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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( )  0z x   and 1( ) 1z x  , 

( ) ( )n nz fx x ,  the  nth  Fibonacci polynomial ; and when 0( ) 2z x   and

1( )z x x , ( ) ( )zn nx l x , the nth Lucas polynomial. They can also be defined by 

the Binet-like formulas. Clearly, (1)n nf F , the nth Fibonacci  number; and

(1)n nl L , the nth Lucas number [1, 3]. 
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 On the other hand, let 

1( )   1z x  ,   ( ) (n nz Jx x

and  1( ) 1z x  , ( )n nz j

Correspondingly, n nJ J

Jacobsthal-Lucas numbers, respectively. Clearly,

Gibonacci and Jacobsthal
( 1)/2 1( ) /( )n

n nJ f xx x 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is 

addition, we let n ng f

2 1E x  , x E  

 
2. Gibonacci Sums 
 
 We established the following four results in [4]:
 

 Theorem 1: Let k be a nonnegative integer. Then

 

   

 

 Theorem 2

 

  
n

 Theorem 3: Let k be a nonnegative integer. Then

 

  
n
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On the other hand, let ( ) 1a x   and ( )  b x x . When  0( )    0 z x 

)( ) (n nz Jx x , the nth Jacobsthal polynomial ; and when 0z x

)( ) (n nz jx x , the nth Jacobsthal-Lucas polynomial

(2)n nJ J  and  (2)n nj j  are the nth Jacobsthal and 

Lucas numbers, respectively. Clearly, (1)n nJ F ; and (1)n nj L

Gibonacci and Jacobsthal polynomials are linked by the relationships 

1 /( )J f x  and  /2 /( 1) ( )n
n nj lx x x  [2, 3]. 

In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean z

n ng f  or nl ,  n nc J  or nj , 2 4x   , 2     

x E   and 4 1D x  , where ( )n nc c x . 

We established the following four results in [4]: 

Let k be a nonnegative integer. Then 

 2

11 2 2 1

( 1)
.

( 1)

n k
k

n k
kn n k

x f

ll x


 




  


 
 

                             

Theorem 2: Let k be a nonnegative integer. Then 

1
2

2
11 2 2 1

( 1) 1
.

( 1)

n k
k

n k
kn n k

x f

ll x


  




  

  
     

                    

Let k be a nonnegative integer. Then 

2 2 2
2 2 2 2

2 2 2
1 1

2 2 1

2( 1)
.

( 1)

n k
n k k

n kn k
n k

x f x f

ll x




  

 
 

 
 
  

 

                       

  

( )    0 z x   and

0( ) 2z x   

polynomial. 

th Jacobsthal and 

n nj L [2,  3]. 

polynomials are linked by the relationships 

In the interest of brevity, clarity, and convenience, we omit the argument in 

( )nz x . In 

2  x    , 

                 (1) 

          (2) 

 

                      (3) 
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 Theorem 4: Let k be a nonnegative integer. Then 

 

  

1 2 2
2 2 2 2 2 2

2 4 2
1 1

2 2 1

2( 1) 1
.

( 1)

n k
n k k

n kn k
n k

x f x l

fl x



 
  

 
 

   
        

 

                (4) 

 
 Next we explore the Jacobsthal implications of these theorems. 
 
3. Jacobsthal Consequences 
 
 Using the Jacobsthal-gibonacci relationships in Section 1, we will now find 
the Jacobsthal versions of equations (1) (4). In the interest of brevity and clarity, we 

let A denote the fractional expression on left-hand side of the given equation and B 

its right-hand side, and LHS and RHS those of the desired Jacobsthal equation, 
respectively. 
 

 3.1 Jacobsthal Version of Equation (1): Proof: Let 
2 1

( 1)

( 1)

n k

n k
n k

x
A

l x




 




 
. 

 Replacing x with 1/ x , and multiplying the numerator and denominator of the 

resulting expression with n kx  , we get 
 

    
2 1

( 1)

( 1)

n k

n k
n k

A
x l




 




 
  

 

        
(2 2 1)/2

2 2 1

( )

( )

n k

n k n k
n k

x

x l x



  
 




 
  

 

        
2 1

( )
;

( )

n k

n k
n k

x

j x




 




 
  

 

          
1 2 2 1

( )
LHS ,

( )

n k

n k
n n k

x

j x

 


  




 
                                              (5) 

 

where 1/( )n ng g x  and ( )n nc c x . 
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 Next, we let 2

1

k

k

f
B

l

 



 


. Replacing x with 1/ x , then multiply each 

numerator and denominator of the resulting expression with ( 1)/2kx   . This yield 
 

   
( 1)/2

2

( 1)/2
1

1

2

k
k

k
k

D x f
B

D x l








  : 

 

          2

1

1
RHS .

2
k

k

D J

D j





     

 

where 1/( )n ng g x  and ( )n nc c x . 

 
 This, combined with equation (5), yields the desired Jacobsthal version: 
 

   2

11 2 2 1

( ) 1
.

2( )

n k
k

n k
kn n k

x D J

D jj x

 



  

 
 

 
                        (6) 

 

where ( )n nc c x .           □ 

 
 It then follows that 
 

   2

11 2 2 1

( 1) 5 5
[4];

10( 1)

n k
k

n k
kn n k

F

LL

 



  

 
 

 
  

 

   2

11 2 2 1

( 2) 2
.

3( 2)

n k
k

n k
kn n k

J

jj

 



  


 

 
  

 
 Next we find the Jacobsthal consequence of equation (2). 
 
 3.2 Jacobsthal Version of Equation (2): Proof: We have 

1

2 1

( 1)

( 1)

n k

n k
n k

x
A

l x

 


 




 
. Replace x with 1/ x , and then multiply the numerator and 

denominator of the resulting expression with n kx  .  
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 We then get 
 

   
1

2 1

( 1)

( 1)

n k

n k
n k

A
x l

 


 




 
  

 

       
(2 2 1)/2

2 2 1

( )

( )

n k

n k n k
n k

x

x l x



  
 




 
  

 

       
2 1

( )
;

( )

n k

n k
n k

x

j x




 

 


 
  

 

          
1 2 2 1

( )
LHS ,

( )

n k

n k
n n k

x

j x

 


  




 
                                             (7) 

 

where 1/( )n ng g x  and ( )n nc c x . 

 

 Next we let 2

1

k

k

l
B

f
 



   . Replacing x with 1/ x , and then multiplying 

each numerator and denominator of the resulting expression with ( )/2n kx  , yields 
 

   2

2
1

( 1)

2
k

k

D Dx l
B

x fD





 
  

 
  

 

       
( 2)/2

2

2 /2
1

( 1)1
;

2

k
k

k
k

D D x l

D x f






 
  

  
 

 

          2

2
1

( 1)1
RHS ,

2
k

k

D D j

JD





 
  

 
 

 

where 1/( )n ng g x  and ( )n nc c x . 

 
 Combined with equation (7), this yields the desired Jacobsthal version: 
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  2

2
11 2 2 1

( ) ( 1)1
,

2( )

n k
k

n k
kn n k

x D D j

Jj x D

 



  

   
  

  
                     (8) 

 

where ( )n nc c x .           □ 

 
 In particular, this yields 
 

   2

11 2 2 1

( 1) 5 5
[4];

10 5( 1)

n k
k

n k
kn n k

L

FL
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11 2 2 1

( 2) 2
.

3 9( 2)

n k
k

n k
kn n k

j

Jj

 



  

 
 

 
  

 
 3.3 Jacobsthal Version of Equation (3): Proof:  Let  
 

2
2 2

2

2 1

2( 1)

( 1)

n k
n k

n k
n k

xf x
A

l x


 


 

 

  
 

. Replacing x with 1/ x , and multiplying the 

numerator and denominator of the resulting expression with 2 2 1n kx   , we get 
 

   

2 2

2

2 1

1 1
2( 1)

1
( 1)

n k
n k

n k
n k

f
x xA

l
x


 


 

 


 
  

 

  

 

       

(2 2 1)/2 2 2
2 2

2
(2 2 1)/2

2 2 1

2( )

( )

n k n k n k
n k

n k n k
n k

x x f x

x l x

   
 

  
 

  
 

  
 

  

 

       
2 2

2 2 2

2

2 2 1

2( )
;

( )

n k n k
n k

n k
n k

x J x

j x
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2 2

2 2

2
1

2 2 1

2( )
LHS ,

( )

n k n k
n k

n kn
n k

x J x

j x

  
 


 

 


  
 

                                (9) 

 

where 1/( )n ng g x  and ( )n nc c x . 

 

 Now let 
2 2

2

2 2
1

k

k

f
B

l

 



 


. Replace x with 1/ x , and multiply each 

numerator and denominator of the resulting expression with 1kx  . This yields 
 
 

   

2
( 1)/22 2

2 2
( 1)/2

1

( 1)
;

4

k
k

k
k

x fD
B

D x l







 
   

 
 

  

        

          
2 2

2

2 2
1

( 1)
RHS ,

4

k

k

D J

D J






   

 

where 1/( )n ng g x  and ( )n nc c x . 

 
 This, coupled with equation (9), yields the desired Jacobsthal version: 
 

  
2 2 2 2

2 2 2

2 2 2
1 1

2 2 1

2( ) ( 1)
.

4( 1)

n k n k
n k k

n kn k
n k

x J x D J

D jj

  
  

 
 

  
 

  
 

                  (10) 

where ( )n nc c x .           □ 

 
 In particular, this yields 
 

  
2

2 2 2

2 2
1 1

2 2 1

2( 1) 1 3 5
[4];

10
( 1)

n k
n k k

n kn k
n k

F F

LL
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1

2 2 1

2( 2) 4

n
n kj





 

 
 



 
 Next we find the Jacobsthal consequence of Theorem 4.
 
 3.4 Jacobsthal Version of Equation

1 2
2 2

2
2 1

2( 1)

( 1)

n k
n k

n k
n k

xf x
A

l x

 
 


 

 


  
 

and denominator of the resulting expression with
 

   

A

 

       

 

       

 

          LHS ,

 

where 1/( )n ng g x  and

 

 Next we let  B   

multiplying each numerator and denominator of the resulting expression with 
yields 
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2
2 2 2

2 2
1

2 2 1

2( 2) 4 4
.

9
( 2)

n k n k
n k k

n k k
n k

J J

jj

 
  

 
 

 
 

  
 

 

Next we find the Jacobsthal consequence of Theorem 4. 

Jacobsthal Version of Equation (4): Proof: We have
1 2

2 2

2
( 1)

n k

n k

xf x

l x

 



 

 
 

.  Replace x with 1/ x , and multiply the numerator 

the resulting expression with 2 2 1n kx   . We then get 

1
2 2

2

2 2 1

1 1
2( 1)

1
( 1)

n k
n k

n k
n k

f
x xA

l
x

 
 


 

 


 
  

 

  

    

(2 2 1)/2 2 2
2 2

2
(2 2 1)/2

2 2 1

2( )

( )

n k n k n k
n k

n k n k
n k

x x f x

x l x

   
 

  
 

   
 

  
 

  

    
2 2

2 2

2

2 2 1

2( )
;

( )

n k n k
n k

n k
n k

x J x

j x

 
 


 

  


  
 

  

2 2
2 2

2
1

2 2 1

2( )
LHS ,

( )

n k n k
n k

n kn
n k

x J x

j x

  
 


 

  


  
 

                             

( )g g x and ( )n nc c x . 

2
2 2 2

4 2
1

1 k

k

l
B

f
 



 
      

. Replacing  x with  1/ x ,  and  then  

numerator and denominator of the resulting expression with 

  

We have

numerator 

                            (11) 

x ,  and  then  

numerator and denominator of the resulting expression with 2kx   
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2 2 ( 2)/2 22

2

4 2 2 /2 2
1

( 1) [ ]
;

4 [ ]

k
k

k
k

D D x lx
B

D x x x f






  
  

  
 

 

          
2 2

2

2 4 2
1

( 1)
RHS ,

4

k

k

D j

D D J






   

 

where 1/( )n ng g x  and ( )n nc c x . 

 
 Combining this with equation (11) yields the desired Jacobsthal version: 
 

  
2 2 2 2

2 2 2

2 2 4 2
1 1

2 2 1

2( ) ( 1)
,

4( 1)

n k n k
n k k

n kn k
n k

x J x D j

D D Jj

  
  

 
 

   
 

  
 

           (12) 

 

where ( ).n nc c x              □ 

 
 It follows from this equation that 
 

  
2

2 2 2

2 2
1 1

2 2 1

2( 1) 1 3 5
[4] :

10 25( 1)

n k
n k k

n kn k
n k

F L

FL
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Abstract: In this paper we prove the common fixed point theorems in 
complex valued metric space for three self mappings. Banach’s fixed point 
theorem plays a major role in fixed point theory. Because of its usefulness 
we have used Banach’s contraction principle for the improvement and 
generalization of our result. Our result generalizes some recent results in the 
literature due to Azam et al. (2011) and Sintunavarat and Kumam (2012) by 
using the idea of two weakly compatible mappings. Azam et al. made a 
generalization by introducing a complex valued metric space using some 
contractive type conditions whereas Sintunavarat and Kumam generalized 
their result by replacing the constants of contraction by some control 
functions. Some concepts have been taken from the results obtained by 
Choi et al. (2017) and Jebril et al. (2019) to improve our results. The results 
of Choi et al. and Jebril et al. in bicoplex valued metric spaces are very 
effective tools to improve our result. Also an example is given to illustrate 
our obtained results. 
 
Keywords and phrases: Complex Valued Metric Space, Common Fixed 

Point, Point of Coincidence, Weakly Compatible 
Mapping. 
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1. Introduction, Definitions and Notations 
 
 The concept of fixed point theorem was first introduced by Poincare and 
Miranda [15] in 1883. After that Brouwer [4] published his famous fixed point 
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theorem in 1912. The theorem states that “If B is a closed unit ball in nR  and if 

:T B B  is continuous then T has a fixed point in B”. In 1992 Banach [5] proved 

his famous fixed point theorem in which contraction principle is the main tools. 
Banach’s fixed point theorem plays a major role in fixed point theory. It has 
applications in many branches of mathematics. Because of its usefulness, a lot of 
articles have been dedicated to the improvement and generalization of that result. 
Most of these generalizations have been made by considering different contractive 

type conditions in different spaces {cf.[6]  [19]}. In 2011, Azam et al. [3] made a 

generalization by introducing a complex valued metric space using some contractive 
type conditions. Very recently, Sintunavarat et al. [20] generalized this result by 
replacing the constants of contraction by some control functions. The purpose of this 
work is to obtain a common fixed point result for three self mappings in complex 
valued metric spaces which generalizes the results of [2] and [20]. 
 

 We write regular complex number as z x iy   where x and y are real 

numbers and 2  1i   . Let  1  be the set of complex numbers and 1z  and 2 1z   . 

Define a partial order relation   on 1  as follows: 

 

1 2z z  if and only if 1 2( ) ( )Re z Re z  and 1 2( ) ( )Im z Im z . 

 

 Thus,  1 2z z  if one of the following conditions is satisfied: 

 

 (i) 1 2( ) ( )Re z Re z  and 1 2( ) ( )I Imz zm  ,  

 

 (ii) 1 2( ) ( )Re z Re z  and 1 2( ) ( )I Imz zm  ,  

 

 (iii) 1 2( ) ( )Re z Re z  and 1 2( ) ( )I Imz zm  ,  

 

 (iv) 1 2( ) ( )Re z Re z  and 1 2( ) ( )I Imz zm  . 

 

 We write  1 2 z z   if  1 2z z   and  1 2z z   i.e.  one of  (ii), (iii)  and  (iv)  

is satisfied and 1 2( ) ( )z z  if only (iv) is satisfied. 

 
 Taking this into account some fundamental properties of the partial order 

on 1  as follows: 
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 (1) If  1 20 z z   then 1 2z z     ; 

 

 (2) If 1 2 2 3,  z z z z   then 1 3z z  and 

 

 (3) If 1 2z z  and 0 1   is a real number then 1 2z z  . 

 
 Azam et al. defined the complex valued metric space in the following way: 
 

 Definition 1.1 [3]: Let X be a nonempty set where as 1  be the set of 

complex numbers. Suppose that the mapping 1:d X X    satisfies the 

following conditions: 

 

 1 )( () : 0 ,d d x y  for all ,x y X  and ( , ) 0d x y   if and only if x y ;  

 

 2 )( )) : ( , ( ,d d x y d y x  for all ,x y X ; 

 

 3 : , , , )( ( )) ) ( (d d x y d x z d z y  for all , ,x y z X . 

 

 Then d is called a complex valued metric on X and (X, d) is called a 

complex valued metric space. 

 

 Definition 1.2 [3]: Let (X, d) be a complex valued metric space, let 

{ }nx  be a sequence in X and x X . 

 

 (i) If for every 1c    with 0 c , there exists an 0n    such 

that for all 0n n , ,( )nd x x c  then { }nx  is said to be convergent, { }nx  

converges to x and x is the limit point of { }nx . We denote this by  

lim n
n

x x


   .as n    

 

 (ii) If for every 1c    with 0 c , there exists an 0n    such 

that for  all 0n n , ( , )n md x x c , where m    then { }nx  is said to be 

Cauchy sequence. 
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 (iii) If every Cauchy sequence in X is convergent then (X, d) is said 

to be a complete complex valued metric space. 

 

 Definition 1.3 [1]: Let T and S be self mappings of a set X. If

w Tx Sx   for some x in X then x is called a coincidence point of T and S 

and w is called a point of coincidence of T and S. 

 

 Definition 1.4 [11]: Let S and T be self mappings of a nonempty set X. 

The mappitngs S and T are weakly compatible if STx TSx  whenever

Sx Tx . 

 
 The following theorem is established by Sintunavarat and Kumam in 2012. 
 

 Theorem 1.1 [20]: Let ( ),X d be a complete complex valued metric space   

and ,  :S T X X . 

 

 If there exist mappings , : 0, 1X     such that for all ,  x y X : 

 
 (i) ( ) ( ) ( ) ( );Sx x and Sx x        

 
 (ii) ( ) ( )  ( ) ( );Tx x and Tx x        

 
 (iii) ( ) 1;( ) x      

 

 (iv) 
( ) ( , ) ( , )

( , ) ( ) ( , )
1 ( , )

x d x Sx d y Ty
d Sx Ty x d x y

d x y


 


 . 

 

 Then S and T have a unique common fixed point. 

 
2. Lemma 
 
 In this section we introduce some lemmas which are the main tools for our 
results. 
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 Lemma 2.1 [3]: Let ( ),X d be a complex valued metric space and let 

{ }nx  be a sequence in X. Then { }nx converges to x if and only if 

 , 0| |nd x x    as   n   . 

 

 Lemma 2.2 [3]: Let ( ),X d  be a complex valued metric space and let 

{ }nx be a sequence in X. Then { }nx is a Cauchy sequence if and only if 

  0| |,n md x x   as  n   , where m    . 

 

 Lemma 2.3 [2]: Let X be a nonempty set and the mappings 

, , :S T f X X  have a unique point of coincidence v in X. If ( ),S f  and 

( ),T f  are weakly compatible then S, T and f have a unique common fixed 

point. 

 
3. Main Results 
 
 In this section we prove a common fixed point theorem and give an example 
to justify our obtained results. 
 

 Theorem 3.1 Let ( ),X d  be a complex valued metric space and

, , :f S T X X . Suppose there exist mappings 1 2 3, , : 0, 1X      such 

that for all ,x y X : 

 

 (i) ( ) ( )i iSx fx  , ( ) ( )i iTx fx  , 1, 2, 3;i    

 

 (ii) 1 2 3( ) ( ) 2 ( ) 1fx fx fx      and 

 

 (iii) 1 2
( , ) ( , )

( , ) ( ) ( , ) ( )
1 ( , )

d fx Sx d fx Ty
d Sx Ty fx d fx fy fx

d fx fy
 


  

  

              
( , ) ( , )

3( )
1 ( , )

d fy Sx d fx Ty
fx

d fx fy






 . 
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 If ( ) ( ) ( )X XS XT f∪  and ( )f X  is complete then f, S and T have a 

unique point of coincidence. Moreover, if ( ),S f  and ( ),T f  are weakly 

compatible then f, S and T have a unique common fixed point in X. 

 

 Proof: Let 0x X  be arbitrary. Choose a point 1x X  such that 

1 0fx Sx  which is possible as ( ) ( )S fX X . Also we may choose a point 

2x X  such that 2 1fx Tx  as )( ()T fX X . Continuing this process we get 

 

1

1

if is odd

if is even.

n
n

n

Sx n
fx

Tx n






 


 

 
 If n    is odd then by using the hypothesis we obtain that 
 

1 1( , ) ( , )n n n nd fx fx d Sx Tx   
 

 1 1
1 1 1 2 1

1

( ) ( )

( )

, ,
( ) ( , ) ( )

1 ,
n n n n

n n n n
n n

d fx Sx d fx Tx
fx d fx fx fx

d fx fx
   

  





   

 

        1 1
3 1

1

( ) ( )

( )

, ,

1 ,
( ) n n n n

n
n n

d fx Sx d fx Tx
fx

d fx fx
  








 

 

 1 1
1 1 1 2 1

1

 , ,
,

(1 , )

( ) ( )
( ) ( ) ( ) n n n n

n n n n
n n

d fx fx d fx fx
fx d fx fx fx

d fx fx
   

  


 


 

  

          1 1
3 1

1

( ) ( )

( )

, ,

1 ,
( ) n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  








  

 Therefore, 
 

 1 1 1 1| ( ) | | ( ) |,   ,( )n n n n nd fx fx fx d fx fx     

 

    1 1
2 1

1

, ,
 

1 ,( )

( ) ( )
( ) n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  







  

 



                         SOME COMMON FIXED POINT THEOREMS  17 

    1 1
3 1

1

, ,
 

1 ( ),

( ) ( )
( ) n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  








 

 

   1 2 1 | ( ),( )n n nTx d fx fx     

 

    1
2 1 1

1(

,
 

1 )
,

,

( )
( ) ( )n n

n n n
n n

d fx fx
Tx d fx fx

d fx fx
 

 


  


 

 

    3 2 1 1,  ( ) ( )n n nTx d fx fx     
 

 

 1 2 1 2 2 1| |, |,|( ) ( ) ( ) ( )n n n n nfx d fx fxn fx d fx fx        

 

  3 2 1 3 2 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

 

 1 3 1 2 3 1| |  ( ) ( , ) ( ) ( , )| |n n n n n nSx d fx fx Sx d fx fx        

 

  3 3 1 3 3 1| |( ) ( , ) ( ) ( , )| |n n n n n nSx d fx fx Sx d fx fx        

 

 1 3 1 2 3 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

 

  3 3 1 3 3 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx       

      . 
      . 
      . 
 

 1 0 1 2 0 1| |  ( ) ( , ) ( ) ( )| , |n n n nfx d fx fx fx d fx fx      

 

  3 0 1 3 0 1| |( ) ( , ) ( ) ( , ) ,| |n n n nfx d fx fx fx d fx fx     

 
which implies that 
 

       2 0 3 0
1 1

1 0 3 0

( , ) | ( ,| | ) |
(

(

1 (

( ) ( )

( ))

)

)
n n n n

fx fx
d fx fx d fx fx

fx fx

 

  



 

            (1) 
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 Again if n is even then we have 

 

  1 1 1,     , ,( ) ( ) ( )n n n n n nd fx fx d Tx Sx d Sx Tx      

 

   1 1,( ) ( )n n nfx d fx fx    

 

    1 1
2

1

( , ) ( , )
 

1 ,  ( ) 
( ) n n n n

n
n n

d fx Sx d fx Tx
fx

d fx fx
  






  

 

    1 1
3

1

( , ) ( , )
( )

1 ( , )
n n n n

n
n n

d fx Sx d fx Tx
fx

d fx fx
  







  

 

   1 1( ) ( , )n n nfx d fx fx    

 

    1 1
2

1

( , ) ( , )
( )   

1 , ) (
n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  






  

 

    1 1
3

1

( , ) ( , )
( )

1 ,   ( )
n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  







. 

 Therefore, 
 

           1 1 1( , )   ( )| | | ( , ) |n n n n nd fx fx fx d fx fx    

 

       1 1
2

1

( , ) (
(

(1 , )

, )
) n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  






  

 

        1 1
3

1

( , ) ( ,

(

)
(

1 , )
) n n n n

n
n n

d fx fx d fx fx
fx

d fx fx
  







  

 

   1 1  ( ) ( , )| |n n nfx d fx fx    

 

    1
2 1

1

( , )
 ( ) ( , )

1 ( , )
n n

n n n
n n

d fx fx
fx d fx fx

d fx fx
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    3 1 1|( ) ( , ) |n n nfx d fx fx     

 

 1 1 2 1| |  ( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx      

 

  3 1 3 1| |( ) ( , ) ( ) |( )| ,n n n n n nfx d fx fx fx d fx fx      

 

 1 1 1, 2 1 1| |  ( ) ( ) ( ) ( , )| |n n n n n nTx d fx fx Tx d fx fx        

 

  3 1 1, 3 1 1| | ( ) ( ) ( ) ( , )| |n n n n n nTx d fx fx Tx d fx fx       

 

 1 1 1 2 1 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

 

  3 1 1 3 1 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

 

 1 2 1, 2 2 1| |  ( ) ( ) ( ) ( , )| |n n n n n nSx d fx fx Sx d fx fx        

 

  3 2 1 3 2 1| |( ) ( , ) ( ) ( , )| |n n n n n nSx d fx fx Sx d fx fx        

 

 1 2 1 2 2 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

 

 3 2 1 3 2 1| |( ) ( , ) ( ) ( , )| |n n n n n nfx d fx fx fx d fx fx        

      . 
      . 
      . 

 1 0 1 2 0 1| |  ( ) ( , ) ( ) ( )| , |n n n nfx d fx fx fx d fx fx      

 

  3 0 1 3 0 1| |( ) ( , ) ( ) ( ,| |)n n n nfx d fx fx fx d fx fx     , 

 
which implies that 
 

 
2 0 3 0

1 1
1 0 3 0

( ( ) ( ))
 , ,

(1 ( ) (
| | |

)
| ( )

)
( )n n n n

fx fx
d fx fx d fx fx

fx fx

 

 
 




 
.              (2) 
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 From (1) and (2) we can conclude that for any integer  
 

 
2 0 3 0

1 1
1 0 3 0

( ( ) ( ))
 , ,

(1 ( ) (
| | |

)
| ( )

)
( )n n n n

fx fx
d fx fx d fx fx

fx fx

 

 
 




 
.              (3) 

 

 We set 
2 0 3 0

1 0 3 0

( ( ) ( ))
.

(1 ( ) ( ))

fx fx

fx fx

 


 




 
 Then by condition (ii), 1  . So 

by repeated application of (3) we obtain that 
 

  1 1( , )   | | | |( , )n n n nd fx fx d fx fx    

 

       2
 2 1| ( ) | ,n nd fx fx     

           . 
           . 
           . 

       0 1| ) | ( ,n d fx fx  . 

 
 Now for all ,m n    and m n  we  have 

 

1 1 2 1( , ) ( , ) ( , ) ( , )n m n n n n m md fx fx d fx fx d fx fx d fx fx     . 

 
 Therefore, 
 

1 1 2 1| | | |( ,  )    ( , ) ( , ) ( , )| | |n m n n n n m md fx fx d fx fx d fx fx d fx fx         

 

  1 1
0 1  ( .. |(|. ) , )n n m d fx fx         

 

  0 1( , )
1

n

d fx fx



  


. 

 

 Since 1  , taking limit as ,n m    we have ( , ) 0| |n md fx fx  , which 

implies that { }nfx  is a Cauchy sequence in ( )f X . By completeness of ( )f X , there 

exist ,u v X  such that nfx v fu  . 
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 Now 

  2 1 2 1( , )  ( , ) ( , )n nd fu Tu d fu f d fx Tu    

 

       2 1 2( , ) ( , )n nd fu f d Sx Tu    

 

       2 1 1 2 2( , ) ( ) ( , )n n nd fu f fx d fx fu    

 

        2 2
2 2

2

( , ) ( , )
( )

1 ( , )
n n

n
n

d fx Sx d fu Tu
fx

d fx fu



  

 

    2 2
3 2

2

( , ) ( , )
( )

1 ( , )
n n

n
n

d fu Sx d fx Tu
fx

d fx fu






. 

 
 Which implies that 
 

2 1 1 2 2| ( , )    ( , |) ( )| ( ,| | | )n n nd fu Tu d fu f fx d fx fu    

 

          2 2 2 2( ) ( , |)| ( , )n n nfx d fx Sx d fu Tu     

 

          2
2

3 2 2( ) ( , )
(

1
{| | | |}, as 1

1 , )
( )n n n

n

fx d fu Sx d fx
u

Tu
d fx f


 

 



  

 

        2 1 1 0 2| | | | ( ,  ) ( ) ( , )n nd fu f fx d fx fu   

 

         2 0 2 2 (| |( ) ( , ) , )n nfx d fx Sx d fu Tu    

 

         3 0 2 2( ) ( , ){| | | ( , |})n nfx d fu Sx d fx Tu  . 

 
 Taking n   , it follows that 0| ( |, )d fu Tu   and hence, ( , ) 0d fu Tu  . 

 
 Therefore, fu Tu v   . 

 
 Similarly, we can show that  fu Su v   . 

 



22  RAKESH SARKAR AND SANJIB KUMAR DATTA   

 Thus,  fu Su Tu v    and so v  becomes a common point of 

coincidence of  f, S  and T. 

 
 Uniqueness: 
 
 For uniqueness suppose there exists another point  (ƒ )  w v X   such that 

fx Sx Tx w    for some x X . 

 

 Thus, 
( , ) ( , )d v w d Su Tx  

 

 1 2
, ,

( ) , ( )  
( ) ( )

)
1 ( ,

(
)

d fu Su d fx Tx
fu d fu fx fu

d fu fx
 


   

 

                   3
( ) ( )

( )

, ,
( )

1 ,

d fx Su d fu Tx
fu

d fu fx






  

 

 1 2
( , ) ( , )

( ) ( , ) ( )
1 ( , )

d v v d w w
v d v w v

d v w
  


  

 

             3
,( ) ( )

( )

,
( )

1 ,

d w v d v w
v

d v w






  

 

 1 3  ( ) ( , ) 2 ( ) ( , )v d v w v d v w   . 

 
 Which implies that 
 

1 3| | | | | |( , ) ( ) ( , )  2 ( ) ( , )d v w v d v w v d v w   . 

 

 Since, 1 30 ( ) 2 ( ) 1v v    , it follows that 0| ( |, )d v w    and so 

v w  . If ( ),S f  and ( ),T f  are weakly compatible then by Lemma 2.3 f, S and T  

have a unique common fixed point in X.                     ■ 
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 Corollary 3.1: Let ( ),X d  be a complex valued metric space and

,  :S T X X . Suppose there exist mappings 1 2 3, , : 0, 1X      such 

that for all ,x y X  

 

 (i) ( ) ( )i iSx x  , ( ) ( )i iTx x   for all 1, 2, 3;i   

 

 (ii) 1 2 3( ) ( ) 2 ( ) 1;x x x      

  

 (iii) 1 2
( , ) ( , )

( , ) ( ) ( , ) ( )
1 ( , )

d x Sx d y Ty
d Sx Ty x d x y x

d x y
 


   

 

           3
( , ) ( , )

( )
1 ( , )

d y Sx d x Ty
x

d x y






. 

   

 Then S and T have a unique common fixed point in X. 

 

 Proof: The result follows from Theorem 3.1 by taking f I , the identity 

mapping.            ■ 
 

 Corollary 3.2:  Let (X,d) be a complex valued metric space and

, :S T X X . If S and T satisfy 

 

( , ) ( , ) ( , ) ( , )
( , ) ( , )

1 ( , ) 1 ( , )

d x Sx d y Ty d y Sx d x Ty
d Sx Ty d x y

d x y d x y
  


 

 
  

 

for all ,x y X , where , ,µ   are nonnegative reals with 2 1µ     

then S and T  have a unique common fixed point. 

 
 Proof: The desired result can be obtained from Theorem 3.1 by setting 

1 2 3( ) ,  ( ) ,  ( )x x µ x        and  f I .       ■ 
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 Corollary 3.3: Let ( ),X d  be a complex valued metric space and 

, :f T X X  be such that ( ) ( )XT f X  and ( )f X  is complete. Suppose 

there exist mappings 1 2 3, , : 0, 1X      such that for all ,x y X : 

 

 (i)  ( ) ( )   1, 2, 3;i iTx fx for all i     

 

 (ii)  1 2 3( )( ) 2 ( ) 1;fxfxfx       

 

 (iii) 1 2
( , ) ( , )

( , ) ( ) ( , ) ( )
1 ( , )

d fx Tx d fy Ty
d Tx Ty fx d fx fy fx

d fx fy
 


   

 

              3
( , ) ( , )

( )
1 ( , )

d fy Tx d fx Ty
fx

d fx fy






. 

 

 Then f and T have a unique point of coincidence. Moreover, if f and T 

are weakly compatible then f and T have a a unique common fixed point in X. 

 
 Proof: The proof of the corollary follows from Theorem 3.1 by considering
S T .              ■ 
 

 Corollary 3.4: Let ( ),X d  be a complete complex valued metric space 

and :T X X . Suppose there exist mappings 1 2 3, , : 0, 1X      such 

that for all  ,x y X : 

 

 (i)  ( ) ( )   1, 2, 3;i iTx x for all i     

 

 (ii)  1 2 3( )( ) 2 ( ) 1;xxx       

 

 (iii) 1 2
( , ) ( , )

( , ) ( ) ( , ) ( )
1 ( , )

d x Tx d y Ty
d Tx Ty x d x y x

d x y
 


   

 

         3
( , ) ( , )

( )
1 ( , )

d y Tx d x Ty
x

d x y






. 
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 Then T  has a unique fixed point in X. 

 
 Proof: The proof of the corollary follows from Theorem 3.1 by considering 
S T  and  f I .           ■ 

 

 Corollary 3.5:  Let ( ),X d  be a complex valued metric space and

:   T X X . Suppose T satisfies 

 

 
( , ) ( , )

( , ) ( , )
1 ( , )

d fx Sx d fy Ty
d Tx Ty d fx fy

d fx fy
 


   

 

    
( , ) ( , )

1 ( , )

d fy Sx d fx Ty

d fx fy






. 

 

for all ,x y X , where λ, µ, η are nonnegative reals with 2 1µ    . If 

( ) ( )T X f X  and f (X) is complete then f and T have a unique point of 

coincidence. Moreover, if f and T are weakly compatible then f and T have a 

unique common fixed point in X. 

 

 Proof: Putting S T  , 1( )x  , 2( ) µx  , 3( )x   in Theorem 3.1 

we can prove this result.            ■ 
 

 Example 3.1:  Let  1,  X   . Define , :   T f X X  b y 3 1
2
xTx    

and 5 2
3

xfx   in X. If ud  is the usual metric on X  then T  and f are not the 

contraction mappings on X as for all ,x y X , 3
2

( , )  | |ud Tx Ty x y   and 

5
3

( , ) | |ud fx fy x y  . 

 

 So we can not apply Banach contraction theorem to find the unique 

fixed point of T and f. 
 

 Now we consider a complex valued metric 1:d X X    by 
 

( , ) | | | |d x y x y i x y      
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 Then ( ),X d is a complete complex valued metric space.  

  
 Now,  
 

           3
12

]( [, )d Tx Ty x y i x y      
 

 

                9 9
10 10

 ( , ) ( , ),  0  1d fx fy hd fx fy where h      . 

 

 Since, ( ) ( )T X f X X  , we have all the conditions of Corollary 3.5 

with ,  0h µ    .  

 

 So applying Corollary 3.5 we can obtain a unique fixed point 1 of T  

and f in  X. 

 
4. Future Prospect 
 
 In the line of the works as carried out in the paper one may think of the 
deduction of fixed point theorems using fuzzy metric, quasi metric, partial metric and 
other different types of metrics under the flavour of bicomplex analysis. This may be 
an active area of research to the future workers in this branch. 
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SPLIT DOMATIC NUMBER OF A GRAPH 

 
 
 
 
 

Abstract: A dominating set ( )D V G  is a split dominating set if the 

induced subgraph     V D    is disconnected.  The minimum cardinality of  

a split dominating set is called the split domination number of G, denoted 

by ( )s G . The maximum order of a partition of ( )V G  into split 

dominating sets of G is called the split domatic number of G and is denoted 

by ( )sd G . In this paper, we study several aspects of these two parameters 

and find certain classes of graphs that are domatically full. 
 
Key words and phrases: Domination, Domination Number, Split 

Domination, Split Domination Number, 
Domatic Number, Split Domatic Number. 
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1. Introduction 
 
 By a graph ( , )G V E  we mean a finite, undirected graph without loops or 

multiple edges. The order and size of G are denoted by p and q respectively. 

 
 For graph theoretical terms we refer to Harary [2] and for terms related to 

domination we refer Haynes et al. [3] and [4].  A subset D of V is said to be a 
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dominating set in G if every vertex in V D  is adjacent to at least one vertex in D. 

The maximum order of a partition of V into dominating sets of G is called the 

domatic number of G and is denoted by ( )d G . G is domatically full if

( ) ( ) 1d G G  . A dominating set D of a graph   ( , )G V E  is a split dominating 

set if the induced subgraph    V D    is disconnected. The split domination 

number ( )s G  of G is the minimum cardinality of a split dominating set. The 

maximum order of a partition of ( )V G  into split dominating sets of G is called the 

split domatic number of G and is denoted by ( )sd G . The corona of two graphs 1G  

and 2G  is the graph 1 2 G G o G  formed from one copy of 1G  and 1| ( ) |V G   

copies of 2G  , where the thi  vertex of 1G  is adjacent to every vertex in the thi  copy 

of 2G . In this paper, we study several aspects of these parameters and find certain 

classes of graphs that are domatically full. 
 

 Kulli and Janakiram introduced the concept of split domination in graphs [5]. 
The following results are very useful in the subsequent sections. 

 

 Theorem 1.1 [1]:  (If ( ) 1G   then 
2

( ) ( ) 2pG d G    
 

 and equality 

requires that 
2

, 2 .{ }( ), ( ) { }pG d G  
 

 

  

 Theorem 1.2 [2]: For any graph , ( ) 1  ( )G G G   . 

 

 Theorem 1.3 [6]: Let G be any unicyclic graph with cycle pC . Then

( )( ) nsG G    if and only if 1 2 3, ,G G G G   or 4G  where 1 1 G H K   where 

H  is any unicyclic graph, 2   G   any unicyclic graph with cycle )4(pC p   in 

which every support is adjacent to exactly one pendent vertex, every vertex not 

on the cycle is a pendent vertex and exactly three consecutive vertices on the 

cycle have degree 2 and 3G , 4G  are as given in Figure 1. 

 

 
 

               
Figure 1 
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 Example 1.4: For 1G G , where 1G  is given in Figure 2, ( ) 3s G  . 

 
 
 

 
 
 
 

Figure 2 
 

It is interesting to observe that the property ‘split’ is one among very few 

properties which are neither hereditary nor super hereditary. Motivated by 

this feature, we study several aspects of this parameter. 

 
2. Split Domination Number of a Graph 
 
 The following are immediate from the definition: 
 

 Proposition 2.1: (1)  ( )s G  does not exist if and only if  pG K . 

 

(2)  If G is any graph with ( ) 1G p    and ( ) 1G   then ( ) 1s G  . 

Converse is not true. If G is the graph given in Figure 3, ( ) 1s G  , 

( ) 1G p    but 1( )G  . 

 

 

 

Figure 3 
 

(3) For any connected graph G which is not isomorphic to complete graph, 

( ) 2s G p   . 

(4) If H is a connected spanning subgraph of G, then (( ) )s sH G  . 
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(5)  If ,m nG K , then ( ) ( ) 2sG G   . 

(6) Let G be any connected graph 3  P  such that either 

( ) ( ) 2G G p     or ( ) 2G p    number of pendent vertices. 

Then ( ) 2s G  . 

(7) If G is any disconnected graph without isolated vertices, then 

( ) 2s G p    if and only if 22G K . 

(8) If G is a galaxy then  ( ) ( )sG G   number of components of G. 

Converse is not true. If G is the graph given in Figure 4,  

( ) ( ) 2sG G     number of components of G, but G is not a galaxy. 

 

 

 

 

Figure 4 

 Theorem 2.2: Let T be any tree. ( ) 2s T   if and only if T has exactly 

two supports and diam( 5)T  . 

 

 Proof:  Suppose ( ) 2s T  .  If  T  has exactly one support then 1, pT K .  

But 1,( ) 1s pK   and so T  has at least two supports. If T has 3 or more supports 

then clearly ( ) 3s T   and so T has exactly two supports. If diam( 6)T  , then 

again ( ) 2s T   and so diam( 5)T  . Converse is obvious.        □ 

 
 The following is immediate. 
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 Corollary 2.3: Let T be any tree with exactly two supports. Then 

( ) 3s T   if and only if diam( ) 6, 7T  or 8. 

 

 Theorem 2.4: Let T be a tree. Every minimum dominating set is a split 

dominating set if and only if 1pT P K . 

 
 Proof: Assume that every minimum dominating set is a split dominating set. 

If 1pT P K , the set of all pendent vertices is a minimum dominating set which 

is not a split dominating set and so 1pT P K . If 1pT P K , every minimum 

dominating set contains a non-pendent vertex and so is a split dominating set.          □ 
 

 Theorem 2.5: Let T be any tree such that 1,pT K . Then 

 

( ) ( ) 3
( )

( ) 1 ( ) 4.s

p T if diam T
T

p T if diam T


  
 

   
 

 
 Proof:  Let ( )v V T  with  ( )deg v T  . 

 
 Case (i): ( ) 3diam T  . 

 

 Since, ( ) 3diam T  , there exists a pendent vertex u adjacent to v and a 

pendent vertex w non-adjacent to v. Let { }[ ]S N v u  . 

 

 Claim:   V S  is a minimum split dominating set of  T .  
 

 w V S   dominates v and  every vertex of }( {)N v u  is  dominated by  

u. v is an isolated vertex of < S > in T  and so   V S  is a split dominating set         

of T .  The vertices of ( ) [ ]V T N v  are all adjacent to a single vertex of ( )N v  since 

otherwise T has a cycle. Hence, [ ]u N v  is essential to dominate that vertex in T . 

If any other vertex of ( ) [ ]TV N v  lies in S, then that vertex is adjacent to v in T so 

that S is not a split dominating set. Hence, V S  is a minimum split dominating set 

of T  so that ( ) ( )s pT T    . 
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 Case (ii):  ( ) 4diam T  . 

 

 Let [ ]S N v . As ( ) 4diam T  , either there exists ( )x V T  with 

( , ) 3d v x   or there exists , ( )x y V T  with ( , ) 2d v x   and ( , ) 2d v y  . In the 

former case, x is adjacent to all vertices of S   in T  and in the latter case { },x y  

dominates all vertices of S  in T . Also v is an isolated vertex in S   in T . So 

V S   is a split dominating set of T . As in case (i), it is minimum. Hence,

( 1( () ) )s p TT     .          □ 

 

 Corollary 2.6: For any tree 1, ,pT K  ( ) ( ) ( ) 1s sT T p T       

if and only if T is obtained from 5P  or 6P  by adding zero or more number of 

pendents to the supports. 

 

 Proof:  If ( ) 3diam T   then ( ) ( )s T p T     and so 

( ) ( )   ( ) 1 ( ) 1s s sT T p T T          which is impossible as 1,pT K . 

 

 Suppose diam( ) 4T  . Then by Theorem 2.5, ( ) ( ) 1s T p T      and so

( ) 2s T  . By Theorem 2.2, T has exactly two supports and diam( ) 5T  . Thus, 

diam( ) 4T    or 5 and T is obtained from 5P  or 6P  by adding zero or more number 

of pendents to the   supports. 
 

 Converse is obvious.          □ 
 

 Theorem 2.7: Let T be any tree with diam( ) 3.T  Then 

 

    2( ( ))( ) ( )s sT T p T     . 

 

 Proof: By Theorem 2.5, ( ) ( )s T p T     if diam( ) 3T  . If diam

( ) 3T   then T has exactly 2 supports and so by Theorem 2.2,  ( ) 2s T  .  Hence, 

(2( )( ) ( ) )s sT T p T     .          □ 
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 Remark 2.8: Converse of Theorem 2.7 is not true. Consider 5P . 

5 5( ) ( ) 4 6s sP P    .  But diam 5( ) 4P  . 

 We now relate ( )s G  with other graph theoretic parameters. 

 

 Theorem 2.9: For any connected graph G, ( ) ( ) ( ) 2s G G p G      . 

Equality holds for 4G C , 4P . 

 
 Proof: By Theorem 1.2, and by Proposition ??(3) we  have  

( ) ( ) ( ) 1s G G p G      . By Theorem 1.2, if ( ) ( ) 1G G     then G is 

either an odd cycle or a complete graph. For a complete graph, ( )s G  is not defined. 

For an odd cycle pC , ( ) 2s pC p   .  Hence, the above bound can be improved  as 

( ) ( ) ( ) 2s G G p G      .  Equality holds for 4G C , 4P .                          □ 

 

 Theorem 2.10: For any connected graph G, ( ) ( ) ( ) 2s G k G p G      . 

Equality holds if 4G C . 

 

 Proof:  For any connected graph G, 2( )s G p    and )( ()k GG    so    

that ( ) ( ) ( ) 2s G k G p G      . Equality holds if ( ) 2s G p    and

( ) ( )k G G  . If 4G C , ( ) 2s G  , ( ) 2k G   and so the bound is sharp. 

 

 Theorem 2.11: For any connected graph G, ( ) ( ) 2 3s G diam G p    . 

Equality holds if 4G P . 

 

 Proof: For any connected graph G, ( ) 2s G p    and ( ) 1diam G p   so 

that  ( ) ( ) 2 3s G diam G p    .  Clearly equality holds if 4G P .     □ 

 

 Theorem 2.12: Let G be any unicyclic graph with cycle pC .  Then

 ( ) ( ) ( ) ns sG G G     if and only if 1G G , 2G , 3G  or 4G  where 

1 1 G H K   for any unicyclic graph H, 2  G   any unicyclic graph with cycle 

)4(pC p   in which every support is adjacent to exactly one pendent vertex, 
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every vertex not on the cycle is a pendent vertex and exactly three consecutive 

vertices on the cycle have degree 2 and 3G , 4G are as given in Figure 5. 

 
 
 
 
 
 
 
 

Figure 5 
 
 Proof: Follows by Theorem 1.3 since for every such graph there exists a split 

dominating set with cardinality ( )G .        □ 

 

 Theorem 2.13: For any tree T, ( ) ( ) ( ) ( ) 2s ns snsT T T T        if 

and only if 4T P . 

 

 Proof: Since a tree cannot contain a cycle, ( ) 2sns T   which implies

4p  . So 1,3T K   or 4P .  If  1,3T K  then ( ) 1T   and so 4T P . 

 

 Converse is obvious.          □ 
 

 Proposition 2.14: Let G be any connected graph and 1 G' G K  , 

where 1G K  is the corona of G and 1K . Then ( ) ( ) ( )s nsG' G' G' p     , 

where (| |)p V G . 

 

 Proof: Since G is connected, the set of all pendent vertices of G'  forms a 

ns -set of G and so ( )ns G' p  . Similarly ( )V G  forms a s -set of G' which is 

also a  -set of G' . Hence, ( ) ( ) ( )s nsG' G' G' p     .                             □ 
 
3. Split Domatic number of a Graph 
 
 Definition 3.1: Let ( , )G V E  be a graph. The maximum order of a 

partition of ( )V G  into split dominating sets of G is called the split domatic number 
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of G and is denoted by ( )sd G . 

 

 Remark 3.2: ( )sd G  cannot be determined for any graph with ( ) 1G p   . 

  
 In the following proposition we summarize a number of elementary results 

which determine ( )sd G for special classes of graphs. The proofs of these results are 

simple and are omitted. 
 

 Proposition 3.3: (1)  If   ( 4)pG P p   then ) 2(s pd P  . 

 

 (2) If  ,m nG K    then  , 2( )s m nd K  . 

 

 (3) If  1G G K    then 1 2( )sd G K  .   

           

 (4) If  pG C    where 4p  , 5 or 6  then ) 2(s pd C  . 

 

 (5) If  pG P    where 4p  , 5 or 6  then ) 2(s pd P  . 

 

 (6) For any graph  ,  ( ) ( ) 1sG d G G  . 

 

 Definition 3.4: A graph G is split domatically full if ( ) ( ) 1sd G G  . 

 

 Proposition 3.5: If ( 3 ,  1)pG C p k k   , then '
pC s  are domatically 

full. 

 

 Proof: Let 1 2 3( ) , , , }{p kV C v v v  . The sets 1 4 7 3 2, , , , ,{ }kv v v v   

2 5 3 1{ }, , , kv v v   and 3 6 3 }, , ,{ kv v v form a partition of ( )V G  into split 

dominating sets and so  ( ) 3 ( ) 1s p pd C C   .       □ 
 

 Corollary 3.6: Let ( 4)pG C p  .  Then G is split domatically full if 

and only if 0(mod3)p  . 
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 Proof: By Theorem 1.1, ( ) 2pd C   if 1p  , 2(mod3)  and hence, the 

result follows.            □ 
 
 Using cycles, we now construct a special class of split domatically full 
graphs.  

 

 Example 3.7: Let { :p pI C C  is a cycle on p vertices, }3 , 1p k k  . 

An operation   is defined on I as follows: 

 

 If , ,i j kC C C I , then i jC C   is obtained by joining any one vertex of

iC  to any one vertex of jC  by an edge. ( )i j kC C C   is obtained by joining any 

one vertex of i jC C  to any one vertex of kC  by an edge. The process is repeated 

finite number of times and we define G   to be the collection of all such graphs.  As 

each pC  in I is domatically full and union of split dominating sets of the individual 

cycles give split dominating sets of the newly constructed graphs, every element of 

G   is split domatically full. 
 

 Proposition 3.8: If T is any tree other than a star, then T is split 

domatically full. 

 
 Proof: By Theorem 1.1, ( ) 2d T   for any tree with at least two vertices. In 

any tree with at least two distinct supports, it is easy to observe that there exist two 
disjoint dominating sets which are also split dominating sets.  If T is a star then

( ) 1sd T  .  

 

 Hence, if  1 1,pT K    then ( ) 2 ( ) 1sd T G   .       □ 
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Abstract: We present two conjectures, one involving Fibonacci numbers 
and the other Jacobsthal numbers. 
 
Keywords: Fibonacci, Lucas, Jacobsthal, and Jacobsthal-Lucas Numbers, 

Extended Gibonacci Numbers.  
 

 Mathematical Subject Classification (2020) No.: Primary 11B37, 11B39, 

                11C08. 
 

1. Introduction 
 

 Extended gibonacci numbers nG  are defined by the recurrence

1 2n n nG aG bG   , where 1, ,a b G , and 2G  are arbitrary integers and 3n  . 

 

 Suppose 1a b  . When 1 21G G  , n nG F , the nth Fibonacci 

number ; and when 1 1G   and 2 3G  , n nG L , the nth  Lucas number. They 

can also be defined by Binet-like formulas [2, 3]. 

 

 On the other hand, let 1a   and 2b  . When 1 21G G  ,  n nG J , the  

nth Jacobsthal number; and when 1 1G   and 2 5G  , n nG j , the nth 

Jacobsthal-Lucas number [3]. 
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 The following table shows the first 10 Fibonacci, Lucas, Jacobsthal, and 
Jacobsthal-Lucas numbers. 

 
Table 1  

First 10 Fibonacci, Lucas, Jacobsthal, and Jacobsthal-Lucas numbers 
 

n 1 2 3 4 5 6 7 8 9 10 

nF  1 1 2 3 5 8 13 21 34 55 

nL  1 3 4 7 11 18 29 47 76 123 

nJ  1 1 3 5 11 21 43 85  171 341 

nj  1 5 7 17 31 65 127 257 511 1,025 

 
 A quick look at the first 100 Fibonacci numbers in [2, 3] gives a fascinating 

observation. There are exactly seven palindromic Fibonacci numbers 100F , and 

six (the smallest perfect number [1]) of them are single-digit integers and are all 

circled in Table 1. 
 

 Interestingly, the corresponding Jacobsthal table in [3] contains two added 
bonuses. In addition to the four single-digit integers, there are two additional 

palindromic numbers, namely 5 11J   and 9 171J  , again a total of six Jacobsthal 

palindromes 100J , also circled in Table 1. 

 

 With a computer program, Z. Gao established that there are no additional 

Fibonacci palin-dromes 170,000F , and no additional Jacobsthal palindromes  

120,000J  [4]. 

 
2. Extended Gibonacci Conjectures 
 
 Based on Fibonacci and Jacobsthal tables in [3], and the data collected by 
Gao, we conjecture that: 
 

1. There are exactly seven Fibonacci palindromes: 1, 1, 2, 3, 5, 8, and 55; and 
 
2. There are exactly six Jacobsthal palindromes:  1, 1, 3, 5, 11, and 171. 

 
 Clearly, similar conjectures can be conceived for both Lucas and Jacobsthal-
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Lucas numbers as well. For the curious-minded, we add that 25 167, 761L   is 

palindromic. 
 
 We encourage gibonacci enthusiasts to either confirm or disprove each 
conjecture. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x f x , the nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. They can also be defined by the Binet-

like formulas. Clearly, 1( )n nf F , the nth Fibonacci number; and 1( )n nl L , the 

nth Lucas number [1, 4]. 
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Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

2( )( )n np fx x  and 2( )( )n nq lx x , respectively [4]. 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let n ng f  or nl , and n nb p  or nq ,   n nc J  or  nj , 2 4x   ,   

2  x    , 2 1E x  , x E   ,  and 4 1D x   where ( )n nc c x . 

 

 It follows by the Binet-like formulas that 1lim m

m m

f

l







 and 

1lim m

m m

l

f



  . 

 
 1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the 
following properties: 
 

                                           2
1 2 1 ( 1) ;n

n n nf f l x                      (1) 

                                                1 2 1 ( 1) ;n
n n nl l l x                     (2) 

                              2 1 1  ( 1) ;n
n n n nl f l f x                       (3) 

                              2 1 1 2 2 2 ( 1) ;n
n n n n nl f l f f x                        (4) 

                              1
2 1 1  ( 1) ;n

n n n nf l f l x
                       (5) 

                              2 1 1 2 2  2 ( 1) .n
n n n n nf l f l f x                        (6) 

 
 These properties can be confirmed using the Binet-like formulas. 
 
 It follows by identities (3) (6) that 
 

   2 2 2 2 2
2 1 1 2 22( 1) ;n

n n n n nl f l f xf x           (7) 

 

               2 2 2 2 1 2
2 1 1 2 22( 1) .n

n n n n nf l f l xf x
          (8) 
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2. Telescoping Gibonacci Sums 
 
 We now establish two telescoping gibonacci sums, where 0k   and 1   
are integers. 
 
 Lemma 1: 

   2 1 2

1 1 1

n k n k k

n n k n k k

f f f

l l l

   

   




    

    

 
      

 .                      (9) 

 

 Proof: Since 2 1

1 1

m
n k n k

n n k n k

f f

l l

 

 
   

   

 
  

 
  is a telescoping sum, we have  

 

2 1 2 2

1 1 1 1

m
n k n k m k k

n n k n k m k k

f f f f

l l l l

   

   
      

      

 
    

 
 . 

 

 This yields the desired result.         □ 
 
 Lemma 2: 
 

   2 1 2

1 1 1

n k n k k

n n k n k k

l l l

f f f

  
 

  



    

    

 
     

 
 .             (10) 

 

 Proof: Using the fact that  1lim m

m m

l

f



  , the proof follows as above.  

So, in the interest of brevity, we omit the details.        □ 
 
 These two lemmas play a pivotal role in our discourse. 
 
3. Gibonacci Sums 
 
 With the above identities and lemmas at our disposal, we are now ready for 
further explorations. 
 
 The next two theorems invoke the lemmas with 1  . 
 

 Theorem 1: Let k be a nonnegative integer. Then 
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2

11 2 2 1

( 1)
.

( 1)

n k
k

n k
kn n k

x f

ll x


 




  


 
 

                (11) 

 
 Proof: It follows by identities (2) and (3) that 
 

    1 2 2 1 ( 1) ;n k
n k n k n kl l l x
        

 

  2 1 1 ( 1) .n k
n k n k n k n kl f l f x
           

 
 By Lemma 1, we then have 
 

        2 1 1

12 2 1

( 1)

( 1)

n k
n k n k n k n k

n k
n k n kn k

x l f l f

l ll x


      


   

 


 
  

  

  2 1

11 12 2 1

( 1)

( 1)

n k
n k n k

n k
n k n kn nn k

x f f

l ll x

 
   


    

  
  

  
    

 

       2

1

k

k

f

l

 



 


, 

 

as desired.            □ 
 
 It then follows that 
 

 
1 2 1

( 1) 1 5
;

2 10( 1)

n

n
n nL



 


  

 
  

1 2 3

( 1) 1 5
;

6 10( 1)

n

n
n nL



 


 

 
  

 

 
1 2 5

( 1) 1 5
;

4 10( 1)

n

n
n nL



 


  

 
  

1 2 7

( 1) 3 5
.

14 10( 1)

n

n
n nL



 


 

 
  

 
 The next result invokes Lemma 2 with 1  . 
 

 Theorem 2: Let k be a nonnegative integer. Then 
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1
2

2
11 2 2 1

( 1) 1
.

( 1)

n k
k

n k
kn n k

x f

ll x


  




  

  
     

                               (12) 

 
 
 Proof: Using identities (1) and (4), we get 
 

   2
1 2 2 1 ( 1) ;n k

n k n k n kf f l x
         

 

       1
2 1 1 ( 1) .n k

n k n k n k n kf l f l x 
          

 
 By Lemma 2, we then have 
 

         
1

2 1 1

2
2 2 1 1

( 1)

( 1)

n k
n k n k n k n k

n k
n k n k n k

x f l f l

l x f f

 
      


    

 


  
  

  

  
1

2 1

2
11 12 2 1

( 1) 1

( 1)

n k
n k n k

n k
n k n kn nn k

x l l

f fl x

  
   


    

  
  

   
    

 

       2

2
1

1
,k

k

l

f
 



 
    

 
  

as desired.            □ 
 
 Consequently, we have 
 

 
1 2 1

( 1) 1 5
;

10 10( 1)

n

n
n nL



 


 

 
  

1 2 3

( 1) 3 5
;

10 10( 1)

n

n
n nL



 


  

 
  

 

 
1 2 5

( 1) 1 5
;

5 10( 1)

n

n
n nL



 


 

 
   

1 2 7

( 1) 7 5
.

30 10( 1)

n

n
n nL



 


  

 
  

 
 

 Gibonacci Delights: By combining these two theorems, we can extract 

interesting dividends. 
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 Adding equations (11) and (12), we get 
 

2 2
2

2 2 2
11 2 2 1

2 1
.k

kn n k

x f

ll x






  

   
     

  

 
 In particular, this yields 
 

 
2

1 2 1

1 3 3 5
;

10 501n nL



 

 


   
2

1 2 3

1 1 3 5
;

10 501n nL



 

 


  

 

 
2

1 2 5

1 3 3 5
;

20 501n nL



 

 


   
2

1 2 7

1 9 21 5
.

70 3501n nL



 

 


  

 
 Likewise, subtraction of the two equations yield  
 

2
2 2 1 2

2 2 2
11 2 2 1

2( 1) 1
.

n k
n k k

kn n k

xl f

ll x


 

  

  

    
    

  

 
 This implies 
 

 

2 1

2
1 2 1

( 1) 2 5
;

251

n
n

n n

L

L




 





   2 3

2
1 2 3

( 1) 2 2 5
;

15 151

n
n

n n

L

L




 


  


  

 

 2 5

2
1 2 5

( 1) 1 2 5
;

10 251

n
n

n n

L

L




 


 


   2 7

2
1 2 7

( 1) 4 2 5
.

35 251

n
n

n n

L

L




 


  


  

 
 
 The next two theorems employ the lemmas with 2  . 
 

 Theorem 3: Let k be a nonnegative integer. Then 

 

  
2 2 2

2 2 2 2

2 2 2
1 2 2 1 1

2( 1)
.

( 1)[ ]

n k
n k k

n k
n n k k

xf x f

l x l


 

  


   

 
 

  
                (13) 
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 Proof: Lemma 1, coupled with identities (2) and (7), yields 
 

            
2 2 2 2 2

2 2 2 2 1 1

2 2 2
2 2 1 1

2( 1)

( 1)[ ]

n k
n k n k n k n k n k

n k
n k n k n k

xf x l f l f

l x l l
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as desired.            □ 
 
 In particular, we then get 
 

    

2 2

2
1 2 1

2( 1) 1 7 5
;

10 10( 1)[ ]

n
n

n
n n

F

L




 

 
  

 
      

1
2 4

2
1 2 3

2( 1) 1 23 5
;

90 10( 1)[ ]

n
n

n
n n

F

L

 


 

 
  

 
  

 

    

2 6

2
1 2 5

2( 1) 1 21 5
;

80 10( 1)[ ]

n
n

n
n n

F

L




 

 
  

 
       

1
2 8

2
1 2 7

2( 1) 1 103 5
.

490 10( 1)[ ]

n
n

n
n n

F

L

 


 

 
  

 
  

 
 The next result invokes Lemma 2. 
 

 Theorem 4: Let k be a nonnegative integer. Then 
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                (14) 

 
 Proof: With identities (1) and (8), Lemma 2 yields 
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confirming the given result.          □ 
 
 It then follows that 
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 Finally, we explore the Pell versions of the theorems. 
 

 4. Pell Implications 
 

 Using the relationship ( ) (2 )n nb gx x , we can find the Pell versions of 

equations (11) (14): 
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 They yield 
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respectively. 
 
5. Chebyshev and Vieta Consequences 
 

 Chebyshev polynomials nT  and nU , Vieta polynomials nV  and nv , and 

gibonacci polynomials are linked  by  the  relationships  1    ( )( ) n
n nV f ixx i   , 

)    ( ) (n
n nv ix xl i  , 1    ( /2)( )n nV x U x , and 2 ( /2) 2,  3,  ( ) 4n nv T xx     , where 

1i   ; they can be employed to find the Chebyshev and Vieta versions of the 
theorems. In the interest of brevity, we omit them; but we encourage gibonacci 
enthusiasts to explore them. 
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