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Abstract: In the current literature, various operators of fractional calculus 
(that is, fractional-order integrals and fractional-order derivatives) have 
been and continue to be successfully applied in the modeling and analysis 
of a remarkably large spectrum of applied scientific and real-world 
problems in the mathematical, physical, biological, engineering and 
statistical sciences, and indeed also in other scientific disciplines. In this 
article, we investigate a general family of fractional-order kinetic equations 
involving the Riemann-Liouville fractional derivative, which also includes a 
remarkably general class of functions as a part of the non-homogeneous 
term. The main results, which we have derived in this article, are capable of 
yielding solutions of a significantly large number of simpler fractional-order 
kinetic equations. 
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1. Introduction and Motivation 
 
 In recent years, various operators of fractional calculus (that is, operators of 
integrals and derivatives of any real or complex order) has received considerable 
attention because mainly of their demonstrated applications in the modeling and 
analysis of applied problems and real-world situations occurring in numerous 
seemingly diverse and widespread fields of science and engineering. These operators 
do indeed provide several potentially useful tools and techniques for solving 
differential and integral equations, and various other problems involving special 
functions of mathematical physics as well as their extensions and generalizations in 
one and more variables (see, for details, [8], [9], [11] and [12]; see also [4], [6] 
and [26]). 
 
 Traditionally (and by far the most commonly used), the operators of 
fractional-order integration and fractional-order differentiation are defined by means 

of the right-sided Riemann-Liouville fractional integral operator 


RL
aI  and the left-

sided Riemann-Liouville fractional integral operator 


RL
aI , and the corresponding 

Riemann-Liouville fractional derivative operators 


RL
aD  and 


RL

aD , as follows 

(see, for example,  [3, Chapter 13], [8, pp. 69-70] and [13]): 
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I f x x t f t dt x a R    (1) 
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RL 1

( ) ( ) ( ) ( ; ( ) 0)
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( )
a

a x
I f x t x f t dt x a R   (2) 

and  
 

     ( ) ( ) ( ) 0; ( ) 1).( ) ( ) ( [ ]
n

RL n
a a

d
D f x I f x n

dx
   
 

 
    

 
≧R R          (3) 

 

 Here, and in what follows, the function f is locally integrable, ( )R  denotes 

the real part of the complex number µ    and ( )[ ]R  means the greatest integer in 

( )R , and ( )z  denotes the classical (Euler’s) Gamma function defined by 
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which happens to be one of the most fundamental and the most useful special 

functions of mathematical analysis,   and 0
  being the sets of positive and non-

positive integers, respectively. 

 
 Our main object in this article is investigate some general families of 
fractional-order kinetic equations involving the Riemann-Liouville right-sided 

fractional derivative operator 
RL

0 ( )( )µD f x , which is given (for convenience) by (3) 

for 0a  , as well as including a remarkably general class of functions as a part of 
the non-homogeneous term. Our main results (Theorem 1, Theorem 2 and Theorem 3 
in this article) are capable of yielding solutions of a significantly large number of 
simpler fractional-order kinetic equations. 

 
2. Definitions and Preliminaries 
 
 First of all, it is easily observed that most (if not all) of the various claimed 
one-variable and multi-parameter (or multi-index) “generalizations” of the familiar 

Mittag-Leffler function ( )E z  and its two-parameter extension , ( )E z  , which are 

defined as follows: 
 

        
0 0

,( ) : and ( ) :
( 1) ( )

k k

k k

E
z z

z zE
k k

    

 

 

 
  

      (5) 

 

are no more than fairly obvious special or limit cases of the substantially much more 

general Fox-Wright function 0  ( ),p q p q    or  0),(qp p q   , which 

happens to be the Fox-Wright generalization of the relatively more familiar 

hypergeometric function 0),(Fp q p q N , with p numerator parameters 1,· · ·, pa a  

and q denominator parameters 1,· · ·, qb b  such that 
 

 1,· · ·,  ( )ja j p        and        0 \    1,· · ·,( )jb j q    . 
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 These general Fox-Wright functions 0),(p q p q    and  0),(qp p q    

are indeed defined by (see, for details, [2, p. 183] and [25, p. 21]; see also [7, p. 65], 
[8, p.  56] and [14]) 
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1 1

( ) 0 ( 1, , ); ( ) 0 ( 1, , ); 1 0
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   ≧R R R  , 

 

where, and in what follows, ( )  denotes the general Pochhammer symbol or the 

shifted  factorial, since 

 

0 )(1) !    : {0};  : {1, 2, 3,· · }( ·n n n     ∪ , 

 
which is defined (for ,     and in terms of the above-defined familiar Gamma 

function in the equation (4))
 
by 

 

        

1 ( 0; \ {0})
( )

( ) :
( )

( 1) ( 1) ( ; ),n n


 
 




    

 
  

  
        



 

           (7) 

 

it being assumed conventionally  that 0(0) : 1  and understood tacitly that the  

 -quotient exists. Here we suppose, in general, that 
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,  ( 1, , )j ja A j p     and   ,  ( 1, , )j jb B j q    

 

and that the equality in the convergence condition in the definition (6) holds true only 
for suitably bounded values of z   given by 

 

1 1

: . .
p q

A Bj j
j j

j j

z A B


 

   
       
   
   
   

 

 We remark in passing that the above-mentioned generalized hypergeoemtric 

function 0),(Fp q p q   , with p numerator parameters 1, , pa a  and q 

denominator parameters 1, , qb b , is a widely- and extensively-investigated and 

potentially useful special case of the general Fox-Wright function 0),(p q p q  

when 

1 ( 1, , )jA j p     and   1 ( 1, , )jB j q   . 

 
 We now turn to a series of monumental works (see, for example, [28], [29] 
and [30]) by Sir Edward Maitland Wright (1906-2005), with whom I had the 
privilege to meet and discuss researches emerging from his publications on 
hypergeometric and related functions during my visit to the University of Aberdeen 
in the year 1976, introduced and systematically studied the asymptotic expansion of 
the following Taylor-Maclaurin series (see [28, p. 424]): 
 

  ,
0

( )
( ; ) : ( , ; ( ) 0),

( )
n

n

n
z z

n
    

 





  
 

E R�
φ

φ        (8) 

 

where ( )tφ  is a function satisfying suitable conditions. In fact, it was my proud  

privilege to have also met many times and discussed mathematical researches, 
especially on various families of higher transcendental functions and related topics, 
with my Canadian colleague, Charles Fox (1897-1977) of birth and education in 

England, both at McGill University and Sir George Williams University (now 

Concordia University) in Montréal, mainly during the 1970s (see, for details, [14]). 
 
 The above-cited contributions by Wright were motivated essentially by the 
earlier developments  reported  for  simpler  cases  by  Magnus  Gustaf  (Gösta)  
Mittag-Leffler (1846-1927) in 1905, Anders Wiman (1865-1959) in 1905, Ernest 
William Barnes (1874-1953) in 1906, Godfrey Harold Hardy (1877-1947) in 1905, 



60  H. M. SRIVASTAVA   

George  Neville Watson (1886-1965) in 1913, Charles Fox (1897-1977) in 1928, and 

other authors. In particular, the aforementioned work [1] by Bishop Ernest William 

Barnes (1874-1953) of the Church of England in Birmingham considered the 
asymptotic expansions of functions in the class defined below: 
 

 ( )
,

0

( ; ) : ( , ; ( ) 0)
( ) ( )

n

s
n

z
E s z

n n
    

 





  
  

 R


   (9) 

 

for suitably-restricted parameters   and s. Clearly, we have the following 

relationship: 

 ( )
, )

1
lim

(
( , ,( ; )

)
E s z z s 

 



Φ   

 
with the classical Lerch transcendent (or the Hurwitz-Lerch zeta function) ( , , )z sΦ   

defined by (see, for example, [2, p. 27, Eq. 1.11 (1)]; see also [23] and [24]) 
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                (10) 

 

0( \ ;k s     when  1; ( ) 1z s   R   when  1).z    

 
 The Hurwitz-Lerch zeta function ( , , )z sΦ   defined by (10) contains, as its 

special cases, not only the Riemann zeta function ( )s  and the Hurwitz (or 

generalized) zeta function ( , )s  : 
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1
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s s
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  Φ    and  
0

1
( , ) : (1, , )

( )sn

s s
n






 


 Φ 


        (11) 

 

and the Lerch zeta function ( )s   defined by (see, for details, [2, Chapter I] and [23, 

Chapter 2]) 

   
2 i

2 i 2 i
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but also such other important functions of Analytic Number Theory as the 

Polylogarithmic function (or de Jonquière’s function) Li ( )s z : 

 

  
1

Li ( ) : ( , , 1)
n

s s
n

z
z z z s

n





  Φ                             (13) 

 

(s      when  1; ( ) 1z s   R    when  1)z    

 
and the Lipschitz-Lerch zeta function (see [23, p. 122, Eq. 2.5 (11)]): 
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              (14) 

 
 0( \ ; ( ) 0s  R    when  \ ; ( ) 1s    R    when  )   , 

 
which  was  first  studied  by  Rudolf  Lipschitz  (1832-1903)  and  Matyáš  Lerch  
(1860-1922) in connection with Dirichlet’s famous theorem on primes in arithmetic 
progressions (see, for details, [17] and [18]). 
 

 A natural unification and generalization of the Fox-Wright function qp  

defined by (6) as well as the Hurwitz-Lerch zeta function ( , , )z sΦ   defined by (10) 

was indeed accomplished by introducing essentially arbitrary numbers of numerator 
and denominator parameters in the definition (10). For this purpose, in addition to the 

symbol   defined by 
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 Then the extended Hurwitz-Lerch zeta function 
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( , , ; , , )11
, , ; , ,1 1
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Φ   

 
is defined by [27, p. 503, Equation (6.2)] (see also [15] and [24]) 
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  0 0, ; ( 1, , ); , \ ( 1, , );j jp q j p j q             

 

          , ( 1, , ; 1, , ); 1j k j p k q    when  , ;s z     

 

1     and  s     when  ;z       

         

          1    and  
1

( )  
2

    when   .z       

 
 For an interesting and potentially useful family of  -generalized Hurwitz-

Lerch zeta functions, which further extend the multi-parameter Hurwitz-Lerch zeta  

function 
( , , ; , , )11

, , ; , ,1 1
( , , )p q

p q
z s

   

   

 

 
Φ   

 
defined by (17), was introduced and investigated systematically in a recent paper by 
Srivastava [16], who also discussed their potential application in Number Theory by 
appropriately constructing a presumably new continuous analogue of Lippert’s  
Hurwitz measure and also considered some other statistical applications of these 
families of the  -generalized Hurwitz-Lerch zeta functions in probability 
distribution theory (see also the references to several related earlier works cited by 
Srivastava [16]). 
 
 We now introduce some general families of the Riemann-Liouville type 
fractional integrals and fractional derivatives by making use of the following 
interesting unification of the definitions in (8) and (17) for a suitably-restricted 

function ( )   given by 
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where the parameters  α, β, s and   are appropriately constrained as above.  

The resulting general right-sided fractional integral operator ,( ; , ),µ
a z s   and  

the general left-sided fractional integral operator ,( ; , ),µ
a z s   , and the 

corresponding fractional derivative operators ,( ; , ),µ
a z s    and 

,( ; , ),µ
a z s   , each of  the Riemann-Liouville type, are defined by (see, for 

details, [20], [21] and [22]) 
 

1
,; , , ,

1
( ) ( )

( )
( )( ) ( ; ( ) , , ) ( )a a

µ x
f x tz s x z x t s f t dt 
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1
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µ a
f t xz s x z t x s f t dt 

  



 


        (20) 

    ( ; ( ) 0)x a  R  
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( ; , , , ) ( ) ( ; , , , ) ( )( ) ( )
n

n
a a

d
z s f x z s f x

dx
    
 

 
  

 
                 (21) 

   ( ) ( ) 1( 0; [ ] ),n  R R≧   

 

where the function f is in the space ( , )L a b  of Lebesgue integrable functions on a 

finite closed interval ,  ( )[ ]b ba a   of the real line   given by 

 

    ( , ) : ( ) ,L f f f x dx       
b

a
a b               (22) 

 

it being tacitly assumed that, in situations such as those occurring in conjunction 

with the usages of the definitions in (19), (20) and (21), the point a  in all such 

function spaces as (for example) the function space ( , )L a b  coincides precisely with 

the lower terminal a in the integrals involved in the definitions (19), (20) and (21). 
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 Next, in terms of the operator   of the Laplace transform given by 
 

 
0

{ ( ) : } : ( ) : ( ) ( ( ) 0),stf e f d F     s Rs s
∞

             (23) 

 
where the function  f (τ ) is so constrained that the integral exists, it is easily seen for 

the function , ( ; , , )z s    , defined above by (18), that 
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provided that each member of (24) exists. Obviously, upon setting µ   and

  , the Laplace transform formula (24) simplifies to the following form: 
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or, alternatively, if we make use of the definitions in (8) and (23), we find for 

Wright’s function    ( ; )zE , φ  that 
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which, in the special case when    and µ  , yields 
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 Moreover, in the case when the sequence 0{ ( )}nn 
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then the Laplace transformation formula (25) would yield the following result: 
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for the extended Hurwitz-Lerch zeta function 
 

( , , ; , ,1 1 )

, , ; , ,1 1
( , , )p q

p q
z s k
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defined by (17). 
 

 Finally, for the right-sided Riemann-Liouville fractional derivative operator 

0  of order µ in the definition (3), it is easily observed that (see, for example, [12, 

p. 105, Eq. (2.248)]) 
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or, equivalently, that (see, for example, [8, p. 84, Eq. (2.2.37)]) 
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or, equivalently, that 
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where, as well as in all of such situations in this paper, an empty sum is to be inter- 

preted as 0. 
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3. A General Family of Fractional-Order Kinetic Equations 
 
 For an arbitrary reaction, which is characterized by a time-dependent 

quantity ( )N N t , it is possible to calculate the rate of change  dN
dt

 to be a balance   

between the destruction rate d  and the production rate p  of N , that is, 

 

.
dN

dt
 d + p  

 
 By means of feedback or other interaction mechanism, the destruction and 

the production depend on the quantity N itself, that is, 

 
( )Nd d       and       ( )Np p . 

 

 Since the destruction or the production at a time t depends not only on ( )N t , 

but also on the past history  ( )( )N t    of the variable N , such dependence is, in 

general, complicated. This may be formally represented by the following equation 
(see [5]): 

   )( ( )t t
dN

N N
dt

  d p ,                                    (35) 

 

where tN  denotes the function defined by 

 

( ) ( )      ( 0)tN t N t t t      . 

 
 Haubold and Mathai [5] studied a special case of the equation (35) in the 
following form: 

    ( ),
j

j j
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c N t
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                  (36) 
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j
j
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c dt
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with the initial condition that 
 

0
0
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t
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is  the  number  density  of  species  j  at  time   0t   and  the  constant    0jc  .   

This is known as a standard kinetic equation. The solution of the equation (36) 

(without the subscript j ) is readily seen to be given by 

 

    0( )
c tj

jN t N e


 ,               (38) 

 
which, upon integration, yields the following alternative form of the solution of the 

equation (36) (without the subscript j ): 

 

   1
0 0( ) · { ( )}tN t N c D N t   ,                              (39) 

 

where 
1

0 tD 
 is the standard (ordinary) integral operator and c is a constant of 

integration. 
 
 The fractional-order generalization of the equation (39) is given as in the 
following form (see [5]): 
 

    
  RL

0 0( ) ( )( )N t N c I N t                             (40) 

 
in terms of the familiar right-sided Riemann-Liouville fractional integral operator 




RL
0I  of order   defined, as in (1), by (see, for example, [8]) 
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1
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t
I f t u f u du tt R           (41) 

  
 For a considerably large number of extensions and further generalizations of 
the fractional-order kinetic equation (40), the interested reader should refer (for 
example) to [10], [19] and [20] as well as the other relevant references which are 
cited in each of these earlier publications. We propose here to investigate the solution 
of a general family of fractional-order kinetic equations which are associated with the 

function , ( ; , , )z s     defined by (18), which we have introduced in this article, as 

well as the Riemann-Liouville fractional derivative operator 


RL
0D  defined by (3). 

The results presented here are sufficiently general in character and are indeed capable 
of being specialized appropriately to include solutions of the corresponding (known 
or new) fractional-order kinetic equations associated with simpler functions. 
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 Theorem 1: Let , , ,c µ      and 0 1  . Suppose also that the 

general function-order , ); ,( ,z s    , defined by (18), exists. If we set 
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then the solution of the following generalized fractional-order kinetic equation: 
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provided that the right-hand side of the solution asserted by (44) exists. 

 

 Proof: Since, by hypothesis, 0 1  , we can make use of the Laplace 
transform formula (32) in the following form: 
 

                RL
0 0{ ( ) : } ( ) ( ) (0 1),( )D N t s s s              (45) 

where 

   
0

( ) { ( ) : ( )tN t e N t dt


ss := s} =
∞

  �               (46) 

and 0( )   is defined by (42). 

 
 Now, by applying the formulas (24) and (45), if we take the Laplace 
transforms of both sides of the fractional-order kinetic equation (43), we find that 
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 In view of the following series expansion: 
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this last equation (48) can be rewritten as follows: 
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 Finally, we invert the Laplace transforms occurring in (49) by using the 
following well-known identity: 
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R R s
s

           (50) 

 
 We are thus led to the solution (44) asserted by Theorem 1. This evidently 

completes the proof of Theorem 1.                     □ 
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 The distinct advantage of using the general function , ( ; , , )z s    , defined 

by (18), in the non-homogeneous term of the fractional-order kinetic equation (43) 
lies in its generality so that solutions of other kinetic equations involving relatively 
simpler non-homogeneous terms can be derived by appropriately specializing the 
solution (44) asserted by Theorem 1. We find it to be worthwhile to record the 
following relatively simpler versions of Theorem 1. 
 

 Theorem 2: Let , , ,c µ      and 0 1  . Suppose also that the 

general function , )( ; z E φ , defined by (8), exists. If 0( )   is given by (42), 

then the solution of the following generalized fractional kinetic equation: 
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                           (52) 

 

provided that the right-hand side of the solution asserted by (52) exists. 

 
 Proof: Our demonstration of Theorem 2 would run parallel to that of 
Theorem 1. Use is made; in this case, of the definition (8) and the Laplace transform 
formula (27). The details are being omitted here.        □ 
 

 Theorem 3: For , , ,c µ      and 0 1  , let the extended 

Hurwitz-Lerch zeta function: 

 
( , , ; , ,1 1 )

, , ; , ,1 1
( , , )p q

p q
z s

   

   

 

 
Φ  , 
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defined by (17), exist. If 0( )   is given by (42), then the solution of the 

following generalized fractional kinetic equation: 
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N t N t Nzt s c D tΦ         (53) 

 

is given by 

 

1

1
0

0

( )
( ) ( 1)

( ( 1) )

r

r

r

t
N t N t

c r








 







  
        


∞

  

 

   
      
       


 

 

( , , , ; , , ,1 1 )

, , , ; ( 1) , , ,1 1
( , , )p q

rp q
zt sΦ    

 

   
( 1) 1

0
0

( ) ( 1) ( 0),
( ( 1))

r
r

r
r

t
t

c r




 



 



  
 


∞

  

 

provided that the right-hand side of the solution asserted by (54) exists. 

 
 Proof: Theorem 3 can be proven, along the lines analogous to those of our 
demonstrations of Theorem 1 and Theorem 3, by applying the definition (17) and the 
Laplace transform formula (30). We choose to skip the details involved.                 □ 
 
4. Concluding Remarks and Observations 
 
 In our present investigation, we have established the explicit solution of 
some significantly general families of fractional-order kinetic equations involving the 

Riemann-Liouville right-sided fractional derivative operator 
RL

0 ( )( )µD f x , which is 

given (for convenience) by (3) for 0a  , as well as a remarkably general class of 
functions as a part of the non-homogeneous term. Our main results (Theorem 1, 
Theorem 2 and Theorem 3 in this article) include, as a part of the non-homogeneous 

term, such general functions as , ,( ; , , , ( ; )z s z    E φ   and 

 
   

   

 

 

( , , ; , ,1 1 )

, , ; , ,1 1
( , , ),p q

p q
z sΦ 

 
 
which are defined by (18), (8) and (17), respectively. Each of these main results is 
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indeed capable of yielding solutions of a significantly large number of (known or 
new) simpler fractional-order kinetic equations. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( )  0z x   and 1( ) 1z x  , 

( ) ( )n nz fx x ,  the  nth  Fibonacci polynomial ; and when 0( ) 2z x   and

1( )z x x , ( ) ( )zn nx l x , the nth Lucas polynomial. They can also be defined by 

the Binet-like formulas. Clearly, (1)n nf F , the nth Fibonacci  number; and

(1)n nl L , the nth Lucas number [1, 3]. 
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 On the other hand, let ( ) 1a x   and ( )  b x x . When  0( )    0 z x   and

1( )   1z x  ,  ) ( ) (n nz Jx x , the nth Jacobsthal polynomial ; and when 0( ) 2z x   

and  1( ) 1z x  , )( ) (n nz jx x , the nth Jacobsthal-Lucas polynomial. 

Correspondingly, (2)n nJ J  and  (2)n nj j  are the nth Jacobsthal and 

Jacobsthal-Lucas numbers, respectively. Clearly, (1)n nJ F ; and (1)n nj L [2,  3]. 

 
Gibonacci and Jacobsthal polynomials are linked by the relationships 

( 1)/2 1( ) /( )n
n nJ f xx x   and  /2 /( 1) ( )n

n nj lx x x   [2, 3]. 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let n ng f  or nl ,  n nc J  or nj , 2 4x   , 2  x    , 

2 1E x  , x E    and 4 1D x  , where ( )n nc c x . 

 
2. Gibonacci Sums 
 
 We established the following four results in [4]: 
 

 Theorem 1: Let k be a nonnegative integer. Then 
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 Theorem 2: Let k be a nonnegative integer. Then 
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 Theorem 3: Let k be a nonnegative integer. Then 
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 Theorem 4: Let k be a nonnegative integer. Then 
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                (4) 

 
 Next we explore the Jacobsthal implications of these theorems. 
 
3. Jacobsthal Consequences 
 
 Using the Jacobsthal-gibonacci relationships in Section 1, we will now find 
the Jacobsthal versions of equations (1) (4). In the interest of brevity and clarity, we 

let A denote the fractional expression on left-hand side of the given equation and B 

its right-hand side, and LHS and RHS those of the desired Jacobsthal equation, 
respectively. 
 

 3.1 Jacobsthal Version of Equation (1): Proof: Let 
2 1
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 Replacing x with 1/ x , and multiplying the numerator and denominator of the 

resulting expression with n kx  , we get 
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where 1/( )n ng g x  and ( )n nc c x . 
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 Next, we let 2

1

k

k

f
B

l

 



 


. Replacing x with 1/ x , then multiply each 

numerator and denominator of the resulting expression with ( 1)/2kx   . This yield 
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where 1/( )n ng g x  and ( )n nc c x . 

 
 This, combined with equation (5), yields the desired Jacobsthal version: 
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where ( )n nc c x .           □ 

 
 It then follows that 
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 Next we find the Jacobsthal consequence of equation (2). 
 
 3.2 Jacobsthal Version of Equation (2): Proof: We have 
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. Replace x with 1/ x , and then multiply the numerator and 

denominator of the resulting expression with n kx  .  
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 We then get 
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where 1/( )n ng g x  and ( )n nc c x . 
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each numerator and denominator of the resulting expression with ( )/2n kx  , yields 
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where 1/( )n ng g x  and ( )n nc c x . 

 
 Combined with equation (7), this yields the desired Jacobsthal version: 
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where ( )n nc c x .           □ 

 
 In particular, this yields 
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 3.3 Jacobsthal Version of Equation (3): Proof:  Let  
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where 1/( )n ng g x  and ( )n nc c x . 
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where 1/( )n ng g x  and ( )n nc c x . 

 
 This, coupled with equation (9), yields the desired Jacobsthal version: 
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where ( )n nc c x .           □ 
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 Next we find the Jacobsthal consequence of Theorem 4. 
 
 3.4 Jacobsthal Version of Equation (4): Proof: We have. 
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 Replace  x with 1/ x , and multiply the numerator 

and denominator of the resulting expression with 2 2 1n kx   . We then get 
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where 1/( )n ng g x  and ( )n nc c x . 

 

 Next we let  
2

2 2 2
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l
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. Replacing  x with  1/ x ,  and  then  

multiplying each numerator and denominator of the resulting expression with 2kx   
yields 
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where 1/( )n ng g x  and ( )n nc c x . 

 
 Combining this with equation (11) yields the desired Jacobsthal version: 
 

  
2 2 2 2

2 2 2

2 2 4 2
1 1

2 2 1

2( ) ( 1)
,

4( 1)

n k n k
n k k

n kn k
n k

x J x D j

D D Jj

  
  

 
 

   
 

  
 

           (12) 

 

where ( ).n nc c x              □ 

 
 It follows from this equation that 
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1. Introduction, Definitions and Notations 
 
 In this paper, we assume that readers are familiar with the fundamental 
results and the standard notations of the Nevanlinna value distribution theory of 
meromorphic functions in the complex plane. Throughout this paper, by a 
meromorphic function f(x), we mean a meromorphic function in the complex plane. 

We use ( )fT r  and ( )fM r  to denote the characteristic function of a meromorphic 

function and the maximum modulus of an entire function. In the following, we will 
recall some notations about meromorphic functions and entire functions. 
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 Let f be a meromorphic function defined in the open complex plane  . For  

{ }a  ∪  let ( , ) ( ( , )) f fn t a n t a the number of a-points (distinct a-points) of f  

in  z t   , where an ∞-point is a pole of f. Also 

 


 

0

( , ) (0, )
( , ) (0, ) log

r
f f

f f

n t a n a
N r a dt n a r

t
 

and 


 

0

( , ; ) (0, )
( , ) (0, ) log .

r
f f

f f

n t a f n a
N r a dt n a r

t
 

 

 The function ( , ) ( ( , ))f fN r a N r a  are called the counting function of  

a-points (distinct a-points) of f. In many occasions ( , )fN r   and ( , )fN r   are 

denoted by ( )fN r and ( )fN r  respectively. 

 

 The function ( )fm r , which  is called the proximity function  of  f  is defined 

by  

2

0

1
( ) log ( ) ,

2
i

fm r f re d
  


   

where 
 

      log log , if 1x x x   

    0, if 0 1.x     

 

 For a    we denote by 

1( , )

f a
m r  the function ( , )fm r a  and we mean by 

( , )fm r   the function ( )fm r . 

 

 The function ( ) ( ) ( )f f fT mr Nr r   is called the Nevanlinna’s 

characteristic function of  f . 

 

 If f is entire, the function ( ) ( )f fT mr r  is called the Nevanlinna’s 

characteristic function of  f . 
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 Now let L be a class of continuous non negative on ( , )   function   

such that 0( ) ( ) 0r r    for 0x x  with ( )r    as x   . Further we 

assume that throughout the present paper 1 2 3, , , , L      . 

 
 Considering the above, Sheremeta introduced the concept of generalized 

order ( ),   of an entire function. For details about generalized order ( ),   one 

may see [6] . During the past decades, several authors made close investigations on 

the propertics of entire functions related to generalized order ( ),   in some 

different directions. For the purpose of further applications, in this paper we write the 
definition of the generalized Nevanlinna order ( ),   and generalized Nevanlinna 

lower order ( ),   of an analytic function in the following way: 

 

 Definition 1.1: (Generalized Nevanlinna order ( ),   and generalized 

Nevanlinna lower order ( ),  ). 

 

 The generalized Nevanlinna order ( ),  and generalized Nevanlinna 

lower order ( ),   of an analytic function f denoted by ( ), [ ]f   and ( ), [ ]f 

respectively are defined as: 

[ ] sup( , )

[ ] inf( , )

(exp( ( )))
lim .

( )

f f

f r

T r

r

  
  




  

 
 Now one may give the definitions of generalized Nevanlinna hyper order

( ),   and generalized Nevanlinna logarithmic order ( ),  of an analytic function f 

as: 
 

 Definition 1.2: (Generalized Nevanlinna hyper order ( ),   and 

generalized Nevanlinna hyper lower order ( ),  ). 

 

 The generalized Nevanlinna hyper order (α, β) and generalized 

Nevanlinna hyper lower order ( ),   of an analytic function f denoted by 

( , )[ ]f   and ( , )[ ]f   respectively are defined as: 

 

[ ] sup( , )

[ ] inf( , )

( ( ))
lim .

( )

f f

f r

T r

r
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 Definition 1.3: (Generalized logarithmic order ( ),   and generalized 

Nevanlinna logarithmic lower order ( ),  ). 

 

 The generalized Nevanlinna logarithmic order ( ),   and generalized 

Nevanlinna logarithmic lower order ( ),   of an analytic function f denoted 

by ( ), [ ]f   and ( ), [ ]f  respectively are defined as: 

 
log [ ] sup( , )

log inf[ ]
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(exp( ( )))
lim .

(log )

f
f

rf

T r
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 However the main aim of this paper is to investigate some growth properties 
of Nevanlinna’s Characteristic function relating to the composition of two analytic 

functions on the basis of generalized Nevanlinna order ( ),  , generalized 

Nevanlinna hyper order ( ),   and generalized Nevanlinna logarithmic order ( ),   

as compared to the growth of their corresponding left and right factors. 
 
2. Main Results 
 
 In this section we present the main results of the paper. 
 

 Theorem 2.1: Let f and g be any two non-constant analytic functions 

such that (, ,1 1( ) )0 [ ] [ ]f g f g         , ), ,2( 2( )0 [ ] [ ]f f        . 

Then 
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 Proof: From the definitions of ( ),1
[ ]f g    and ,( )2

[ ]f   for 

arbitrary positive  and for all sufficiently large values of r we have 

 

   1 ( , )1
(exp( ( ))) ( [ ] ) ( ))(f gT r f g r                         (1) 
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and  

   2 ( , )2
(exp( ( ))) ( [ ] ) ( ))(fT r f r         (2) 

 

 Now from equation (1) and (2) it follows for all sufficiently large values 

of r that 
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 As ( 0)  is arbitrary, we obtain that 
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   (3) 

 

which is the first part of the theorem. 

 

 Again for a sequence of values of r tending to infinity, we get that 

 

   1 ( , )1
(exp( ( ))) ( [ ] ) ( ))(f gT r f g r          (4) 

 

and for all sufficiently large values of r 

 

   2 ( , )2
(exp( ( ))) ( [ ] ) ( ))(fT r f r                     (5) 

 

 Combining equation (4) and (5) we have for a sequence of values of r 

tending to infinity that 
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 As ( 0) is arbitrary, we obtain that 
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 Also for a sequence of values of r tending to infinity that 
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(exp( ( ))) ( [ ] ) ( ))(fT r f r                                  (7) 

 

 Again from equation (1) and (7), we have for a sequence of values of r 

tending to infinity that 
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 As ( 0) is arbitrary, we obtain that 
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 Again for all sufficiently large values of r, we get that 
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 Now from equation (5) and (9), it follows for all sufficiently large 

values of r that 
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 As ( 0) is arbitrary, we obtain that 
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             (10) 

 

 Thus, the theorem follows from (3), (6), (8) and (10). 

 
 The following theorem can be proved in the line of Theorem 2.1 and so the 
proof is omitted. 
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 Theorem 2.2: Let f and g be any two non-constant analytic functions 

such that  (, ,1 1( ) )0 [ ] [ ]f g f g         , ), ,3( 3( )0 [ ] [ ]g g        . 

Then 
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 Theorem 2.3: Let f and g be any two non-constant analytic functions 

such that ),1(0 [ ]f g    , 
2 ),(0 [ ]f    . Then 
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 Proof: From the definitions of ,( )2
[ ]f  , for arbitrary positive   and 

for a sequence of values of r tending to infinity we have 
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 Now from equation (9) and (11) it follows for a sequence of values of r 
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 As ( 0) is arbitrary, we obtain that 
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                   (12) 

 

 Again for a sequence of values of r tending to infinity, we get that 

 

   1 ( , )1
(exp( ( ))) ( [ ] ) ( ))(f gT r f g r                    (13) 
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 Combining equation (2) and (13), we have for a sequence of values of r 

tending to infinity that 
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 As ( 0) is arbitrary, we obtain that 
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 Thus, the theorem follows from (12) and (14). 

 

 The following theorem can be proved in the line of Theorem 2.3 and so the 
proof is omitted. 
 

 Theorem 2.4: Let f and g be any two non-constant analytic functions 

such that  ),1(0 [ ]f g    , 
3 ),(0 [ ]g    . Then 
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 The following theorem is a consequence of Theorem 2.1 and Theorem 2.3 
and so the proof is omitted. 
 

 Theorem 2.5: Let f and g be any two non-constant analytic  

functions such that ( , ) ( , )1 1
0 [ ] [ ]f g f g          and 

( , ) ( , )2 2
[ ]]0 [f f        . Then 
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 Analogously one may state the following theorem without its proof. 
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 Theorem 2.6: Let f and g be any two non-constant analytic  

functions such that ( , ) ( , )1 1
0 [ ] [ ]f g f g          and 

( , ) ( , )3 3
[ ]]0 [f f        . Then 
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 We may now state the following two theorems based on Definition 1.2 and 
Definition 1.3 respectively. 
 

 Theorem 2.7: Let f and g be any two non-constant analytic  
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 Theorem 2.8: Let f and g be any two non-constant analytic  

functions such that 
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 1. Introduction, Definitions and Notations 
 
 In this paper, we assume that readers are familiar with the fundamental 
results and the standard notations of the Nevanlinna value distribution theory of 
meromorphic functions in the complex plane. Throughout this paper, by a 
meromorphic function f(z), we mean a meromorphic function in the complex plane. 

We use ( )fT r  and ( )fM r  to denote the characteristic function of a meromorphic 

function and the maximum modulus of an entire function. In the following, we will 
recall some notations about meromorphic functions and entire functions. 
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Let f be a meromorphic function defined in the open complex plane  . For  

{ }a  ∪  let ( , ) ( ( , )) f fn t a n t a the number of a-points (distinct a-points) of f  

in  z t   , where an ∞-point is a pole of f. Also 
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f f

f f

n t a n a
N r a dt n a r
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and 
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 The function ( , ) ( ( , ))f fN r a N r a  are called the counting function of  

a-points (distinct a-points) of f. In many occasions ( , )fN r   and ( , )fN r   are 

denoted by ( )fN r and ( )fN r  respectively. 

 

 The function ( )fm r , which  is called the proximity function  of  f  is defined 

by  
2

0

1
( ) log ( ) ,

2
i

fm r f re d
  


   

where 
 
    log log , if 1x x x     

    0, if 0 1.x     

 

 For a    we denote by 1( , )
f a

m r


 the function ( , )fm r a  and we mean by 

( , )fm r   the function ( )fm r . 

 

 The function ( ) ( ) ( )f f fT mr Nr r   is called the Nevanlinna’s 

characteristic function of  f . 

 

 If f is entire, the function ( ) ( )f fT mr r  is called the Nevanlinna’s 

characteristic function of  f . 
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 Moreover, if f is non constant entire then ( )fT r  is also strictly increasing and 

continuous function of r. Therefore its inverse 1 : ( (0), ) (0, )f fT T     exists and 

is such that 1lim ( ) .f
s

T s


   

 
 Now let L be a class of continuous non negative on ( , )   function   

such that 0( ) ( ) 0x x    for 0x x  with ( )  x    as x   .  For any

L  , we say that  1L  , if (1 (1)) )(( )ox xc    as 0  x x    for each 

(0, ) c   and 2L  , if (exp( )) (1 (1)) (exp( )) cx o x   as 0  x x    

for each   (0, )c   .  Clearly  2 1 L L . 

 Considering the above, Sheremeta introduced the concept of generalized 
order ( ),   of an entire function. For details about generalized order ( ),   one 

may see [6] . During the past decades, several authors made close investigations on 
the propertics of entire functions related to generalized order ( ),   in some 

different directions. For the purpose of further applications, in this paper we write the 
definition of the generalized order ( ),   of entire and meromorphic function in the 

following way: 
 

 Definition 1.1: (Generalized order ( ),   and generalized lower order 

( ),  ).Let 2L   and   1L . The Generalized order ( ),  and generalized 

lower order ( ),    of a meromorphic function f denoted by ( ), [ ]f   and 

( ), [ ]f 
 
respectively are defined as: 

 

[ ] sup( , )

[ ] inf( , )

(exp( ( )))
lim .

( )

f f

f r

T r

r

  
  




  

 

If f is an entire function, then 

 

[ ] sup( , )

[ ] inf( , )

(exp( ( )))
lim .

( )

f f

f r

M r

r
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 Using the inequality ( ) ( ) (2 )log 3f f fT rTr rM  ,  for an entire 

function f, one may easily verify that 

 

[ ] sup sup( , )

[ ] inf inf( , )

( ( )) (exp( ( )))
lim lim .

( ) ( )

f f f

f r r

M r T r

r r

  
  

 

  
   

 

 The function f is said to be of regular generalized ( ),   growth when 

generalized order ( ),   and generalized lower order ( ),   of f are the same. 

Functions which are not of regular generalized ( ),   growth are said to be of 

irregular generalized ( ),   growth. 

 

 Definition 1.2: (Generalized type ( ),  and generalized lower type 

( ),  ). 

 Let 2L   and 1L  . The generalized type ( ),   and generalized 

lower type ( ),  of a meromorphic function f having finite positive 

generalized order ( ),  ( ),( [ ] ),0 f     denoted by ( ), [ ]f   and 

( ), [ ]f   respectively are defined as: 

 

[ ] sup( , )

[ ] inf [ ]( , ) ( , )

exp( (exp( ( ))))
lim .

(exp ( ))

f f

f fr

T r

r

  
    




  

 
 Analogously, to determine the relative growth of two meromorphic functions 
having same non zero finite generalized lower order ( ),  ,one can introduced the 

definition of generalized weak type ( ),  and generalized upper weak type ( ),  of 

a meromorphic function f having finite positive generalized lower order ( ),  in the 

following way: 
 

 Definition 1.3: (Generalized upper weak type ( ),    and generalized 

weak type (α, β)).  

 

 Let 2L   and 1L  . The generalized upper weak type ( ),  and 

generalized weak type ( ),  of a meromorphic function f having finite positive 
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generalized lower order ( ),  ),(( [ ] )0 f    , denoted by ( ), [ ]f   and 

( ), [ ]f   respectively are defined as: 

 

  
    






[ ] sup( , )

[ ] inf [ ]( , ) ( , )

exp( (exp( ( ))))
lim .

(exp ( ))

f f

f fr

T r

r  
 

 It is obvious that  ( , ) ( , )0 [ ] [ ]  f f        . 

 
 Mainly the growth investigation of entire and meromorphic functions has 
usually been done through their maximum moduli or Nevanlinna’s characteristic 
function in comparison with those of exponential function. But if one is paying 
attention to evaluate the growth rates of any entire and meromorphic function  
w.r.t.a new entire function, the notions of relative growth indicators will come.  
Now in order to make some progress in the study of relative order, one may  
introduce the definitions of generalized relative order ( ),   and generalized relative 

lower order ( ),   of a meromorphic function w.r.t. another entire function in the 

following way: 
 

 Definition 1.4:  (Generalized relative order ( ),    and generalized 

relative lower order (α, β)). 

 

 Let 1, L   . The Generalized relative order ( ),  and generalized 

relative lower order ( ),    of a meromorphic function f with respect to an 

entire function g denoted by ( , )[ ]gf   and ( ), [ ]gf   respectively are defined 

as: 

1
[ ] sup( , )

[ ] inf( , )

( ( ( )))
lim .

( )

f g fg

f g r

T T r

r

  
  








  

 

 The previous definitions are easily generated as particular cases, e.g. 

if g z , Definition 1.4 reduces to Definition 1.1. If lo) ) g( (r r r   , then 

we get the definition of relative order of meromorphic function f with  

respect to an entire function g introduced by Lahiri et al. and if expg z  
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and ( ) ( )r r log r    then ( , ) ] ( )[ gf f   . Also if [ ]( ) log pr r  , 

[ ]( ) log qr r   and g z , then Definition 1.4 becomes the classical one given 

in. 

Further if generalized relative order ( ),    and generalized relative 

lower order ( ),    of a meromorphic function f with respect to an entire 

function g are the same, then f is called a function of regular generalized 

relative ( ),   growth w.r.t. g. Otherwise, f is called a irregular generalized 

relative ( ),   growth w.r.t. g. 

 

 Now in order to refine the above growth scale, one may introduce the 

definitions of other growth indicators, such as generalized relative type ( ),   

and generalized relative lower type ( ),   of a meromorphic function f with 

respect to an entire function g which are as follows: 

 

 Definition 1.5: (Generalized relative type ( ),    and generalized 

relative lower type ( ),  ). Let 1, L   . The Generalized relative type 

( ),    denoted by ( ), [ ]gf   and generalized relative lower type ( ),   

denoted by ( ), [ ]gf   of a meromorphic function f with respect to an entire 

function g having non-zero finite generalized relative order ( ),   are defined 

as: 

1
[ ] sup( , )

[ ] inf [ ]( , ) ( , )

exp( ( ( ( ))))
lim .

(exp ( ))

f g fg

f fg gr

T T r

r

  
    








  

 

 Analogously, to determine the relative growth of a meromorphic 

function f having same non zero finite generalized relative lower order ( ),   

with respect to an entire function  g, one can introduce generalized relative 

upper weak type ( ),    denoted by ( ), [ ]gf   and generalized relative weak 

type ( ),    denoted by ( ), [ ]gf   of f with respect to g of finite positive 

generalized relative lower order ( ),   in the following way: 
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 Definition 1.6: (Generalized relative upper weak type ( ),    and 

generalized relative weak type ( ),  ). 

 

 Let 1,  L   . The Generalized relative upper weak type ( ),   and 

generalized relative weak type (α, β) of a meromorphic function f with respect 

to an entire function g having non-zero finite generalized relative lower order 

( ),   denoted by ( ), [ ]gf  and ( ), [ ]gf   respectively are defined as: 

 
1

[ ] sup( , )

[ ] inf [ ]( , ) ( , )

exp( ( ( ( ))))
lim .

(exp ( ))

f g fg

f fg gr

T T r

r

  
    








  

 
 However the main aim of this paper is to investigate some growth properties 
of entire and meromorphic functions using generalized relative order ( ),   and 

generalized relative type ( ),   of a meromorphic function with respect to an entire 

function which improve and extend some earlier result (see, e.g., ). Throughout this 

paper we assume that 1,  L   , 2L   and all the growth indicators are non zero 

finite. 
 
2. Main Results 

 In this section we preseent the main results of the paper. 
 

 Theorem 2.1:  Let f be a meromorphic function and g,h and k be non-

constant entire functions such that ( ,( ) ),0 [ ( )] [ ( )]g gf h f h         and  

,( ) ( ),0 [ ] [ ]k kf f        . Then 

 
1

( ) ( ) ( ) ( )

1
( ) ( ) ( ,, )

, , ,

,

( ( ( )))
lim inf

( ( ( ))

[ ( )] [ ( )] [ ( )]
min ,

[ ] [ ] [ ])

g g g

k

g f h

kk f kr

f h f h f h

f

T

T f f

T r

T r

     

     

   

  





  
  

  
   

 

,
1

( ) ( ) ( ) ( )

1
( ) ( ) (

,

)

,

, , ,

.
( ( ( )))

lim
[ ( )] [ ( )] [ ( )]

max ,
[ ] [ ] [ ]

sup
( ( ( )))

g f h

r

g g g

k k k f k

f h f h f h

f

T

f f

T r

T T r
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 Proof: From the definitions of ,( )[ ( )]gf h  , ,( )[ ( )]gf h  , ( ), [ ]kf  , 

( ), [ ]kf   and for ar bitrary positive   and for all sufficiently large values of r 

we have 

  1
( ) ( , )( ( ( ))) ( [ ( )] ) ( ),g f h gT T r f h r                        (1) 

 

  1
( ) ( , )( ( ( ))) ( [ ( )] ) ( ),g f h gT T r f h r           (2) 

 

          1
( , )( ( ( ))) ( [ ] ) ( ),k f kT T r f r           (3) 

and 

                                  1
( , )( ( ( ))) ( [ ] ) ( ).k f kT T r f r           (4) 

 

 Again for a sequence of values of r tending to infinity, 

 
1

( ) ( , )( ( ( ))) ( [ ( )] ) ( ),g f h gT T r f h r                        (5) 

 

  1
( ) ( , )( ( ( ))) ( [ ( )] ) ( ),g f h gT T r f h r           (6) 

 

          1
( , )( ( ( ))) ( [ ] ) ( ),k f kT T r f r           (7) 

and 

                                       1
( , )( ( ( ))) ( [ ] ) ( ).k f kT T r f r     (8) 

 

 Now from equation (1) and (4) it follows for all sufficiently large values 

of r that 

1
( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0  is arbitrary, we obtain that 

 

   
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim inf ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 






     (9) 
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which is the first part of the theorem. 

 

 Combining equation (5) and (3), we have for a sequence of values of r 

tending to infinity that 
 

 

 

 












1
( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r




 

 

 As ( )0 is arbitrary, we obtain that 

 

   
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim inf ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 






              (10) 

 

 Again from equation (1) and (7), we have for a sequence of values of r 

tending to infinity that 
 

1
( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

   
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim sup ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 








               (11) 

 

 Now from equation (3) and (2), it follows for all sufficiently large 

values of r that 

1
( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r

 

 

 















  

 

 As ( )0 is arbitrary, we obtain that 
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1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim sup ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 








                   (12) 

   

 

which is the last part of the theorem. 

 

 Again from equation (2) and (8), we have for a sequence of values of r 

tending to infinity that 

 
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

   
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim inf ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 






                    (13) 

 

 Combining equation (4) and (6), we have for a sequence of values of r 

tending to infinity that 

 
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
.

[ ]( ( ( )))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

   
1

( ) ( , )

1
( , )

( ( ( ))) [ ( )]
lim sup ,

[ ]( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 








                   (14) 

 

 So, the second part of the theorem follows from equation (10) and (13), 

the third part is trivial and fourth part follows from (11) and (14). 

 

 Thus, the theorem follows from (9), (10), (11), (12), (13) and (14). 
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 Remark 2.1: If we take ( ) ( ), ,”0 [ ] ”[ ]k kh h         instead of 

, ) ( ,( )”0 [ ] [ ] ”k kf f        and other conditions remain same, the 

conclusion of Theorem (2.1) remains true with ),(” [ ] ”kf  , ),(” [ ] ”kf   and 

1” ( ( ( )))”k fT T r  replaced by ),(” [ ] ”kh  , ),(” [ ] ”kh  and 1” ( ( ( )))”k hT T r   

respectively in the denominator. 

 

 Theorem 2.2: Let f be a meromorphic function and g,h and k be non-

constant entire functions such that ,( ) ( ),0 [ ] [ ]k kf f        and

,( )[ ( )]gf h    . Then 

1
( )

1

( ( ( )))
lim .

( ( ( )))

g f h

r
k f

T T r

T T r








   

 

 Proof: If possible, let the conclusion of the theorem does not hold. 

Then we can find a constant 0   such that for a sequence of values of r 

tending to infinity 

   1 1
( )( ( ( ))) . ( ( ( ))).g f h k fT T r T T r                   (15) 

 

 Again from the definition of ( ), [ ]kf  , it follows that for all 

sufficiently large values of r 

 

   1
( , )( ( ( ))) ( [ ] ) ( ).k f kT T r f r                        (16) 

 

 From (15) and (16), for a sequence of values of r tending to infty, 

 
1

( ) ( , )( ( ( ))) ( [ ] ) ( ).g f h kT T r f r         

 

       i.e.,
1

( )
( , )

( ( ( )))
( [ ] )

( )

g f h
k

T T r
f

r
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                        i.e.,
1

( )
( , )

( ( ( )))
lim inf [ ( )] .

( )

g f h
k

r

T T r
f h

r
 









    

 

 This is a contradiction. Hence, the theorem holds. 

 

 Remark 2.2: If we take ( ) ( ), ,”0 [ ] ”[ ]k kh h         instead of 

, ) ( ,( )”0 [ ] [ ] ”k kf f        and other conditions remain same, the 

conclusion of Theorem (2.2) remains true with 1” ( ( ( )))”k fT T r  replaced by 

1” ( ( ( )))”k hT T r  in the denominator. 

 

 Remark 2.3: Theorem (2.2) and Remark (2.2) are also valid with ”limit 

superior” instead of ”limit” if  ),(” ”[ ( )]gf h     is replaced by 

),(” ”[ ( )]gf h      and the other conditions remain the same. 

 

 Theorem 2.3: Let f be a meromorphic function and g,h and k be non-

constant entire functions such that , ),( ) (0 [ ( )]   [ ( )]  g gf h f h          and

, ),( ) (0 [ ]   [ ]  k kf f        . Then 

 
1

( ) ( ) ( ) ( )

1
( ) (

, , ,

, , ,) ( )

[ ( )] [ ( )] [ ( )]
min

exp( ( ( ( ))))
lim inf

exp
,

[ ] [( ( ( ( ) [ ]) ]) )

g f h

r
k f

g g g

k k k

f h f h f h

f

T T

r f

r

Tf T

     

     

   

  





  
  

  
   

 
1

( ) ( ) ( ) ( )

1
( ) (

,

,) )

,

(

,

, ,

exp( ( (
.

( ))))
lim s

[ ( )] [ ( )] [ ( )]
max ,

[
up

exp( ( ( ( ))] [ ] [ ]))

g g h g

k k k

g f

r
k f

Tf Th f h

f

r

T r

f h

f fT

     

     

 

 













  
 

 
 


 

 

 Proof:  From the definitions of ,( )[ ( )]gf h  , ,( )[ ( )]gf h  , ( ), [ ]kf  , 

( ), [ ]  kf   and for arbitrary positive   and for all sufficiently large values of r 

we have 

 
( , )[ ( )]1

( ) ( , )exp( ( ( ( )))) ( [ ( )] )(exp ( )) ,
f h g

g f h gT T r f h r
  

            (17) 

 

  ( , )[ ]1
( , )exp( ( ( ( )))) ( [ ] )(exp ( )) ,f k

k f kT T r f r   
           (18) 
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  ( , )[ ]1
( , )exp( ( ( ( )))) ( [ ] )(exp ( )) ,f k

k f kT T r f r   
           (19) 

and 

 
( , )[ ( )]1

( ) ( , )exp( ( ( ( )))) ( [ ( )] (exp ( )) .
f h g

g f h gT T r f h r
  

             (20) 

 Again for a sequence of values of r tending to infinity, 

 
( , )[ ( )]1

( ) ( , )exp( ( ( ( )))) ( [ ( )] )(exp ( )) ,
f h g

g f h gT T r f h r
  

            (21) 

 

  ( , )[ ]1
( , )exp( ( ( ( )))) ( [ ] )(exp ( )) ,f k

k f kT T r f r   
           (22) 

 

  ( , )[ ]1
( , )exp( ( ( ( )))) ( [ ] )(exp ( )) ,f k

k f kT T r f r   
           (23) 

and 

 
( , )[ ( )]1

( ) ( , )exp( ( ( ( )))) ( [ ( )] (exp ( )) .
f h g

g f h gT T r f h r
  

             (24) 

 

 Now from equation (17) and (18) and the condition 

( ) ( ), ,[ ( )] [ ]g kf h f      it follows for all sufficiently large values of r that 

 
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim inf ,

[ ]exp( ( ( ( ))))

g f h g

r kk f

T T r f h

fT T r

 

 

 






                        (25) 

 

which is the first part of the theorem. 

 

 Combining equation (21) and (19) and the condition

( ) ( ), ,[ ( )] [ ]g kf h f     , we have for a sequence of values of r tending to 

infinity that 
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1
( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim inf ,

[ ]exp( ( ( ( ))))

g f h g

r kk f

T T r f h

fT T r

 

 

 






                        (26) 

 

 Again from equation (17) and (23) and the condition

( ) ( ), ,[ ( )] [ ]g kf h f     , we have for a sequence of values of r tending to 

infinity that 

1
( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim sup ,

[ ]exp( ( ( ( ))))

g f h g

r kk f

T T r f h

fT T r

 

 

 








                       (27) 

 

 Now from equation (19) and (20) and the condition

( ) ( ), , [ ][ ( )]g kf h f     , it follows for all sufficiently large values of r that 

 
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As s(> 0)is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim sup ,

[ ]exp( ( ( ( ))))

g f h g

r kk f

T T r f h

fT T r

 

 

 








              (28) 

 

which is the last part of the theorem. 



                         GENERALIZED RELATIVE ORDER ( ),    111 

 Again from equation (20) and (22) and the condition

( ) ( ), ,[ ( )] [ ]g kf h f     , we have for a sequence of values of r tending to 

infinity that 

1
( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim inf ,

[ ]exp( ( ( ( ))))

g f h g

r kk f

T T r f h

fT T r

 

 

 






              (29) 

 

 Combining equation (18) and (24) and the condition 

( ) ( ), ,[ ( )] [ ]g kf h f     , we have for a sequence of values of r tending to 

infinity that 

 
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
.

[ ]exp( ( ( ( ))))

g f h g

kk f

T T r f h

fT T r

 

 

 















 

 

 As ( )0 is arbitrary, we obtain that 

 

  
1

( ) ( , )

1
( , )

exp( ( ( ( )))) [ ( )]
lim sup ) ,

[ ]exp( ( ( ( )))

g f h g

r kk f

T T r f h

fT T r

 

 

 








              (30) 

 

 Thus, the theorem follows from (25), (26), (27), (28), (29) and (30). 

 

 Remark 2.4:  If we take ( ),( ),”0 [ ]   [ ]   ”k kh h         and

( ) ( ), ,[ ( )]   [ ]g kf h h     , instead of ( ),( ),”0 [ ]   [ ]   ”k kf f         and 

( (, ,) )[ ( )]   [ ]  g kf h f      other conditions remain same, the conclusion  

of Theorem (2.3) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf   
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and 1” ( ( ( ))))”( k fexp T T r    replaced by ),(” [ ] ”kf  ,  ),(” [ ] ”kh   

1” exp ( ( ( ))))”( k hT T r   respectively in the denominator. 

 

 Remark 2.5:  If we take ( ),( ),”0 [ ]   [ ]   ”k kf f         and

( ) ( ), ,[ ( )]   [ ]g kf h h     , instead of ( ),( ),”0 [ ]   [ ]   ”k kf f         and 

( (, ,) )[ ( )]   [ ]  g kf h f      other conditions remain same, the conclusion  

of Theorem (2.3) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf   

and 1” exp ( ( ( ))))”( k fT T r    replaced by ),(” [ ] ”kf  ,  ),(” [ ] ”kh   

1” exp ( ( ( ))))”( k hT T r   respectively in the denominator. 

 

 Remark 2.6:  If we take (, ),( )”0 [ ] [ ]   ”k kh h         and

( ) ( ), ,[ ( )]   [ ]g kf h h     , instead of ( ),( ),”0 [ ]   [ ]   ”k kf f         and 

( (, ,) )[ ( )]   [ ]  g kf h f      other conditions remain same, the conclusion  

of Theorem (2.3) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf   

and 1” exp ( ( ( ))))”( k fT T r    replaced by ),(” [ ] ”kh  ,  ),(” [ ] ”kh   

1” exp ( ( ( ))))”( k hT T r   respectively in the denominator. 

 
 Now in the line of Theorem (2.3), one can easily prove the following 
theorem using the notion of Generalized relative upper weak type ( , )   and 

generalized relative weak type ( , )    and therefore the proof is omitted. 

 

 Theorem 2.4: Let f be a meromorphic function and g, h and k be non-

constant entire functions such that ( , ) ( , )0 [ ( )]   [ ( )]  g gf h f h         and 

( , ) ( , )0 [ ]   [ ]  k kf f         and ( , )( , )[ ( )] [ ]g kf h f    . Then 

 
1

( ) ( ) ( ) ( )

1
( ) (

, , ,

, , ,) ( )

[ ( )] [ ( )] [ ( )]
min

exp( ( ( ( ))))
lim inf

exp
,

[ ] [( ( ) ] [) ]( ( ) )

g f h

r
k f

g g g

k k k

f h f h f h

f

T T

r f

r

Tf T

     

     

   

  





  
  

  
   

 



                         GENERALIZED RELATIVE ORDER ( ),    113 

1
( ) ( ) ( ) ( )

1
( ) ( (

,

) )

, ,

, , ,

.
exp( ( ( ( )))

lim sup
[ ( )] [ ( )] [ ( )]

max ,
[ ] [ exp( ( ( ( ])] )) [

g f

f

g g g

k rk k

h

k

f T T

T

h f h

f

r

T r

f h

f f

     

     

  

 










  
  

  
  

 
 

 Remark 2.7:  If we take ( , ) ( , )”0     ”[ ] [ ]k kh h         and

( )( , ) ,(   [ ][ )]g kf h h     , instead of ( ),( ),”0 [ ]   [ ]   ”k kf f         and

( ) ( ), ,[ ( )]   [ ]g kf h f      and other conditions remain same, the conclusion  

of Theorem (2.4) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf  and 

1”exp ( ( ( ))))”( k fT T r   replaced by ),(” [ ] ”,kf   ),(” [ ] ”kh   

1”exp ( ( ( ))))”( k hT T r   respectively in the denominator. 

 

 Remark 2.8:  If we take ( ),( ),”0 [ ]   [ ]   ”k kf f         and

( ) ( ), ,[ ( )]   [ ]g kf h f     ,  instead of ( ),( ),”0 [ ]   [ ]   ”k kf f         and 

( (, ,) )[ ( )]   [ ]  g kf h f      and other conditions remain same, the conclusion of 

Theorem (2.4) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf    replaced by 

),(” [ ] ”,kf   ),(” [ ] ”kh  respectively in the denominator. 

 

 Remark 2.9:  If we take ( ),  ( ),”0 [ ]   [ ] ”k kf f         and

( ) ( ), ,[ ( )]   [ ]g kf h h     ,  instead of ( ),  ( ),”0 [ ]   [ ] ”k kf f         and 

( ) ( ),   ,[ ( )] [ ]g kf h f      and other conditions remain same, the conclusion of 

Theorem (2.4) remains true with ),(” [ ] ”,kf   ),(” [ ] ”kf  and 

1”exp ( ( ( ))))”( k fT T r   replaced by ),(” [ ] ”,kh   ),(” [ ] ”kh   

1”exp ( ( ( ))))”( k hT T r    respectively in the denominator. 
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1. Introduction 
 
 In this paper, we study the following problem: 
 

   
( ) ( )

( ) ( )

( ) ( ) ( ) ( , ( )),  [0, 1]

(0) (1) (0) (1) (0) (

(

1)

)

0

vi iv

iv iv

u x Au Bu'' x Cu x f x u x x

u u u u

x

'' u'' u

     


     

                (1.1)   

      

where , ,A B C and parameter 0  , and : [0, 1]f     is a continuous 

function. Study sixth-order differential equations was first started by studying the 
following problem: 
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6 4 2

6 4 2
( , ).

u u u u
A B f x u

x x x x
    (1.2) 

 
 One of the most important applications problem (1.2) is the model that 
describes the phase fronts behavior in the materials. 
 
 In recent years, BVPs for sixth-order ordinary differential equations have 
been studied extensively, see [1, 2, 3, 5, 7, 10, 11] and the references therein in [5], 
Gyulov et al. obtained the existence and multiplicity the solutions for the following 
boundary value problem 
 

   

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( , ( )), 0 ,

(0) ( ) (0) (0) )( ) ( 0

vi iv

iv iv

u x Au x Bu'' x Cu x f L

L

x u x x

u u L u'' u'' u u L

      


     

              (1.3) 

 

where , ,A B C and : [0, ]f L     is a continuous function. 

 

 In [7], Li obtained the existence and multiplicity of positive solutions for the 
following problem 
 

     
      


     

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( , ( )) 0,  [0, 1]

(0) (1) (0) (1) (0) (1) 0

( )vi iv

iv iv

u x A x u B x u'' x C x u x f x u x x

u u u'' u'

x

' u u
  

(1.4) 
 

where )( ), ( ) ( 0), ([ , 1]A B C Cx x x   and : [0, 1] [0, ) [0, )f      is continuous. 

Bonanno et al. in [1], applied critical point theory and variational methods to prove 
the existence and multiplicity of solutions for the following problem 
 

           ( ) ( )( ) ( ) ( ) ( , ( )), [ , ]( )vi ivu x Au Bu'' x Cu x f x u x bx x a                 (1.5) 

 

where 0, ,A B   and C  are given real constants, : [ , ]f a b     is a function. 

Recently, Bonanno and Livrea in [2] obtained infinitely many solutions for the 
nonlinear sixth-order problem (1.1). They used the variational methods and an 
oscillating behavior on the nonlinear term to demonstrate the existence of these 
solutions. 
 
 In this article, we discuss the existence of two and infinitely many weak 
solutions for the problem (1.1), under suitable conditions on the nonlinear term. We 
also present examples to illustrate the results. 
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2. Preliminaries and Basic Notation 
 
 In this section, we first introduce some notations and some necessary 
definitions. Set 
 

  3 1
0(0, 1) (0, 1) (0) (1) 0 .|{ }X u H H u'' u''   ∩              (2.1) 

 
 X  is the Sobolev space, consider the inner product 

 
1

0
, : ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )) ,u v u''' x v''' x u'' x v'' x u' x v' x u x v x dx       

 
which induces the norm 

               
1
22 2 2 2

2 2 2 2: ( )u u''' u'' u' u                              (2.2) 

 

 Proposition 2.1:  (see [2])  If  1
2

k


  ,  for every  u X ,  we have 

  ( ) 2 ( ) 2
2 2 0, 1, 2 1, 2, 3 with ,i j i ju k u i j i j                 (2.3) 

 

where  
1

1 2 2
0

: ( ( ) )u u x dx      is norm in 2(0,1)L . 

 
 We introduce the function :N X    as follows, 
 

2 2 2 2
2 2 2 2( ) : ,  ,N u u''' A u'' B u' C u u X               

 

where A, B and C are real constants and satisfied in the following condition:  

 
2 2 3( ) max , ,   1.{ }H Ak Ak Bk Ak Bk Ck        

 

 Lemma 2.2: (see [2]) Put 

 

 ( ).  ,Xu N u u X      
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and assume that the condition (H) holds. Then, Xu   is a norm equivalent to 

the norm defined in (2.2)  and ), .( XX     with following inner product 

 

      
1

0
( ) ), : ( ( ( ( ) ( ) ( ) ( )) )( )u v u''' x v''' x Au'' v'' Bu v' Cu v dxx x x x x x  , 

 

is a Hilbert space. 

 

 Clearly 0, . )( ) ( (0, 1). .X CX       and the embedding is compact. 

 

 Lemma 2.3:  (see [2]) Assume that (H) holds, one has 

 

,   
2

X
k

u u u X


       . 

 

for every  u X , and  0   is given in [2]. 

 

 We say that a function u X    is called a weak solution of the problem 
(1.1) if 

 

 
1

0
 ( ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( ))u''' x v''' x Au'' x v'' x Bu' x v' x Cu x v x dx     

 

    
1

0
  ( , ( )) ( ) 0,    f x u x v x dx v X . 

 

 Consider  :I X R   defined by 

 

   
12

0

1
( ) ( , ( ))

2
XI u u F x u x dx      ,                          (2.4) 

where 

0
( , ) ( )

t
F x t f x d      for all  ( , ) [0, 1]x t    . 

 

 We observe that 1( , )I C X    for any v X , 
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1

0
( )  ( ( ) ( ) ( ) ( ) ( ) ( )   ( ) ( ))'I u v u''' x v''' x Au'' x v'' x Bu' x v' x Cu x v x dx           (2.5) 

 

   
1

0
  ( , ( )) ( ) 0,    f x u x v x dx v X .                (2.6)  

 

 Thus, the solutions of Problem (1.1) are the critical point of  I  . 

 

 Definition 2.4: Assume X be a real reflexive Banach space. We say J 

satisfies Palais-Smale condition (denotes by PS condition for short), if any 

sequence { }ku X  for which { ( )}kJ u  is bounded and ( ) 0kJ' u   as 0k   

possesses a convergent subsequence. 

The proofs of our results are based the following theorems. 
 

 Theorem 2.5: [9, Theorem 4.10] Let 1( , )I C X   , and I   satisfies 

the Palais-Smale condition. Assume that there exist 0 1,u u X  and a 

bounded neighborhood Ω of 0u  satisfying 1   u    and  

 

0 1inf ( ) max{ ( ), ( )},I u I u 


 


  

 

then there exists a critical point u of I  , i.e.,  ( ) 0'I u   with 

 

0 1max { ( ), ( )}( )I I u I uu   . 

 

 Theorem 2.6: [15, Theorem 38] For the functional 

[ ]: ,I M X      with   M , min ( )u M I u    has a solution in 

case the following conditions hold: 

 

 (i1)  X is a real reflexive Banach space, 

 

 (i2) M is bounded and weak sequentially closed, 
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 (i3) I   is weak sequentially lower semi-continuous on M, i.e., by 

definition, for each sequence { }nu  in M such that nu u  as n   , we 

have ( ) lim in  (f )n nI u I u 
 
holds. 

 

 Theorem 2.7:  Consider X be an infinite-dimensional Banach space 

and  
1( , )I C X   be an even functional which satisfies the (PS)-condition 

and (0) 0I   . If X V E   where V is finite dimensional and I   satisfies 

the conditions 

 

 (j1) there are constants , 0    such that 

 

( ) , ,  I u if u u E       , 

 

 (j2)  for each finite-dimensional subspace nE X  there is nD  such 

that 

( ) 0,   , n nI u if u D u E      , 

 

then I   possesses an unbounded sequence of critical points. 

 
 We refer the reader to the paper [12, 13] in which Theorem 2.7 was 
successfully employed to some boundary value problems. To read more on the 
applications of Theorem 2.5 and 2.6, we refer to the papers [4, 6, 14]. 
 
3. Main Results 
 
 We utilize the following assumptions throughout this paper.  
 

 (f0)  there exist a constants  2   and  0T   such   that 

 
0 ( , ) ( , ), for  and [0, 1]F x t tf x t t T x      . 

 

 (f1)  :f V     continues and there exists constant 0L   such that 
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(1 ),   for   and  [0, 1]( , ) qf t c t t L xx          

 
where  2q  . 

 

 (f2)  
( , )

0 2
lim    0,   for [0, 1]

f x t
t

t
x    uniformly. 

 
 We use the following lemmas to prove our main results. 
 

 Lemma 3.1: Assume that the condition (f0) holds. Then ( )I u  satisfies 

the (PS)-condition. 

 

 Proof: Assume that { }n nu X   such that { ( )}n nI u   is bounded and 

( ) 0'
nI u   as n   . Then, there exists a positive constant 0c  such that 

0( )nI u c       and 0( )'
nI u c     for all n N .  Therefore, from the definition 

of 'I   and 1( )A , we  have 

 

0 1 ( ) ( )( )'
n X n n nc c u I u I u u        

 

  
12

0
( 1) ( ( , ( )) ( ) ( , ( )))
2

n X n n nu f x u x u x F x u x dx


         

 

             2( 1)
2

n Xu


    .                             (3.1) 

 

therefore for some 1 0c  , since 2   this implies that { }nu  is bounded. Since X 

is Banach space and { }nu  is bounded, there exist a subsequence, still denoted by 

{ }nu  and a function u in X such that 

 

 ,  in  ,  and   n nu u X u u 1in  ([0, 1])C .                          (3.2) 

  

 By definition ( )'I u , we get 
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1

0
( ), ( )( ( ) ( )) ( )( ( ) ( ))' ''' ''' ''' '' '' ''

n n n n n nI u u u u x u x u x Au x u x u x         

 

   ( )( ( ) ( )) ( )( ( ) ( ))' '
n n n nBu x u x u x Cu x u x u x dx      

 

   
1

0
( , ( ))( ( ) ( )) .n nf x u x u x u x dx    

 
 Therefore, we have 

( ) ( ),' '
n n nI u I u u u       

  
1

0
( )( ( ) ( )) ( )( ( ) ( ))''' ''' ''' '' '' ''

n n n nu x u x u x Au x u x u x    

  
( )( ( ) ( )) ( )( ( ) ( ))' '

n n n nBu x u x u x Cu x u x u x dx     

  

1

0
( , ( ))( ( ) ( ))n nf x u x u x u x dx   

  
1

0
( )( ( ) ( )) ( )( ( ) ( ))''' ''' ''' '' '' ''

n nu x u x u x Au x u x u x   
 

 

  
( )( ( ) ( )) ( )( ( ) ( ))' ' '

n nBu x u x u x Cu x u x u x dx     

  
 

1

0
( , ( ))( ( ) ( )) )nf x u x u x u x dx  

  
   

1 2 2

0
( ( ) ( )) ) ( ( ) ( ))''' ''' '' ''

n nu x u x A u x u x  

  
2 2( ) ( )) ( ) ( ))' '

n nBu x u x Cu x u x dx     

  

1

0
( ( , ( )) ( , ( )))( ( ) ( ))n nf x u x f x u x u x u x dx    

  

12

0
( ( , ( )) ( , ( )))( ( ) ( )) .n X n nu u f x u x f x u x u x u x dx        
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 From the continuity of  f, we get 

 

 1 2 2 2

0
( ( ) ( )) ) ( ( ) ( )) ( ( ) ( ))''' ''' '' '' ' '

n n nu x u x A u x u x B u x u x      

 

         2( ( ) ( )) 0, ,nC u x u x dx n                     (3.3) 

and 

 
1

0
( ( , ( )) ( , ( )))( ( ) ( )) 0, ,n nf x u x f x u x u x u x dx n                   (3.4) 

 
from (3.1) , (3.2), we can conclude 
 

( ) ( ), 0.' '
n n nI u I u u u       

 
 Therefore by (3.3) to (3.4), we have 
 

2 0.n Xu u     

 

 Thus, the sequence nu  converges strongly to u in X. Therefore, I   satisfies 

the (PS)-condition.           □ 
 

 Theorem 3.2: Assume that the assumptions (f0), (f1) and (f2) hold. Then: 

if  ( , ) 0f x t   for all [( , 0,) 1]x t    , the problem (1.1) has at least two weak 

solutions. 

 

 Proof: Clearly, (0) 0I   . From the Lemma 3.1, we can see I   satisfies the 

(PS)-condition. We will show that there exists 0R   such that the functional I   has 

a local minimum 0 { ; }u BR u X u X R      .  Assume that{ }n Ru B  and  

nu u , as n    by Mazur Theorem [8], there exists sequence { }nv  of convex 

combinations such that 
 

1 1

, 1, 0,
n n

n n j n nj j j
j j

v a u a a j N
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and   nv u  in X.  Clearly,  RB  is a closed convex set,  therefore { }n Rv B  and

Ru B . Since, I   is weakly sequentially lower semi-continuous on RB  and X is a 

reflexive Banach space, so, from Theorem 2.6 we can know that I   has a local 

minimum 0 Ru B . Assume that 0 min ( )( ) u BR
I uu I  , we will show that

0 in )( ) f (u BR
I I uu  . By (f1) and (f2), there exits 0   such that 

 

   2( , )  qF x t t c t       ,                           (3.5) 

 

let 0   be small enough such that 
2

2

2
 

k





 , therefore 

 

    
1 12

0 0

1
( ) ( ) ( )

2
q

xI u u u x d c u x d                

 

  
12 2

0

1
( )

2
q

Xu u c u x d            

 

  
2

2 2

2

1

2 4

q
X X X

k
u u c u 


          

 

  
2

2

2

1

2 24
( ) ( )q q

X X

k k
u c u 


        

 

Since, 2q   , when 1Xu    there exist 0r  , such that ( ) 0I u r    for every 

Xu r   , we choosing  R r ,  thus, 0 0 (0)) (( )I I I uu      for  Ru B  .  

Hence, 0 Ru B  and 0( ) 0'I u  . Since, 0u  is a minimum point of I   on X, there 

exists 0R   sufficiently large such that 0 0 inf  ( )( ) u BR
I I uu   , where

  { ; }R XB u X u R     . Now, we will show that there exists 1u  with 

1 Xu R    such that 1 in )( ) f (u BR
I I uu  . Letting 1k X  and 1 1u k , 

0   and 1 1Xk   . From (f0) we get there exist constants 1 2,  0a a   such that 

   1 2( , )F x t a t a  for all [0, 1]x  . Thus, 
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12

1 1 10

1
( ) ( , )( ))

2
XI u k F x k x d           

 

             
12

1 1 1 20

1
( )

2
Xk a k x d a . 

 

 Since, 2  , there exists sufficiently large 0R    so 1( ) 0I k   . 

Hence, 0max ( ){I u ,  1( ) inf ( )} BR
I u I u . Then, Theorem 2.5 gives the critical 

point u  . Therefore, 0u  and u   are two critical points of I  , which are two weak 

solutions of the Problem (1.1).                                                                                   □ 
 

 Theorem 3.3:  Assume that the assumption (f0) and the following 

condition hold: 

 (f4)  there exists 2q   such that 

 

1( , ) qf x t c t    ,   as  0t   . 

 

 Then Problem (1.1) has infinitely many pairs of weak solutions. 
 

 Proof: We want to apply Theorem 2.7. By lemma 3.1 the functional I   

defined in (2.4) satisfies the (PS)-condition. 
 

 Now, we need to assumptions (j1) and (j2) of Theorem 2.7. By condition (f4) 

and Lemma 2.3, we have 
 

  

12

0

1
( ) ( , ( ))

2
XI u u F x u x dx        

 

   
12

0

1

2
q

Xu c u dx       

 

   21

2
q

Xu c u        

 

   
2

21
.

2 2
q

q
q

X X
q

k
u c u
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 Since, 2q  ,  we  have  that for u      sufficiently small

( )  0I u   .  Let nE  be a n-dimensional subspace of X, by the equivalence of 

any two norms on finite-dimensional space, by integrating the condition (f0) there 

exist constants 1 2, 0a a   such that 

 

1 2( , )F t x a x a     

 

for all [0, 1]t   and x   .  Now, for any nu E , we have 

 

    

12

0

1
( ) ( , )( ))

2
XI u u F x u x dx        

 

          
12

20

1
( ) .

2
Xu a u x dx a  

 

 Since, 2  , there exists sufficiently large 0nD  , such that ( ) 0I u   

for nu R   . Therefore, all the assumptions of Theorem 2.7 are established. Thus, 

the functional I   possesses an unbounded sequence of critical points on X. And it 

proves the result.                                 □ 
 
 Now, illustrate our results by the following examples. 
 

 Example 3.4:  Consider the following problem 

 

              

( ) ( )

( ) ( )

( ) 2 ( ) 3 ( , ( )),  [0, 1]

(0) (1) (0) (1) (0) (1) 0,

( )vi iv

iv iv

u x u u'' x u f x u x x

u u u'' u'' u u

x      


     

            (3.6) 

 

where 2A  , 1B   , 3C   . Set 4( , )f x t t   for all [0, 1]x  , thus, we 

have 51
5

( , )F x t t  for all [0, 1]x  . Hence, 
,

( , )

)
 

(
lim 5

f x

F x

 
     , so, by 

choosing 5 2    and 1T   the condition (f0) satisfied. Also ( , ) 0f x t   for 

all [0, 1]x  , and 
( , )

0 2
lim 0

f x t
t

t
  .  By selecting  5q   and 1L  , we get
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4( , ) (1 )f x t c t       for 1t    and for same 0c  . Therefore, all the 

assumptions in Theorem 3.2  are fulfilled. Hence, the Problem (3.6) has at least 

two weak solutions. 

 

 Example 3.5:  Consider the following problem 

 

 

( ) ( )

( ) ( )

( ) ( ) 3 ( , ( )),  [0, 1]

(0) (1) (0) (1) (0) (1) 0,

( )vi iv

iv iv

u x u u'' x u f x u x x

u u u'' u'' u u

x     


     





                 (3.7) 

 

where 1A  , 1B  , 3C  . Put 

 
5

7

8 , 1
( , )

8 , 1,

t t
f x t

t t

 
 



 

 

for all  [0, 1]x   . We have 

 
64

3
8 1

3

, 1
( , )

, 1,

t t
F x t

t t

 
 

 

 

 

for all  [0, 1]x  . Hence, ,

( , )

)
 

(
lim 8

f t

F t

 
      and ,

( , )

)
 

(
lim 6

f t

F t

 
     , 

thus by choosing 8 2    and 1T   the condition (f0) satisfied. Also by 

choosing   6q    and   8c  , we have 5( , ) 7f x t t        for 1t   , therefore, 

the condition (f1) satisfied. We clearly see that all the assumptions present in 

Theorem 3.2 are established. Thus, the Problem (3.7) has infinitely many pairs 

of weak solution. 
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