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Thomas Koshy | SUMS INVOLVING EXTENDED
GIBONACCI POLYNOMIALS REVISITED

Abstract: We explore the Jacobsthal versions of four sums involving
gibonacci polynomial squares.

Keywords: Extended Gibonacci Polynomials, Fibonacci Polynomial, Lucas
Polynomial. Binet-Like Formulas, Jacobsthal, and Jacobsthal-
Lucas Polynomials

Mathematical Subject Classification (2020) No.: Primary 11B37, 11B39,
11CO08.

1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Z,0(%) = a(x)z,,,(x) + b(x)z,(x), where x is an arbitrary integer variable;a(z),

b(z), z,(z),and z /() are arbitrary integer polynomials; and n > 0.

Suppose a(z) =z and b(z)=1. When zg(z)= 0 and z(z)=1,
z,(x) = f,(z), the mnth Fibonacci polynomial ; and when zy(z)=2 and
z1(z) =z, ,,(x) =1,(x), the nth Lucas polynomial. They can also be defined by
the Binet-like formulas. Clearly, f,(1) = F,, the nth Fibonacci number; and
l,(1) = L, , the nth Lucas number [1, 3].
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On the other hand, let a(z) =1 and b(z) = . When zy(z) =0 and
z1(x) =1, z,(z)=J,(z), the nth Jacobsthal polynomial ; and when zy(z) = 2
and z1(x) =1, z,(z) = j,(x), the nth Jacobsthal-Lucas polynomial.
Correspondingly, J, =J,(2) and  j, = j,(2) are the nth Jacobsthal and

Jacobsthal-Lucas numbers, respectively. Clearly, J,, (1) = F,,; and j,(1) = L, [2, 3].
Gibonacci and Jacobsthal polynomials are linked by the relationships

Jo(2) = 2" D2 f (1 /) and j,(2) = 2"/21,(1 / V) [2,3].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or I,,c,=J, or j,, A=+vz>+4, 2a=z+A,

E=Nit’+1,y=x2+F and D = J4z + 1, where ¢, = ¢, (z).

2. Gibonacci Sums

We established the following four results in [4]:

Theorem 1: Let k be a nonnegative integer. Then

i (_1)7l+k’x _ ﬁ _ fk+2 (1)

il bopgopsr + (D" A Ly

Theorem 2: Let k be a nonnegative integer. Then

i (_1>n+k’+1m 1 (0{ _ fk+2j . (2)

n=1 lon ok 41 _(_1)n+k$ AP\A Dy

Theorem 3: Let k be a nonnegative integer. Then

i 2=1)"" fonoper + 27 a’ fih 3)
== ka2

2 >
- o+
n=l |:l2n+2k+1 + (=)™ 95} AT len
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Theorem 4: Let k be a nonnegative integer. Then

0 _1\n+k+1 2
z 2( 1) xf2n+2k+2 +z _ i [Agag _ l]?;Q \J .
flc+1

2 4
n=l1 [l2n+2k+1—(—1>n+k95] A

Next we explore the Jacobsthal implications of these theorems.

3. Jacobsthal Consequences

4

Using the Jacobsthal-gibonacci relationships in Section 1, we will now find
the Jacobsthal versions of equations (1) — (4). In the interest of brevity and clarity, we

let A denote the fractional expression on left-hand side of the given equation and B
its right-hand side, and LHS and RHS those of the desired Jacobsthal equation,

respectively.

n+k
3.1 Jacobsthal Version of Equation (1): Proof: Let 4 — (=)""z

lopsks + (_1)n+k Z

Replacing x with 1/+vz, and multiplying the numerator and denominator of the

k

resulting expression with z"" | we get

(_1>n+k
‘/El2n+k+1 + (_1)n+k

A=

(_I)n+k

2n+2k+1)

x( )n+k

2
/ lopsopsr + (=2

(_I)n+k

. +k
Jon+k+1 T (_x)nJr

LHS = i (o)™

. I’
n=1 Jonsors1 + (—2)""

where gn = gn(l/‘/z) and Cp = Cn(l‘)'

)
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a ,
Next, we let B = ——fk—”

. Replacing 2 with 1/+z , then multiply each
k+1

numerator and denominator of the resulting expression with 2 F /2 This yield

_D+1_aWVPp

B :
2D x(k+1)/2lk+1
Rus = P *t1_ @ _
2D Jk+1

where gn = gn(l/‘/z) andcn = C7z($) .

This, combined with equation (5), yields the desired Jacobsthal version:

i (—z)"** _ D+l ©)
n=1 Jop+2k+1 + (—x)Mk 2D Jk+1
where ¢, = ¢, (z). O
It then follows that
i (_1)n,+k _ 5+ \/5 _ Fk+2 [4]
n=1 Loy or41 + (_1)n+k 10 Ly
i (_2>n+k — 2 _ Jk+2

n=1 Jon+2k+1 T (—2)n+k 3 Jkn
Next we find the Jacobsthal consequence of equation (2).

3.2 Jacobsthal Version of Equation (2): Proof: We
A (_1)n+k‘+1$

sk + (‘DMka

have

. Replace z with 1/, and then multiply the numerator and

denominator of the resulting expression with " .
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We then get

_1\n+k+1
A= ( 1> +k
\/5127L+k+1 - (_1)71

(_:L,)?Hk

2n+2k+1) ) n+k

z! /212n+2/§+1 - (-

—(—.%') n+k

j2n+k+1 - (—l’)

n+k ’

o0 n+k
rs=y 0

n=1 Jon+ok+1 — (=)

(7

n+k’

where gn = gn(l/‘/z) and Cp = Cn(l‘)'

Next we let B = Aa — lki Replacing z with 1/+z , and then multiplying
k+1

(n+k)/2

each numerator and denominator of the resulting expression with x , yields

B zfc{(Dﬂ)D ) lm}
D? 2z Jra

1 {(DH)D x(""*2>/25k+2]

D? 2 Ik/Qlel
RHS = L |:(D + 1)D _ jk+2 :|
D? 2 i1

where g, = g,(1/vz) and ¢, = ¢, (z).

Combined with equation (7), this yields the desired Jacobsthal version:
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i _(_x)nJrk’ _ L |:(D + 1)D _ jk+2 :| (8)
ol Jonsonsr — (-2)" D 2 k1
where ¢, = ¢, (z). O
In particular, this yields
c —(-1)"** 5+v5 L
z ( ) — k42 [4];

n=t Logopen — (-1)"F 10 5F 41

v 2 s
n+k 3 9J.

n=1 j2n+2k+1 - (_2)

3.3 Jacobsthal Version of Equation (3): Proof: Let

A= 2(_1)n+k$f2n+k+2 + 1132

[l2n+k+1 + (_1)n+k $:|2

Replacing z with 1/vz, and multiplying the

numerator and denominator of the resulting expression with 2L e get
g1 1
2(-)"" I Jonskyo + =
A= z z

2
n+k 1
|:l2n+k+1 + (_1) + \/E:|

n+k 2n+2k+1)/2 2n+2k
2(-x) [x( )/ f2n+k+2} +x

2
|:$(2n+2k+1)/212n+2k:+1 + (_:I;)n+k:|

n+k 2n+2k
2(=2)""" Jopsopea + ¥ .

- 2
. k
|:]2n+2k+1 + (_m)n+ :|
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0 n+k 2n+2k
LHS = z 2(_$) J2n+k+2 + 7 (9)

2
n=1 |:j2n+2k+l + (_x)n+k:|

where g, = g,(1/vz) andec, =c, (7).

2 2
Now let B = a——fk—”. Replace z with 1/vr, and multiply each

2 2
A lisa

numerator and denominator of the resulting expression with 21 This yields

2
B (D +1)* [$<k+l)/2fk+2} ‘
B 2 2
4D [m(k+1)/21k+1:|

(D + 1)2 _ Jl%+2
4D? Ji

RHS =

)

where g, = g,(1/vz) and ¢, = ¢, (z).
This, coupled with equation (9), yields the desired Jacobsthal version:

i 2(_x)n+kj2n+k+2 + g2 (D + 1)2 _ J/?+2 .

2 2 2
- . k
n=l [J2n+2k+1 + (=)™ ] D k1

(10)

where ¢, = ¢, (z). O

In particular, this yields

0

Z 2=1)""* Fyppan + 1 _3+45 Fly
2 2
n=l |:L2n+2k'+1 + (‘qu 0 L

[4];
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eSS 2)" Joniisr + 4" 4 TR

2 g 2
n=l |:]2n+2k+1 +( 2)n+k:| Jk+1

Next we find the Jacobsthal consequence of Theorem 4.

3.4 Jacobsthal Version of Equation (4): Proof: We have

2(_1)n+k+1xf2n+k’+2 +a°
2
v+ k
|:l22n+k+1 - (_1)n+ x}

and denominator of the resulting expression with 222+ We then get

A=

. Replace z with 1/+z , and multiply the numerator

1 1
2 1 n+k+1 + =
( ) J_ f2n+k+2 T

1 2
|:12n+2k'+1 - (_1)n+k \/E:|

n+k 2n+2k+1)/2 2n+2k
-2(-z) [ ( )/ f2n+k+2:| +z

2
|:$(2n+2k+1)/212n+2k+1 _ (_z)n+k}

n+k 2n+2k
—2(—%) Jonikio T T .

2
. k
|:]2n+2k+1 - (_x)n-%- :|

2n+2k
LHS

ke n+k
Z —2)" " Jopapeo + T

= (11)
|:]2n+2k+1 (@mq

where g, = g,(1/vz) and ¢, = ¢, (z).

2
Next we let B = % [AQQQ - l"T” . Replacing = with 1/vz, and then
A fk+1

multiplying each numerator and denominator of the resulting expression with zhr?
yields
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o DD’ PP
D4 A2 $2[$k/2fk+1]2 ’

(D + 1>2 _ j]?+2
4D*  DYJE,

RHS =

)

where gn = gn(l/‘/z) and Cp = Cn(l‘)'

Combining this with equation (11) yields the desired Jacobsthal version:

- _2(_I)n+k‘]2n+k+2 + x2n+2k _ (D + 1)2 jk21+2 (12)
2 2 pdq2
n=l |:j27z+2k+1 - (‘Dmk} 4D D Jin
where ¢, = ¢, (z). O

It follows from this equation that

i _2(_1)n+kF2n+k+2 +1 — 3+ ‘/g _ L%HQ

[4] :
n+k 12 10 P2
n=l |:L2n+2k'+1 - (-1 +k} 25050

i (=2)" g + 4™ 4 TR

) .12 9 2
n=l |:]2n+2k+1 - (—Q)Mq Tkt
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Rakesh Sarkar' | SOME COMMON FIXED POINT
Sanjib Kumar Da‘;fa‘f THEOREMS IN COMPLEX VALUED
METRIC SPACES FOR THREE
SELF-MAPPINGS UNDER
RATIONAL TYPE CONTRACTION

Abstract: In this paper we prove the common fixed point theorems in
complex valued metric space for three self mappings. Banach’s fixed point
theorem plays a major role in fixed point theory. Because of its usefulness
we have used Banach’s contraction principle for the improvement and
generalization of our result. Our result generalizes some recent results in the
literature due to Azam et al. (2011) and Sintunavarat and Kumam (2012) by
using the idea of two weakly compatible mappings. Azam et al. made a
generalization by introducing a complex valued metric space using some
contractive type conditions whereas Sintunavarat and Kumam generalized
their result by replacing the constants of contraction by some control
functions. Some concepts have been taken from the results obtained by
Choi et al. (2017) and Jebril ef al. (2019) to improve our results. The results
of Choi ef al. and Jebril et al. in bicoplex valued metric spaces are very
effective tools to improve our result. Also an example is given to illustrate
our obtained results.

Keywords and phrases: Complex Valued Metric Space, Common Fixed
Point, Point of Coincidence, Weakly Compatible
Mapping.

Mathematics Subject Classification (2020) No.: 47H10, 54H25.

1. Introduction, Definitions and Notations

The concept of fixed point theorem was first introduced by Poincare and
Miranda [15] in 1883. After that Brouwer [4] published his famous fixed point
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theorem in 1912. The theorem states that “If B is a closed unit ball in R" and if

T : B — B is continuous then 7T has a fixed point in B”. In 1992 Banach [5] proved

his famous fixed point theorem in which contraction principle is the main tools.
Banach’s fixed point theorem plays a major role in fixed point theory. It has
applications in many branches of mathematics. Because of its usefulness, a lot of
articles have been dedicated to the improvement and generalization of that result.
Most of these generalizations have been made by considering different contractive

type conditions in different spaces {cf[6] [19]}. In 2011, Azam ef al. [3] made a

generalization by introducing a complex valued metric space using some contractive
type conditions. Very recently, Sintunavarat et al. [20] generalized this result by
replacing the constants of contraction by some control functions. The purpose of this
work is to obtain a common fixed point result for three self mappings in complex
valued metric spaces which generalizes the results of [2] and [20].

We write regular complex number as z = x + iy where x and y are real
numbers and i = —1. Let C, be the set of complex numbers and z, and z, € C;.

Define a partial order relation < on C; as follows:
21 X zo ifand only if Re(z;) < Re(z) and Im(z1) < Im(zs).
Thus, z; 3 z, if one of the following conditions is satisfied:
(1) Re(z;) = Re(zy) and Im(z;) = Im(z4),
(it) Re(z1) < Re(z9) and Im(z;) = Im(z,),
(iii) Re(z1) = Re(z9) and Im(z) < Im(zy),

(iv) Re(z1) < Re(z9) and Im(z;) < Im(z).

We write 2y 3 2o if 21 29 and z; # 2z, ie. oneof (ii), (iii) and (iv)

is satisfied and (21) < (z9) if only (iv) is satisfied.

Taking this into account some fundamental properties of the partial order =<

on C; as follows:
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(D) If 022 Z2ythen |21]| <|29];

(2) If 21 j 29, Z9 = Z3 then 21 = Z3 and

~ ~

3) If 2y X 29 and 0 < A <1 isareal number then 1z; = 25.

~ ~

Azam et al. defined the complex valued metric space in the following way:

Definition 1.1 [3]: Let X be a nonempty set where as C; be the set of
complex numbers. Suppose that the mapping d: X x X — C; satisfies the

following conditions:
(dy) : 0 3 d(z,y) forall z,y € X and d(z,y) =0 if and only if z =y ;
(dy) = d(z,y) = d(y, z) forall z,y € X;
(d3): d(z,y) 3 d(z,2) + d(z,y) forall z,y,2 € X.

Then d is called a complex valued metric on X and (X, d) is called a

complex valued metric space.

Definition 1.2 [3]: Let (X, d) be a complex valued metric space, let

{z,} be a sequence in X and z € X .

(1) If for every ¢ € C; with 0 < c, there exists an ng € N such
that for all n > ngy, d(z,,z) < c then {z,} is said to be convergent, {z,}
converges to x and x is the limit point of {x,}. We denote this by
lim z, =2 as n - .
n—w®

(ii) If for every c € C; with 0 < ¢, there exists an ny € N such
that for all n>ngy, d(z,,z,) < c, where m € N then {z,} is said to be

Cauchy sequence.
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(ii1) If every Cauchy sequence in X is convergent then (X, d) is said

to be a complete complex valued metric space.

Definition 1.3 [1]: Let T and S be self mappings of a set X. If
w = Tx = Sz for some z in X then x is called a coincidence point of T and S

and w is called a point of coincidence of T and S.

Definition 1.4 [11]: Let S and T be self mappings of a nonempty set X.

The mappitngs S and T are weakly compatible if STz = TSx whenever
Sx =Tx.

The following theorem is established by Sintunavarat and Kumam in 2012.

Theorem 1.1 [20]: Let (X, d) be a complete complex valued metric space
and S, T : X > X .

If there exist mappings A, Z : X — [O, 1) such that for oll x, y € X:
(1) A(Sz) £ A(z) and E(Sz) < E(z);

(ii) A(Tz) £ A(z) and E(Tx) < E(z);

(iii) (A+E)(z) <1

E(z)d(z, Sz)d(y, Ty)

() (52, Ty) S Alwhdla,y) + === =

Then S and T have a unique common fized point.

2. Lemma

In this section we introduce some lemmas which are the main tools for our
results.
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Lemma 2.1 [3]: Let (X, d)be a complex valued metric space and let
{z,} be a sequence in X. Then {x,}converges to z if and only if

\d(zn,x)| -0 as n—> .

Lemma 2.2 [3]: Let (X,d) be a complex valued metric space and let
{z,}be a sequence in X. Then {z,}is a Cauchy sequence if and only if

\d(azn,xm)| — 0 as n — o, where m e N .

Lemma 2.3 [2]: Let X be a nonempty set and the mappings
S,T,f:X —> X have a unique point of coincidence v in X. If (S, f) and
(T, f) are weakly compatible then S, T and f have a unique common fized

point.

3. Main Results

In this section we prove a common fixed point theorem and give an example
to justify our obtained results.

Theorem 3.1 Let (X,d) be a complex wvalued metric space and
f,8,T: X —> X. Suppose there exist mappings ay, @y, ag : X — [O, 1) such
that for all z,y € X :

(1) az(SJ;) < ai(fl‘); ai(Tl‘) < ai(fx)7 i = 17 27 3a

(if) a(fr) + as(fxr) + 2a3(fr) < 1 and

(f) d(fzr, Sz)d(fx, Ty)

(i) d(Sz, Ty) 3 ey(fr)d(fz, fy) + s 1+ d(fz, fy)

d(fy, Sz) + d(fz, Ty)
+ a3(fx) L+ dUr. ) .
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If S(X)UT(X) c f(X) and f(X) is complete then f, S and T have a
unique point of coincidence. Moreover, if (S,f) and (T,f) are weakly

compatible then f, S and T have a unique common fized point in X.

Proof: Let z7 € X be arbitrary. Choose a point z; € X such that
fry = Sz, which is possible as S(X) < f(X). Also we may choose a point
xy € X suchthat fzy = Txy as T(X) < f(X). Continuing this process we get

Tx if n is even.

Sz, _; if nis odd
f n—1
x, =

n-1
If n € N is odd then by using the hypothesis we obtain that

d(fxn,? fanrl) = d(anfl: TJ;n)

S ey a1 fr,) + () ot et )

d(fJ;n? Sl‘nfl) + d(fl‘nfla Tzn)
1+ d(fxn—h fxn>

+ a3(fxn—l)

fxn—lv fxn)d(fl'm fanrl)
1+ d(fl‘nfla f$7z)

= al(fmn—l)d(fxn—la fxn) + a?(fxn—l) d(

d(fxm fl‘n) + d(fxnfla f$7z+1)
1+ d(fxn—b fxn)

+ 0(3(f$n_1)

Therefore,

‘ d(fzn,? fxn+1) | < 0!1<fIn,1) ‘ d(fxnfla fzn) ‘

d(fxnfb fxn)d(fmm fanrl)
I+ d(fl'nflv fxn)

+ aZ(fxn—l)
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d(fl‘m fxn) + d(fxn—la fmn+1)
1+ d(fl‘n—lv fxn)

+as(fr,_)

< 0{1(T.’15n_2) | d(fxn—lv fxn) |

d(fl‘n—la fl‘n)

1+d(fl'n_1,fl'n) |d(fxn7f$n+1)|

+ Qs (T‘Tn—l)

+ a3(T$n72) | d(fxnfb fanrl) |

< ai(fz,s) | d(fr,_1, fon) | + as(fz, o) | d(fz,, fr,.1) ]
+ a3(fra) [ d(fo,, fo,) | + az(fea-2) [ d(fry, fr,.)]
= 0y(8,3) | d(foy1, Jon) | + @a(Swy3) | d(fry, fr,) |
+03(S,-3) | d(fe,1, fe,) | + a3(Sz,-3) | d(fe,, fr,.0)]
< ay(fry-3) | d(fo,, fo,) | + as(fo,-3) | d(fr,, fr,.1)]

+ a3(fxn73) | d(fxnfl? fxn) | + a3(f$71,73) ‘ d(fzn,? fxn+1) |

< al(fx()) ‘ d(fmn—la fzn) ‘ + aQ(ﬁEO) | d(fxm f$71,+1) ‘

+ 0[3(f$0) | d(fxnfla fzn) | + a?)(]%[)) | d(fl‘na fxn+1) |a

which implies that

(as(fro) + a3(frp))

| d(fxn; fxn+1) | < (1 _ al(ﬁo) — ag(ffﬁo))

‘d(fxn—lafxn) | (1)
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Again if n is even then we have

d(fxm f$n+1) = d(T:Enfla an) = d(SIn, Txnfl)

j al(fmn)d(fmna fxn—l)

) d(fxn,’ Sl‘n)d(fl‘nfla Txnfl)

+ ay(fr, L+ d(fry, fr,_)

d(fl‘nfla an) + d(fxn? Txnfl)
) g fra)

= ay(fr,)d(fr,, fr,_1)

) d(fl‘m fl‘nJrl)d(fxnfla f$71,)

+ OlQ(fwn 1+ d(f:l,‘n, fiEnfl)

) d(fxn—lv fxn+1) + d(fxna fxn) .

+as(fz, 1+ d(fr,, fr,q)

Therefore,

‘ d(fxnv fxn+1) | < al(fxn) ‘ d(fxnv fxn—l) ‘

d(fx’m fxn+l)d(fxn—lv fxn)
I+ d(fxﬂ? fxn—l)

+ aQ(fxn)

+a (fl' ) d(fxn—lv fxn+1) + d(fxna fxn)
’ ! I+ d(fl‘na fl‘nfl)

< al(fiﬁn) ‘ d(fzna fznfl) ‘

d(fxn—h fxn)

Fealr) ) o f )

| d(fxm fl‘nJrl) |
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+as(fr,) [ d(fen, [rna)]
< ay(fry) [d(foy, frna) [+ as(fey) [d(fry, frm.0)]
+ay(fe,) |d(fry, fr,) |+ ay(fe,) | d(fey, fepa)
= ay(Tey) | d(feya, fo,) |+ ao(To,) [ d(fen, frm40)]
+ a3 (Tey ) |d(fey, fo,) |+ as(Tey) | d(fzy, fr,.0)]
< ai(fen) [d(fry, fo,) | + ao(f,-1) [d(fry, fro.0) ]
+az(fey) [d(frn-, fo,) | + as(fr,-) [d(fr, frpa)|
= a1(Szy2) | d(fzyor, f,) |+ a2(S2y0) [d(fry, frp.n)
+a3(Sey0) | d(fry, fr,) | + a3(Sey0) | d(fry, fr.) ]
< ay(frp-s) [d(fryrs frn) | + ar(frn2) [d(fry, fr.a)]

+ a3(fxn—2) ‘ d(fxn—lv fxn) | + O{S(fxn—Q) | d(fxnv fxn+1) |

< al(fa:O) ‘ d(fznfla fzn) ‘ + a?(ﬁEO) | d(fa:na f$7l+1) ‘

+ 613(][2110) | d(fxnfl? fxn) | + a3(fa:0) | d(fxna f$7l+1) ‘ ’
which implies that

(aa(fzo)+ as(fxg))
d(fz y JTn+ = d Ln-1JTn) |- 2
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From (1) and (2) we can conclude that for any integer

(a2 (fzo)+ a3(fzo))
d n? n+ - d n—1» n N 3
s Fru) | o i s L fr) &)
We set y = (@s(fro)+ as(fo)) . Then by condition (ii), ¥ < 1. So

(1 = a1 (fzo) — a3(fzo))
by repeated application of (3) we obtain that

‘ d(f$n7 fanrl) ‘ < Y ‘ d(fxnfla fzn) ‘

< 7/2 | d(fxan? fxnfl) |

<y d(fzo, fr1)] -
Now for all m,n € N and m > n we have

d(fxna fxm) j d(fxrw fxn+1) + d(f$n+17 fxn+2) +... d(fxm—la fxm)

Therefore,

| d(fxn7 fxm) | = ‘ d(fxn7 fxn+1) | + ‘ d(fxn+17 fxn+2) | +...F ‘ d(fxm—lv fxm) ‘

<"+ " ™Y d(frg, fr) |

n

< 17 | d(fg, fr1) .
-7

Since y < 1, taking limit as n, m — o we have | d(fz,,, fz,,)|— 0, which

implies that {fz, } is a Cauchy sequence in f(X). By completeness of f(X), there

exist u, v € X suchthat fxr, > v = fu.
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Now
d(f“? T’LL) j d(fuv f2n+1) + d(fx2n+17 T’LL)

= d(f“? f2n+1) + d(S$27L7 Tu)

2 d(fu, fonr) + a1 (fra, )d(fray,, fu)

) d(fl‘Qn,? S$27L)d(fua Tu)

+ ay(fra, 1+ d(fry,, fu)

fuv Sq;Qn) + d(fl‘an Tu)

d(
+ ag(fon) 1+ d(fl‘gyu fu)

Which implies that

‘ d(f’lL, T’lL) | < | d(fu7 f2n+1) ‘ + al(fon) ‘ d(f$2n7 fu) ‘

+ aQ(foH) | d(fona SxZn) | | d(fua TU) ‘

+ ay(fran){] d(fu, S22,) | + | dlfirg, Tw) |}, [ 1+d(f1f) ) 1}

<[ d(fu, fonar) |+ ar(fro) | d(froy, fu)l
+ ay(fzo) | d(fr,, ST2,) | | d(fu, Tu)|
+ a3(fro){| d(fu, Sz, ) | + | d(fray, Tu) [}.
Taking n — oo, it follows that | d(fu, Tu)| = 0 and hence, d(fu, Tu) = 0.

Therefore, fu = Tu = v .

Similarly, we can show that fu = Su = v .
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Thus, fu=Su=Tu=v and so v becomes a common point of

coincidence of f S and 7.

Uniqueness:

For uniqueness suppose there exists another point w(f # v) € X such that

fr =8x=Tx =w forsome v € X.

Thus,
d(v, w) = d(Su, Tx)

d(fu, Su)d(fz, Tx)
1+ d(fu, fr)

< aq(fu)d(fu, fr) + as(fu)

d(fz, Su) + d(fu, Tz)
1+ d(fu, fx)

+ ag(fu)

- ol ) S
d(w, v) + d(v, w)

+as(v) 1+ d(v, w)

= a;(v)d(v, w) + 2a3(v)d(v, w).
Which implies that
| d(v, w)[< a1 (v) | d(v, w) | + 2a3(v) | d(v, w)|.
Since, 0 < aq(v) +2a3(v) <1, it follows that |d(v,w)| =0 and so

v=w.If (S, [f) and (T, f) are weakly compatible then by Lemma 2.3 f, Sand T

have a unique common fixed point in X. [
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Corollary 3.1: Let (X,d) be a compler valued metric space and
S, T : X > X. Suppose there exist mappings oy, s, a3 : X —> [0, 1) such
that for all z,y € X

(1) a;(St) < a;(x), a;(Tz) < a;(x) forall i=1,23;
(i1) o1(z) + as(x) + 2a3(z) < 1;

d(z, Sz)d(y, Ty)

i) d(Se, Ty) 3 en(w)d(m,y) + @ole) =7 s

d(y, Sx) + d(z, Ty) '

+as(2) 1+ d(z,y)

Then S and T have a unique common fixed point in X.

Proof: The result follows from Theorem 3.1 by taking f = I, the identity
mapping. ]

Corollary 3.2: Let (X,d) be a complex valued metric space and
S, T:X —> X.If S and T satisfy

d(z, Sz)d(y, Ty) N d(y, Sz) + d(z, Ty)

d(Sz, Ty) =< Ad(z, y) +
(Sz, Ty) 3 Ad(z, y) + u L+ diz.y) L+ d(ry)

for all z,y € X, where A, u,n are nonnegative reals with A+ p+2n <1
then S and T have a unique common fized point.

Proof: The desired result can be obtained from Theorem 3.1 by setting
ay(z) =4, ay(z)=p, az(z)=nand f=1I. m
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Corollary 3.3: Let (X,d) be a compler valued metric space and
f,T:X —> X be such that T(X) < f(X) and f(X) is complete. Suppose
there exist mappings oy, &9, a3 : X — [O, 1) such that for all z,y € X :

(1) a;,(Tz) < a;(fr) for all i =1,2,3;

(i1) a1 (fr) + as(fr) + 2a;3(fr) < 1;

(fz, Tx)d(fy, Ty)
1+ d(fz, fy)

i)  d(Te, Ty) 2 ay(fr)d(fo, fy) + ao(f) &

) d(fy. Ta) + d(fr. Ty)

el e, )

Then f and T have a unique point of coincidence. Moreover, if f and T

are weakly compatible then f and T have a a unique common fized point in X.

Proof: The proof of the corollary follows from Theorem 3.1 by considering
S=T. [

Corollary 3.4: Let (X,d) be a complete complex valued metric space
and T : X > X . Suppose there exist mappings ay, &y, a3 : X — [O, 1) such
that for all x,y € X :

(1) a;(Tz) < a;(x) for all i =1,2,3;
(ii) a,(z) + ay(x) + 2a3(z) < 1

d(z, Tx)d(y, Ty)
1+ d(z,y)

(i) d(Tz,Ty) 3 en(x)d(z, y) + az(x)

d(y, Tx) + d(z, Ty)
1+ d(xy) '

+as(z)
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Then T has a unique fixed point in X.

Proof: The proof of the corollary follows from Theorem 3.1 by considering
S=Tand f=1. ]

Corollary 3.5: Let (X,d) be a compler valued metric space and

T: X—>X . Suppose T satisfies

d(fz, Sr)d(fy, Ty)
1+ d(fz, fy)

d(Tz, Ty) 3 Ad(fz, fy) + u

d(fy, Sz) + d(fz, Ty)
1+ d(fx, fy)

for all z,y € X, where A, u, n are nonnegative reals withA + pu +2n < 1. If
T(X) < f(X) and f (X) is complete then f and T have a unique point of
coincidence. Moreover, if f and T are weakly compatible then f and T have a

unique common fixed point in X.

Proof: Putting S =T, a;(z) = 4, as(x) = p, az(z) = n in Theorem 3.1
we can prove this result. ]

Example 3.1: Let X=[1, o). Define T,f:X—>X by Tz = Bl
and fr = % i X. If d,, is the usual metric on X then T and f are not the

contraction mappings on X as for all z,y e X, d,(Tz, Ty) = % |z —y| and
d,(fr, fy) =21z -yl

So we can not apply Banach contraction theorem to find the unique

fized point of T and f.
Now we consider a complex valued metric d : X x X — C; by

dz,y) =|lz—y|+ilz-y]|
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Then (X, d)is a complete complex valued metric space.

Now,

d(Tz,Ty) = 2[lz—y | +i |z -y

- % d(fz, fy) < hd(fz, fy), where 0 < h = % <1

Since, T(X) = f(X) =X, we have all the conditions of Corollary 3.5
with A =h, u=0=n.

So applying Corollary 3.5 we can obtain a unique fived point 1 of T
and fin X

4. Future Prospect

In the line of the works as carried out in the paper one may think of the
deduction of fixed point theorems using fuzzy metric, quasi metric, partial metric and
other different types of metrics under the flavour of bicomplex analysis. This may be
an active area of research to the future workers in this branch.
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Y. Therese Sbjtzilhéf SPLIT DOMATIC NUMBER OF A GRAPH
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Abstract: A dominating set D < V(G) is a split dominating set if the
induced subgraph <V — D> is disconnected. The minimum cardinality of
a split dominating set is called the split domination number of G, denoted

by 74(G). The maximum order of a partition of V(G) into split

dominating sets of G is called the split domatic number of G and is denoted

by d,(G). In this paper, we study several aspects of these two parameters

and find certain classes of graphs that are domatically full.

Key words and phrases: Domination, Domination Number, Split
Domination, Split Domination Number,

Domatic Number, Split Domatic Number.

Mathematical Subject Classification No.: 05C69.
1. Introduction

By a graph G = (V, F) we mean a finite, undirected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively.

For graph theoretical terms we refer to Harary [2] and for terms related to
domination we refer Haynes et al. [3] and [4]. A subset D of V is said to be a
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dominating set in G if every vertex in V' — D 1is adjacent to at least one vertex in D.
The maximum order of a partition of V into dominating sets of G is called the
domatic number of G and is denoted by d(G). G is domatically full if
d(G) = 6(G) + 1. A dominating set D of a graph G = (V, E) is a split dominating
set if the induced subgraph < V — D > is disconnected. The split domination
number y,(G) of G is the minimum cardinality of a split dominating set. The

maximum order of a partition of V(G) into split dominating sets of G is called the
split domatic number of G and is denoted by d,(G). The corona of two graphs G,
and G, is the graph G = G; o G, formed from one copy of G; and | V(G)) |

h

copies of G5 , where the i vertex of G, is adjacent to every vertex in the i copy

of G, . In this paper, we study several aspects of these parameters and find certain
classes of graphs that are domatically full.

Kulli and Janakiram introduced the concept of split domination in graphs [5].
The following results are very useful in the subsequent sections.

Theorem 1.1 [1]: (If 5(G) > 1 then ¥(G) + d(G) < ng +2 and equality

requires that {y(G), d(G)} = {ng .2}
Theorem 1.2 [2]: For any graph G, y(G) < 1+A(G).

Theorem 1.3 [6]: Let G be any unicyclic graph with cycle C,. Then
7(G) = yus(G) if and only if G = Gy, Gy, G3 or Gy where Gy= H o K| where
H is any unicyclic graph, Gy= any unicyclic graph with cycle C,(p > 4) in
which every support is adjacent to exactly one pendent vertex, every vertex not
on the cycle is a pendent vertex and exactly three consecutive vertices on the

cycle have degree 2 and Gz, G4 are as given in Figure 1.

Figure 1
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Example 1.4: For G = G, where G, is given in Figure 2, y,(G) = 3.

Figure 2

It is interesting to observe that the property ‘split’ is one among very few
properties which are neither hereditary nor super hereditary. Motivated by

this feature, we study several aspects of this parameter.

2. Split Domination Number of a Graph

The following are immediate from the definition:
Proposition 2.1: (1) y,(G) does not exist if and only if G = K.
(2) If G is any graph with A(G)=p -1 and &6(G) =1 then y,(G)=1.

Converse is not true. If G is the graph given in Figure 3, y,(G) =1,
AG)=p-1 but 6(G) # 1.

Figure 3

(3) For any connected graph G which is not isomorphic to complete graph,

7/9(0) < p- 2.
(4) If H is a connected spanning subgraph of G, then y,(H) < y,(G).
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If G =K,,,then y(G) =y,G) =2.

Let G be any connected graph 2% P such  that either
AG)=6(G)=p—-2 or AG)=p-—-2=number of pendent vertices.
Then y,(G) <2.

If G is any disconnected graph without isolated wertices, then

7s(G) =p—2 if and only if G = 2K, .

If G is a galazy then y(G) = y,(G) =number of components of G.
Converse is not true. If G is the graph given in Figure 4,

¥(G) = y,(G) = 2 = number of components of G, but G is not a galaxy.

Figure 4

Theorem 2.2: Let T be any tree. y,(T) =2 if and only if T has ezxactly

two supports and diam(T) <'5.

Proof: Suppose y,(T) =2. If T has exactly one support then T'= K, .

But y,(K;,) =1 and so T has at least two supports. If 7" has 3 or more supports

then clearly y,(7) > 3 and so T has exactly two supports. If diam(T) > 6, then

again y,(T) > 2 and so diam (T') < 5. Converse is obvious. O

The following is immediate.
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Corollary 2.3: Let T be any tree with exactly two supports. Then
v(T) = 3 if and only if diam(T) = 6,7 or 8.

Theorem 2.4: Let T be a tree. Every minimum dominating set is a split

dominating set if and only if T % P, o K, .

Proof: Assume that every minimum dominating set is a split dominating set.
If T P, o Ky, the set of all pendent vertices is a minimum dominating set which

is not a split dominating set and so 7' 2 P, o K. If T 2 P, o K, every minimum

dominating set contains a non-pendent vertex and so is a split dominating set. O

Theorem 2.5: Let T be any tree such that T' % K, , . Then

7 - p—A(T) if diam(T) =3
7TV =N ) C AT -1 if diam(T) > 4.

Proof: Let v € V(T) with deg v = A(T).
Case (i): diam(T) = 3.

Since, diam(T') = 3, there exists a pendent vertex u adjacent to v and a

pendent vertex w non-adjacent to v. Let S = N [v] —{u}.

Claim: V - § is a minimum split dominating set of T .

w eV — S dominates v and every vertex of N(v) — {u} is dominated by
u. v is an isolated vertex of < S > in T and so V— S is a split dominating set
of T. The vertices of V(T) — N[v] are all adjacent to a single vertex of N(v) since
otherwise 7 has a cycle. Hence, u € N [v] is essential to dominate that vertex in 7T .
If any other vertex of V(T') - N [v] lies in S, then that vertex is adjacent to vin 7T so
that S is not a split dominating set. Hence, V' — S is a minimum split dominating set

of T sothat y,(T) = p — A(T).
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Case (ii): diam(T) > 4.

Let §' = N[v]. As diam(T) > 4, either there exists z € V(T') with
d(v, z) > 3 or there exists z,y € V(T) with d(v,z) =2 and d(v,y) = 2. In the
former case, z is adjacent to all vertices of S’ in T and in the latter case {z,y}
dominates all vertices of S/in T . Also v is an isolated vertex in < S’ > in T . So

V — S’ is a split dominating set of T. As in case (i), it is minimum. Hence,

7s(T) = p = (A(T) +1). =

Corollary 2.6: For any tree T % Ky ,, y(T)+y,(T)=p-AT)+1
if and only if T is obtained from Ps or Py by adding zero or more number of

pendents to the supports.

Proof: If diam(T)=3 then y,(T)=p-AT) and so

7s(T)+ ys(T) = p = A(T) +1 = y4(T) = 1 which is impossible as T 2 K ,, .

Suppose diam(T) = 4. Then by Theorem 2.5, y,(T) = p — A(T) — 1 and so
7,(T) = 2. By Theorem 2.2, T has exactly two supports and diam(7T") < 5. Thus,

diam(T) = 4 or 5 and T'is obtained from P; or Py by adding zero or more number
of pendents to the supports.

Converse is obvious. O

Theorem 2.7: Let T be any tree with diam(T) = 3. Then

7s(T)ys(T) < 2(p — A(T)).

Proof: By Theorem 2.5, y,(T)=p—AT) if diam(T)=3. If diam
(T') = 3 then T has exactly 2 supports and so by Theorem 2.2, ,(7') = 2. Hence,

Vs(D)ys(T) < 2(p = A(T)) - -
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Remark 2.8: Converse of Theorem 2.7 is not true. ConsiderPs.

7s(P5)ys(Ps) = 4 < 6. But diam(P;) = 4.
We now relate y,(G) with other graph theoretic parameters.

Theorem 2.9: For any connected graph G,y,(G) + ¥(G) < p + A(G) - 2.

Equality holds for G = C,, Py.

Proof: By Theorem 1.2, and by Proposition ??(3) we have
7s(G) + ¥(G) £ p+ A(G) —1. By Theorem 1.2, if y(G) = A(G)+1 then G is
either an odd cycle or a complete graph. For a complete graph, y,(G) is not defined.

For an odd cycleC',,, y,(C,) < p — 2. Hence, the above bound can be improved as
7,(G)+ 7(G) < p + A(G) — 2. Equality holds for G = Cy, P;. O

Theorem 2.10: For any connected graph G, y,(G) + k(G) < p + AG) - 2.
Equality holds if G = C}.

Proof: For any connected graph G, 7,(G) < p—2 and k(G) < A(G) so

that 7,(G)+ k(G) < p+ A(G) —2. Equality holds if y,(G)=p—-2 and

k(G) = AG). If G = C4, y,(G) =2, k(G) = 2 and so the bound is sharp.

Theorem 2.11: For any connected graph G, y,(G) + diam(G) < 2p — 3.
Equality holds if G = Py.

Proof: For any connected graph G, 7,(G) < p —2 and diam(G) < p —1 so
that y,(G) + diam(G) < 2p — 3. Clearly equality holds if G = P,. O

Theorem 2.12: Let G be any unicyclic graph with cycle C,. Then

V(G) = 7,(G)=y,(G) if and only if G=G,, Gy, Gz or G, where
G, = H o K, for any unicyclic graph H, Gy= any unicyclic graph with cycle

c, (p = 4) in which every support is adjacent to exactly one pendent verter,
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every vertex not on the cycle 1s a pendent vertexr and exactly three consecutive

vertices on the cycle have degree 2 and G5, G4 are as given in Figure 5.

Figure 5

Proof: Follows by Theorem 1.3 since for every such graph there exists a split
dominating set with cardinality y(G). O

Theorem 2.13: For any tree T, y(T) = y(T) = 7s(T) = v ons(T) = 2 if
and only if T = P4.

Proof: Since a tree cannot contain a cycle, y,,,(7) =2 which implies
p=4.S0T=K;3 or P,. If T =K, then y(T)=1andso T = P,.

Converse is obvious. O

Proposition 2.14: Let G be any connected graph and G'=G o Ky,
where G o K is the corona of G and K. Then y(G') = y,(G") = ,,(G") = p,
where p =|V(G)| .

Proof: Since G is connected, the set of all pendent vertices of G’ forms a
Vns-Set of G and so y,,(G") = p. Similarly V(G) forms a y,-set of G'which is
also a y -set of G'. Hence, (G') = y,(G") = 7,,(G") = p. O

3. Split Domatic number of a Graph

Definition 3.1: Let G = (V, E) be a graph. The maximum order of a

partition of V(@) into split dominating sets of G is called the split domatic number
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of G and is denoted by d,(G).

Remark 3.2: d,(G) cannot be determined for any graph withA(G) = p — 1.

In the following proposition we summarize a number of elementary results
which determine d,(G) for special classes of graphs. The proofs of these results are
simple and are omitted.

Proposition 3.3: (1) I/ G = P,(p > 4) then d (P,) = 2.

) If G=K,, then d(K,,)=2.

(3)  If G=GoK, then d(GoK,)=2.

4) If G=C, where p=4,50r6 then d,(C,) =2.

(35) If G =P, wherep=4,5o0r6 then d(P,) =2.

6) For any graph G, d,(G) < 8(G) +1.

Definition 3.4: A graph G is split domatically full if d,(G) = 5(G) + 1.

Proposition 3.5: If G = C,(p = 3k, k > 1), then C’;,s are domatically

full.

Proof: Let V(C,) = {vy, vg,...,v3;}. The sets {vy, vy, v7,..., 03,2},
{vg, vs, ..., v31_1} and {vs, vg,..., vy} form a partition of V(G) into split
dominating sets and so d (C,) =3 = o6(C,) + 1. a

Corollary 3.6: LetG = C,(p 2 4). Then G is split domatically full if
and only if p = 0(mod3).
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Proof: By Theorem 1.1, d(C,) =2 if p=1, 2(mod3) and hence, the
result follows. o

Using cycles, we now construct a special class of split domatically full
graphs.

Example 3.7: Let I = {C, : C, is a cycle on p vertices, p = 3k, k > 1}.

An operation o is defined on [ as follows:

If C;,C;,Cy €I,then C; oC; is obtained by joining any one vertex of
C; to any one vertex of C; by an edge. (C; o C;) o C; is obtained by joining any
one vertex of C; o C; to any one vertex of € by an edge. The process is repeated

finite number of times and we define G to be the collection of all such graphs. As
each '), in I'is domatically full and union of split dominating sets of the individual
cycles give split dominating sets of the newly constructed graphs, every element of

G™ is split domatically full.

Proposition 3.8: If T is any tree other than a star, then T is split
domatically full

Proof: By Theorem 1.1, d(T') = 2 for any tree with at least two vertices. In

any tree with at least two distinct supports, it is easy to observe that there exist two
disjoint dominating sets which are also split dominating sets. If T is a star then

d(T)=1.
Hence, if T % Ky,,; then d,(T) =2 = 6(G) +1. O
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Abstract: We present two conjectures, one involving Fibonacci numbers
and the other Jacobsthal numbers.
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1. Introduction

Ezxtended gibonacci numbers G, are defined by the recurrence

G, =aG,_1 +bG,_o,where a, b, G, and G, are arbitrary integers and n > 3.

Suppose a =1=0b. When G, =1=G,, G, =F,, the nth Fibonacci
number ; and when Gy =1 and Gy, =3, G, = L,,, the nth Lucas number. They
can also be defined by Binet-like formulas [2, 3].

On the other hand, let « =1 and b = 2. When Gy =1 =G,, G, =J,,the
nth Jacobsthal number; and when G; =1 and Gy =5, G, =j,, the nth

Jacobsthal-Lucas number [3].
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The following table shows the first 10 Fibonacci, Lucas, Jacobsthal, and
Jacobsthal-Lucas numbers.

Table 1
First 10 Fibonacci, Lucas, Jacobsthal, and Jacobsthal-Lucas numbers

6 | 7] 8 | 9 10
1321 | 34 | (5
18 [ 20 | 47 | 76 | 123
21 | 43 | 85 | (7)) | 34
65 | 127 | 257 | 511 | 1,025

;q S

3

CCC/Clis

QGO Gl
QOEE|«
SOIQ/CIE
= @EE|

A quick look at the first 100 Fibonacci numbers in [2, 3] gives a fascinating
observation. There are exactly seven palindromic Fibonacci numbers < Fjqq, and

six (the smallest perfect number [1]) of them are single-digit integers and are all
circled in Table 1.

Interestingly, the corresponding Jacobsthal table in [3] contains two added
bonuses. In addition to the four single-digit integers, there are two additional

palindromic numbers, namely J; = 11 and Jq = 171, again a total of six Jacobsthal

palindromes < Jyq, also circled in Table 1.

With a computer program, Z. Gao established that there are no additional

Fibonacci palin-dromes < Fi7g 009, and no additional Jacobsthal palindromes

< J120,000 [4]-
2. Extended Gibonacci Conjectures

Based on Fibonacci and Jacobsthal tables in [3], and the data collected by
Gao, we conjecture that:

1. There are exactly seven Fibonacci palindromes: 1, 1, 2, 3, 5, 8, and 55; and
2. There are exactly six Jacobsthal palindromes: 1, 1, 3,5, 11, and 171.

Clearly, similar conjectures can be conceived for both Lucas and Jacobsthal-
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Lucas numbers as well. For the curious-minded, we add that L,; = 167,761 is
palindromic.

We encourage gibonacci enthusiasts to either confirm or disprove each
conjecture.
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Z,49(T) = a(2)z,,,,(x) + b(z)z,(x), where z is an arbitrary integer variable;a(z),

b(z), z,(z),and 2 (x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and 2,(z) =z,
z,(z) =1,(z), the nth Lucas polynomial. They can also be defined by the Binet-

like formulas. Clearly, f,(1)=F,, the nth Fibonacci number; and [,(1) = L, , the

n o

nth Lucas number [1, 4].
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Pell polynomials p,(z) and Pell-Lucas polynomials g,(z) are defined by
p,(z) = f,(22) and g,(z) = ,(2z), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or [, and b, = p, or q,, ¢,=J, or j,, A=z’ +4,
2a=x+A,E=Vz>+1,y=x+FE, and D = Vdz + 1 where ¢, = c,(z).

It follows by the Binet-like formulas that lim S =% and

m—>o0 lm A

lim b1 _ Aa

m—>0 m

1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the
following properties:

A foiily = g — (=D (1)

Lisiln = Loy + (-1)" 23 (2)

lnfosz = lnerfur = (D) "33 3)
lufosz + loiifusr = 2fons + (-1)" 23 “4)
flwsz = fariluy = ()" 5)
fulnsa + fosilusr = 2fonse — (D)2 (6)

These properties can be confirmed using the Binet-like formulas.

It follows by identities (3) — (6) that
lgfy?m - l$+1fn2+1 =2(-1)"2fon s + % (7)

fy?lgm - f7?+1l3+1 = 2(—1)n+1$f2n+2 + 2. (8
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2. Telescoping Gibonacci Sums

We now establish two telescoping gibonacci sums, where £ > 0 and A > 1

are integers.

— aii _ fkﬁ? . (9)
Aﬂ ll?+1

Lemma 1:
i [fn/1+k+2 _ fn/1+k+1J

n=1 ln+k+1 ln+k

Proof: Since 2

A
n=1 Lk

A A
[f”””? _ Jnker J is a telescoping sum, we have
ln+k+1

A
lm+k+1 lk+1

m A A A
Z {fn+k+2 fn+k+1J fm+k+2 _ fk+2

A
ln+k+1 ln+k

This yields the desired result. O
Lemma 2:
o n+k+2 lr%+k+1 A A l/?+2
Z — P =A'a” — T . (10)
n=1 fn+k+1 fnJrk; fk+1

lim b1 = Aa, the proof follows as above.

m—>o0 m

Proof: Using the fact that
a

So, in the interest of brevity, we omit the details.
These two lemmas play a pivotal role in our discourse.

3. Gibonacci Sums
With the above identities and lemmas at our disposal, we are now ready for

further explorations.

The next two theorems invoke the lemmas with 4 =1

Theorem 1: Let k be a nonnegative integer. Then



48 THOMAS KOSHY

© n+k
3 D"z _a Jie (11

n=1 l2n+2k+1+(—1)n+k$ Al

Proof: It follows by identities (2) and (3) that

+k

ln+k+lln+k = l2n+2k+1 + (_1)

k
ln+kfn+k+2 - ln+k+1fn+k+1 = (_1)n+ Z.

By Lemma 1, we then have

k
(_1)n+ z — ln+kfn+k+2 - ln+k+1fn+k+1

lonsop+ + (=1)

n+kZL‘ ln+k+1ln+k

0 k 0
Z (_1)n+ z _ 2 [fn+k+2 _ fn+k+1j
n+k
x n=1

n=1 l2n+2k+1 + (—1) ln+k+1 ln+k

— g _ fk+2
A lk+1
as desired. O
It then follows that
ZLH=—1+§? ZL,I:l—ﬁ;
n=1 Lop1 + (-1) 2 10 n=1 Lop3 = (=1) 6 1
- -1)" 1 5 - -1)" V5
Z(—)=‘*+*5? oo 3 %
n=1 Loy + (=1)" 410 n=1 Loys7 — (=1)" 1410

The next result invokes Lemma 2 with 4 = 1.

Theorem 2: Let k be a nonnegative integer. Then
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i (_1)n+k;+1x ~ 1 (a ~ fk+2j . (12)

n=1 lon 241 _(_1)"+k$ AP \A Dy

Proof: Using identities (1) and (4), we get

2 1+ k
A f’n+k+1fn+k = l2n+2k+1 - (_1)71+ €T3

k+1
f7z+kln+k+2 - fn+k+1ln+k+1 = (_1)n+ " Z.

By Lemma 2, we then have

k1
(G _ Jusklnakr2 = farkralnarn

k 2
l2n+2k+1 - (_1)n+ T A fn+k+1fn+k

i (_1)”+k+1z — i i ln+k+2 _ ln+k+1
n+k 2 f
x n+k

n=1 l2n+2k’+1 - (_1) n=1 fn+k+1

- i _ (Aa _ lkﬁj 7
2 fk+1
as desired. ]

Consequently, we have

o -1)" 1 5 = -1)" 3 5
ot Byt
n=l Lop1 — (=1) n=1 Lopi3 + (=1)

o -1" 1 5 - -1)" 7 5
Z ( ) n:g_ﬁ§ ZHn:_w+m
n=t Lopy5 = (=1) n=t Lopy7 + (=1)

Gibonacci Delights: By combining these two theorems, we can extract
interesting dividends.
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Adding equations (11) and (12), we get

i 20> A +1(a fi
:1l x> A .

2
n=1 t2p+2k+1 — A b1

In particular, this yields

L 3 35 oL 1 35,
nmt Lypg -1 10050 i L35 -1 1050
L 3 35 oL 9 2
nml o5 —1 20050 Sk, -1 700 350
Likewise, subtraction of the two equations yield

i )" a0 _ A* -1 (a _ Jra2 j

n=1 l2n+2k+1 x’ N
This implies
i L2n+1 2\/3 i (_1)H/L2n+3 _ 2 & .

25 ’

i( D'Lyps _ 1 245 i (-1)"Lyyr 4 205
n=1 L%n+5 -1 10 25 7 n=1 L%n+7 1 35 25

The next two theorems employ the lemmas with 4 = 2.
Theorem 3: Let k be a nonnegative integer. Then

i Fafppiong +2° _ a® Sl (13)

[12n+2k+1 + (= 1)n+kl‘] A® ZI?H
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Proof: Lemma 1, coupled with identities (2) and (7), yields

k 2 2 2 2 2
2(_1)n+ Tfopsokio T T _ Lisifoske2 = biskerfovke
k12 2
o opsr + (1) 2] L kiln

o0

Z 2( )7L+kf2n+2k+2 + :L‘ i (fn+k+2 fn2+k+1j

k
n=1 [l2n+2k+1 + (_1>n+ x] n=1 ln+k+1 ln+k
2 2
_ & i
A2 ll?+1

as desired.

In particular, we then get

o0

2(=1)" Fopg +1 7 V5 < D" Py +1 23
= - — + — _ 22
le [Lopiy + ()" ]? 10 10 Z:l [Lonss — (—1)"] 90

Z )" o +1 _ 21, NG i ””FQW+8 +1 103

D il TRNTAND YK P

The next result invokes Lemma 2.

Theorem 4: Let k be a nonnegative integer. Then

0 n+k+1 2 2
Z D" afoniopen + 37 1 [AQQQ _ ke J

1 [12n+2k+1 ( 1)n+k$]2 A4 fk’2+1

Proof: With identities (1) and (8), Lemma 2 yields

k+1 2 2
2(_1)n+ i Tfopiokeo + z” fn+kln+k+2 Soskslnvke
k12 2
[12n+2k+1 - (_1)n+ x] A fn+k+1fn+k

51

\C

10

)

V5

10

(14)
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k+1 00 2
. 2(_1)n+ ' Tfonsoka + z? _ L Z{ n+k+2 n+k+1j
4

k
n=1 [l2n+2k+1 _(_1>n+ x]z n=1 fn+k+1 fn+k

_ L { A2g? lk+2 J
A4 fk+1
confirming the given result. O

It then follows that

i D" Fypyg +1 _ i+ﬁ; i2(—1)”F2n+4+1=_£+«/5‘

n=1 [L2n+1 (= 1)n]2 50 10 n=1 [LG+3 +(—1)n]2 50 10

e}

3 2-1)""' Py +1 19 . V5 i 2-1)"Fy, s +1 107 5

S [Lones — ()" 100107 S (L, + (D" 450 10

Finally, we explore the Pell versions of the theorems.

4. Pell Implications

Using the relationship b,(z) = g,,(2z), we can find the Pell versions of
equations (11)—(14):

i ()" _ ¥ Drer
n=1 l]2n+2k+1+2(—1)"+k13 4E  2qp4,

i (-)""*a 1 (7 _ PMJ ;

1 Qonsoke1 — 2(= 1)n+ka7 8E° \2E  qrn

%) k 2 2
3 (=1)" " apy,opi0 + 20 1[ 7" P j

n=1 [QQn,+2k+1+2(_1)n+k$]2 4\ 4E° qgﬂ

k+1 2 2
i n+ + TPontokr2 T _ 1 [4E2}/2 _ Qk+2]_

[QQn+2k+1 - 2( 1 n+kx]2 645" p/%+1
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They yield
i (_1)n+k: ~ 9 4 ﬁ B Pk+2 .
21 Qopiopyr + (-1 4 Qi1
® (_1)n/+k+1 9 4 \/§ P
Z — _ k+2

n=1 Q2n+2k’+1 - (_1)”+k 32 16Qk+l

o0

Z ()" Pyyagpan +1 _ 3+ 22 Pl
k )
i1 [Qansapar + ()" 8 4Qf 1

i (_1)n+k+1p2n+2k:+2 +1_3+242 _ Qbsa
p .
n=1 [Q2n+2k+l - (_1)n+ ]2 8 16P/c2+1

respectively.

5. Chebyshev and Vieta Consequences

Chebyshev polynomials 7, and U, , Vieta polynomials V, and v, , and
gibonacci polynomials are linked by the relationships V,,(z) = i""'f,(=iz),
v, (z) = 1", (=ix), V,(z) = U,_1(x/2), and v,(z) = 27, (z/2) [2, 3, 4}, where

1 = v—1; they can be employed to find the Chebyshev and Vieta versions of the
theorems. In the interest of brevity, we omit them; but we encourage gibonacci
enthusiasts to explore them.
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