p*¢ (p, ¢ e N ) and p‘{,:; (p, g € Ny)

are indeed defined by (see, for details, [2, p. 183] and [25, p. 21]; see also [7, p. 65],
[8, p. 56] and [14])

(ab Al)a Ty (apa Ap)7

E %ﬁpq’q z (6)
(bh B1)7 Tty (bqa Bq);

R(A;) >0 (=1, p); R(B,) >0 (j :1,---,q);1+m[zq:Bj —ﬁ:AJ} > oj ,
j=1 j=1

where, and in what follows, (1), denotes the general Pochhammer symbol or the

shifted factorial, since
(1)" =n! (’/ZENO :NU{O}) N := {1727 37' })a

which is defined (for 4, v € C and in terms of the above-defined familiar Gamma
function in the equation (4)) by

1 (v=0;4eC\{0})
(2) ;:Mz o %
' I'(4)
AA+L) - (A+n-1) (v=neN;1e(),

it being assumed conventionally that (0)y :=1 and understood tacitly that the
I' -quotient exists. Here we suppose, in general, that
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a;,AjeC(j=1--,p) and b;,B;e C (j=1-,q)

and that the equality in the convergence condition in the definition (6) holds true only
for suitably bounded values of |z| given by

|z|<V:=[ﬁA;Aj}.[ﬁij}.

We remark in passing that the above-mentioned generalized hypergeoemtric

function p’q (p,q € Ny), with p numerator parameters a,---,a, and ¢

p

denominator parameters by, ---,b,, is a widely- and extensively-investigated and

potentially useful special case of the general Fox-Wright function p\yq (p,q € Ny)

when

We now turn to a series of monumental works (see, for example, [28], [29]
and [30]) by Sir Edward Maitland Wright (1906-2005), with whom I had the
privilege to meet and discuss researches emerging from his publications on
hypergeometric and related functions during my visit to the University of Aberdeen
in the year 1976, introduced and systematically studied the asymptotic expansion of
the following Taylor-Maclaurin series (see [28, p. 424]):

€, p(d;2) = éw z (a, p € C;R(a) > 0), (8)

where ¢(t) is a function satisfying suitable conditions. In fact, it was my proud
privilege to have also met many times and discussed mathematical researches,
especially on various families of higher transcendental functions and related topics,
with my Canadian colleague, Charles Fox (1897-1977) of birth and education in
England, both at McGill University and Sir George Williams University (now

Concordia University) in Montréal, mainly during the 1970s (see, for details, [14]).

The above-cited contributions by Wright were motivated essentially by the
earlier developments reported for simpler cases by Magnus Gustaf (Gosta)
Mittag-Leffler (1846-1927) in 1905, Anders Wiman (1865-1959) in 1905, Ernest
William Barnes (1874-1953) in 1906, Godfrey Harold Hardy (1877-1947) in 1905,
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George Neville Watson (1886-1965) in 1913, Charles Fox (1897-1977) in 1928, and
other authors. In particular, the aforementioned work [1] by Bishop Ernest William

Barnes (1874-1953) of the Church of England in Birmingham considered the
asymptotic expansions of functions in the class defined below:

B (s 2) = i & (a, B € C;R(a) > 0) 9)

for suitably-restricted parameters x and s. Clearly, we have the following
relationship:

. 1
lim {E %) (s 2 } =——D(z,8kK
with the classical Lerch transcendent (or the Hurwitz-Lerch zeta function) ®(z, s, k)
defined by (see, for example, [2, p. 27, Eq. 1.11 (1)]; see also [23] and [24])

(25, ) i (10)
n=0 ’rL

+K)®
(ke C\ Zy;s e C when |z|]<1;9(s) >1 when |z]=1).

The Hurwitz-Lerch zeta function ®(z, s, k) defined by (10) contains, as its

special cases, not only the Riemann zeta function {(s) and the Hurwitz (or

generalized) zeta function £(s, k)

ii ®(1,s1) and g’(s,m):zi#zq)(l,s,ﬁ) (11)

n 0(n+/<a)s

and the Lerch zeta function /(&) defined by (see, for details, [2, Chapter I] and [23,
Chapter 2])
0 eQn/riff o o
fs(é:) = Z ., =¢ 71'1/,‘@(6 71'1(,‘7 S, D (12)

n=1 n’

(i=+-1;& e R;R(s) > 1),
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but also such other important functions of Analytic Number Theory as the

Polylogarithmic function (or de Jonquiére’s function) Li(z):

‘ Iy

(2,81) (13)

(s e C when |z|<1; R(s)>1 when |z| =1)

and the Lipschitz-Lerch zeta function (see [23, p. 122, Eq. 2.5 (11)]):

2n7r1§

(&, K, 8) i D (2%, 5, k) = L(&, 5, K) (14)
=0 (n

+ k)
(ke C\Zy;R(s) >0 when & e R\Z;R(s)>1 when £e€Z),

which was first studied by Rudolf Lipschitz (1832-1903) and Matyas Lerch
(1860-1922) in connection with Dirichlet’s famous theorem on primes in arithmetic
progressions (see, for details, [17] and [18]).

A natural unification and generalization of the Fox-Wright function pLP:;
defined by (6) as well as the Hurwitz-Lerch zeta function @ (z, s, k) defined by (10)

was indeed accomplished by introducing essentially arbitrary numbers of numerator
and denominator parameters in the definition (10). For this purpose, in addition to the

symbol V* defined by

Vo= [ﬁ p;pj J . [f[l a;G-j J, (15)
=

the following notations will be employed:

q p q p P
=Zaj—2pj and E:=5+Zyj—2/1j+ (16)
j=1 j=1 j=1 j=1

Then the extended Hurwitz-Lerch zeta function
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(:017"'7pp;o-17"'7o-q)

/117"'72']7;/'117"'7/Jq (z, % Ki)

is defined by [27, p. 503, Equation (6.2)] (see also [15] and [24])

0
®(p17"'7pp70-17"'76q)(z’ 8, K/) = Z ]=1 z (17)
/7-1,--~,ﬂp;,tl1,"',,th q ( + )5
n=0 ' n+kK
n.. H (:u])naj
j=1

Pj, O eR*(j=1-,pk=1--,9;A>-1 when s 2 € C;

A=-1 and s € C when |z| <V7;
— 1 *
A=-land R(Z)> when |¢|=V )

For an interesting and potentially useful family of A -generalized Hurwitz-
Lerch zeta functions, which further extend the multi-parameter Hurwitz-Lerch zeta
function
(p177pp70'1770'q)
/117"'7}']7;/”17"'7/”(] (z, % K,)
defined by (17), was introduced and investigated systematically in a recent paper by
Srivastava [16], who also discussed their potential application in Number Theory by
appropriately constructing a presumably new continuous analogue of Lippert’s
Hurwitz measure and also considered some other statistical applications of these
families of the A -generalized Hurwitz-Lerch zeta functions in probability
distribution theory (see also the references to several related earlier works cited by
Srivastava [16]).

We now introduce some general families of the Riemann-Liouville type
fractional integrals and fractional derivatives by making use of the following
interesting unification of the definitions in (8) and (17) for a suitably-restricted
function ¢(z) given by
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Eap(@; 3 o(n) n B eCR 0, (8
595 2,8, K) : ,gf)n+n)sr(an+ﬁ)z (a,p € (@) >0), (18)

where the parameters o, f, s and k are appropriately constrained as above.
The resulting general right-sided fractional integral operator Z/ (¢; 2, s, k, v) and
the general left-sided fractional integral operator Z/' (g;z, s, k,v), and the
corresponding  fractional derivative operators D[, (¢; 2, s, k,v) and

Dl (¢; 2, s, k,v), each of the Riemann-Liouville type, are defined by (see, for
details, [20], [21] and [22])

(Tl zs D@ =

x

(@ =)y pl@y 2(x — )", 5, k) f(t)dt  (19)

(x> a; R(u) > 0),

(Tir 20w N@) = (oo [ =02l = 0)"5.5) F0) di (20)
(z < a; R(u) > 0)
and
(D(;ui((oa 2y 8y Ky V)f) (:I;) = [i ddl‘j (Iar,li_‘u((o; 2y 8y Ky V)f) (:E) (21)
(R(w) = 0 n = [R(w)] + 1),

where the function f is in the space L(a,b) of Lebesgue integrable functions on a

finite closed interval [a, b] (b > a) of the real line R given by
b
La.0) = {73 11l = [} 150)] do < o], )

it being tacitly assumed that, in situations such as those occurring in conjunction

with the usages of the definitions in (19), (20) and (21), the point a in all such
function spaces as (for example) the function space L(a, b) coincides precisely with

the lower terminal « in the integrals involved in the definitions (19), (20) and (21).
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Next, in terms of the operator £ of the Laplace transform given by

L{f(7): s} = J.OOO e f(r)dr = F(s)  (R(s) > 0), (23)

where the function f'(7) is so constrained that the integral exists, it is easily seen for
the function &, 4(; 2, s, k) , defined above by (18), that

o k
LI, i oty ) s s) = - 3 —PEIWh 4 4] (J .
s# {5 (k+x)'T(ak + B) "

(R(s) > 0; R(u) > 0; R(v) > 0; R(a) > 0),

provided that each member of (24) exists. Obviously, upon setting © = # and
v = «, the Laplace transform formula (24) simplifies to the following form:

pe1 a s o) (= '
L{c7 & g5 277, — > (25)
5“ =0 (k +k)° \s?
(R(s) > 0; R(a) > 0; R(B) > 0).
In case we apply the following limit formula:
€y p(d;2) = li_rf(l){ga’ﬁ((p; 2,8, K)} lp=o - (26)

or, alternatively, if we make use of the definitions in (8) and (23), we find for
Wright’s function €, z(d; 2) that

1 V]{,' + lLl) g
-1 L QW)L VA T H)
E{T Qfa ﬂ((b’ ZT Ezo 2 ) [ » j (27)

(R(s) > 0; R(w) > 0; R(v) > 0; R(a) > 0),

which, in the special case when v = « and © = £, yields
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oo k
i e, (0 20 iﬂ Z ( j (28)
k=0 5
(R(s) > 0; R(a) > 0; R(B) > 0).

Moreover, in the case when the sequence {@(n)},_, is given by

D
C(an + B H np]
o(n) = (n e Ny), (29)

q
nl. H (:uj)naj
j=1

then the Laplace transformation formula (25) would yield the following result:

—1 3 P15 PpiOLs 0
L {T" ! <I>/111““~/1;’.#11‘“\#; (27", 8, k) : 5}

T(u) o (viprep i01,50q) [ 2
= 7 @ p q o~
5// ﬂ’/ila""/ipﬂ/la“'a//q 5V » ) k (30)

(R(s) > 0; R(w) > 0;R(v) > 0; R(a) > 0)
for the extended Hurwitz-Lerch zeta function

(P12 ppiOL, 0
@ PP g k)

defined by (17).

Finally, for the right-sided Riemann-Liouville fractional derivative operator

D4, of order 4 in the definition (3), it is easily observed that (see, for example, [12,
p. 105, Eq. (2.248)])

LL("DES)(E) s} = 54 F(s) Z (FEDERL 1) (0+4) 31)

(n—-1<R(u) <n;neN)
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or, equivalently, that (see, for example, [8, p. 84, Eq. (2.2.37)])

(VDL 8} = P (s i i g o)
k=0 t=0
- n—k-1
= 5P (s Z e (L) ICS
- t=0

(n—-1<R(u) <n;neN)
where, for convenience

("4Dg ) (04) = dim (D) (0] = (DI (0 4eo

t—>0+
and

- {(®r57#f) @) = lim dk{(RLfa:” ) 1)

k
dt 5 t—0+ dt
. dk RL yn—u
= {("rgr) 00} (ke {012 n-1}),
Indeed, for the ordinary derivative £ (¢) of order n e Ny, it is known
that

n—1

L{F () : sy = s"F (s) = 3 "k D) (n € Ny) (33)
k=0 t=0
or, equivalently, that
n-1
LU 2 s} = 8"F ()= 3 6" fP04) (neNy), (34)
k=0

where, as well as in all of such situations in this paper, an empty sum is to be inter-
preted as 0.
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3. A General Family of Fractional-Order Kinetic Equations

For an arbitrary reaction, which is characterized by a time-dependent
quantity N = N(t), it is possible to calculate the rate of change % to be a balance

between the destruction rate 0 and the production rate p of N, that is,
dN

=0+
dt ’

By means of feedback or other interaction mechanism, the destruction and
the production depend on the quantity N itself, that is,

0=0(N) and p=p(N).

Since the destruction or the production at a time ¢ depends not only on N(¢),
but also on the past history N(77) (n < t) of the variable N, such dependence is, in

general, complicated. This may be formally represented by the following equation
(see [5]):

T =)+ p V), (35)

where N; denotes the function defined by

N,(t") = Nt —t") (t* >0).

Haubold and Mathai [5] studied a special case of the equation (35) in the
following form:

dN ;
dt] = —¢;N;(t), (36)
that is,
dN ;(t
]( ) = —c; dt, (37)
N j(t
with the initial condition that
N;(#) _ =N,
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j>0.

This is known as a standard kinetic equation. The solution of the equation (36)

is the number density of species j at time ¢ = 0 and the constant ¢
(without the subscript j ) is readily seen to be given by

—cjt
N(t) = Noe 7", (38)
which, upon integration, yields the following alternative form of the solution of the

equation (36) (without the subscript 7 ):
N(t) = Ng = c- oD {N(®)} . (39)

where oD; ! is the standard (ordinary) integral operator and c¢ is a constant of
integration.

The fractional-order generalization of the equation (39) is given as in the
following form (see [5]):

N(t) = Ny = ¢ (" 15, N) (t) (40)

in terms of the familiar right-sided Riemann-Liouville fractional integral operator

RL Iy, of order v defined, as in (1), by (see, for example, [8])

GIHICE ) [[¢-w)fud) (> 06R0)>0. @)

For a considerably large number of extensions and further generalizations of
the fractional-order kinetic equation (40), the interested reader should refer (for
example) to [10], [19] and [20] as well as the other relevant references which are
cited in each of these earlier publications. We propose here to investigate the solution
of a general family of fractional-order kinetic equations which are associated with the

function &, z(¢; z, 5, k) defined by (18), which we have introduced in this article, as

well as the Riemann-Liouville fractional derivative operator - D¢, defined by (3).
The results presented here are sufficiently general in character and are indeed capable
of being specialized appropriately to include solutions of the corresponding (known
or new) fractional-order kinetic equations associated with simpler functions.
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Theorem 1: Let c, v, p € R* and 0 < o < 1. Suppose also that the
general function-order &, g(p; 2, 5, k) , defined by (18), exists. If we set

xo(0) = (157 F) (04), (42)

then the solution of the following generalized fractional-order kinetic equation:

N(t) = Not“ ™" &, gg; 2t", 5, 15) = —c”(""DF.N) (t) (43)
18 given by
o tU r+l1
N@#) = Ngt* 1S (=) | —
(0= Nyt 3 () []

i (k)T (vk + ) ()

=0 (k + k)’ T(ak + B)T(vk + (r + )o + u)

ta(7~+1)—1

+ ZO(U)Z(:) G m (t>0), (44)

provided that the right-hand side of the solution asserted by (44) exists.

Proof: Since, by hypothesis, 0 < o < 1, we can make use of the Laplace
transform formula (32) in the following form:

L{(""DEN)(t) = s} = s7N(s) = zo(0) (0 <0 <1), (45)

where
N(s):= L{N(t): s} = j e N(t) (46)
and y,(o) is defined by (42).

Now, by applying the formulas (24) and (45), if we take the Laplace
transforms of both sides of the fractional-order kinetic equation (43), we find that
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oo

N~ Yo 5 oIk g (j‘”’
s 120 (k+ k)'T(ak + p)

= ~c’[s7N(s) = (137N (0+)]

= —c”sN(s) + c? yo(0), 47)
which readily yields

(9]

Ny = Mo oI+ ) 2" cPx(0) 48)
1+¢”s% = (k +r)'T(ak + B) 6" 1+ c¢Ps°

In view of the following series expansion:

pP.O
Z Hl (Ie”s7]> 1),

1+cp5 =0

this last equation (48) can be rewritten as follows:

(o)

N(s) =N, Y GON P()T(vk + 1) J

=0 CP(T+1) = (k n K)SF(ak " ﬂ) 5Vk+/J+J(r+1)

(o)

(o)

+ 20(0) 2, e (49)

= Cprgd(r+l)

Finally, we invert the Laplace transforms occurring in (49) by using the
following well-known identity:

L{t* : s} = F(ﬂ;:l)
s
G 1)yt _
L (5/“1} ST (R(A) > -1;R(s) > 0). (50)

We are thus led to the solution (44) asserted by Theorem 1. This evidently
completes the proof of Theorem 1. |
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The distinct advantage of using the general function &, z(¢; z, s, ), defined

by (18), in the non-homogeneous term of the fractional-order kinetic equation (43)
lies in its generality so that solutions of other kinetic equations involving relatively
simpler non-homogeneous terms can be derived by appropriately specializing the
solution (44) asserted by Theorem 1. We find it to be worthwhile to record the
following relatively simpler versions of Theorem 1.

Theorem 2: Let c, i, v, p € R™ and 0 < o <1. Suppose also that the
general function €, g(d;2), defined by (8), exists. If yo(o) is given by (42),

then the solution of the following generalized fractional kinetic equation:

N(t) = No t“7" €, 5(®; 2t") = = (" DF.N) (1) (51)
18 given by
o r+1
_ 1
N(t) = Ny t* 3 (-1)" | —
r=0 c?

SIT(h + ) o~
T(ak + BT (vk + (r + Do + p)

\\Mg

2§0'(7"+1)—1

ELON i) (52)

provided that the right-hand side of the solution asserted by (52) exists.

Proof: Our demonstration of Theorem 2 would run parallel to that of
Theorem 1. Use is made; in this case, of the definition (8) and the Laplace transform
formula (27). The details are being omitted here. O

Theorem 3: For c,pu,v,peR" and 0<o <1, let the estended

Hurwitz-Lerch zeta function:

(P15 PpiT1, 0
P q)(z s, k)
A Api Myt
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defined by (17), exist. If yo(o) is gwen by (42), then the solution of the

following generalized fractional kinetic equation:

_ u—-1 (pl'/"'?Pp?O'l?“"/o-q) 14 — _ P RL no
N(t) = No 7@ ony (A5 88) = =P (RDEN) (1) (53)

18 given by

N = Ny Y 1y [t] .0,
r=0

cP

(Vapl',"",p V01,750
o Ot s r)
A0 Ap o (T L)+ g, 1, g
©0 ta(r+1)—1

@R () s (>0,

provided that the right-hand side of the solution asserted by (54) exists.

Proof: Theorem 3 can be proven, along the lines analogous to those of our
demonstrations of Theorem 1 and Theorem 3, by applying the definition (17) and the
Laplace transform formula (30). We choose to skip the details involved. O

4. Concluding Remarks and Observations

In our present investigation, we have established the explicit solution of
some significantly general families of fractional-order kinetic equations involving the
Riemann-Liouville right-sided fractional derivative operator (RL Df, )(:1:) , which is

given (for convenience) by (3) for a = 0, as well as a remarkably general class of
functions as a part of the non-homogeneous term. Our main results (Theorem 1,
Theorem 2 and Theorem 3 in this article) include, as a part of the non-homogeneous

term, such general functions as &, 4(¢; z, 5, k), €, 5(¢; z) and

(P1y+,Pp;OL,++:0g)

11771277/1177/1(] (Z’ S’ K;),

which are defined by (18), (8) and (17), respectively. Each of these main results is
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indeed capable of yielding solutions of a significantly large number of (known or
new) simpler fractional-order kinetic equations.
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Abstract: We explore the Jacobsthal versions of four sums involving
gibonacci polynomial squares.
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11CO08.

1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zyeo(T) = a(x)z, ., (x) + b(x)z, (), where z is an arbitrary integer variable;a(z),

b(x), zy(x), and z(z) are arbitrary integer polynomials; and n > 0.

Suppose a(z) =z and b(z)=1. When zg(z)= 0 and z(z)=1,
z,(z) = f,(x), the nth Fibonacci polynomial ; and when zy(z)=2 and
z1(z) =z, ,,(z) =1,(z), the nth Lucas polynomial. They can also be defined by
the Binet-like formulas. Clearly, f,(1) = F,,, the nth Fibonacci number; and
l,(1) = L, , the nth Lucas number [1, 3].
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On the other hand, let a(z) =1 and b(z) = 2. When zy(z) =0 and
z1(z) =1, z,(z) =J,(z), the nth Jacobsthal polynomial ; and when zy(z) = 2
and zi(x) =1, z,(z) =j,(x), the nth Jacobsthal-Lucas polynomial.

Correspondingly, J, =J,(2) and j, = j,(2) are the nth Jacobsthal and
Jacobsthal-Lucas numbers, respectively. Clearly, J, (1) = F,, ;and j,(1) = L, [2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships

Jo(x) = 2" V2f (1 /) and g, (x) = 2"/°1,(1/ Vx) [2,3].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or [,,c,=J, or j,, A =zt +4, 2a=z+A,
E=vi>+1,y=2+FE and D = iz + 1, where ¢, = c,(z).
2. Gibonacci Sums

We established the following four results in [4]:

Theorem 1: Let k be a nonnegative integer. Then

n=1lop o4 + (—1)n+k$ A ln

0 n+k
z )"z _e fki (1)

Theorem 2: Let k be a nonnegative integer. Then

i (_1)n+k+1$ ~ 1 [a_fkﬂj' (2)

i bpyop — ()" e AP\A L en

Theorem 3: Let k be a nonnegative integer. Then

i 2=1)"" fopopan + 27 a’ fi 3)
=— k2,

2 2
n=l [5271,+2k+1 + (_1)n+k$} AT i
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Theorem 4: Let k be a nonnegative integer. Then

2 _1 n+k+1xf k + xQ 2
(1) 2n+2k+2 1 A2g? - liso . @)

Z ) f k2+1

2 a4
n=l |:l2n+2k:+1 - (_1)n+kl,:| A

Next we explore the Jacobsthal implications of these theorems.
3. Jacobsthal Consequences

Using the Jacobsthal-gibonacci relationships in Section 1, we will now find
the Jacobsthal versions of equations (1) — (4). In the interest of brevity and clarity, we

let A denote the fractional expression on left-hand side of the given equation and B

its right-hand side, and LHS and RHS those of the desired Jacobsthal equation,
respectively.

n+k
3.1 Jacobsthal Version of Equation (1): Proof: Let 4 — ()" —.
12n+k+1 + (_1)7l+k17

Replacing x with 1/+vz, and multiplying the numerator and denominator of the

+k

resulting expression with """, we get

(_1)n/+k;
VT by, 041 + (—1>n+k

A=

(_x)nJrk

2 k
/ lopsops1 + (—2)""

T (2n+2k+1)

(_$)n+k

. k ;
Jon+2k+1 T (_33)%

© n+k
LHS = ) ) — (5)
n=1 Jons+ok+1 + (—2)"

where g, = g,(1/vz) and ¢, = c,(z).
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Next, we let B = a_ f’“—”

. Replacing z with 1/+z , then multiply each
k+1

numerator and denominator of the resulting expression with 2 #1072 This yield

D+l oRg

B :
RS = 2L Jrer
2D Jk+1

where g, = g,(1/Yr) ande, = c,(z).

This, combined with equation (5), yields the desired Jacobsthal version:

i (_‘T‘.>n+k _ D+1 _ Jk+2 (6)
n=1 Jon+2k+1 T (_x>n+k 2D Jk+1
where ¢, =c,(z). a
It then follows that
) A B R YY)
71 Lopyoper + (1) 10 Ly
S ) A JE/SEY
il Jonaaker + (2" 3 Jka
Next we find the Jacobsthal consequence of equation (2).
3.2 Jacobsthal Version of Equation (2): Proof: We have

(_1)n+k+1$
n+kx

A=

. Replace z with 1/+z , and then multiply the numerator and
12n+2k+1 - (_1)

denominator of the resulting expression with " .
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We then get

_q\n+k+1
Ao D

\/51271,+2]{;+1 — (_1)77,+k;

_(_x)n+k

2
/ lopsorsr — (-2

2n+2k+1) )n+k

_$(

_(_l‘)n+k

Jonsok+1 — (=)

n+k ’

o0 n+k
s=y 0 (7)

. n+k’
n=1 J2n+2k+1 — (_J;)

where g, = g,(1/vr) and ¢, = ¢, (7).

Next we let B = Aa — lk—” Replacing z with 1/+vz , and then multiplying
k+1

(n+k)/2

each numerator and denominator of the resulting expression with x , yields

B::B{(D+1)D_lk+2}
D? 2z Ji+1

__1{@+DD ﬂ“”%a]

D? 2 37k/2fk+1
RHS = 1{(1) + 1)D _ jk+2 :|
D2 2 Jk+1

where g, = g,(1/Vr) and ¢, = ¢, (7).

Combined with equation (7), this yields the desired Jacobsthal version:
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i _(_I>n+k _ 1 [(D + 1D o } )
n=1 J2n+2k+1 — (—x)Mk D’ 2 T
where ¢, = ¢, (z). a
In particular, this yields
i —(-1)"** _ 545 Ly il

n1 Loy ioper — ()" 10 5F} 11

i _(_2)n+k _ 2 _ jk+2 ]
. n+k 3 9J.

n=1 J2n+2k+1 — (_2)

3.3 Jacobsthal Version of Equation (3): Proof: Let

A= 2(_1)n+kxf2n+k+2 +2° ‘

|:12n+k+1 + (_1)n+kzi|

Replacing z with 1/vz, and multiplying the

numerator and denominator of the resulting expression with 22 e get
g1 1
2(-1)"" s Jontksa +—
A = x x

1 2
|:12n+2k:+1 + (_1)n+k \/E:|

2(_$)n+k [$(2n+2k+1)/2f2n+k+2:| 4 202k

. nak 12
|:x(2n+2k+1)/212n+2k+1 + (~a) ,+k,:|

n+k 2n+2k
2(=2)"" Jopipee + .

- 2
. k
[.72n+2k+1 + (—z)"" ]
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0 2n+2k

n+k
LHS = z 2(_$) J2n+k+2 + 7 (9)

2
_ . k
n=1 |:]2n+2k+1 + (_*T)TH :|

where g, = g,(1/Vr) and ¢, = ¢, (z).

2

2
Now let B = a—Q— f’;”. Replace z with 1/vz, and multiply each
A Ui

numerator and denominator of the resulting expression with 2**1 . This yields

(D +1)° [ﬂﬁ(kﬂ)/gfku
2 . 2
4D |:x(k+1)/2lk+1]

B =

)

(D + 1)2 _ J]3+2
AD* IR,

RHS =

)

where g, = gn(l/‘/z) and ¢, = Cn(x) :
This, coupled with equation (9), yields the desired Jacobsthal version:

i 2(_x)n+kj2n+k+2 + g2 (D + 1)2 _ J/?+2

2 2 2
= T k
n=l [J2n+2k+1 + (=)™ ] 4D T+t

; (10)

where ¢, = ¢, (). a

In particular, this yields

0

Z 2=1)""* Fyyipan +1 _3+45 Fly
2 9
n=l |:L2n+2k+1 + (‘qu 10 L

[4];
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i 2(_2)n+k<]2n+k+2 + 4n+k — é _ JI?+2 )

2 g 2
: k
n=l1 |:]2n+2k+1 + (_2)n+ :| Jk+1

Next we find the Jacobsthal consequence of Theorem 4.

3.4 Jacobsthal Version of Equation (4): Proof: We have.

2(_1)n+k+1$f2(n+k)+2 +2°
2
[ZQQ(n+k)+1 - (_1)n+kx:|

and denominator of the resulting expression with 222+ We then get

A=

Replace z with 1/vz , and multiply the numerator

2(_1)ﬂ+k+1 1 1

Iz Jon+heo + -
1 2
[l2n+2k+1 __(_1)n+k }

Jz

_2(_$)n+k [I(2n+2k+1)/2f2n+k+2:| 4 g 2n+2k

3 n+r 2
|:x(2n+2k+1)/212n+2k+1 — (-2) +k:|

n+k 2n+2k
_2(_$) Jonsks2 T

2
. k
|:]2n+2k;+1 - (‘x)m ]

2n+2k
LHS

i _2(_$)n+k‘]2n+k+2 +T (11)
n=1

2
|:j2n+2k+l - (_$)n+k]
where g, = g,(1/vr) and ¢, = ¢, (7).

2
Next we let B = % (AQ(ZQ - Z]”Q] Replacing x with 1/vz, and then

2
A flc+1

multiplying each numerator and denominator of the resulting expression with 22
yields
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B 2* [ D*(D+1)° [z 522, P |
D' | 4a? 22
RHS = (D + 1)2 _ j13+2

4D?  DYE,’
where gn = gn(l/‘/z) and Cp = Cn(x) .

Combining this with equation (11) yields the desired Jacobsthal version:

o0

_2(_x)n+k‘]2n+k‘+2 + $2n+2k (D + 1)2 _ j/?+2 (12)

2 - 2 452
~ . k :
n=l [J2n+2k+1 - (=" } 4D Dk
where ¢, = ¢, (). a

It follows from this equation that

_2(_1)n+kF2n+k+2 +1 — 3+ ‘/3 _ Li+2

[4];
n+k 2 10 2
! |:L2n+2k+l - (-1 +k] 25k

M s

n

(_2)n+k+1t]2n+k+2 + 4n+k — é _ Jl?+2 ]

|:j2n+2k+1 - (_2)n+k}2 )

M

-2
Jk+1
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Abstract: In this paper our main aim is to introduce some idea about
generalized Nevanlinna order (¢, ) and generalized Nevanlinna lower

order («, ) of an analytic function, where a and f are continuous non

negative function in extended complex plane ( o, +o). Here we also
discuss about some growth properties relating to the composition of two
analytic functions on the basis of generalized Nevanlinna order («, ) and

generalized Nevanlinna lower order (a, f) as compared to the growth of
their corresponding left and right factors.
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Nevanlinna Order (a,f), Generalized

Nevanlinna Lower Order (o, ) .
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1. Introduction, Definitions and Notations

In this paper, we assume that readers are familiar with the fundamental
results and the standard notations of the Nevanlinna value distribution theory of
meromorphic functions in the complex plane. Throughout this paper, by a
meromorphic function f(x), we mean a meromorphic function in the complex plane.

We use Ty(r) and M(r) to denote the characteristic function of a meromorphic

function and the maximum modulus of an entire function. In the following, we will
recall some notations about meromorphic functions and entire functions.
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Let fbe a meromorphic function defined in the open complex plane C . For
a € CU{wo} let ny(t,a) (ns(t, a)) the number of a-points (distinct a-points) of f

in |z| £ t, where an co-point is a pole of f Also

¢ t? - 07
In'f( 2) nf( 2) dt+nf(0,a)logr

Nf(r? 0’) =
0
and
Ny(r,a) = J‘ ny(t, f)t— n(0, a)
0

dt +n (0, a) log r.

The function N(r,a) (Ns(r,a)) are called the counting function of
a-points (distinct a-points) of f In many occasions N (r, o) and N f(r, 0) are

denoted by N ;(r)and N (r) respectively.

The function m (r), which is called the proximity function of f is defined
by
1 r2x

my(r) = — log*
sy =5 |, log

f(rew)‘ e,

where

log™ z =loga, if x>1
=0,if 0z <1.

For a € C we denote by m(r, -2-) the function m((r, a) and we mean by

f-a

m s (r, ) the function m ;(r).

The function Ty(r) =my(r)+ Ns(r) 1is called the Nevanlinna’s

characteristic function of f.

If f is entire, the function Ty(r) = my(r) is called the Nevanlinna’s

characteristic function of f.
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Now let L be a class of continuous non negative on (—oo, +o0) function &
such that a(r) = a(ry) 2 0 for x < x5 with a(r) > +0o as z — +oo. Further we

assume that throughout the present paper «, aq, a5, a3, f € L.

Considering the above, Sheremeta introduced the concept of generalized
order (@, ) of an entire function. For details about generalized order (a, ) one
may see [6] . During the past decades, several authors made close investigations on
the propertics of entire functions related to generalized order (e, f) in some
different directions. For the purpose of further applications, in this paper we write the
definition of the generalized Nevanlinna order (o, ) and generalized Nevanlinna

lower order (e, £) of an analytic function in the following way:

Definition 1.1: (Generalized Nevanlinna order (a, ) and generalized

Nevanlinna lower order (a, B)).

The generalized Nevanlinna order (a, f)and generalized Nevanlinna
lower order (a, ) of an analytic function f denoted by p, p)lf] and Ay g)[f]
respectively are defined as:

paplf) _ i A(exp(Ty(r))
e p)lfl  p e inf B(r) '

Now one may give the definitions of generalized Nevanlinna hyper order
(e, f) and generalized Nevanlinna logarithmic order (e, f3) of an analytic function f
as:

Definition 1.2: (Generalized Nevanlinna hyper order (a,f) and

generalized Nevanlinna hyper lower order (a, )).

The generalized Nevanlinna hyper order (a, B) and generalized

Nevanlinna hyper lower order (a, ) of an analytic function f denoted by

Pla,plf] and A p)lf] respectively are defined as:

(a,ﬂ)m R sup a(Tf(T))

a”g)[f] ,,l_r)rolo inf ﬂ(?“)

RN
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Definition 1.3: (Generalized logarithmic order (a, f) and generalized

Nevanlinna logarithmic lower order (a, f)).

The generalized Nevanlinna logarithmic order (a, ) and generalized
Nevanlinna logarithmic lower order (a, B) of an analytic function f denoted
by P(a,p)lf] and A, plf] respectively are defined as:

pggfﬁ)m - alexp(Ty(r)))

HElt) root o f(log )

However the main aim of this paper is to investigate some growth properties
of Nevanlinna’s Characteristic function relating to the composition of two analytic
functions on the basis of generalized Nevanlinna order («, ), generalized

Nevanlinna hyper order («, ) and generalized Nevanlinna logarithmic order («, )
as compared to the growth of their corresponding left and right factors.

2. Main Results

In this section we present the main results of the paper.

Theorem 2.1: Let f and g be any two non-constant analytic functions

such that 0 < /?'(al,ﬂ)[f og| < P(al,ﬁ)[f ogl<w, 0< ﬂ(aQ,ﬁ)[f] < p<a27m[f] <o
Then

Aayplf © 9] < lim inf a1 (exp(To,(r))) < ey plf © 9]
Play. plT] w—o  ay(exp(Ty(r))) Xag.plf]
< lim sup ay(exp(Ty.,(r))) - Play.plf ° g] '

T a2(exp(Tf(7‘))) - /1(0!27/3)[](]

Proof: From the definitions of A plfogl and pigy plfl for

arbitrary positive € and for all sufficiently large values of r we have

a1(exp(Tyog(r))) = (A(ay, p)lf © 9] = €)(B(r)) ()
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and

a3 (exp(T¢(r))) < (P(ay,plf] + €)(B(r)) 2

Now from equation (1) and (2) it follows for all sufficiently large values
of r that
ay(exp(Tyey(r)) (A, plf o9l —€)
ay(exp(Ty(r)))  (Plag,p)lf1+€)

As e(> 0) is arbitrary, we obtain that

ar(exp(Tyy (1)) | Haplf © 9]

lim inf > 3)
roo  ay(exp(Ty(r))) Plag, p)lf]
which is the first part of the theorem.
Again for a sequence of values of r tending to infinity, we get that
a1(exp(Tyog(r)) < (Aay,plf © 91+ €)(B(r)) 4)
and for all sufficiently large values of r
a3(exp(T(r))) 2 (Aay,plf1 =€) (B(r)) Q)

Combining equation (4) and (5) we have for a sequence of values of r
tending to infinity that
(D Ty (1)) _ (e plf = 91+ )
az(exp(Ty(r))) (Ao, p)[f1—€)

As €(> 0)is arbitrary, we obtain that

i iuf ay(exp(Ty.4(r))) N /1(a17ﬂ)[f ° g]

< (6)
oo ay(exp(Th(r) — Aagplf]
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Also for a sequence of values of r tending to infinity that
a3 (exp(T4(r))) < (Aay, p)lf]1+ €)(B(r)) (7)

Again from equation (1) and (7), we have for a sequence of values of r
tending to infinity that
a1 (exp(Tyog(r) o (Aay.plf 9] ¢)
as(exp(Ty(r))) (Aag, p)lf1+€)

As e(> 0) is arbitrary, we obtain that

lim sup @1(exp (T2 (1)) > Marplf © 9] : (®)
row  aa(exp(Ty(r))) Ao, p)lf]
Again for all sufficiently large values of 1, we get that
a3 (exp(Tog(r)) < (Pay, plf © 9]+ €)(B(r)) )

Now from equation (5) and (9), it follows for all sufficiently large
values of r that
a1(exp(Tyoy(r)) _ (Play.plf © 91+ 6)‘
ay(exp(Ty(r))) (Aag.plf] =€)

As €(> 0)is arbitrary, we obtain that

lim sup a1 (exp(Tyoy(7))) < ,O(al,ﬁ)[f ° g] . (10)

rom aa(exp(Th(r)) Ay plf]

Thus, the theorem follows from (3), (6), (8) and (10).

The following theorem can be proved in the line of Theorem 2.1 and so the
proof is omitted.
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Theorem 2.2: Let f and g be any two non-constant analytic functions

such that 0 < Ay p)lf © 91 < plag.plf o 9l <o, 0 < Ay p)[9] € Plag,p)la] <.
Then

Aapplf o9l 1o a(exp(Tey () _ ey plf © 9]
Plas,p)lg] roo  ag(exp(Ty(r))) s, p)lg]

)

< 1im sup ay(exp(Ty.4(r))) < p(al,ﬂ)[f ° g] .

r—»o as (eXp(Tg (T))) ﬂ“(a;;,ﬁ) [g]

Theorem 2.3: Let f and g be any two non-constant analytic functions

such that 0 < p(g, p)lf © gl <0, 0 < pig, p)f] <. Then

o g @O (1) _ Pl plf 20 (exp(Ty()
e a(exp(Tr0) T Papplf] e aa(exp(Ty())

Proof: From the definitions of p(a2’ﬁ)[f], for arbitrary positive € and

for a sequence of values of r tending to infinity we have
a3 (exp(T(r))) 2 (P(ay,plf]1 = €)(B(r)) (11)

Now from equation (9) and (11) it follows for a sequence of values of r
tending to infinity that
a1(exp(Toy(r)) _ (Play.plf ° 9]+ €)
az(exp(Ty(r)))  (Pag,p)lf1—€)

As €(> 0)is arbitrary, we obtain that

o tn AT, (1) _ Py plf 2]

< (12)
r—>00 ag(exp(Tf(T))) p(ClQ“B)[f]

Again for a sequence of values of r tending to infinity, we get that

ay(exp(Tyog(r)) 2 (Pay, p)lf © 9] = €)(B(r)) (13)
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Combining equation (2) and (13), we have for a sequence of values of r
tending to infinity that
ar(exp(Ty., (1) | (Playplf = 9] =)
ay(exp(Ty(r))) (P(ag, p) L1+ €)

As €(> 0)is arbitrary, we obtain that

lim sup al(eXp(Tf"g(r))) > p(abﬁ)[f ° g] ' (14)

r—0o0 a?(eXp(Tf(T))) 'D(a27ﬂ)[f]

Thus, the theorem follows from (12) and (14).

The following theorem can be proved in the line of Theorem 2.3 and so the
proof is omitted.

Theorem 2.4: Let f and g be any two non-constant analytic functions

such that 0 < p(g, p)lf o gl <o, 0< p(ag,ﬁ)[g] <. Then

o g AP (0) _ Payplf o 0] L a(exp (T (1)
n @y Ty )  Pagpldl e as(exp(Ty ()

The following theorem is a consequence of Theorem 2.1 and Theorem 2.3
and so the proof is omitted.

Theorem 2.5: Let f and g be any two mnon-constant analytic

functions such that 0 < gy p)lf © 91 S Plag p)lf © 9] < and
0 < Aag.p)lf1 S Plag.p)lf] < 0. Then

lim inf
row ay(exp(Ty(r)))

< max {’1(“1’/”“ ° 9] 7 Play.p)lf ° 9]}
Xarplfl 7 Plag.plf]

a1 (exp(Tro4(r))) < min{/l(“l’m[f ° gl Payplf o 9]}
Xanplf] 7 Playp)lf]

< lim sup al(eXp(Tft’g(T))) '
r—>0 ag(exp(Tf(r)))

Analogously one may state the following theorem without its proof.
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Theorem 2.6: Let f and g be any two mnon-constant analytic

functions such that 0< /1(0!17/5)[]0 og] < p(abﬂ)[f o g] < oo and
0< /1(0!3,/3)[16] < p(ag,ﬁ)[f] < oo. Then

lim inf
r—o ag(eXp(Tf(T)))

a1(eXP(Tfog(7“))) < min {ﬂ“(alvﬂ)[f o g] p(aLﬂ)[f ° g]}
Aag.plf] " Plag.pll]

< max {%q,m[f °9] Papld° g]} < lim sup “LEPTr(r)
Z“(a3,ﬁ)[f] Plas,p) [f] r—0o0 (Zg(eXp(Tf(T‘)))

We may now state the following two theorems based on Definition 1.2 and
Definition 1.3 respectively.

Theorem 2.7: Let f and g be any two mnon-constant analytic

functions such that 0< /T(al.ﬂ)[f ° 9] < Playplf o gl < » and
0< Z(O!Qﬁ)[f] < Plag,p)lf] < o. Then

M < lim inf
Plag, p)lf] roo ay(exp(Ty(r)))

ar(exp(Tyoy(r))) _ . {%l,m[f ° gl Plapplf e 9]}
Z(ag,ﬂ)[f] , /B(ag,ﬁ)[f]

gmax{%m[fogLpm,ﬂﬂf °g]}snmsup a(exp(Tyoy (1)) _ Prayplf ° 9]
ﬂ,(ag,ﬂ)[.ﬂ ﬁ(ag,ﬂ)[.ﬂ r—m aQ(GXP(Tf(’(’))) ((xg ﬂ)[f]

Theorem 2.8: Let f and g be any two non-constant analytic

functions such that 0< Zlog [f g] < 1;? 8 [fog]< and
log o log
0< i(aQ’ﬁ)[f g] < p(a2’ﬁ)[f] <. Then
log o log log
Aapl 29 e ) | Al 9] P plf 9]
log T 5% aole T.(r - log ’ log
Pros plf] » ag(exp(Ty(r))) Ao plfl P ]
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AE lfegl pE oy e
< max (allé)[ ]’p(a}ﬁ)[ } < lim sup al(ixp(?%oi(gii)Spm},m[ ].
o 08 r—soo as(ex r 0g
/I(aQ:ﬁ)m p(aQﬁ)m - REPL /1(0!27[)’)[]6]
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Abstract: In this paper our main aim is to introduce some idea about
generalized relative order (o, ) and generalized relative type («, ) ofa
meromorphic function with respect to an entire function where a and f are
continuous non negative function in extended complex plane ( oo, +0).
Here we also discuss about some growth properties relating to the
composition of entire and meromorphic functions on the basis of
generalized relative order («, ) and generalized relative type (e, f) as

compared to the growth of their corresponding left and right factors.
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1. Introduction, Definitions and Notations

In this paper, we assume that readers are familiar with the fundamental
results and the standard notations of the Nevanlinna value distribution theory of
meromorphic functions in the complex plane. Throughout this paper, by a
meromorphic function f(z), we mean a meromorphic function in the complex plane.

We use Ty(r) and M(r) to denote the characteristic function of a meromorphic

function and the maximum modulus of an entire function. In the following, we will
recall some notations about meromorphic functions and entire functions.
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Let fbe a meromorphic function defined in the open complex plane C . For
a € CU{oo} let ns(t,a) (mf(t, a)) the number of a-points (distinct a-points) of f

in |z| < t, where an co-point is a pole of f. Also

0 ta - 07
Inf( ) tnf( ) dt +ns(0,a)log r

0

Ny(r,a) =

and
ny(t, a; f n4(0, a)

dt + ns(0, a) log r.

O —_—

The function N(r,a) (N;(r,a)) are called the counting function of
a-points (distinct a-points) of f. In many occasions N(r, o) and N f(r, ) are

denoted by N ;(r)and N (r) respectively.

The function m (r), which is called the proximity function of f is defined
by
1 r2r

me(r — lo
f(r) = o g

" f(rew)‘ o,

where

log+z =loguz, if z>1
=0,if 0<z<1.

—L) the function m(r, a) and we mean by

For a € C we denote by m(r, e

m s (r, ) the function m (r).

The function Ty(r) =my(r)+ Ny(r) is called the Nevanlinna’s

characteristic function of f.

If f is entire, the function T(r) = ms(r) is called the Nevanlinna’s

characteristic function of f.
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Moreover, if fis non constant entire then 7';(r) is also strictly increasing and
continuous function of r. Therefore its inverse Tf_1 : (T4(0), ©) — (0, ) exists and

is such that lim 7} (s) = oo.

§—>00

Now let L be a class of continuous non negative on (—oo, +o0) function «
such that a(z) = a(zy) 2 0 for z < zy with a(r) > +o as z — +oo. For any
a € L,wesaythat a € L, if a(cz) = (1 + o(l)a)(z) as o< x — +oo for each
c € (0,40) and a € Ly, if a(exp(cz)) = (1 + o(1)) a (exp(x)) as zg < z—> +oo

for each ¢ € (0, +). Clearly L, < L.

Considering the above, Sheremeta introduced the concept of generalized
order (a, ) of an entire function. For details about generalized order (&, ) one
may see [6] . During the past decades, several authors made close investigations on
the propertics of entire functions related to generalized order («, ) in some

different directions. For the purpose of further applications, in this paper we write the
definition of the generalized order (¢, f) of entire and meromorphic function in the
following way:

Definition 1.1: (Generalized order (a, ) and generalized lower order
(a,p)).Let a €L, and B e L. The Generalized order (a, 8) and generalized
lower order (a, ) of a meromorphic function f denoted by pu, plf] and
Ata,p)lf] respectively are defined as:

Pla,p)Lf] lim 5™ alexp(Ty(r)))
= 11m . —_— .
ﬂ(a”g)[f] r—soo inf ﬂ(’l“)

If f is an entire function, then

Pla ) _ iy S alexp(My(r)))
= lim | . - Jr777
(a.p)/] r—soo inf IB(T)

o
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Using the inequality Ty(r) <log M;(r) < 3Ty(2r), for an entire
function f, one may easily verify that

sup a(My(r)) _ . sup elexp(Ty(r)))

Al ] _ fim S AT
Ma,plfl e inf B(r) oo Inf B(r)

The function f is said to be of regular generalized (a, ) growth when
generalized order (a, f) and generalized lower order (a, ) of f are the same.
Functions which are not of reqular generalized (e, f) growth are said to be of

irregular generalized (a, ) growth.

Definition 1.2: (Generalized type (a, B)and generalized lower type
(@, B)).

Let o € Ly and B € Ly. The generalized type (a, f) and generalized
lower type (a, f)of a meromorphic function f having finite positive
generalized order (a, ) (0 < pq p)lf]l <), denoted by o plf] and

C(a,p)lf] respectively are defined as:

Sapll) _ 3 XP@(exp(Ty(r))))

(a,B) ] r—o0 inf (exp ﬂ(r))ﬁ’(aﬁ)[ﬂ ’

Analogously, to determine the relative growth of two meromorphic functions
having same non zero finite generalized lower order (o, f3),one can introduced the

definition of generalized weak type («, £)and generalized upper weak type («, f3) of
a meromorphic function f having finite positive generalized lower order («, f)in the
following way:

Definition 1.3: (Generalized upper weak type (a, f) and generalized
weak type (a, B)).

Let a« € Ly and B € Ly. The generalized upper weak type (a, ) and

generalized weak type (a, B) of a meromorphic function f having finite positive
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generalized lower order (a, f) (0 < Ay p)[f] < ®), denoted by 7, p)f] and

(a,p)lf] respectively are defined as:

~

faplf] _ o exp(a(exp(Ty(r))

Caplll — romint o gy e ]

It is obvious that 0 < 7(g p)[f] < 7(q p)[f] £ .

Mainly the growth investigation of entire and meromorphic functions has
usually been done through their maximum moduli or Nevanlinna’s characteristic
function in comparison with those of exponential function. But if one is paying
attention to evaluate the growth rates of any entire and meromorphic function
w.r.t.a new entire function, the notions of relative growth indicators will come.
Now in order to make some progress in the study of relative order, one may
introduce the definitions of generalized relative order (¢, £) and generalized relative

lower order («, f) of a meromorphic function w.r.t. another entire function in the
following way:

Definition 1.4: (Generalized relative order (a, ) and generalized

relative lower order (a, f)).

Let a,f € L. The Generalized relative order (a, f) and generalized
relative lower order (a, f) of a meromorphic function f with respect to an
entire function g denoted by p(y plfl, and A, p)[f], respectively are defined
as:

O TG 1))
Ha.p)lfly  roeint B(r) '

The previous definitions are easily generated as particular cases, e.g.
if g =z, Definition 1.4 reduces to Definition 1.1. If a(r) = p(r) = logr, then
we get the definition of relative order of meromorphic function [ with

respect to an entire function g introduced by Lahiri et al. and if g = expz
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and a(r) = B(r) =logr then p plfly = p(f). Also if a(r)= log!?ly |
pr) = log[Q]r and g = z, then Definition 1.4 becomes the classical one given
.

Further if generalized relative order (a, f8) and generalized relative
lower order (a, ) of a meromorphic function f with respect to an entire
function g are the same, then f is called a function of regular gemeralized
relative (a, ) growth w.r.t. g. Otherwise, f is called a irregular generalized

relative (a, ) growth w.r.t. g.

Now in order to refine the above growth scale, one may introduce the
definitions of other growth indicators, such as generalized relative type (a, f)
and generalized relative lower type (a, ) of a meromorphic function f with

respect to an entire function g which are as follows:

Definition 1.5: (Generalized relative type (a,f) and generalized
relative lower type (a, B)). Let «,f € L. The Generalized relative type
(o, B) denoted by o, plfl, and generalized relative lower type (a,f)
denoted by &4 p)fly of a meromorphic function f with respect to an entire

function g having non-zero finite generalized relative order (a, ) are defined

as:

o esp(@(T; 1))
a, [f]g r—soo inf (exp ﬁ(r))p(aﬂ)[ﬂg

Analogously, to determine the relative growth of a meromorphic
function f having same non zero finite generalized relative lower order (a, )
with respect to an entire function g, one can introduce generalized relative
upper weak type (a, ) denoted by r(a,ﬁ)[f]g and generalized relative weak
type (a, f) denoted by f(ajﬂ)[f]g of f with respect to g of finite positive

generalized relative lower order (a, B) in the following way:
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Definition 1.6: (Generalized relative upper weak type (a, ) and

generalized relative weak type (a, f5)).

Let a,f € Ly. The Generalized relative upper weak type (a, f) and
generalized relative weak type (a, B) of a meromorphic function f with respect
to an entire function g having non-zero finite generalized relative lower order

(a, B) denoted by 74 p)lf], and T(o p)lf], respectively are defined as:

Sy _ s ep(@lTy (T,0)))
B r—>a0 10f (exp ﬂ(r))’l(aﬁ)[f]g

However the main aim of this paper is to investigate some growth properties
of entire and meromorphic functions using generalized relative order («, ) and

generalized relative type (¢, ) of a meromorphic function with respect to an entire
function which improve and extend some earlier result (see, e.g., ). Throughout this
paper we assume that «, f € L, ¥ € L, and all the growth indicators are non zero

finite.
2. Main Results

In this section we preseent the main results of the paper.

Theorem 2.1: Let f be a meromorphic function and g,h and k be non-

constant entire functions such that 0 < A p)[f(h)]y < pia,plf(h)], < and

g
0< l(ayﬁ)[f]k < p(a,ﬁ)[f]k < . Then

YaplfMy

a(Tgil(Tf(h)(r))) < min {;L(a,ﬂ)[f(hﬂg p(a,ﬁ)[f(h)]g }
Paplfle == T (Th(r))

Zaplfle " Paplfl

< s {’1(&7ﬁ)[f<h)]g p<a,ﬁ>[f<h>1g} < i oo AT @) _ P pf ),
o a(T; H(Ty(r))) er

Xaplfle  Paplfl
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Proof: From the definitions of A p)[f(M)lg, Paplf(M)lgs A, p)lflk>

P, plfli and for ar bitrary positive € and for all sufficiently large values of v

we have
a(T, Ty () = (A, p) LF )], = €)B(r), M
(T, (Ty(r)) < (Plap)LF()]y + B(r), 2
(T (Ty(r))) 2 (A p [Tk = €B(r), 3)
and
AT (T4(r))) < (Pl lfIi + OB )

Again for a sequence of values of r tending to infinity,

a(Ty (Tyy(r)) < (A plF ()], + €)B(T), (%)
a(Tgil(Tf(h)(r))) 2 (p(a,ﬂ)[f(h>]g - 6>ﬂ(7‘>7 (6)
a(T (T4(r)) < (A plfli + ©B(r), (7

and
a(Ti (Ty(r)) = (P plfli — €)B(r). (3)

Now from equation (1) and (4) it follows for all sufficiently large values
of r that

a(T; (T (r))) S Aa,plf(h)]y — € .
(T (Ty(r))) Pla.plfle + €

As €(> 0) is arbitrary, we obtain that

f o AT () | A plF0),

- > , ©)
e o(TyY(T(r))) Pa,p)lf Ik
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which is the first part of the theorem.

Combining equation (5) and (3), we have for a sequence of values of r

tending to infinity that

AT Ty () _ AaplfB], + €
AT (1)) Hanll e

As €(> 0) is arbitrary, we obtain that

i it a(Ty Ty (r))) . A, p)lf(R)]4
roe (T (Ty(r))) e, p) Ik

; (10)

Again from equation (1) and (7), we have for a sequence of values of r

tending to infinity that

AT Ty (1) | Al )], = €
AT (1)) sl e

As €(> 0) is arbitrary, we obtain that

lim sup a(qu(lTﬂh)(r))) S Aa,plf(R)],
roo a(T N (Ty(r))) Aa,p)lf Ik

: (11)

Now from equation (3) and (2), it follows for all sufficiently large
values of r that

ATy (Ty(1) _ Prapld), +
AT T0)  Henlfle

As €(> 0) is arbitrary, we obtain that
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T N1 h
i sap “ L0 psp IO, W)
rowa(Ty (Ty(r))) Ha.p)lf Ik
which is the last part of the theorem.

Again from equation (2) and (8), we have for a sequence of values of r

tending to infinity that

a(T; (T (7)) < Plaplf(h)], + € '
(T (Ty(r))) Plap)fle —€

As €(> 0) is arbitrary, we obtain that

i it a(T; (T (r))) . Pa,p)lf(M)]y
roe (T (Ty(r))) Pla.p)lfIk

, (13)

Combining equation (4) and (6), we have for a sequence of values of r

tending to infinity that

a(Ty  (Tyy(r))) S Pla.plf(h)], —€
a(Ty (T (r))) Paplfls +e

As €(> 0)is arbitrary, we obtain that

s 2T Tan) | Pl U0y

> , (14)
e a(T M (Ty(r))) Pla.p)l ]k

So, the second part of the theorem follows from equation (10) and (13),
the third part is trivial and fourth part follows from (11) and (14).

Thus, the theorem follows from (9), (10), (11), (12), (13) and (14).



GENERALIZED RELATIVE ORDER («, ) 107

Remark 2.1: If we take "0 < Ag p)lhli < p(a,plhly < ©” instead of

"0 < Aa,p)lfle € Pla,plfle < ©”and other conditions remain same, the

b b

conclusion of Theorem (2.1) remains true with "Aq p)[f1t”s "Pla.plfli” and

"a(Ty (T (r))" replaced by "Ag plh]i” " Pl plhle” and - "a(Ty (Ty,(r)))”

respectively in the denominator.

Theorem 2.2: Let f be a meromorphic function and g,h and k be non-
constant entire  functions such that 0 < A, p)lfli < Pla,plfli < ©and

e, plf(R)], = 0. Then
o @0 (Try(r))
(T (Ty(r))

Proof: If possible, let the conclusion of the theorem does not hold.

Then we can find a constant 6 > 0 such that for a sequence of values of r
tending to infinity

(T Ty (r)) < 8. (T (T (1)) (15)

Again from the definition of pq p)lfli, it follows that for all

sufficiently large values of

a(T 7 (Ty(1)) < (Paplfli + ©B(r). (16)

From (15) and (16), for a sequence of values of r tending to infty,

Ty (Tyy (1)) < 6 (P, pyl 1k + B(r).
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i.e. lim inf a(T, Ty (1))
r—>0 ﬁ( 7,)

< Aaplf(M)]i < oo

This is a contradiction. Hence, the theorem holds.

Remark 2.2: If we take "0 < Ag p)lhli < p(a,plhly < ©” instead of
"0 < Aa,p)lfle £ Pla,plfli < ©”and other conditions remain same, the
conclusion of Theorem (2.2) remains true with ”a(kal(Tf(r)))” replaced by

"a(Ty (T, (r))” in the denominator.

Remark 2.3: Theorem (2.2) and Remark (2.2) are also valid with ”limit
superior” instead of “limit” if "Aa,plf(h)]y = 0" is replaced by

"Pla,p)lf(h)]y = " and the other conditions remain the same.

Theorem 2.3: Let f be a meromorphic function and g,h and k be non-

constant entire functions such that 0 < &4 g)[f(h)], < o(q plf(R)], <o and

0 < Gaplfls < 0w@plfli <. Then

M < lim inf exp(a(Tg_l(Tf(h)(r)))) < mln{
Saplfle e exp(a(T(Ty(r)))) . p)lf I

5(a,ﬂ)[f(h)]g G(a‘,ﬁ)[f(h)]g}
" ol

< max{‘f(aﬁ)[f(h)}g U(a,ﬂ)[f(h)}g} < lim sup exp(a(Ty  (Tyy(r))) < S(a.plf(M)], '
6(0(.,,8) [ﬂk , O(a,p) [ﬂk r—® exp(a(Tk,_l(Tf(r)))) 5(0!”3) [f]k

Proof: From the definitions of oy p)[f(h)lgs T, plf(M)]gs 0 plflis
E(Qﬁ)[f]k and for arbitrary positive € and for all sufficiently large values of r

we have

exp(@(T,; (T (1)) = (8(ap /(W] - €)(exp Ar)"“PV o (17)

exp (T (T(r))) < (0o p[flk + €)(exp B(r) @Ak (18)
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exp(@(T (Ty(r)))) 2 (6(a.p)[f1i — €)(exp A(r) @1, (19)

and
exp(@(T; (Tyy(r)) < (0(a,p) (0], + elexp A(r) VM (20)
Again for a sequence of values of r tending to infinity,
exp(@(T; (Ty(r))) < (G, ()], + ) (exp A(r) M @)
exp(@(Ty (T4(r))) 2 (0(a.p 1k = ) (exp B(r)?" Pk, (22)
exp(@(Ti (T;(1))) < (G(a,p) i + ) (exp B(r) @AV, (23)
and

exp(@(T; Ty (1)) 2 (0(a plf(B)], - e(exp A(r)) MW (24)

Now  from  equation (17) and (18) and the condition
Pa.plfM)]y = P, plfli it follows for all sufficiently large values of r that

exp(a(Ty  (Tyy(r)))) . @plf(B)]y —€ .
exp(a(T; ' (Ty(r)))) (o plfls +e

As €(> 0)is arbitrary, we obtain that

o i ST Ty () | T p D),

> , (25)
onexp(el Ty (Ty(r) Tl

which is the first part of the theorem.

Combining  equation (21) and (19) and the condition
PaplfM]y = P, plfli, we have for a sequence of values of r tending to
infinity that
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exp(a(T, " (Ty(r)))) < Tapl/)]; +e
exp(a(Ti (T (r)))) Olaplfl — €

As €(> 0) is arbitrary, we obtain that

e (T (1) _ e p )],
e exp(a(Ty (T4()  Fep)ll

: (26)

Again  from  equation (17) and (23) and the condition
Pa.plfM)]g = P, plfli, we have for a sequence of values of r tending to
infinity that

exp(a(T, Ty (r))) S TaplfM)], —¢
exp(a(Ty; (T4 (r)))) F(aplfle +e

As €(> 0) is arbitrary, we obtain that

lim sup exp(a(Ty Ty (1)) s Fapl/ ()]
rowexp(a(Ty (Ty(r))) (o, p) LIk

: 27

Now  from  equation (19) and (20) and the condition
Pa.plfM)]g = P, plfli» it follows for all sufficiently large values of r that

exp(a(Ty  (Tyy(r)))) L C @plf(B)]y +¢€ '
exp(a(T; ' (Ty(r)))) Taplfle —€

As s(> 0)is arbitrary, we obtain that

o s ST T ) _ 005 O,

< , (28)
ronexp(a(Ty N (Ty(r)  Fapll

which is the last part of the theorem.
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Again  from  equation (20) and (22) and the condition
Pla,p)lf(M)]g = Pa,p)flk, we have for a sequence of values of r tending to
infinity that

exp(a(T, " (Ty)(r)))) _ Tapl/B], +e
exp(a(Ty; (T (r)))) S (a.p)lflk — ¢

As €(> 0)is arbitrary, we obtain that

Lo exp(aTy (Tp(r) _ o pliB),
e el T m) el

) (29)

Combining  equation (18) and (24) and the  condition

PaplfM]y = P, plfli, we have for a sequence of values of r tending to
infinity that

exp(@(T; Ty (1) | TaplfB)], ~ ¢
exp@(T T () Tlap)lfli +e

As €(> 0)is arbitrary, we obtain that

lim sup eXP(a(Tg_l(Tf(h)(T))))) 5 O, p)lf(M)], 7 (30)

ronexp(a(Ty (Ty(r))) Fap I

Thus, the theorem follows from (25), (26), (27), (28), (29) and (30).

Remark 2.4: If we take 70 < &y p)lhl; < 0@ plhly <" and
Paplf(M)]g= P, plhle, instead of 70 < &y plfli < T plfls <©” and
Paplf(M)]y = P plfle  other conditions remain same, the conclusion

of Theorem (2.3) remains true with 7o plfli", "G plfli”
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2

and ”e:vp(a(Tk_l(Tf(T))))” replaced by 7’O_(O!,ﬂ)[f]k”’ ”6(“7'3)[}4]“

” exp(a(Ty (T}, (r))))” respectively in the denominator-.

Remark 2.5: If we take 70 <7y, plfli < 7@ plfls < and

Plaplf)]y= Ao plhly, instead of 70 < &y p)lflk < 0o plfle <©” and
Paplf(M)]y = P plflc other conditions remain same, the conclusion

” 7

of Theorem (2.3) remains true  with Saplflt”s "0 plfl

and 7 exp(a(kal(Tf(r))))” replaced by ”T(a’ﬁ)[f]k”, ”f(a’ﬁ)[h]k”

” exp(a(Ty (T, (1)) respectively in the denominator-.

Remark 2.6:  If we take 70 <7 plhli < 7 plhly <" and

b

Plap)lf(M)]g= Ao plhli, instead of "0 < &y p)lflk < Taplfls <" and

Plaplf(M)]y = P plfls  other conditions remain same, the conclusion

7 ”

of Theorem (2.3) remains true  with Saplflt”s "0 plfl
and 7 exp(a(kal(Tf(r))))” replaced by "t plhli”s T, gl

? exp(a(Ty (T}, (r))))” respectively in the denominator.

Now in the line of Theorem (2.3), one can easily prove the following
theorem using the notion of Generalized relative upper weak type («, #) and

generalized relative weak type (a, £) and therefore the proof is omitted.

Theorem 2.4: Let f be a meromorphic function and g, h and k be non-

constant entire functions such that 0 < 7y, g)[f(h)];< 7(q,p)[f(R)], < and

0 < Tioplfli < 7@ plfly <o and A g)lf(h)]y = Aa,p)lfli - Then

T(a,p)lf (1))

¢ < lim inf
T(a, o)l fk e eXP(Ol(Tk,_I(Tf(T))))

exp(e(T, Ty (™M) _ {(a,m[f(h)]g na,m[f(h)]g}
- (a}ﬂ)[f]k ’ T(a,ﬂ)[f]k
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< max {%m My 7ap) V(h)b} < tim sup 2@ Tn() _ a0
) Taplfle  Taplfle |~ v

oo ep(@TT0) el

Remark 2.7:  If we take 70 <7 g)lhly < 7(q p)hl; <" and
Aa,p)lf(W)]g = Aa,plbli, instead of 70 < Ty g)lfl; < 7(aplfl <" and

Ao, plf(M)]y = A, plfli and other conditions remain same, the conclusion

i

of Theorem (2.4) remains true with "ty p)[fl”,  "T(aplfli” and

”exp(a(Tk_l(Tf(r))))” replaced by "T(a, ) [f1.7, "T(a, ) [h];,”

exp(a(Ty, (T, (r))))” respectively in the denominator.

Remark 2.8: If we take 70 <Gy plfli < 0@ plfl <" and
ﬂ“(a,ﬂ)[f(h)]g = p(a,ﬁ)[f]lm instead Of "0 < f(a,ﬁ)[f]k < T(a,ﬁ)[ﬂk <o’ and
Aa, plf(W)]g = Ao plfli and other conditions remain same, the conclusion of

Theorem (2.4) remains true with "t fli”, T plfls” replaced by

7 )

O plf”s "0 (a,p)hli” respectively in the denominator.

Remark 2.9: If we take "0 <&y plfli € 0@ plfly <©” and
/I(a,ﬂ)[f(h)]g = /”L(a,ﬂ)[h]k, instead of "0 < T(g p)[flk < T plfle <" and
Aa,plf(W)]g = Ao plfli and other conditions remain same, the conclusion of
Theorem  (2.4)  remains  true with "4 pfl;",  "T(aplfli” and
epla TN Ty () replaced by ouplhls Gplbl

Pexp(a(Ty (T, (1)) respectively in the denominator.
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1. Introduction
In this paper, we study the following problem:

() + Au'")(z) - Bu'(z) + Cu(z) = Af(z, u(z)), z € [0, 1] (LD)
u(0) = u(1) = w''(0) = u"(1) = u(0) = u!™(1) = 0 '
where A4 B,C eR and parameter 4 >0, and f:[0,1]x R — R is a continuous

function. Study sixth-order differential equations was first started by studying the
following problem:
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6 4 2
a—7"L=au+/laU+BarLLJrj"(g:,u). (1.2)
or 3% o'z 0%z

One of the most important applications problem (1.2) is the model that
describes the phase fronts behavior in the materials.

In recent years, BVPs for sixth-order ordinary differential equations have
been studied extensively, see [1, 2, 3, 5, 7, 10, 11] and the references therein in [5],
Gyulov et al. obtained the existence and multiplicity the solutions for the following
boundary value problem

(1.3)

{—u(m)(m) + Au'™)(z) — Bu''(z) + Cu(z) = Af(z, u(z)),0 < z < L,
u(0) = u(L) = u"(0) = w'(L) = «™(0) = u")(L) = 0

where ABCeRand f:[0, L]x R — R is a continuous function.

In [7], Li obtained the existence and multiplicity of positive solutions for the
following problem

{—u@”‘)(x) + A(z)u™(z) + Blz)u'"(z) + C(z)u(z) + f(z, u(z)) = 0, z € [0, 1]
w(0) = u(l) = w(0) = w"'(1) = v (0) = «™(1) = 0

(1.4)
where A(x), B(z),C(z) € C([0,1]) and f:[0,1] x [0, 0) — [0, ) is continuous.

Bonanno et al. in [1], applied critical point theory and variational methods to prove
the existence and multiplicity of solutions for the following problem

—u(z) + A" (2) — Bu"(z) + Cu(z) = Af(x, u(z)),z € [a, b] (1.5)

where 4 > 0, A, B and C' are given real constants, f : [a,b] x R — R is a function.

Recently, Bonanno and Livrea in [2] obtained infinitely many solutions for the
nonlinear sixth-order problem (1.1). They used the variational methods and an
oscillating behavior on the nonlinear term to demonstrate the existence of these
solutions.

In this article, we discuss the existence of two and infinitely many weak
solutions for the problem (1.1), under suitable conditions on the nonlinear term. We
also present examples to illustrate the results.
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2. Preliminaries and Basic Notation

In this section, we first introduce some notations and some necessary
definitions. Set

X ={ue H?0,1)N H}0,1) | u(0) = u'(1) = 0}. Q2.1

X 1is the Sobolev space, consider the inner product

< U v >i= I; (u""(z)"'(z) + u''(z)v"(z) + u'(z)v'(z) + w(x)v(z))dz,

which induces the norm

N |—

= ("3 + a5 + [0/ + [ulf) 22)
Proposition 2.1: (see[2]) If k = 7[—12 , for every u e X, we have
N3 < &7 a2 i=0,1,2 j=1,2,3 with i < j, (2.3)
where ||ul|, = (.[()1 lu(z)? al:z:)5 is norm in L*(0,1).
We introduce the function N : X — R as follows,
N(u) = lu""l5 + A flu"|l; + B [lu'll5 +C Jul, ¥ ueX,
where A, B and C are real constants and satisfied in the following condition:
(H)max { —Ak, -Ak — Bk*, — Ak — Bk* - Ck*} < 1.
Lemma 2.2: (see[2]) Put

llullx = yN(u). u e X,
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and assume that the condition (H) holds. Then, ||u||x ts a norm equivalent to

the norm defined in (2.2) and (X,|.||x) with following inner product

' (u""(z)v""(z) + Au''(x)v"(x) + Bu'(z)v'(x) + Cu(z)v(z)) dz ,

< U, v >i= j.
0

18 a Hilbert space.
Clearly (X,||.|lx) = (C°(0,1).].||,,) and the embedding is compact.

Lemma 2.3: (see[2]) Assume that (H) holds, one has

| lullx, ¥V ueX.

k
|, € ——
k-5 7
for every ue X, and 6 > 0 is given in[2].

We say that a function v € X is called a weak solution of the problem
(1.1)if

I; (W' ()" (z) + Au" (z)v" (z) + Bu'(z)v'(z) + Cu(z)v(z))dx

- lﬁ [z, w(x))v(z)de =0, VveX.

Consider [; : X — R defined by

1w = Nl =2 [ Fla. u(a)do. (2.4)
where

Fla,t) = [ f@&)dé forall (z,1) € [0,1]x R.

We observe that I, € C*(X,R) forany v e X,
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I (u)w = jl (uw" (z)0"" () + Au" (z)v" (z) + Bu'(z)v'(z) + Cu(z)v(z))dz  (2.5)

0
- }“J‘; flz, u(z))w(z)de =0, Vve X. (2.6)

Thus, the solutions of Problem (1.1) are the critical point of 1.

Definition 2.4: Assume X be a real reflexive Banach space. We say J
satisfies Palais-Smale condition (denotes by PS condition for short), if any

sequence {u,} < X for which {J(u;)} is bounded and J' (u;,) > 0 as k —> 0

possesses a con’vergent subsequence.

The proofs of our results are based the following theorems.

Theorem 2.5: [9, Theorem 4.10] Let I, € CY(X,R), and I, satisfies
the Palais-Smale condition. Assume that there exist ug,u; € X and a

bounded neighborhood Q of ug satisfying uy € Q and

Viergfg I, (v) > max{p(ug), 1;(u;)},

then there exists a critical point u of 1, , i.e., I;l(u) = 0 with

3 (uw) > max {1} (ug), I;(u1)}.

Theorem  2.6: [15, Theorem  38] For  the  functional
I,:Mc X —[-0,+0] with M# &, min, ) [;(u) =a has a solution in

case the following conditions hold:
(i) X is a real reflexive Banach space,

(i) M is bounded and weak sequentially closed,
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(i5) I, 1is weak sequentially lower semi-continuous on M, i.e., by
definition, for each sequence {u,} in M such that u, — u as n — ©, we

have I ;(u) < lim,,_,, inf I;(u, ) holds.

Theorem 2.7: Consider X be an infinite-dimensional Banach space

and I, € CY(X,R) be an even functional which satisfies the (PS)-condition
and 1,(0)=0.If X =V @ E where V is finite dimensional and I, satisfies

the conditions
(4,) there are constants p,a > 0 such that

I;(u) 2 a, if lull=p, vekE,

() for each finite-dimensional subspace E, < X there isD, such
that
Iﬂ,(“) 2 07 Zf ||U|| 2 D’m u e En7

then I, possesses an unbounded sequence of critical points.

We refer the reader to the paper [12, 13] in which Theorem 2.7 was
successfully employed to some boundary value problems. To read more on the
applications of Theorem 2.5 and 2.6, we refer to the papers [4, 6, 14].

3. Main Results

We utilize the following assumptions throughout this paper.

(fo) there exist a constants v > 2 and 7" > 0 such that

0 < vF(z,t) < tf(x,t), for [t| > T and z €10, 1].

(f) f:V xR — R continues and there exists constant L > 0 such that



MULTIPLE WEAK SOLUTIONS FOR A CLASS 121
f(@, )] < c(1+ [¢]*7"), for |t| <L and z [0,1]

where ¢ > 2.

(f) lim,_,, f(“;’t) =0, for z € 0,1] uniformly.
t

We use the following lemmas to prove our main results.

Lemma 3.1: Assume that the condition (f)) holds. Then I;(u) satisfies
the (PS)-condition.

Proof: Assume that {u, },.y < X such that {/;(u,)},cy is bounded and
I;(u,) > 0 as n — +oo. Then, there exists a positive constant ¢, such that
1I,(u,)| <co and |I;(u,)| <co forall n e N. Therefore, from the definition

of I; and (4;), we have

co + 1 g llx = vIy(u,) =1y (u,)(u,)
2 (2 = Dllun iy + 2 J, (F@. 0, (2) (@) = v, 0, (1)) do

> (= 1) flun I G.1)

therefore for some ¢; > 0, since v > 2 this implies that {u, } is bounded. Since X

is Banach space and {u, } is bounded, there exist a subsequence, still denoted by

{u,} and a function « in X such that

u, = u, in X, and u,, = u in C{([0,1]). (3.2)

By definition 1 (u), we get



122 M. FERRARA, T. CIANO, A.GHOBADI AND DAVID BARILLA
! 1 " nr nr " " "
< Ii(“n)? Uy —U > = -[O (un (x)(un (I) —u (I)) + Aun(x)(u”(x) —u (.’L’))

+ B, ()(1,(2) = (@) + Oty () (1, (2) — (o))

= A} 1 0, () () = u(z))
Therefore, we have

< Ixrl(un) - I;,(un%un —u>=

Jo (1 @) 0 (@) = " (@) + A (@) () = ' (2)

+ B () () (2) = u(@)) + Cu, (@) (1w, (2) - u(z))) do
= A [} 1 0, () (e () = u(z)) da

() (0 @) = 0 @) + Au @) - ')

0

+ Bu' (z) (u(2) — w' (2)) + Cu(x) (u, (z) - U(fv))) dx

= 2 [} fa, u)) () = u(w)) de)

1

= ((u}l/(w) —u"(@))*) + Alup (2) - u"(2))”

0
+ Bul,(z) — u' (2))? + Cu, (z) — u(m))Q) dx

1

=4, U@ uy (7)) = [z, u(z))) (un (2) - w(z)) dz

0

>y — ully = A J, (7w, (0) = o, () (1, (2) = () do
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From the continuity of f, we get
[ (@) = " (@)%) + Aluy(2) " (2))? + Bluj (z) — u (2))?

+ C(u,(x) - u(x))Q) dz — 0, n —> oo, (3.3)

and

AJ, (F wa(2)) = (o (@) (0 (2) = u(@)) do > 0,n >0, (3.4)
from (3.1), (3.2), we can conclude
< Tay) = Ta(y)uy = > = 0.
Therefore by (3.3) to (3.4), we have

2
lw, = ullx — 0.

Thus, the sequence u, converges strongly to v in X. Therefore, [, satisfies

the (PS)-condition. ]

Theorem 3.2: Assume that the assumptions (fy), (fi) and (f;) hold. Then:

if f(z,t) 20 for all (z,t) €[0,1] x R, the problem (1.1) has at least two weak

solutions.

Proof: Clearly, I,;(0) = 0. From the Lemma 3.1, we can see [, satisfies the
(PS)-condition. We will show that there exists R > 0 such that the funetional [, has
a local minimumu, € BR = {u € X;||u|| X < R}. Assume that{u,} < B and

u, — u,as n — o by Mazur Theorem [8], there exists sequence {v, } of convex
combinations such that

n

n
vnzz%juj,z%j:l, aanO,jeN
J=1 J=1



124 M. FERRARA, T. CIANO, A.GHOBADI AND DAVID BARILLA

and v, — u in X. Clearly, By is a closed convex set, therefore {v,} < By and

u € Bp. Since, I, is weakly sequentially lower semi-continuous on By and X is a
reflexive Banach space, so, from Theorem 2.6 we can know that I; has a local
minimum u, € Bg. Assume that [;(u) = min,.p,;(u), we will show that

I;(ug) < infycopp 1;(u). By (i) and (f), there exits @ > 0 such that

F(z,t) < alt)® + c|t]?, (3.5)

2

let « > 0 be small enough such that « < 25—2 , therefore
Ak

1 1
L) 2 Nlally ~Ae || (@) du = 2c [ u(@)|” du

N | —

1
> lullk - Aallulls = 2c [ Ju(@)* dp

DO | —

2

2 2
2 lullx _ﬂvaEHU”X = Ac|lullf

N |

1 k2 5 VI
(5—/105 E)HUHX _/10(%) 1E215%

v

Since, ¢ > 2 , when |Ju||x < 1 there exist r > 0, such that ,(u) > r > 0 for every
||ul| x = 7, we choosing R =1, thus, I,(u) >0=1,(0)21,(uy) for u e 0Bp.
Hence, uy € By and I;(uy) = 0. Since, u, is a minimum point of I, on X, there
exists R >0 sufficiently large such that I;(ug) <0 <inf ,cop,1;(u), where
Br ={u € X;||lu|]lx < R}. Now, we will show that there exists wu; with
lug[[x > R such that I;(uy) <inf,coppls(u). Letting &y € X and u; = 7k,

7 >0 and ||k;||x = 1. From (f;) we get there exist constants a;, a, > 0 such that

F(z,t) > ay ||t||” —ay forall z € [0,1]. Thus,
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1 1
Lo(m) = 5 ekly =2 ) Pl o) (@) dp

v 1 14
<=7 klly = Ac%ay [, 1ky(@)” du + Aay .

DO | —

Since, v > 2, there exists sufficiently large 7 > R >0 so [;(zk;) < 0.

Hence, max {I;(ug),l;(u;)} < infap, 1;(u). Then, Theorem 2.5 gives the critical

point «”. Therefore, u, and «”" are two critical points of I, which are two weak

solutions of the Problem (1.1). O

Theorem 3.3: Assume that the assumption (f,) and the following
condition hold:

(f,) there exists q¢ > 2 such that
flat) <clt)™, as [t| 0.
Then Problem (1.1) has infinitely many pairs of weak solutions.

Proof: We want to apply Theorem 2.7. By lemma 3.1 the functional I,
defined in (2.4) satisfies the (PS)-condition.

Now, we need to assumptions (j;) and (5,) of Theorem 2.7. By condition (f;)
and Lemma 2.3, we have

L) = 3 llulfy =2 J) Pl u(@)da

1 9 Loy
> k- ) ulds
1 2
> = ul|l5x —cllu|lL
; Il —cllul
1 k4
>~ lulfy —c——— [Jull% .
2 2152
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Since, ¢ >2, we have that for ||u|| = p  sufficiently small
I,(u)>a >0. Let E, be an-dimensional subspace of X, by the equivalence of

any two norms on finite-dimensional space, by integrating the condition (fy) there

exist constants a;, a5 > 0 such that
F(t, ,I') > a; |IE|V — Q9

forall t € [0,1] and z € R. Now, for any u € F,,, we have

Since, v > 2, there exists sufficiently large D, > 0, such that 7,(u) <0

for ||u|| = R,, . Therefore, all the assumptions of Theorem 2.7 are established. Thus,

the functional 7, possesses an unbounded sequence of critical points on X. And it

proves the result. O
Now, illustrate our results by the following examples.

Example 3.4: Consider the following problem

" (2) + 20 (a) + u'(z) - 3u = /(2. u(@)). » € [0.1]

j j 3.6
u(0) = (1) = uw"(0) = u''(1) = u)(0) = u)(1) = 0, (3.6)

where A=2, B=-1,C =-3. Set f(z,t)=t* for all z€l0,1], thus, we

have F(x,t) = %t‘r’ for all z €[0,1]. Hence, limg_, if((:’f)) =5 <o, s0, by

choosing v =5 >2 and T =1 the condition (f;) satisfied. Also f(z,t) >0 for

all z €[0,1], and lim,_, - By selecting ¢ =5 and L =1, we get
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|f(z, t) < c(@ +[t|*) for |t| <1 and for same ¢ > 0. Therefore, all the

assumptions in Theorem 3.2 are fulfilled. Hence, the Problem (3.6) has at least

two weak solutions.

Example 3.5: Consider the following problem

{_U(m‘)(z) +ul(@) = (@) + 3u = Af(z, (@), = € [0,1] (3.)

w'(1) = u™(0) =« (1) = 0,

S
—~
=)
S~—
Il
<
~—~
—t
~
I
g\
—~
(=}
~—
Il

for all x €[0,1] . We have

for all z €0,1]. Hence, lim,, ., é;fgg; =8 <o and limg, ?((ztj)) =6< o,

thus by choosing v =8 >2 and T =1 the condition (f)) satisfied. Also by

choosing ¢ = 6 andc = 8, we have |f(z,t)] < 7[t]> for |t| < 1, therefore,
the condition (f,) satisfied. We clearly see that all the assumptions present in

Theorem 3.2 are established. Thus, the Problem (3.7) has infinitely many pairs

of weak solution.
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