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Gollakota V'V | A NOTE ON WEIERSTRASS
Hemasundar | pOINTS OF HYPERELLIPTIC
RIEMANN SURFACES

Abstract: It is known that there exists a non-constant meromorphic
function on a compact Riemann surface X of genus g which has a pole of

order < g at p and is holomorphic in X \ {p} if and only if p is a

Weierstrass point. In this note we survey some results related to Weierstrass
points on a hyperelliptic Riemann surfaces and analyze the gap sequence.

Keywords: Hyperelliptic Riemann Surfaces, Weierstrass Gap Theorem,
Weier-strass Points, Compact Riemann Surfaces.

Mathematic Subject Classification No.: 30F10.

1. Introduction

Let X be a compact Riemann surface of genus g and p € X . Then the

following conditions on X are equivalent:

1. There exists a non-constant meromorphic function on X which has a pole

of order < g at p and is holomorphic in X \ {p} .
2. pis a Weierstrass point.

This is a consequence of Riemann-Roch and Seree Duality theorems See [2].
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One of the important questions is the existence of meromorphic functions
having pole at a single point p on X and is holomorphic in X \ {p}.

One of the basic results in this topic is Weierstrass gap theorem, which is
stated below:

Theorem 1: For a surface of genus g > 1 there are precisely g integers
1=4 <A <<Ag<2g 1

such that there does not exist a meromorphic function on X with a pole of

orderJ;, at p.

The numbers 4;, for j =1,..., g are called “gaps” at p and their complement

in are called “non-gaps”. Further, the sequence is uniquely determined by the point
p. For proof [1], [5] and [3].

Definition 2: A compact Riemann surface X of genus g >1 is said to
be hyperelliptic if it is a two sheeted covering of the sphere P'.

In this note we derive the following result for hyperelliptic Riemann
surfaces:

Theorem 3: Suppose X is a hyperelliptic Riemann surface of genus g.

There are exactly 29 +2 points py,..., pageo with the following conditions:

1. For pe X\ {pl,..-,p29+2} there exists a mon-constant meromorphic

function f e M(X)) which has a pole of order g+1 at p and is holo-morphic
inX \{p}.

2. Forpe X \ {pl,...,pgg+2}, every meromorphic function with a single

pole at p, must have a pole of order > g+1.

2. Some Consequences of Riemann-Roch Theorem

We define a Weierstrass point by using gap sequence as follows:
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Definition 4: Suppose p € X and
O<A <A << 4 <2

be the gap sequence at p. In terms of the gap sequence we define the weight of

the point p, denoted by w(p) by

g
> (4 —).

i=1
Note that @(p) >0 forall p e X.

Definition 5: A point p € X is called a Weierstrass point if w(p)>0.

One can compute the number of Weierstrass points counted according to
their weights on a compact Riemann surface X of genus g It is equal to

9°—g=(9-1)g(g+1).

It follows that there are no Weierstrass points on the surfaces of genus g = 0
and genus g = 1. Also from the Theorem 1, it follows that there is no non-constant
meromorphic function on torus (g = 1 surface) with a single simple (= order 1) pole.

The following theorem gives the bounds for Weierstrass points on a com-
pact Riemann surface of genus g > 2.

Theorem 6: Suppose X is a compact Riemann surface of genus g >2.

Let W(X) denotes the number of Weierstrass points on X. Then
20+2<W(X)<g3—g 2)

A point p is called a hyperelliptic Weierstrass point if the non-gap sequence

starts with 2 and the hyperelliptic Riemann surfaces are characterized by the gap
sequence at the Weierstrass points:

P={13..2¢-1 3)

hence the non-gaps are () = {2, 4,...,29}
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Let X be a hyperelliptic Riemann surface and p be a Weierstrass point on X.

Then we can find

a)(p)=[1+3+...+(29—1)]—[1+2+...+g]:@ @)

Therefore, from the Equation 4 we can see that there are precisely 2¢g + 2
Weierstrass points on a hyperelliptic Riemann surface.

Remark 7: In terms of Weierstrass points, the hyperelliptic Riemann
surfaces may be characterized as the surfaces that attain the lower bound on

the number of Weierstrass points.

We restate the result which we mentioned in the beginning. For Proof
See [2].

Theorem 8: Let X be a compact Riemann surface of genus g and

p € X . Then the following conditions on X are equivalent:

1. There exists a non-constant meromorphic function on X which has a

pole of order < g at p and is holomorphic in X \ {p} .
2. p is a Weierstrass point.

Remark 9: If p is not a Weierstrass point then there is mno

meromorphic function on X, with a single pole of order < g.
The following theorem is a consequence of the Riemann-Roch theorem:

Theorem 10: Suppose X is a compact Riemann surface of genus g and
p s a point of X. Then there is a non-constant meromorphic function f on X

which has a pole of order < g+1 at p and is holomorphic in X \ {p}.
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3. Proof of Theorem 3

Proof: Let X be a hyperelliptic Riemann surface of genus ¢. Therefore, there
are precisely 2g+2 Weierstrass points points on X. Let pj,...,py .0 be the

Weierstrass points on X.

Let p € X \{py,..., Pogs2}. Therefore, p is not a Weierstrass point on X.
From Theorem 8, there does not exist a meromorphic function f € M(X) such that f

has a pole of order < g at p and is holomorphic in X \ {p}.

But by Theorem 10, there must exist a meromorphic function with a pole of
order < g +1 at p and is holomorphic in X \ {p}.

Therefore, it follows that there exists a meromorphic function fwith a pole of
order g +1 and is holomorphic in X \ {p}.

The second statement is nothing but rephrasing the first one.

We state another result which is a simple consequence of Weierstrass gap
sequence for hyperelliptic Riemann surfaces and Theorem 8.

Remark 11: Suppose p is a Weierstrass point on a hyperelliptic
Riemann surface X of genus g. If g is even there is no meromorphic function

with a pole of order g+1 at p and is holomorphic in X \ {p}.
4. Concluding remarks for the Hyperelliptic Riemann Surface of Genus g =4

As an example, we sum up everything for the case of hyperelliptic Riemann
surfaces of genus g = 4.

1. The gap sequence at the Weierstrass pointsis 1 <3 <5 <7 <8 =2g.
2. The non-gaps are 2,4,6,8 = 2g .

3. The number of Weierstrass points are 2.g +2 =10 .
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4. If pis a Weierstrass point there exists a meromorphic function having pole

at p of order 2 and is holomorphic in X \ {p}.

5. If p is a Weierstrass point there exists a meromorphic function having pole at

p of order 4 and is holomorphic in X \ {p}.

6. If p is a Weierstrass point there is no meromorphic function with a single

pole of order 3 or 5.

7. If p is not a Weierstrass point, a meromorphic function with a single pole
must have order minimum > 5 and there exists a meromorphic function fon

X with a pole of order 5 and holomorphic in X \ {p}. But if p is a
Weierstrass point then there does not exist a meromorphic function f with a
single pole at p with order 5. This follows due to gap sequence of

hyperelliptic Riemann surfaces at Weierstrass points.
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Abstract: In this paper we introduce the idea of generalized (p, ¢)-th
relative (¢, ) order and (p, q)-th generalized relative (@, §)-type as

well as (p, q)-th generalized relative (¢, ) -upper weak type of an entire
function with respect to another entire function. Here, we study integral
representation of (p, ¢)-th generalized relative (a, f3)-type as well as
(p, g¢)-th generalized relative (&, f)-upper weak type of an entire

function with respect to another entire function. We also establish their
equivalence relation under some certain condition, where «, f are non

negative continuous functions defined on (-0, +o0) and p, ¢ are all
positive integers. Some examples are provided to justify the results.

Keywords: Entire Functions, Growth, Generalized Relative (a, p ) -Order,
Generalized Relative (&, /) -Type.

Mathematic Subject Classification (2020) No.: 32A15, 30D20,
30D35.

1. Introduction
1.1 Introduction, Definitions and Notations: Let us consider that the reader

1s familiar with the fundamental results and standard notations of the Nevanlinna
theory of meromorphic functions which are available in [6, 9, 13]. We denote by C,
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the set of all finite complex numbers. Let fbe an entire function defined on C. The

0

maximum modulus function M ;(r) of f = Z a,z" on |z| =7 is defined as
n=0

M (r) = max{| f(2)|:|z = r}.

Moreover fis non constant entire then M ;(r) is also strictly increasing and

continuous function of 7. Therefore its inverse
szl : (Mf(o)a Oo) - (07 OO)
exists and is such that
lim Mj?l(s) = 0.

§—>0

We use the standard notations and definitions of the theory of entire
functions which are available in [12] and therefore we do not explain those in details.

For x €0, ©), we define iteration of logarithmic and exponential functions

as
1Og[k} T = 1Og(10g[k_1}x) fOI' k = 17 27 3’ .....
log[o] T =, log[_l} T=expr

and
exp™ z = exp(exp* ™ 2) for k=1,2,3,.....
expl” z = 2, expl™ z = log =.

However let K be a class of continuous non negative function « on
(=00, +o0) such that a(z) = a(zy) = 0 for z <z with a(r) T +0o as 2 — +oo. For

anya € K, we say that a € K10 if

a(l+0(1)z)=1+0(1) a(z) as z —> +©
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and o € KS , if
a(exp(l+0Q1))z) =1+ 0(1)) a(exp(z)) as x — +oo.
Finally for anyx € K , we also say that o € K if

alcz) = (1+ 0Q))a(z) as g < x — +oo for each ¢ € (0, +o).
and o € K, if

a(exp(cz) = (1 + OQ))a(exp(x)) as o < x — +oo for each ¢ € (0, +0).

Clearly,
K, c K}, Ky c KY and K, < K.
Considering this, the value

a(log My(r))

Pla.p)lf] = liriso})lp Bllog 1) (@ € K, B € K)
and
Af) = lim inf FUE M)k gk

e pllog )

91

are respectively called generalized (¢, ) -order and generalized («, ) -lower order

of an entire function f[11]. For details about generalized (¢, §)-order one may see

[11]. During the past decades, several authors made closed investigations on the
properties of entire functions related to generalized order and in some different
directions and we get many important results from [4, 5, 6, 7, 8, 10]. For the purpose

of future applications, several authors rewrite the definition of generalized (o, f3)

order of entire and meromorphic function in the following way after giving a minor

modification to the original definition [11].

Definition 1.1 [6]: The order and lower order of a meromorphic

function f are defined as

) log T (r)
pf =limsup ————
r—>0 log r
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log T
and As = lim inf M.
r—>00 log T
If fis an entire function, then
] logm Mf(r)
py =limsup ————
s log r
and
log?) M
4 = lim g 25 2s(7)
7 —>00 log T

Using the inequality
Ty(r) < log M(r) < 3T (2r) {cf.[6]}
one may easily verify the above definition for an entire function.

Juneja. et.al. {cf. [8]} defined (p,q)-th order pPV(f) and (p,q)-th

lower order AP0 (f) of an entire function f are as

loe?! Mf
p(p’q)(f) = hm sup u
r—>® log[‘ﬂ r
and
log[p] M(r)

AP9(f) = lim inf
r—0 log[‘I] r

where p 2 q. The function f is said to be of regular (p,q) growth when
(p, q) -th order and (p, q)-th lower order of f are the same. Functions which
are not of regular (p, q) growth are said to be of irregular (p, q) growth.

However the above definition is very useful for measuring the growth of

entire  functions. If p=1 and q=1 then p"I(f)=pf) and
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/1(171)(]") = 2A0(f)  where p(l)(f) and ﬂ(l)(f) are respectively known as
generalized order and generalized lower order of function f{cf.[10]}. Also for
p=2 and q =1 we respectively denote ,0(2’1)(f) and AZV(f) by p(f) and
A(f) which are classical growth indicators such as order and lower order of

entire function f.

Definition 1.2: Let a, f € K .Then we define generalized (p, q)th
(a, B) -order denoted by p((g:%[f] and generalized (p,q)™ (a, B) -lower

order denoted by AP 2)) [f] of an entire function f as

(a,

aP\(M 4 (r))
' = lim _—
p(%ﬁ) [f] r_)S;,lp ﬁ[q](r)

and

APD1f] = lim inf M
o ﬂ[q](r)

where p, ¢ are any two positive integers with p > q. Further, an entire
function f is said to be of regular (p, q) -growth if its (p, q) -th order coincides
with its (p, q)-th lower order, otherwise f is said to be of irregular

(p, q) -growth.

Definition 1.3: Let f and g be any two entire functions. Bernal [1, 2]
initiated the definition of relative order p,(f) of f with respect to g which keep

away from comparing growth just with exp z to find out order of entire

functions as follows:
py(f) =inf{u>0: Ms(r)< M,(r*) for all r > ry(s) > 0}

log MM
= tim sup 28 Mo My ()

00 log r
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Analogously, one may define the relative lower order of f with respect

to g denoted by A,(f)as

loe MM
A,(f) = lim inf log My M(r)
T—>00 10g r

However, an entire function, for which order and lower order are the
same, is said to be of reqular growth. The function exp z is an example of
reqular growth of entire functions. Further the functions which are mot of

reqular growth are said to be of irreqular growth.

Definition 1.4 [3]: Let o, € K. The generalized relative (o, f)
order denoted by pu p)lfl, and generalized relative (e, f)-lower order
denoted by ﬂ(aﬁ)[f]g of an entire function f with respect to another entire

function g are defined as:

= lim (M, (M (r)))
p(a.ﬂ)[f]g =1 r_i:lp ﬂ(r)
and
o MM
l(a,ﬁ)[f]g = hﬁglf o gﬂ(<r)f(7"))) 7
where p > 1.

Definition 1.5 [3]: Let «a, f € K where K is defined earlier. The
generalized relative (a, p) -type denoted by O'(a”g)[f]g and generalized relative
(a, B) -lower type denoted by 5((1”3)[]”]9 of an entire function f with respect

to another entire function g having non-zero finite generalized relative order

(a, B) are defined as

o 5l 34,0
O'(a,ﬂ)[f]g =1 r_mop (exp(ﬁ(r)»p(a,ﬂ)[,ﬂg
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and

_ . eXP(O!(Mfl(Mf(T’))))
O p)lfly = h?iglf (exp(ﬂ(i)ﬁ’(a,ﬁ)[ﬂg

Again the generalized relative (a, f)-upper weak type denoted by
T(a,p)lfly and generalized relative (a, B) -lower weak type denoted T4 g)lfl, of
an entire function f with respect to another entire function g having non-zero

finite generalized relative lower order (a, ) are defined as

i su exp(a(M,' (M;(r))))
Taplfly =1 0 sup (exp () @A

and

o exn(a(M (1))
e

Definition 1.6: Let f and g be any two entire functions with maximum
modulus  functions M ;(r) and M,(r) respectively, then the generalized

relative (a, B)-order and generalized relative (e, B)-lower order) of f with

respect to another entire function g, denoted by p((g%[f]g (respectively

l([g}ﬁ)[f]g) is defined as

[Pl as-1
. a®™ (M (M. (r
P((ng))[f]g = lim sup ( -Fq]( (1)
r—>00 ﬂ (7”)
and
Pl =Y (v
ﬂ%i’%mg = lim inf (M, (M(r))
5 7 —>00 ﬂ[q}(r)

where p, q are any two positive integers with p > q. In particular if we

consider q =1, then the Definition 1.6 is reduced to Definition 1.4. These
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definitions extend the generalized relative order and generalized relative lower
order of an entire function f with respect to another entire function g. Further
an entire function f is said to be of regular relative (p,q)-th growth if its
(p, q) -th relative order coincides with its (p,q)-th relative lower order,

otherwise f is said to be of irregular relative (p, q) -th growth.

Definition 1.7: Let a, f € K where K is defined earlier. Let f and g be
any two entire functions with mazimum modulus functions M ;(r) and M ,(r)
respectively, then we define (p, q)-th generalized relative (e, f) -type denoted
by Gggzqﬂ))[f]g of an generalized relative (a, B) order (0 < p((gj%[f]g < oo) as

[Pl -1
: - exp(aP (0" M o (r
0(((2:%[18]9 = lim sup (@™ (M, ;( )
[24

o (exp (ﬂ[q](r)))p(( ’qﬁ))[f]g )

where p, q are positive integer such that p > q.

Definition 1.8: Let o, f € K and f, g be any two entire functions
having finite positive generalized relative (a, f#) order (0 < p((g’%[f]g < oo),
where p, q are positive integer. Then (p, q) -th generalized relative (a, f) -type

(p.9)

denoted by Ola ﬂ)[f]g of an entire function f with respect to another entire

function g is define as:

the integral

o expm (a[p] (M;le(r)))
J. k+1
0

exp (exp (ﬂ[q](r)))p((g:qﬂ))mg

converges for k > O'((gj'qg))[f]g and diverges for k < O'((gqﬂ)) [f]g-
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Definition 1.9: Let a, f € K and f and g be any two entire functions
with mazimum modulus functions M(r) and M(r) respectively, then we

define (p, q)-th generalized relative (a, f)-lower weak type denoted by

?(((f’%[f}g of an entire function f with respect to another entire function g

having  finite  positive  generalized  relative (a, p) -lower  order

(0 < ﬁ((gz%))[f]g < oo)as

where (p, q) are positive integers such that p = q.

Definition 1.10: Let a, f € K and f, g be any two entire functions

having  finite  positive  generalized  relative  (a, B)-lower  order
(0</1((5j%))[f]g<oo), where p, q are positive integer. Then (p,q)-th

generalized relative (a, B) -lower weak type denoted by fgg’.%[f]g of an entire
function f with respect to another entire function g is define as:

the integral

* expl?! (a[p] (Mg_le(r)))

k+1

v exp (eXp (ﬂ[Q](r)))ﬁ((gz%mg

converges for k > fgg%[f]q and diverges for k < fggl%[f]g.

Definition 1.11: Let a, f € K and f and g be any two entire function

with mazimum modulus functions M ,(r) and M (r) respectively, then we

define (p, q) -th generalized relative (a, B) -lower type denoted by 552’%[]“]9 of
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an entire function f with respect to another entire function g having finite

positive generalized relative (a, ) order (0 < p((g"qg))[f]g < oo) as

[p] “lar.
6(1”‘1))[]”]9 i g exp (a P (Mgle(T))) ,

(e, B r—0 (eXp (ﬂ[q](r)))p((g:qﬁ))[f]g

where (p, q) are positive integers such that p = q.

Definition 1.12: Let o, f € K and f and g be any two entire functions
having finite positive generalized relative (a, ) order (0 < pEZ’j‘fB))[f]g < oo)
where p, q are positive integer. Then (p,q)-th generalized relative (a, f) -
lower type denoted by 552’,(2)[]‘?]9 of an entire function [ with respect to

another entire function g is define as:

the integral
o expm (a[p] (Mg_le(r)))

]

0 [q] P((gqﬁ))[f]g .
exp (eXp (ﬂ (7“))) ’
converges for k > 587_‘2)[]‘]5, and diverges for k < 5§§7‘2)[f]g.

Definition 1.13: Let o, f € K and f(z) and g(z) be any two entire

functions having finite positive generalized relative (a, f) lower order

(0< /”LEZ"']B))[f]g <oo), where p, q¢ are positive integer. Then (p,q)-th

generalized relative upper weak type (a, ) denoted by TEZ’%[ﬂg of an

entire function f with respect to another entire function g is defined as



ON DIFFERENT REPRESENTATION OF GROWTH INDICATORS 99

o () (1101,
z-(a,ﬂ)[f]g = lim sup © p(ap (Mgle(T’)))

P> (eXp (ﬂ[‘”(r)))ﬂg‘:%[ﬂg :

Definition 1.14: Let o, f € K and f and g be any two entire functions

having  finite  positive  generalized  relative  (a, B)-lower  order
(O < /IEZ’%[]"]!] < oo) , where p, q are positive integer. Then (p, q)-th
generalized relative (a, B) -upper weak type denoted by TEZ’%[f]g of an entire

function f with respect to another entire function g is define as:

the integral
© expl?! (a[p] (M;le(r)))

J. k+1

| o (exp (ﬂ[q]m))zggﬁ/;)[f]g

converges for k > ng%[f]g and diverges for k < TEZ’(%[f]g.

In this paper, we wish to establish the equivalence of definitions of (p, ¢)-th
generalized relative type and (p, ¢)-th generalized relative lower weak type with
their integral representations.

2. Lemma

Lemma 2.1: Let a, f € K and f, g be any two entire functions and let

the integral
expl? (a[p] (M;le(r) )

[eXp (eXp (ﬁ[(’](r)))AT+1

converges where 0 < A < . Then

dr, (ry > 0)

o0
Ju



100 SANJIB KUMAR DATTA AND ASHIMA BANDYOPADHYAY

lim
r—>00

exp!? (am (M;le(r)))
A k
[eXp(eXp(ﬂm(T))) }

Proof: Since the integral

= 0.

_, expl (am (M;le(r)))

] ; dr, (ry > 0)
0 [eXp(eXp(ﬂ[‘”(T)))AT 1

converges then
" exp!? (a[p] (M;le('r)))

! {eXp (eXp (ﬁm(r)))qk+1

Therefore,

dr <e if ry > R(e).

exp(exp(ﬁ[Q](TO)DAWO expm (a[p] (M‘q_le(T)))
0 [exp (exp (ﬂ[fﬂ(r)))A}

Since, expm (a[p] (M;Mf(r))) increases with 7, so

polen{ston) o e () (3030,0)

oo e ﬂ[q1<r>))AT”

0

expl? (a[p] (M_;le(fro)))

> ey exp(exp(ﬁ["](m)))A
{exp(exp(ﬁ[d(m))) } { }




ON DIFFERENT REPRESENTATION OF GROWTH INDICATORS 101

i.e., for all large values of

Cxp[cxp[ﬂ[q](m)))AJrro expl? (a[p] (M_;le(r)))

! {exp (exp (ﬁ'“”(?“)))ATHl

expl? (a[p] (Mg_le(ro)))
= JRC
[eXp(eXp(ﬁ[Q](To))) }

2 (o) (a1
exXp (ap (M-‘] Mf(m)])f) <¢if ry > R(e)

oo (oo (0 |

so that

Therefore,

expl? (a[p] (Mg_le(ro)))
JRE
{eXp(eXp(ﬁ[q}(T))) }

This proves the Lemma. W

lim
r—o

= 0.

3. Main Results

In this section we state the main results of the paper.

Theorem 3.1: Let o, € Kand f, g be any two entire function

having  finite positive (p, q)-th generalized relative (a, f)-order p((g’qﬂ))[f]g,
(

(0 < p(Z:(,]B))[f]g < oo) and (p, q)-th generalized relative (a, ) -type O'gg’%[f]g

where p, q¢ are any two positive integers. Then Definition 1.7 and Definition

1.8 are equivalent.
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Proof: Let f(z) and g(z)be any two entire functions such that p(p ’qﬂ)) (flg

(a

(0 < pEZ ‘2)[ fly < oo) exists , where p, ¢ are any two positive integers.

Case I: Let

Definition 1.7 = Definition 1.8.

As GEg (2)[ flg = o, from Definition 1.7 we have for an arbitrary G' > 0

and a sequence of values of 7 tending to infinity,

exp (a[p] (Mg‘le(To))) > @ - (exp (ﬁ[q}(r)))pgi’,%[ﬂg |

G
expl? (a[p] (M_;le(r))) > [exp (exp (ﬂ[q](r)))p((g”%mg ] . (1)
If possible let the integral
expl?! (a[p] (M;le(r)))

i,
e

dr, (rg > 0)

o0
Js

be converge. Then by Lemma 2.1
expl?! (a[p] (M;le(r)))

e, 10 '
ey

lim sup
7 —>0

So for all sufficiently large values of r,
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G
expl” (am (M;le(r))) < [exp (exp (ﬁ[q](r)))p((g”%mg] .

Therefore, by Equation (1) and Equation (2) we arrive at a contadriction.

Hence,
expl?! (a[p] (M;le(r)))

i,
[exp (exp (ﬂ[q](r))) (e, )9 ]

o0
Js

ldr, (rg > 0)

diverges where G > 0 is finite , which is Definition 1.8.

Now we show Definition 1.8 = Definition 1.7.

Let G be any positive number. Since

from Definition 1.8 the divergence of the integral
expl?! (a[p] (M;le(r)))

o, 1
e

dr, (ry > 0)

I,
gives an arbitrary positive ¢ and for a sequence of values of r tending to infinity

G-¢
exp®? (a[p] (M_;le(r))) > {exp (exp (Ig[q}(r)))p((g:%['ﬂg] 7

exp ! (M8,0)]) > (@ - ) - (exp (£ 61
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which implies that

exp (a[p] (Mg_le(r)))
(giq)

(exp (ﬂ[d(r)))p( pls

G > e.

Since G > 0 is arbitrary, it follows that

lim s exp (a[p] (Mg_le(r))) .

7 (e (00 B

1e.,

Thus, Definition 1.7 follows.

Case II: Let

First we show that Definition 1.7 = Definition 1.8.

Sub case (A):

exists for positive integers p, ¢. Then according to Definition 1.7, for any arbitrary

positive ¢ and for large values of  we obtain that

exp (@ (305130,(0) < (2315, + &) e ( 50”17
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1e.,

(p0) (”gglqﬁ))[f ]g”j
expl?! (a[p] (M;le(r))) < [exp (exp (ﬁ[q](r)))p(a’ﬁ)mg]

1.e.,

)) [exp (exp (ﬂ[Q](r)))p((gz%[

expm (a[p] (Mg_le(r)
<

(p,q) F
[exp (exp (ﬂ[q](r)))p(a’ﬂ)mg ] [exp (exp (,b’[q](r)))

7 ][U&qﬂ)ﬂf )
Plos

k
()
( mmg}

1.€.,

expl? (a[p] (M;le(r))) 1
<

(p,9)

k )
[exp(exp(ﬂww))pwﬂ“g] [exp(exp(ﬂwm>)p55’f?%mg

Therefore,

expl?! (a[p] (Mg_le(r)))

o0
J‘T’O

dr, (ry > 0)
1
(pq) [f]

k+
[exp(exp(ﬂ[q%w))”“’m }

converges for £ > O'gg (,16)’)[ fly-

Again using Definition 1.7 we obtain for a sequence of values of r
tending to infinity that

R
s

e e [ e T [ L
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1Le.,
. o) (f]g-s
expl”’ (a“’] (Mg_le(r))) > [exp (exp (ﬂ[q](r)))p((g;qﬂ))[f]g ]( (@ )79 j .
sofor k <o EZ’%U ]ga we get from Equation (3) that
expl? (a[p] (Mgle(r))) i 1 |
e i)

k
[exp (eXp (,B[Q](T)))p((gz%mg ] [exp (eXp (ﬁ[Q](r)))p((giqﬂ))[f]g ]
Therefore,
J_OO exp[g] (a[p] (Mg_le(r)))
0

A, (ro > 0)
p(]%q) [f]q i
exp (exp (ﬁ[Q](T))) (@, p)

diverges for k < 0%2’7(2)[]‘]5]. Hence,

o0
J‘T’O

1
@
"
T
—_—
@
"
ke
—_
i
=
—
2
~—~——
S~
=
N
)

converges for k > O'gg (2,)[ f], and diverges for k < O'EZ (2)[ flg-

Sub case (B):
(p.9) [f], = 0.

O (a.p) g

When agg’ﬂqﬂ))[ flg = 0 for positive integers p, ¢ Definition (1.7) gives for all

sufficiently large values of r that



ON DIFFERENT REPRESENTATION OF GROWTH INDICATORS 107
exp (a[p] (Mg_le(r)))

(p:a) ¢

Piy Al
(exp (ﬂ[‘ﬂ(r))) (. )19

< é&.

Then similarly as before we get that

exp[g] (a[p] (Mg_le(r)))

0 p(p7q> ] k+1
exp (exp (ﬂ[tﬂ(r))) (a.p)09

dr, (ry > 0)

converges for £ > 0 and diverges for k£ < 0. Thus, combining Subcase (A) and
Subcase (B) Definition 1.8 follows.

Now we show Definition 1.8 = Definition 1.7.

From Definition 1.8 and arbitrary positive &, the integral

2] (., [p] L
IO; exp ( (M M (r 2)@ . —r, (ry > 0)
[exp (eXp (ﬂ[q]( ))) ((a ﬂ))[f]q] (a.p)
converges. Then by Lemma 2.1 we get
exp (a[p] (M_;le(r))) O
(p.q) = 0.
[exp (exp (ﬂ[q](r)))p((g:%mg ]0(57%[1’]!]%

So, we obtain for all sufficiently large values of r that
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exp (a[p] (M_;le(r)))

(p.q) "EZ’Q)
[exp (eXp (ﬂ[Q](T)))p(aZﬁ)[f]g ] ’

1e.,

expl?! (a[p] (Mq_le(r))) <e&. [exp (exp (ﬁ[q](r)))p(a’ﬁ

exp ! (11;131,0)) < log e + (2

=
o
+
&
~——
—
—
D
»
T
—_—
s
=
—~
=
~—
~———
~——
)

1e.,

lim sup P (a[p] (M;IMf(r)))

7 (exp ()RS

Since ¢ = 0 is arbitrary, it follows that

(] -
lim sup exp (a p (Mg 1]qu()7“))) )

r—>0 (exp (ﬂ[‘”(r)))p(“’ﬂ)mg

On the other hand the divergence of the integral

. Rl P (a0 (r)
J‘TO eXp (a ( 9 f T(Z))q) - dr, (rg > 0)
(7, % (o, plg=e !

exp (exp (Ig[q](r)))/’( f};))[f]g

implies that there exists a sequence values of 7 tending to infinity such that

) o [flg+e
(p,q))mg] (@.p)

“)
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expl?! (a[p] (M;le(r))) 1
00 oo e
exp (exp (ﬂ[q](r)))p((g:qﬁ))[f]g ]p(gl%mg " [exp (exp (:B[Q](T)))p((g’%mg] +

Le.,

(p.q) o Eg(,lg))mg‘%

expl” (al”) (MM (n))) > [exp (exp ( ﬁ[q](r)))ﬂa,ﬂﬂﬂg] ,
Le.,
PN

exp (@ (M, '01,())) > (215, = 22 ) (exp (B70)) =77

ie.,

Since ¢ > 0 is arbitrary, it follows from above that

lim sup P (a[p] (Mg_le(r)))

7 (e (00 B

> ol 5)

So from Equation (4) and Equation (5) we obtain that

lim sup P (a[P] (M;Mf(r)))

_ ~(pa)
. i, el
(exp (ﬂ[lZ](T))) (@.f)

This proves the theorem. W

Remark 3.1: We give an example below which validates Theorem 3.1.
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Example 1: Letf(2) = exp(z%), g(z)=logz, (z>0), p=4 and

g =2.50 gi1 (2) = exp(2)

al? (M, 0 (r))

(p,0) T
Yol fl, = lim sup
(aﬁ)[ Jo o Al
. logm (exp (exp (r2 )))
= lim sup
r—»o0 logm r
[2] 2
= lim sup log™

r—0 logm r

log 2 + log!?
p g g

= lim su
r—>0 logm r
=1.
Again
[p] -1
' exp(a? (M, Mg(r)
ol = m sy 2 L)

roe (ex (r)))pgg o

= lim sup P (IOgM] (exp (exp(r))))

e (exp (logm r))l

log r?

= lim sup
r—w  logr

=1.



ON DIFFERENT REPRESENTATION OF GROWTH INDICATORS 111

Next if we take k =3, that is k > O'EZ’%[f]g we see that the value of

the integral for ry = 0,
exp? (a[p] (M;le(r)))

i,
[exp (exp (ﬂ[‘l](r))) (e, )9 ]

o0
I

dr,

" expm (logm (exp(exp 7’2)))

ZL i
C o (o (10570)) |

=| —dr
) 7,,4

o ]
:I T
TOTQ

1

)
To

which coverges. Next if we take k = 3, that is k > aggqﬂ),)[f]g we see that

the value of the integral for ry = 0,
expl? (a[p] (Mg_le(r)))

dr,
P9 (1] o
sl ()

0
J‘T’O

" expm (logm (exp(exp 7’2))){1
= r

" [exo o (ex0) |
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2
© r

=| —dr
) 7,,2

which diverges.

Theorem 3.2: Let f, g € A(K) be any two entire functions having

finite positive (p,q)-th generalized relative (a, f)-lower order /152’2)[f]g,

(0 < ZEZ’%[}”]Q < oo) and (p,q)-th generalized relative (a, f)-lower weak

type, f%ﬁ’%[ﬂg , where p, q are any two positive integers. Then Definition 1.9

and Definition 1.10 are equivalent.

Proof: Case I: Let

Definition 1.9 = Definition 1.10.

As T EZ ’Jﬂ))[ flg = oo, from Definition 1.9 we get for an arbitrary positive G

and for all sufficiently large values of r that

xp (a[p] (Mg_le(T))) > G- (exp (I[;[Q](r)))ﬂgg’,%[f]g ,
ie.,

G
ﬁ.(p’Q))[f]g

exp!? (a[p] (M;le(r))) > | exp (exp (ﬂ[q](r))) (@.p (6)

If possible, let the integral
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expl? (a[p] (M;le(r)))

o0
I

G 1d7“, (TO > 0)7
A(P’Q) [f]g "
exp (exp (ﬂ[q](r))) (. 8)

be convergent. Then by Lemma 2.1
expl? (a[p] (Mg_le(r)))

A9 141 a ="
[exp(exp(ﬂ%)) “ ]

lim inf
r—>00

So, for a sequence of values of 7 tending to infinity, we get that

G
expl? (a[p] (M_;le(r))) < [exp (exp (,H[(I](r)))l((gzqﬂ)ﬂf]g] . 7

Therefore, from Equation (6) and Equation (7) we arrive at a contradiction.
Hence,

o expl? (a[p] (M;le(r)))

o . o (rg > 0)
o (0 B

diverges, whenever G is finite which is Definition 1.10.
Now we show Definition 1.10 = Definition 1.9.

Let G be any positive number. Since,

from Definition 1.10 the divergence of the integral
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" expm (a[p] (M;le(r)))

0 ,1(17"1) [f] G+ldr’ (TO > 0)
o (10 B

gives an arbitrary positive & and for all sufficiently large values of 7 that

(pq) G-e
P (a[p] (M.;le(r))) > [exp (exp (I[}M](T)))’l(aﬁ)[f]g ]

expl (al? (MM (1)) > (G - &) (exp (ﬁ[q](r)))‘gi%[ﬂg ,
which implies that
exp (al” (M;'M () e
(exp ﬂ[q](r)))zgg;%qu
ic,
el Gl G ) | NP

r—>®0

(oo (£ 41"

Since, G > 0 is arbitrary, it follows that

exp (a[p] (M;le(r)))
)

lim inf oa = oo,
T—>00 ﬂ a7 [f]
(exp (ﬂ[q](r))) (@)1
1e.,
7 (p9) [f], =
(. BV 19

Thus, Definition 1.9 follows.
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Case II: Let

(

0<7®Yf], <

=

First we show that Definition 1.9 = Definition 1.10.

Sub case (4,):
0< fEZ:%[f]Q < 0.

Let f, g be any two entire functions such that
0<79[f], <o

exists for positive integers p, ¢ Then according to Definition 1.9 for any arbitrary
positive & and for large value of r we obtain that

exp (a[p] (Mg_le(r))) < (?52’2)[]‘]9 + 6‘) (exp (,B[Q](r)))ﬂgg”%mg

1.€.,

) 1 7 Cepfloe)
exp? (al” (1,,())) < [exp (exp ( ﬂ[ql(r)))%aiﬂﬂﬂa] | ,

1.€.,

1.€.,

expm (a[p] (Mg_le(r))) 1
<

(p:9)

k
[eXp (exp (ﬂ[q](r)))ﬂ(a;ﬁ)[f]g ] [exp (eXp (ﬁm(r)))%iqﬁ) ]
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Therefore,

JAoo
0

converges for k£ > fgg%[ fly-
Again by Definition 1.9 we obtain for all sufficiently large values of r that
( q>>[f]g

s o (17310 e 407, o) o 0] 6

1e.,

A(p0) (?Eg,(g)[f]g”j
eXp[Q] (a[ﬁ] (M;le(r))) S [exp (exp (ﬂ[q](r))) (a./ﬁ)[f]g] . ®
So,for k < T EZ:%[f}g we get from Equation (8) that
) [f EZ’%U]Q +€j
expl? (a[P] (M;le(T))) ] [exp (exp (ﬁ[q](r)))ﬂ(aﬁ)[f]g ]
[exp (eXp (/}[q}(r)))ﬂ((gz%[f]g ]k [exp (eXp (ﬁ[q](r)))l((g%mg ]k

1.e.,

log??1 13| (1 (r)) 1
k > ( (p ‘I) [f] j ’
P.q k-| 7\P +e
ex lo [¢-1] r )“9 mg /I(p7q) [f] (a,p) 19
{ p {( g ) — (exp (ﬂ[Q](r))) (a, )9

Therefore,
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expl? (a[p] (M;le(r)))

o0
I

dr, (ry > 0)
A(p,‘I) [f]g bl
exp (exp (ﬂ[q](r))) (@.f)
diverges fork < fEZ ’7(2)[ f1, - Hence,

expl? (a[p] (Mg_le(r)))

I o)
[exp (eXp (ﬂ[Q](T))) (a,p) g ]

converges for £k > fEZ q/;)[ f], and diverges for k < 7 gg%[ fly-

Subcase (B;):

when fgg’.q/;)[ fly =0, for any positive integer p, ¢ Definition 1.9 gives for a

sequence of values of r tending to infinity that

exp (a[p] (M;le(r)))

(p:q) <
Ay i lf]
(exp (ﬂ[tﬂ(r))) (a,p)'9
Then similarly as before we get that
2] (Pl -1
o exp (a'P (M, "M ,(r)
I ( ( ¢ 7 )) dr, (ry > 0)
0 k+1

exp (exp (ﬂ[q](r)))ﬂ((gj,?)mg

converges for &k > 0 and diverges for &k < 0. Thus, combining Subcase (4,) and
Subcase (B ) Definition 1.10 follows.
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Now we show that Definition 1.10 = Definition 1.9.
From Definition 1.10 and arbitrary positive ¢ , the integral

" expm (a[p] (Mg_le(r))
-[TO ?(p’%

[exp (exp (ﬂ{q](r)))ﬂ((ﬁj}’})[ﬁg } (a,p) g +ert

dr, (ry > 0)

converges. Then by Lemma 2.1, we get that

expl?! (a[p] (M;Mf(r)))

lim inf )
r—® (p,q) ?quﬂ))[f]q+g ,
[exp (exp (ﬂ[q](r)))ﬂ(é’:q 11y } 9)19]
ie.,
?(Pﬂ) .
expl?! (a[p] (Mgle(r))) <e&- [exp (exp (ﬁ[q](r)))ﬂgﬂ%[f]g] (@ plfla* |

ie.,
exp (a[p] (M_;le(T))) <loge + (fEZ’,%mg + g) {(exp (ﬁ[q](r)))ﬂ((g,%[f]g },

1.e.,

lim inf P (a[p] (M;IMf(r))) <
r—w (pMJ))[f]g

(exp ﬁm(r)))ﬁ(m
Since & > 0 is arbitrary, it follows that
exp (a[p] (M;le(r)))

(exo | ﬂm(r)))ﬁfﬁiwﬂf l

On the other hand, the divergence of the integral

lim inf
T —>00

<7 (LD, ©)
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dr, (ry > 0)

Iw
0

[exp (exp (ﬂ[q](r)))ﬂ((g%mg ]f(

implies for all sufficiently large values of r that

o a0) 1
) —,
[exp (eXp (Ig[fl]( ))) ((g jqb’))[f]g ] (5 qﬂ)m o [exp (exp (ﬂ[Q](T)))ﬂ((g:qﬁ))mg ] v
(p.q) ’ EZ’.%W(J —2¢
exp® (a[p] (Mg_le(T))) > [exp (exp (ﬂ[q](r)))ﬂ(a}ﬂ)mg] ’ 7
Le.,
P (a[p] (Mg_le(T))) > (fEZ’,%mg - 25) (exp (ﬂ[q}(r)))%ﬁ;%[f}g |
ie.,

e )

(eXp (ﬂ[q](r)))ﬂ((gj%[f]g

|
Y
=
=
S
|
[\)
™
S —

Since & > 0 is arbitrary, it follows from above that

e (a (3510))
r—>00 ( (1>)mg

(exp (171} s

So, from Equation (9) and Equation (10) we obtain that

> 7 20N, (10)
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exp (a[p] (Mg_le(r)))

(eXp (ﬂ[Q](r)))l((g:qﬂ))mg

lim inf
7 —>00

This proves the theorem. m

Remark 3.2: We give an example below which validates the Theorem 3.4

Example 2: Let f(z) = exp!®) 2, g(2) = exp 2, p = 3and ¢ = 2.504(2) = log(z)

(p] -1
ol (MM ()
/”t,gp’q)(f)zlim inf ( v 1 )
: r—00 (ﬂ[Q]T)

log!®! (log expm(r))
= lim inf

r—>% logm T

2]
= lim inf log ™ r
T —>00 logm r

=1.
Again
[p] “1ar
ZTEZ:('IB)) [f]g B hin—jo?f (exp (: : (M)g)j\(ifq():i]))
exp (plA(r))) (@A
3] 2]
= tim inf (o 1oz exo” )
(exp (105 7))
= lim inf log 7

r—>wo logr

=1.
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Next if we take k =2, that is k > T'gg’%[f]g we see that the value of

the integral for ry > 0,
" expl? (a[p] (M;le(r)))

! [exp (exp ( ﬂm@))‘fﬁi?}ﬂf lg ]

. exp? (bg[s] (exp expl? T))

:L 3 O
e (o (10700)) |

= —dr
0 7,,3

0 —
= I r2dr
70

which converges. Next if we take k =0, that is k < fgg’.’%[f]g we see that

the value of the integral for ry =0,
o exp? (a[p] (M;le(r)))

! [exp (e | ﬂm(m))‘fﬁi%” l ]

dr
k+17 7

. exp? (IOg[3] (log expl? T))

= dr
"o (o (10270
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w7
= —dr
T

=17

which diverges.

Corollary 3.1: Let a,f € K and f(z) and g(z) be any two entire

functions having finite positive (p, q)-th generalized relative (a, ) order
pgg’%[ﬂg , (O < pEZ”%[f]g < oo) and (p, q)-th generalized relative (a, f)-
(p.q)

lower type, E(Z’ﬂﬂ)[f]g where p, q are any two positive integers. Then

Definition 1.11 and Definition 1.12 are equivalent.

Corollary 3.2: Let a,f € K and f, g be any two entire functions

having finite positive (p,q)-th generalized relative (e, f)-lower order

ﬂgg’jb),)[f]g,(o < 1527,2)[f]g < oo) and (p,q)-th generalized relative (a, f) -

upper weak type , ng.ng)[f]g , where p, q are any two positive integers. Then

Definition 1.13 and Definition 1.14 are equivalent.

Conclusion and Future Prospect

After introducing the idea of generalized relative («, ) -order (lower order)
and generalized relative («, ) -type (lower type) of an entire function of complex
variable with respect to another entire function, where «, f are non negative
continuous functions defined on(—oo, +0), here in this paper we study different

representation of type (lower type) and upper weak type (lower type) of entire
functions with respect to another entire function. This assumption is also used to
modify the idea of generalized relative («, f)- type (lower type) and generalized

relative (a, f)-upper weak type (lower weak type) of an entire function as well as
meromorphic function by using non-decreasing unbounded function v, where
y :[0,00) > (0, ) satisfying the following two conditions:
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() = lim

and

Il
E.

(i)

Taking this modification we derive some results which will no doubt inspire
the future researcher to derive some growth properties of entire and meromorphic

functions of n complex variables.
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R Ponraj’ | 4-TOTALMEAN CORDIAL LABELLING

S. Subbulakshmi*
and OF St(mla my, M3, My, mS)

M. Sivakumar’

Abstract: Let G be a graph. Let f:V(G) - {0,1,2,.....k 1} be a function
where k € and k >1. For each edge uwv, assign the label

fluv) = [w] fis called a k — total mean cordial labeling of G if

|tmf(i)— tmf(]')l <1, for all i,j€{0,1,2,.....k 1}, where t;,z(x)
denotes the total number of vertices and edges labelled with
x, x €{0,1,2,....,k 1}. A graph with admit a k — total mean cordial
labeling is called k — total mean cordial graph. In this paper we investigate
the 4-total mean cordial labeling of st(n,n),st(1,1,n),st(1,2,n),
st(2,2,n),st(2,3,n),st(n,n,n),st(n,n,n,n),st(nn,n,n,n).

Keywords: Star, Path, Complete Bipartite Graph, Union of Graph.

Mathematics Subject Classification: 05C78.
1. Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial
labeling was introduced by Cahit [1]. The notion of k-total mean cordial labeling has
been introduced in [5]. The 4—total mean cordial labeling behaviour of several
graphs like cycle, complete graph, star, bistar, comb and crown have been studied in
[5, 6, 7, 8, 9, 10, 11, 12, 13]. Super edge-magic labeling behaviour of
st(m,n),st(1,1,n),st(1,2,n),st(2,2,n),st(2,3,n) was studied in [4]. In this
paper we  investigate the  4-total mean  cordial labeling  of
st(n,n),st(1,1,n),st(1,2,n),st(2,2,n), st(2,3,n),st(n,n,n), st(n,n,n,n),st(n,n,n,n,n).
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Let x be any real number. Then x stands for the smallest integer
greater than or equal to x. Terms are not defined here follow from Harary [3] and
Gallian [2].

2. k—Total Mean Cordial Graph

Definition 2.1: Let G be a graph. Let f:V(G) - {0,1,2,......,k 1} be a
function where k € and kK >1. For each edge uv, assign the label

fluv) = [M] fis called ak-total mean cordial labeling of G if

|tms @D = tme()| <1, forall i,j€{0,1,2,.....k 1}, where tpr(x) denotes
the total number of vertices and edges labelled with x, x € {0,1,2,....,k 1}. A
graph with admit a k—total mean cordial labeling is called k—total mean cordial
graph.

3. PRELIMINARIES

Definition 3.1 [3]: The union of two graphs G; and G, is the graph G; U G,

Definition 3.2 [3]: The complete bipartite graph K, ,, is called the Star.

Definition 3.3 [4]: The graphst(a,, a,, ... a,) denote the disjoint union of the
nstars Ky g, Kig,o-eeneeoe K1a,-

4. Main Results

Theorem 4.1: The graph st(n,n) is a 4-total mean cordial for all values
of n.

Proof: Let V(st(n,n))={u,v,u,v;:1 <i <n} and E(st(n,n)) =
{uu;, vv; : 1 < i < n}. Obviously |V(st(n,n))|+ |E(st(n,n))| = 4n + 2.

Assign the labels 1,3 to the vertices u, v respectively.

Now we assign the label 0 to the n vertices uy, Uy, ..., U,. Next we assign the
label 2 to the n vertices v4, vy, ..., Uy.

Clearly t;,r(0) = tyf(2) =1 tp(1) =ty () =n + 1.

Theorem 4.2: The graph st(1,1,n) is 4-total mean cordial for all values
of n.
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Proof: Let V(st(1,1,n)) = {u,v,w,uy,v,w; : 1 <i <n} and

E(st(1,1,n)) = {uuy, vv,ww; : 1 <i < n}.

Note that |V (st(1,1,n))| + |[E(st(1,1,n))| = 2n+ 7.
Assign the labels 0,0,1,2,3 to the vertices u, v, w, u,, v4 respectively.
Case 1: n = 0 (mod 2).

Let n=2r, r € Assign the label 0 to the r vertices wq, wy, ..., W;..

Now we assign the label 3 to the r vertices Wy 1, Wy42, ..., Wop.

Case 2: n =1 (mod 2).

Let n=2r+1, r = 0. Label the vertices w;(1 <i < 2r) as in Case 1.

Next we assign the label 3 to the vertex wy,; 1.

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the

Table 1.
Order of n tms(0) tms(1) tmf(2) tmf(3)
n=2r r+2 r+2 r+2 r+1
n=2r+1 r+2 r+2 r+3 r+2
Table 1

Theorem 4.3: The graph st(1,2,n) is 4-total mean cordial for all values

Proof: Let V(st(1,2,n)) ={u,v,w,uy,v,v,w;:1 <i <n} and

E(st(1,2,n)) = {uuy, vvy, vv,,ww; : 1 <i < n}.

Clearly |V (st(1,2,n))| + |E(st(1,2,n))| =2n +9.
Assign the labels 0,0,1,1,3,3 to the vertices u, v, w, uq, v1, v, respectively.
Case 1: n = 0 (mod 2).

Let n=2r, r € Now we assign the label 0 to the r wvertices

Wy, Wy, ..., W,. Next we assign the label 3 to the r vertices Wy 1, Wy42, ..., Wop.
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Case 2: n =1 (mod 2).

Let n=2r+1, r 20. As in Case 1 assign the label to the vertices
w;(1 <i < 2r). Now we assign the label 3 to the vertex w4 .

Note that this vertex labeling f is a 4-total mean cordial labeling follows from
the Table 2.

Nature of n tms(0) tms(1) tms(2) tmr(3)

n=2r r+2 r+3 r+2 r+2

n=2r+1 r+2 r+3 r+3 r+3
Table 2

Theorem 4.4: The graph st(2,2,n) is 4-total mean cordial for all values
of n.

Proof: Let V(st(2,2,n)) ={u,v,w,uq,uy,vy,v,w;: 1 <i <n} and
E(st(2,2,n)) = {uuy, uu,, vvy, vv,, ww; : 1 <i < n}.

Note that |V (st(2,2,n))| + |E(st(2,2,n))| = 2n + 11.

Assign the labels 0,1,1,0,1,3,3 to the vertices w,v,w,uq, Uy, vy, V;
respectively.

Case 1: n = 0 (mod 2).

Let n=2r,r € . Assign the label 0 to the r 1 vertices
W1, W, vy Wr—1.

Now we assign the label 3 to the r + 1 vertices w;,, Wy41, ..., W,
Case 2: n = 1 (mod 2).

Let n=2r+1, r = 0. In this case assign the label for the vertices
w;(1 <i < 2r) asin Case 1. Finally we assign the label 0 to the vertex wy, ;4.

Thus, this vertex labeling f'is a 4-total mean cordial labeling follows from the
Table 3.
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n tmf(o) tmf(l) tmf(z) tmf(3)

n=2r r+2 r+3 r+3 r+3

n=2r+1 r+3 r+ 4 r+3 r+3
Table 3

Theorem 4.5: The graph st(2,3,n) is 4-total mean cordial for all values
of n.

Proof: Let V(st(2,3,n)) = {u,v,w,u;,vjwy:1 <i <21 <j <31<
k <n}and E(st(2,3,n)) = {uui,vvj,wwk 11 <i<21<j<31<k< n}

Obviously |V(st(2,3,n))| + |E(st(2,3,n))| = 2n + 13.

Assign the labels 0,1,1,0,3,1,3,3 to the vertices u, v, w, Uy, Uy, V1, Vs, V3
respectively.

Case 1: n = 0 (mod 2).

Letn=2r, r € . Assign the label 0 to the r vertices wy, w,, ..., w,.. Next
we assign the label 3 to the r vertices Wy, 1, Wyi2, ..., Wop.

Case 2: n = 1 (mod 2).

Let n=2r+1, r = 0. Label the vertices w;(1 <i < 2r)as in Case 1.
Now we assign the label 3 to the vertex wy, ;1.

Note that this vertex labeling f is a 4-total mean cordial labeling follows from
the Table 4.

Order of n tims(0) tmr (1) tms(2) tms(3)
n=2r r+3 r+4 r+3 r+3
n=2r+1 r+3 r+4 r+ 4 r+4

Table 4
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Theorem 4.6: The graph st(n,n,n) is 4-total mean cordial for all values
of n.

Proof: Let V(st(n,n,n)) ={x,y,2,x,y,z :1 <i <n} and
E(st(n,n,n)) = {xx;, yy;,zz; : 1 < i <n}.

Clearly |V (st(n,n,n))| + |E(st(n,n,n))| = 6n+ 3.

Assign the labels 2,0,1 to the vertices x, y, z respectively.

Case 1: n = 0 (mod 2).

Let n=2r, r € . Assign the label 0 to the 2r vertices xq, X5, ..., X
Now we assign the label 3 to the 2r vertices yq, Vs, ..., Y- Next we assign the label
0 to the r vertices zj,Z,, ..., Z,. Finally we assign the label 3 to the r vertices

Zy+1r Zr+42s 0 227

Case 2: n = 1 (mod 2).

Let n=2r+1, r =0. As in case 1 assign the label to the vertices
X, Vi,Zi(1 <i <2r). Next we assign the labels 0, 3, 3 to the vertices

Xor+1 Y2r+1,Z2r+1-

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the
Table 5.

Nature of n timy(0) tms (1) tms(2) tmr(3)
n=2r 3r+1 3r+1 3r+1 3r
n=2r+1 3r+2 3r+2 3r+3 3r+2
Table 5

Theorem 4.7: The graph st(n, n,n,n) is a 4-total mean cordial for all values
of n.

Proof: Let V(st(n,n,nm,n)) ={x,y,z,w,x;,y;,2z;,w; : 1 <i <n} and
E(st(n,n.n,n)) = {xx;, yy;, zz;, ww; : 1 < i < n}.

Note that |V (st(n,n,n,n))| + |E(st(n,n,n,n))| = 8n + 4.

Assign the labels 0, 1, 2, 3 to the vertices x, y, z, w respectively.
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Now we assign the label 0 to the n vertices x4, x5, ..., X,,. Next we assign the
label 1 to the nvertices yq, V5, ..., ¥,. We now assign the label 2 to the n vertices
Z4,23, ..., Zn. Finally we assign the label 3 to the n vertices wy, w,, ..., wy,.

Theorem 4.8: The graph st(n,n,n,n,n) is a 4-total mean cordial for all
values of n.

Proof: Let V(st(n,nnnn)) ={uvxy2zu,v;,%,y,% 1 <i <n}
and E (st(n,n,n.n,n)) = {uy;, vv;, xx;, yy;, 2z; + 1 < i < n}.

Clearly |V (st(n,n,n,n,n))|+ |E(st(n,n,n,n,n))| =10n + 5.

Assign the labels 0, 1, 2, 3, 1 to the vertices u, v, X, y, Z respectively.

Next we assign the label 0 to the n vertices uq, Uy, ..., u,. We now assign the
label 1 to the n vertices vy, Uy, ..., U,. Next we assign the label 2 to the n vertices
X1,X2, ., Xn. Now we assign the label 3 to the n vertices yq, Vs, ..., V.

Case 1: n = 0 (mod 2).

Let n=2r, r € Assign the label 0 to the r vertices z4, Zy, ..., Z,-. Next
we assign the label 3 to the r vertices z, 1, Zy42, ) Zop-

Case2: n =1 (mod 2).

Let n=2r+1, r =20. In this case assign the label for the vertices
z;(1 <i < 2r). Now we assign the labels 3 to the vertex z,,4 1.

Thus, this vertex labeling f'is a 4-total mean cordial labeling follows from the
Table 6.

n tmf(o) tmf(l) tmf(z) tmf(3)
n=2r 5r+1 5r+ 2 5r+1 5r+1
n=2r+1 5r+3 5r+ 4 5r+ 4 5r+ 4

Table 6
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C.| TWO PEBBLING PROPERTY OF

Muthulakshmi@Sasik‘;f; THORN GRAPHS OF EVEN CYCLE

A. Arul Steffi’*

Abstract: Chung defined a pebbling move on a graph G, to be the removal
of two pebbles from one vertex and the addition of one pebble to an
adjacent vertex. The pebbling number of a connected graph is the smallest
numberf(G) such that any distribution of f(G) pebbles on G allows one
pebble to be moved to any specified, but arbitrary vertex by a sequence of
pebbling moves. Let py,p,, ..., Py, be positive integers and G be a graph
such that |[V(G)| = n. The thorn graph of the graph G with parameters
D1, P2, -, Pn 18 obtained by attaching p; new vertices of degree 1 to the
vertex v; of the graph G, i = 1,2, ...,n. In this paper, we discuss about the
pebbling number of the thorn graph of cycle with n vertices also called as
thorn cycle and we show that it satisfies the two-pebbling property.

Keywords: Graphs, Pebbling Number, Thorn Cycle, Two-pebbling
Property.

Mathematical Subject Classification (2010) No.: 05C12, 05C25, 05C38,
05C76.
1. Introduction

Pebbling in graphs was first studied by Chung [1]. A pebbling move consists
of taking two pebbles off one vertex and placing one pebble on an adjacent vertex.
The pebbling number of a vertex v in G is the smallest number f(G, v) such that from
every placement of f(G,v) pebbles, it is possible to move a pebble to v by a
sequence of pebbling moves. Then the pebbling number of a graph G, denoted by
f(G) is the maximum f(G, v) over all the vertices v in G. Given a configuration of
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pebbles placed on G, let p(G) be the number of pebbles placed on the graph G, q be
the number of vertices with at least one pebble and let r be the number of vertices
with odd number of pebbles. We say that G satisfies the two-pebbling property
(respectively, weak or odd two-pebbling property), if it is possible to move two
pebbles to any specified target vertex, when the total starting number of pebbles is
2f(G)-q+1 (respectively, 2f(G)-r+1). Note that any graph which satisfies the two-
pebbling property also satisfies the weak or odd two-pebbling property.

Theorem 1.1 [5]: The pebbling number of a path graph B, of length n is 2.

Theorem 1.2 [5]: The pebbling number of star graph K;, is
f(Kin) =n + 2 ifn > 1.

Definition 1.1 [3]: Let pq,py, ..., pn be positive integers and G be a graph
with [V(G)| = n. The thorn graph of the graph G with p4, p,, ..., p,is obtained by
attaching p; new vertices of degree 1 to the vertex v; of the graph G,i = 1,2,...,n.

The thorn graph of the graph G will be denoted by G or by G (p1,p2, -, Pn)
if the respective parameters need to be specified. In this paper, we will consider the
thorn graph with every p; = 2(i = 1,2, ..., n).

Definition 1.2 [2]: Given a configuration of pebbles placed on G, a
transmitting subgraph of G is a path vy, v,,..., v, such that there are atleast two
pebbles on v; and atleast one pebble on each of the other vertices in the path,
possibly except v,,. Thus, we can transmit a pebble fromv; to v;,.

Throughout this paper, G will denote a simple connected graph with vertex
set V(G) and edge set E(G). The graph C,, denotes the cycle graph with n vertices.

2. Pebbling number of thorn cycle C,,

Definition 2.1: Let C,, be a cycle with n vertices where
V(C,) ={vi, vy, ...,v} and E(C,) ={ei, ey, ...,en}. Let X; = {xi1,Xi2, 0, Xin}
when p; = 2 and i = 1,2, ...,n. Consider the graph C,, obtained from C,, such that
V(C) ={vux;/i=12,..,n} and E(C,)=E(C,)VU{vyx;/ i=1,2,..,n&
j=1,2,..,p;}. Then C,, is called the thorn cycle with n vertices.

In this paper, we consider the cycle €, with even vertices.

Lemma 2.1: Let C,, be the thorn graph of the cycle C, with n vertices
{vi, vz, ., v} Let X; = {x;;/ j =1,2,..,p;and each x;; is adjacent to v;} where
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i=12,..,n. Let X = 7., X;. Letr, be the number of vertices with odd number

of pebbles in X Xg. If we distribute d =222 + Yipi 2 pebbles are
placed on the vertices of C, such that p(xy;) = O,p(xk]-) <2Vj=2,3,..,00
1 <k <nan d(C,) = 0 where p is the number of pebbles placed. Then

(DpX X)=22"2+% p; pr land
()rm <Xpi -

Proof: (i) Distributing d = 222 + Yipi 2 pebbles on the vertices of Cy,
such that p(x,;) = 0,p(C,) = O,p(xk]-) <2Vj=23,..,p1<k<n. ThenX X,

receives p(X  X)=d (pr 1).Hence,p(X X;)=22"2+Y p; pr 1.

(ii) Now, let us prove that r, < Y. p; py. Clearly 1, cannot be greater than
Y.Pi Pk ltisenough to prove that 1, # Y. p; k.

Suppose T, =X p;  Dk-

Case 1: If 1, is even, then both Y} p; and pj, are even or both Y, p; and pj, are
odd.

Subcase 1.1: Let us assume that both ), p; and p, are even. Hence, p, 1
isodd. Sod (pr 1) isodd. Distributing d (p, 1) pebbles on 1y, vertices,
there exists odd vertices with even number of pebbles. Hence, 1, 1 vertices have
odd number of pebbles.

That is, number of vertices with odd number of pebbles is odd which is a
contradiction to the number of vertices with odd number of pebbles, 1, is even.

Subcase 1.2: Now, let us assume that both Y’ p; and py, are odd. If p; is odd,
then p, 1lisevenandd (p, 1)is odd. Discussing as in the subcase 1.1, we
get a contradiction to 7y, is even. Therefore, we get 1, < Y. p;  Pk.

Case 2: If 1y, is odd then either ), p; is even and py, is odd or }; p; is odd and
Dy 1s even.

Subcase 2.1: Let us assume that ), p; is even and py is odd. Then, p;, 1is
evenand d (pr 1)is even. Now distributing these even pebbles on r;, vertices,
there exists even vertices with odd number of pebbles. That is, number of vertices
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with odd number of pebbles is even which is a contradiction to number of vertices
with odd number of pebbles, 1, is odd.

Subcase 2.2: Now, let us assume that ), p; is odd and py is even. If py is
even,thenp, 1lisoddandd (p, 1) iseven. Discussing as in the subcase 2.1,

we get a contradiction to 1, is odd. Therefore, 1, < Y. p; k-

Theorem 2.1: Let C,, be the thorn graph of cycle with n vertices where n is

even. Then the pebbling number of the thorn cycle is f(C,) = 22"2 + Xp; 2
wherep; = 2,i=12,...,n,n = 4.

Proof: Let V(C,) = {vi, vy, ..., vn} Let X= 7,;X; where Let
Xi ={xi;/ j =12, ..,p; and each x;; is adjacent to v;}.

Assume that 2272 + Y'p; 3 pebbles are placed on the vertices of C, as
follows.

(i)  p(Cy) =0andp(xy1) = 0.
i)  p(wj)=1i=23, g 1,§,§+ 2,..,nandj =12, ..,p;.

(i)  p(xy;)=1j=23,..,ps.

(iv) p <x§+1,j) =1,j=23,.. ’p§+1'

~) p (xgﬂ, 1) —2:*? 1,

If x;; be our target vertex, then by the above distribution a pebble cannot be
moved to x;; as the length of the path (xn_ ,,x;4) is % .
2

Therefore, f(C)=22"2+Yp, 2.

Now let us show that  £(C,) <222 +¥p; 2.

Case 1: Suppose that the target vertex is v, where 1 <k <nand
p(vy) = 0.
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If p(xkj) > 2 for some j = 1,2, ..., p; then we can move one pebble from
Xij tovg. If p(xkj) <2 forall j =1,2,..,p, and let p(C,) = s for some s > 0.
Then the number of pebbles on X X is at least 2272 +Yp; 2 p; s. Then

n
22* 243 pi—2-pr—s-1y
> .

the number of pebbles that can be brought to C,, is at least
22
Since, 1, < Xp; Pk, Cn will get at least % pebbles. Then the total number

E+2_ _ n _ n
of pebbles on C, will be at least 222—52 +s=22""+ % >22ass>0and

n = 4. Hence, one pebble can be moved to vy.

Case 2: Suppose that the target vertex is x;; where i =1,2,..,n and
j=1,2,..,p;. Without loss of generality, let us assume that x;; be our target vertex
and p(x;,) = 0. If p(v;1) = 2 then one pebble can be moved to x;;. If p(vy) =1,
then if there exists atleast one vertex x;;(j # 1) such that p(x1 j) = 2 then
{xij, V1, %11} forms a transmitting subgraph. Hence, one pebble can be moved to x4 ;.
If p(xlj) <2 forall j=1,2,..,p1, then the number of pebbles on C,, X; is at
least 2%+2 +¥p 2 (pn 1= 2§+2 +Yp; p1 1, then proceeding as in
case 1, one pebble can be moved to v; and from v; one pebble can be moved to x;4.
If p(v;) = 0, then the following cases arise.

Subcase 2.1: If p(x;;,) =4 for only one j; # 1and p(xy,) <2 for all
7 # 1,1, then two pebbles can be moved from x;; to v; and hence one pebble can
be moved to x4.

Subcase 2.2: If there exists at least two vertices x4, x1;, with p(xl 1'1) =2
and p(xljz) = 2 where jy,j, # 1 among the vertices X141, X132, ..., X1p, then we can
move one pebble from x;;, to vy. So {x;j,,v,x11} forms a transmitting subgraph.
Hence, one pebble can be moved to x4 4.

Subcase 2.3: If 2 < p(xljl) < 4 for only one j; # 1 and p(x;,) < 2 for all
r # 1,j; then we can move one pebble from x;;, to v;. Then the number of pebbles
onC, X;isatleast

2224+ %p 2 B+p D=22"+3%p p 3

Now proceeding as in Case 1, C,, will get atleast 2271 4 % > 22 as
s = 0 and n = 4. Hence, another pebble can be moved to v;.
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Thus, v; gets two pebbles and one pebble can be moved to x4.

Subcase 2.4: If p(x;,) < 2 for all r # 1, then the number of pebbles on
C, X,isatleast 2274+ Yp;, 2 (p; 1). Let p(Cy) =s,s=0. Then the

number of pebbles on X X, is at least 22>+ ¥p; p; 1 s. Letr; be the
number of vertices with odd pebbles on X  X;. Then the number of pebbles that can

n n
>+2 >+2
227243 pi-py—1-s-1y > 22745 pi=p1—1-s-Fpi+p1 +1

be brought to C,, is atleast as

2 2
7, <Ypi pi- Then the total number of pebbles C, have will be at least

—+2
2272 g

2
one pebble can be moved to x;;. Hence, the result.

n n
+s>22"" +§ > 22*1. Thus, two pebbles can be moved to v; and hence

3. Two Pebbling Property

Definition 3.1 [4]: We say a graph G satisfies the 2-pebbling properly if two
pebbles can be moved to any specified vertex, when the total starting number of
pebbles is 2f(G) q + 1, where q is the number of vertices with at least one pebble.

Theorem 3.1: Let C,, be the thorn graph of the cycle C,,with n vertices. Then
C,, satisfies the two pebbling properly when n is even.

Proof: Let P be the number of pebbles on the thorn cycle Cn* and q be the

number of vertices with attest one pebble and p + q = 2 (27'2 + Y p; 2) + 1. We
consider the following two types of possible target vertices.

Case 1: Suppose that the target vertex is v, where 1<k <n,
if p(v,) =1, then the number of pebbles on all the vertices except vy is

2 (27'2 + Y p;i 2) +1 q 1>2:"24+Yp, 2 Since, g <n+Yp;. Since,
f(c,) = 222 + Yp; 2, we can put one more pebble on v, using the
2 (25+2 + Y p;i 2) +1 gq 1pebbles.

If p(v,) = 0, then we consider the following cases.

Subcase 1.1: Suppose that p(xkj) = 2 for some x; (G = 1,2,...,px). Then

we can move one pebble to v. Using the remaining 2 (2?r2 +Yp; 2) +1 q 2
pebbles, we can move another pebble to vy,.
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Subcase 1.2: Suppose that p(x;) <2 for some xi; (j = 1,2, ..., pg).
Since,q < n 14 Y p;asp(vy) = 0 we have

p=22(2"+3Tp 2)+1 (0 1+Zp)=22"+%p (n+2).

Now p(C, X)=22+¥p;, (n+2) pp. Let p(Cy) =s,s=0.
Then the number of pebbles on X~ Xgis atleast 22*> + Y p;, (n+2) pg . Let
17, be the number of vertices with odd number of pebbles in X  Xj,. The number of

n
223+ pi—(n+2)—pr—s—1y
2

pebbles. Now C,, has

pebbles that can be brought to C,is atleast , where

e <Xp; pk. Therefore, C, will get at least 22> S+(721+1)

s+(n+1)

> 2211 pebbles. Hence, two pebbles can be moved to vy.

n
atleast 2272 + s

Case 2: Suppose that the target vertex is x; where j = 1,2, ..., pi. Without

loss of generality, let us assume that the target vertex is xx;. If p(x;1) = 1, then the
number of pebbles on all the vertices except x4 is

2(227 48y 2)+1 q 1>227+%p 2asq<n+3p;.

Since, f(C,) = 22%2 + Y p; 2, we can put one more pebble on xg;. If
p(x,1) = 0, then we consider the following cases.

Subcase 2.1: If p(v) = 2, then we can move one pebble from vy to xpq.
Using the remaining 2 (25+2 + Y p; 2) +1 q 2 pebbles, we can move another
pebble to xj4.

Subcase 2.2: Consider p(vy) = 1. If there is atleast one vertex x;, (j; # 1)
with p(xkjl) = 2 then {xyj,, vk, X} forms a transmitting subgraph. Using the
remaining 2 (2§+2 + Y p; 2) +1 q 3 pebbles, we can move another pebble to
Xk1. If p(xg,) <2 for all r # 1, and if p(C,) =s,s = 0 then the number of
pebbles placed on X X is at least 2 (2%+2 +Yp; 2) +1 q (@ 1) s.
Let r, be the number of vertices with odd pebbles in X X}, then the number of
2(2%+2+Zpi—2)+1—q—(pk—1)—s— Tk

2
q is the number of vertices with atleast one pebble, we have ¢ < s + Y. p;. Hence,

pebbles that can be brought to C, is atleast . Now as
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n
22" +% pi—2-s—pr—s-1x
> .

C, gets at least We have 1, < Y.p; pr 1, then the

L)
number of pebbles that can be brought to C,, is atleast 2z 2l

Now, C, has atleast 22+2 2% % + s pebbles. That is

p(C) 222" =2 +2+2: 2> 42
Hence three pebbles can be moved to v, and thus two pebbles can be moved to xy.

Subcase 2.3: If p(v,) =0 and if there exists atleast two vertices
Xkjy» Xkj, U1, J2 # 1) with p(xkjl) = Z,p(xka) > 2 then we can move two pebble
each from x;; and xy;, to vx. Thus, v, get two pebbles and one pebble can be
moved to xj,. Using the remaining 2 (27'2 + Y pi 2) +1 gq 4 pebbles we

can move another pebble to x3; asq<n 24+ Y p; 1. If there is only one vertex
Xij, U1 # 1) with p(xkjl) >4 an dp(xg,) < 2 for all r # 1,j; then we can move
two pebbles from x;j, to vx. So {vy, Xy} forms a transmitting subgraph. Now we

have atleast 2 (27'2 + Y p;i 2) +1 q 4 (pr 2)remaining pebbles.

Let p(C,) = s,s = 0, then we have ¢ < s + ), p;. Then by proceeding as in

Subcase 2.2, C,, will get at least 22" 2> 22!, Hence, two pebbles can be moved
to vy, and one pebble can be placed on xyq. If there is only one vertex xy;, (j; # 1)

with 2 < p(xkjl) < 3 and p(xy,) < 2 for all r # 1, j; we can move one pebble from
Xij, to vg. Then we have atleast 2(2?r2 +Ypi 2)+ 1 g 3 (@ 2)
remaining pebbles. Again, by proceeding as in subcase 2.2, C, will at least get

22 3 21 z
22 7> 227" + 22 . Hence, we can move three pebbles to v, and two pebbles
can be moved to xj4.

If p(xy,) < 2 for all r(r # 1) and if p(C,) = s,s = 0, then the number of
pebbles placed on X X is atleast 2 (25+2 +Yp; 2) +1 q (@ 1) s.

Now, proceeding as in Subcase 2.2, C, will get at least 22'%  s+5s. Hence,

p(Cy) = 22*%. Hence, four pebbles can be moved to v. Thus, two pebbles can be
moved to Xq.
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4. Conclusion and open problem

In this paper, we determined the pebbling number of the thorn even cycle and
also we have proved that the thorn path satisfies the 2-pebbling property. The
pebbling number of the thorn odd cycle is an open problem.
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function. Also we have studied the coefficient estimate, growth and distortion
theorem, radii of starlikeness, convexity and close to convexity for the class.
Keywords: Univalent Function, Radius of Starlikeness, Convex Function.

Mathematical Subject Classification No.: 30C45.

1. Introduction

Let A be the class of analytic functions
f(z)=2z+ Zanz" (1.1)

in the unit disc U ={z: ‘z‘ <1} with normalization f(0) =0, f'(0)=1. The

subclass S of class A, consisting of functions of type (1.1) that are univalent in U.

Also let T be the subclass of .S consisting functions of the type
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f@)=2-Y a,z"  (a,20, zel)

n=2

which was introduced and studied by Silverman][8].

Now if g(z) € A has the form

o0

9(z) = Z+anz” ,

n=2

(1.2)

(1.3)

the convolution (i.e. Hadamard product) of f and gis denoted by f * g and is defined

as

(f*9)(2)= (g% )(z) =2+ 2 ab,2" (2 €U).
n=2

(1.4)

The Mittag-Leffler function F,(z) introduced by Mittag Leffler[4] and its

generalization F,,7 studied by Wiman[10] given by

and

wherev,z7 € C, Re(v)>0 and Re(r)>0.

The function @), , defined by Srinivasulu[9]

Quc(2) = 20(7) By (2)

(1.5)

and further the differential operator D' (v,7)f : A — A studied by him is given by

DR(v.7)f(2) = f(2) * Qo (2)
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Dy (v, 0)f(2) = (1= Df(2) * Qo (2) + Ax(f(2) * @, £ (2))

D} (v,7)f(z) = Dy(D ™ (v.7)f(2)) -

It is easy to see that if f(z) is given by equation (1.2) then the definition of

the operator D7 takes the form

Di(v,0)f(2) = 2= 2 #i' (A v, T)a,2"

n=2

where

n

(A, T) = Tom-1+0) [A(n—1)+1]".

In this paper, with the operator D}", we define the following new class.

Definition 1.1: The function f(z) of the form (1.1) is in the class

ST (v,t,a, B,y)if it satisfies the inequality

(D} ()Y - 1 Ss e
2WUDY (v, ()Y - a] - (D} (v, )f ()Y - 1]

where v,7 € C with Re(v)>0andRe(r)>0,0<4, f, y<land 0<a<1.

Further we define 7" (v, 7, a, B, 7)=S7'(v, 7, «, B, y)NT.

We note that, such classes were earlier studied extensively by Aoufand Cho[1],
Aouf et.al.[6] and others {[3], [2], [5], [7]}.

2. Main Results

Theorem 2.1: A function f(z) of the form (1.1) belongs to the class
Sﬁn(‘/?z-?a?ﬂ?]/) Zf
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Z n¢17Ln(ﬂ“7 v, T) [1 + ﬂ(27/ - 1)]an < 27ﬂ) (1 - O{)
n=2

where v,7 € C with Re(v)>0and Re(r)>0,0<A, f, y<land 0<a<1.

Proof: Assume that the inequality holds true and let |z| = 1 from (1.6) we
have

{07 (v, D) f(2)} =11 =B 1 2/{D7 (v, )f ()} — ] = [{ D} (v, 0)f(2)} 1] |

o0
= _z ¢77Ln (2'7 v, z’)nanzml
n=2

2y(1-a) =2y Y ¢ (A v, tna, 2"~ + 3 ' (A, v, o)na, 2"
n=2 n=2

i

i (A4, v,T)nla, | - 27801 - a) + B2y - 1Z¢n (A,v,7)n]a, |

n=2

i 1+ B2y -V (4,v,7)nla, | -2yp(1-a) < 0.

no

3

[
Theorem 2: A function f(z) of the form (1.2) belongs to the

> 1 (A, v, 0) 1+ B2y = Dla, <278)(1- ) (2.1)
n=2

where v,7 € C with Re(v)>0and Re(r)>0,0<4, f, y<land 0<a<1.

Proof: In the view of Theorem 2.1, we need only to prove the necessity.

Assume that, f(z) belongs to the class 7} (v, 7, &, B, y) then we have
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(PP 0, D)) -1 |
2(1-a) - 2 ~ )Y # (A, v, T)nay ="

- _™MA,v,t)na, """ ‘
) S # o) L,
27(1 - 0[) - (27/ - 1)2::2 ¢77L” (ﬂ'v v, T)nanzn_l ‘

Since Re(z) < |z

® n n—1
- zn=2 ¢n (i; vV, T)nanz
2y(1—a) -2y -1 4"V, T)na, 2"

Re < B. (2.2)

Now, choosing the values of z on the real axis so that {Dj'(v,7)} is real.
Upon clearing the denominator in (2.2) and letting z — 1 through real axis we get

Z ¢77]n (/17 v, T)nan < 27/ﬂ(1 - Ol) - ﬂ(27/ - 1)2 ¢77]71 (/17 v, T)nan

n=2 n=2

which implies the inequality (2.1). ]

Corollary 2.2.1: If f(2) e T)"(v, 7, a, B, ¥) if and only if

0 < 2P~ a) 2.3)
n[l + ﬂ(27/ - 1)]¢77Ln (/17 v, T)

where equality holds for the function

f(z)=2- 21 =) 2", (2.4)
n[l + ﬂ(27 - 1)]¢771n (ﬂ’a v, T)

Theorem 2.3: Let fi(z) =z and
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f(z 27ﬂ(1 — 0[) n

)=2- :

n[l + ﬂ(27/ - 1)] 7;”(/17 v, T)

then f(z)e Ty (v, 7, a, B, y) if and only if it can be expressed as
f(z) = Z wyfo(2),  w, =0, Z w, =1.
n=1 n=1

Proof: Suppose f(z) can be written as in (2.5) then

- 2yp(1-a) n
fRy=z-)> w, .
n§2 n[l + ﬂ(27 - 1)]¢771n (ﬂ'v v, T)

Now,

0

2= 4 POy 0 o) 5y
= 2 a) L+ ARy -V (e

Thus, f(z) e T)"(v, 7, a0, B, 7).

(2.5)

Conversely, let us assume that f(z) € T}" (v, 7, @, f3, y) then by using (2.3)

we get
n[l+ B2y - 14" (A,v,T
A ),
and
wlzl—ifwn
n=2

Then we get

1) =3 wf ()

n=1
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Theorem 2.4: The class T;" (v, 7, a, B, y) is a convex set.

Proof: Consider,

belongs to the class T;" (v, 7, @, B, ¥). It is sufficient to show that the function h(z)
given by

Wz)=Ch(z)+1=Q)h(z), 0<g<1

is in the class 77" (v, 7, a, 3, y) . We get,

0

h(z) =2 = [Cay + (1= ay "
n=2
Now, from Theorem (2.2) and with easy calculation we get,

Z ¢77Ln (ﬂ“a v, T)n[l + ﬂ(27/ - 1)]41(17%1 + Z ¢nm (/17 v, T)n[l + 5(27 - 1)] (1 - é/)a’n,Q

n=2 n=2
<2p(l-a)+(1-)2yB(1 - a)
<2yp(1-a)
which gives us h(z) e T)"(v, 7, a, 8, 7). Hence, T;"(v, 7, «, B, y)is convex
set. L]
Now, we will obtain the radii of close to convexity and starlikeness for the

class T)" (v, 7, &, B, 7) -

Theorem 2.5: Let the function f(z) be defined by (1.2) belongs to the
class Ty" (v, 7, a, B, y) then f(z) is close to convex of order 6(0< 8 <1) in

the disc|z| <n . Where,
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n>2

B(1-7y)

The result is sharp with extremal function f(z)is given by (2.4).

1
"= inf{(l S)L+ A2y ~ V)4 (4., r)}” r

Proof: Given feT;"(v,7,a, B, y) and fis close to convex of order J.

We have,
| f(z)-1]<1-0.
Consider, the left hand side of (2.6)

[ f2)-1]= Zna El
The last equation is bounded above by 1 - ¢

a, |2[" <1

> n
Zl_

n=2

but, f(z) e T}" (v, 7, ¢, B, y) if and only if

n[l+ B2y -D)]¢ (4,v,7)
a, <1.
27B(1-y)

>

Thus, equation (2.6) is true if

|Z|n—1< n[l + 5(27/ - 1)] 77Ln(]'7 v, T) .

1-6 N 278(1-7)

Or equivalently
1

2] < {(l—5)[1+ﬂ(2y—1)]¢;7(/1,v’f)}n1'

2yB(1-y)

(2.6)
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which completes the proof of Theorem (2.5). ]

Theorem 2.6: Let the function f(z) be defined by (1.2) belongs to
the class T;" (v, 7, a, B, y)then f(z)is starlike of order 6(0< 8 <1) in the
disc|z| <1y .

Where,

1
1 = inf {@ ~ Syl + By~ (A, >} |
n>2 (n -8yl - a)

The result is sharp with the extremal function f(z) given by (2.4).
Proof: Given f e T;" (v, 7, a, 5, y)and f is starlike of order . We have,

#'(2)
f(2)

~1<1-6. 2.7)

Now, for the left hand side of equation (2.7) we have,

#(2) | Zea (= Dl
f(2) 1= a2

The last equation is less than 1 - if

Z n-o a, |z <1
n—2 1= o
using the fact that f(z) e 7" (v,7,, B, ¥) if and only if

2 nl+ B2y - D¢ (4, v, 7)
n=2 27ﬂ(1 - 0{) o
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Thus, equation (2.7) is true if

n[l+ B2y -1 (4, v, 7)
27(1 - @) ’

n_§|2|n_1§
1-06

Or equivalently
(L=0)nll+ B2y - Dig" (4, v, 7)
(n=6)278(1-a)

|Z|n_1S

which gives the condition for starlikeness. L]
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zy40(2) = a(x)z,,,1(z) + b(x)z,(x), where z is an arbitrary integer variable;a(z),

b(z), z,(z), and z(x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When zy(z)=0 and z(z)=1,
2,(x) = f,(x), the nth Fibonacci polynomial ; and when zy(z) =2 and z(z) =z,
z,(z) =1,(z), the nth Lucas polynomial. They can also be defined by the Binet-
like formulas. Clearly, f,(1)=F,, the nth Fibonacci number; and [,(1) = L,,, the

nth Lucas number [1, 5].



158 THOMAS KOSHY

Pell polynomials p,(z) and Pell-Lucas polynomials q,(x) are defined by
pp(x) = f,(2z) and g, (x) = [, (2z), respectively [5].

On the other hand, let a(z)=1 and b(z)=2. When z,(z)=0 and
z(z) =1, z,(z) = J,(z), the nth Jacobsthal polynomial, and when z,(z) =2 and
z(z) =1, z,(z) = j,(z), the nth Jacobsthal Lucas polynomial. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J, (1) = F,; and j,(1) = L, [2, 5].

Gibonaeci and Jacobsthal polynomials are linked by the relationships

(@) = "2 (NE) and () = 2", (1NT) [3, 4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional when there is no ambiguity; so z, will mean z,(z). In addition, we

let g,=f, or [, b,=p, or gq,, c,=J, or j,, A=Nz* +4, 2a =z + A,
E=N2*+1, y=z+E,and D=z +1, where ¢, = ¢, ().

It follows by the Binet-like formulas that lim Sma1 =% and

m—>o0 m

B>

o1
lim 2L = Aq.
m—>0 m

1.1 Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the
following properties:

A foiify = bonin = (1) (M

lnsily = lopsr +(-1)"2 (2)

Lifosz = lcrfuer = (51)"2; 3)
Infosz + lncrfoa = 2fnin +(=1)" 23 “4)
Falwsa = Fasilan = ()" (5)

fnln+2 + fn+1ln+1 = 2f2n+2 - (_1)nx . (6)
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These properties can be confirmed using the Binet-like formulas. It follows
by identities (3) — (6) that

lgfn?+2 - lgﬂfn?ﬂ = 2(_1)n xf2n+2 + x2; (7)

f n+2 fn?+llr%+l = 2(_ )n+1xf2n+2 + :I? (8)
2. Telescoping Gibonacci Sums

We now establish two telescoping gibonacci sums, where £ >0 and 4> 1 are
integers.

Lemma 1:

i (f7f+k+2 fn/l+k+1J — L& _ fkli (9)

A A
ln+k+1 ln+k A lk+1

l/?.

n=1 n+k

m A A
Proof: Since z [f’;k” _ Juekn J is a telescoping sum, we have

n+k+1

m A A A A
z Lfn+k+2 _ fn+k+1J — fm+k+2 _ fk+2

A A A
ln+k+1 ln+k lm+k+1 lk+1

This yields the desired result. ]
Lemma 2:
(1 12 it
Z ‘nt+k+2 _ ‘ntk+l | Aﬂaﬂ _ k+2. (10)
n=1 fn+k+1 fnﬂ/‘Fk fk/1+1

Proof: Using the fact that lim LFS = Aa, the proof follows as above.
m—o  f,

So, in the interest of brevity, we omit the details. ]

These two lemmas play a pivotal role in our discourse.
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3. Additional Gibonacci Polynomial Sums

With the above identities and lemmas at our disposal, we are now ready for
further explorations.

The next two theorems invoke the lemmas with A = 1.

Theorem 1: Let k be a nonnegative integer. Then

i (_1)n+kl‘ :g_ fk+2 (11)

+k )
ot bypaopar + ()" A len

Proof: 1t follows by identities (2) and (3) that

+k .
L

b

ln+k+1ln+k = l2n+2k+1 + (_1)

L +k
Lysknsks2 = vk foskor = (_1)n+ Z-

By Lemma 1, we then have

+k
(_1)n z _ byskfnsks2 = bnske1foena

l2n+2k+1 + (—1)n+kl‘ ln+k+1ln+k

i (_1)n+k$ — i [fn+k+2 _ fn+k+1j
n+k
x

ool loysopsy +(<1) o\ TS R A
Al
as desired. U
This implies,
i (-1)m+h _ 545 Fiy

721 Loy sogy + (1) 10 Ly
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It then follows that

i )" -5++5 i )" 5-3V5

ALy + ()" 10 it Lypyg = ()" 30

i D" —5+2J5 i D" 15-T7V5

it Lyps +(-D" 20 it Ly = ()" 70

The next result invokes Lemma 2 with A = 1.

Theorem 2: Let k be a nonnegative integer. Then
oo 1[“_fk+2j. (12)
n=1lonop1 — (_1)n+kl‘ AP\A

Proof: Using identities (1) and (4), we get

2 +k .
A fn+k+1fn+k = l2n+2k+1 _<_1)n+ Z>

k+1
fn+kln+k+2 _fn+k+1ln+k+1 = (_1)n+ i T

By Lemma 2, we then have

+k+1
(_1)n+ i z — fn+kln+k+2 _fn+k+1ln+k+1
k 2
lan+or+1 _(_1)n+ z A ok Sosk
o (_1)n+k+1x

o0
_ i z [ n+k+2 n+k+1J
2 n=1 fn+k

fn+k+1

— 1(Aa _ lkﬁj
A2 fk+1

2

k
n=1 l2n+2k+1 - (_1>n+

as desired.
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This yields

i (_1)Tb+k+1 ~ 5 +‘/3 ~ Lk+2
n1 Loysopar — ()" 10 5Fn

Consequently, we have

i D" _1-45 i D" _-3+45,
n=1 L2n+1 - (_1)n 10 n=1 L2n+3 + (_1)n 10
i " _2-45 i " _-7+3%5
n=1 Loyys = (=1)" 10 n=1 Lop 7 +(=1)" 30

Gibonacci Delights : By combining these two theorems, we can extract
interesting dividends: Adding equations (11) and (12), we get

o A +1 .
Z 2= ; (Z_kaJ'

n=1 l2n+2k+1 A? 1

This implies
i 1 _15+34%5 L 3Fi
n=1 L2n+2k+1 1 50 5Ly

In particular, this yields

i 1 _15-3V5 i _5-345

=0 - A B U =i Lgmg 150

i 1 15-6v5 i 1 45-21¥5
n=1 2n+5 1 100 n=1 2n+7 1 350

Likewise, subtraction of the two equations yields
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i k$12n+2k+1 _ A* -1 [05  Jie2 J
n=1 l2n+2k+1 A2 A g
This implies,

o ()" Loy g1 _ 104245 2.,

2

n=l1 L§n+2k+1 -1 25 SLjs .
It then follows that
i L2n+1 _ 2\/5 . i L2n+3 . 10+ 6\/5 .
i L -1 250 IR -1 (I
i (=1)" Lonss _ 5+445 i )" Lynsz _ 20 +1445
not L35 -1 50 T aE L2 -1 175

The next two theorems employ the lemmas with 4 = 2.

Theorem 3: Let k be a nonnegative integer. Then

o +k 2 2 2
Z Tfonsokez 727 _ @7 fipo '

[lzn+2k+1 + (- 1)n+k$]2 A?

ll?ﬂ
Proof: Lemma 1, coupled with identities (2) and (7), yields

+k 2 2 2 2
2( )” xf2n+2k+2 + x — ln+kfn+k+2 - n+k+lfn+k+1

k 2
[l2n+2k+1 + (_1)n+ x] l +k+lln+k
o0 o0 2
Z $f2n+2k+2 +1° z fn+k+2  Jneke
l 1 TL+I§ l
n=1 [2n+2k+1 +( ) n=1 n+k+1 n+k
2 2
_ o fio
2 2
A lk+1

as desired.

163

(13)



164 THOMAS KOSHY

Consequently, we have

o0

n+k
3 2(=1)""" Fyprop40 +1 _ 0572 3 Fl _

ot [Lopgopen + (D™ 5 Ihy
In particular, we then get

0

2A-1)"Fypg +1  ~T+45 i 2A-1)" N Fypy +1 23+ 9V5
121 [Logsy + (1)) 10 it [Lopes —(=1)" P 90

0 0

2(-1)" Fypp +1 _ —21+8Y5 3 2(=1)""! Fyps +1 _ —103 + 4975
n=1 [L2n+5 + (_1)n]2 80 n=1 [L2n+7 - (_1)n]2 490

The next result invokes Lemma 2.

Theorem 4: Let k be a nonnegative integer. Then

i D"y iopn + 27 _ 1(A2a2 B J (14)

n=1 [12n+2k+1 (1)n+k$]2 A fk2+1

Proof: With identities (1) and (8), Lemma 2 yields

k+1 2 2 2
2(_1)n+ i xf2n+2k+2 + fn+kln+k+2 fn+k+1ln+k+1
v+k 12 2
[l2n+2k+1 - (_1)71+ l‘] A fn+k+1fn+k

o0 n+k+ 2
Z "fopionn 2t 1 [ln+k+2 _ln+k+1J

k 4
n=1 [12n+2k+1 ( 1)n+ z]Q A n=1 fn+k+1 fn2+k

1 [AQO{Q Ifo ]
A4 fk2+1

confirming the given result. L]

This theorem implies,
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i (=) Fypapan +1 _ 1[50{2 Lias J

1 [L3nsoss — (D" 25 Fy
It then follows that
i 21" Fyppg +1  —3+5V5 S 2A-1)"Fopyy +1  —17+545
n=1 [L2n+1 - (_1)n]2 50 n=1 [L2n+3 + (_1)”]2 50
i D" Py +1_ ~19+10V5 i )" Fopeg +1 =107 + 4545
n=1 [L2n+o _(_1)n]2 100 n=1 [L27L+7 +( 1)7L]2 450

Next we explore the Pell versions of the theorems.

4. Pell Implications

Using the relationship b,(z) = g,,(2z), we can find the Pell versions of
equations (11) — (14):

o k
z (_1)n+ z _ 7 P2 .
n=1Qons2k+1 +2(— 1)n+k 4B 2qkn

0

¥ ()" 1 (7_17;”2)
2 9

n=1q2n42k+1 — 2(—1)n+k$ 8E?

qi+1
+k 2 2 2
i TPon+2k+2 + T _ 1( 7T P2 ]
k 12 2 2 i
=1 [Qapoke1 +2(-1)" "V x] A\4E Gk+1

o k41 2 2
Z ()" wpgniopes + @ _ 1 [4E27/2 _ Qk+2J
2

[(Izn+2k+1 2(—1)n+k fU]Q 645" Pr+1
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i (=n"* _2+V2 By,
n=1 Q2n+2k+1 + (_1>n+k 4 Qk+1

i (_1)n+k+1 ~ 242 B Ppr '
n=1 Q2n+2k+1 - (_1>n+k 32 16Qk+1 ’

i P2n+2k+2 +1 3 + ‘/5 _ Pk2+2 .
n=1 [QQn+2k+1 +(-1 nM]Q 8 4QI§+1

n+k+1P2n+2k+2 +1 3 +242 _ Q1§+2
[Q2n+2k+1 ( 1)n+k] 8 16Pk2+1

respectively.

Next we explore the Jacobsthal versions of the theorems.

5. Jacobsthal Consequences

Using the Jacobsthal-gibonacci relationships in Section 1, we will now find
the Jacobsthal versions of equations (11) — (14). In the interest of brevity and clarity,

we let A denote the fractional expression on left-hand side of the given equation and
B its right-hand side, and LHS and RHS those of the desired Jacobsthal equation,

respectively.

5.1 Jacobsthal Version of Equation (11): Proof: Let
(_1)n+k$
12n+k+1 + (_1)

and denominator of the resulting expression with x"

A= . Replacing = with 1/+z , and multiplying the numerator

n+kx
F we get
(_1)n+k

A=
Valy, o1 + (—1)7”]C
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(_x)n+k

/2l2n+2k+1 +(=1)

x(2n+2k+1)

n+k

(_:L,)n+k

. v+
Jonsoks1 +(=2)""

0 n+k
LHS =Y (=) (15)

. n+k ’
n=1 Jon+2k+1 T (_x)

where g,, = ¢,(1 /JVx) and ¢, = ¢, (z).

Next we let B=% - Jier . Replace z with 1/+z , and then multiply each
k+1

numerator and denominator of the resulting expression with ¥ *U/2 This yields

_D+1_a®™VPp

B
2D x(k+1)/2lk+1 ’
RHS = D+1_ ‘]/€7+2 ,
2D JEk+1

where g,, = ¢,(1 /Jx) and ¢,, = ¢, (z).

This, combined with equation (15), yields the desired Jacobsthal version:

kd n+k
Z (—ZE) _D+1_Jk+2 (16)

b

. n+k ]
n=1 Jonsaks1 +(—2) 2D e

where ¢, =c¢,(z). O

It then follows that
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i ()" 545 Fu
n=1 L2n+2k+1 + (_1)TL+k 10 Lk“
i (=2"* 2 Ji

n+k 3 ’

n=1 j2n+2k+1 + (_2) jk+1
Next we find the Jacobsthal consequence of equation (12).

5.2 Jacobsthal Version of Equation (12): Prooff We have

(_1) n+k+1$
A= — .Replacing = with 1/vJr, and then multiplying the
lypaker — (1)
numerator and denominator of the resulting expression with 2" we get

_1\n+k+1
A= ( 1) n+k
Valy, o1 — (-1)"

~ _(_x) n+k

z (2n+2k+1)/2l2n+2k+1 _ (_1) n+k

. (_l_)n+k

. ik
Jon+2k+1 — (—x)w

. (_:L,)n+k

LHS =) -

n=1 Jon+ok+1 — (=

, (17)

)n+k

where g, = g,,(1 /Yr)and ¢, =c,(z).

Next we let B = Aa — bz . Replacing z with 1/, and then multiplying
k+1

(n+k)/2

the numerator and denominator of the resulting expression with z yields
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B x[(D +1)D lm}
D? 2z Jrs1

D2

2 xk/szJrl

1 {(D+1)D x(k+2)/2lk+2}'

RHS = 1|:(D + 1)D _ jk+2 :|’
D? 2 41

where g,, = g,,(1 /Yz)and ¢, = c, ().

Combined with equation (17), this yields the desired Jacobsthal version:

© (. \ntk .
y o 212{<D+1>D ) y} s
n=1 j2n+2k+1 - (—.%'> nr D 2 Jk+1

where ¢, =¢,(z). 0

In particular, this yields

i ~(—z)"** _ 545 Ly
n=1 Loy ops1 — (_1)n+k 10 5Fpn

0 k .
3 —(=2)"" 2 ke
. n+k 3 9Jk+1

n=1 Jonsor+1 — (=2)
5.3 Jacobsthal Version of Equation (13): Proof: Let
v+k
A= 2(_1)n+ $f2n+k+2 + xQ
k, .12
[ZQTL+]C+]. + (_1)n+ ZZI]

numerator and denominator of the resulting expression with z

Replacing z with 1/+vz, and multiplying the

2n+2k+1 . we get
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1 1
2(—1)n+k s Jonsheo +—
A — X X

LT
|:l2n+2k+1 + (‘Dmk \/Z}

2(_x)n+k[$(2n+2k+1)/2

2n+2k
Sonsopra] ¥+

[$(2n+2k+1)/2l2n+2k+1 + (‘Dmk]z

n+k 2n+2k
2(=2)" " Jopiopsa T T

- . k12
[Jansars1 + (=2)" ]

n+k 2n+2k
o

LHS= Y 2
n=1 [j2n+2k+1 + (_l‘)

; (19)

n+k]2

where g,, = ¢,,(1 /Yz)and ¢, = c, ().

2 2
Now let B = a—Q - f/;7+2 . Replacing z with 1/, and then multiply each
A lk+1

numerator and denominator of the resulting expression with 2kt . This yields

(D+1)° [V
4D2 [z(k+1)/21k+2]2

B =

(D + 1)2 _ Jl?+2
4D*  jig

RHS =

9

where g,, = ¢,,(1 /Yz)and ¢, = c, ().

This, coupled with equation (19), yields the desired Jacobsthal version:

n+k 2n+2k
2(=2)"" Jopiopse +

i _(D+1)2_Jl?+2

. n+k12 N 2 9 (20)
n=1 [J2n+2k+1+(—$) ] 4D Jk+1
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where ¢, =c¢,(z). O

In particular, this yields
= 2(=1)"F Py +1 _3+V5 F2,

2

n=1 [L2n+2k+1 + (—37>"+k]2 10 L?c+1

b

n+k n+k
J2n+k+2+4 4 J;%JrQ
n+k]2 - 9

n=1 [Jzn+2k+1 +(=2 Ji

Next we find the Jacobsthal consequence of Theorem 4.

5.4 Jacobsthal Version of Equation (14): Proof: We have
2(_1)n+k+1 fo(n+k)+2 +2°

[122(n+k)+1 + (_1)n+kl,]2

denominator of the resulting expression with z

A= . Replace  with and then multiply the numerator and

n+2k+l We then get

pe1 1 1
2( 1)n+ + ‘/—f2n+k+2 +— T

n+k 1
|:l2n+2k+1 - (_1) ’ x/E:|

_2(_$)TL+I§[ (2n+2k+1)/2

A=

2n+2k
Sonsorsa] + 27"

n+k]

[x(2n+2k+1)/2l2n+2k+1 - (—»T)

k
-2 (_x)n+ J2n+k+2 +x

. k
[Jon+2k+1 — (—x)m ]2

n+k
> —2(= ) J2n+k’+2 +T

2

-+ k
n=1 [J2n+2k+1 (- x)m ]2

LHS

, 21

where g,, = ¢,,(1 /Yz)and ¢, = c, ().



172 THOMAS KOSHY

1 I : .
Now letB=4[A20:2—k2+2 . Replacing r with 1/+z, and then
A fk+1

multiply each numerator and denominator of the resulting expression with zh

yields
5 :xQ{DQ(D_i_l)Q B [x(k+2)/21k+2]2}.

D* | 4o’ 222 ® fa )

1

(D +1)2 _ j]%+2
4D* D',

RHS =

where g,, = g,,(1 /Yz)and ¢, = c, ().

Combining this with equation (21) yields the desired Jacobsthal version:

m)__2(_z)n+kjén+k+2 +;E2"+2k _-(1)4_1)2 ) jg+2
Z . n+k12 B 2 442 7 (22)
n=1 []2n+2k+1 —(=2)" ] 4D D Ji

where ¢,, = ¢, (z). [

It follows from this equation that

> —2(=1)""* Fypppgp +1 345 LI,
not [Lopsopser = (—2)" 10 2517,

2
Jk+2

i (_2)n+k+1<]2n+k+2 +4n+k

4
n=1 [j2n+2k'+1 - (_2)n+k]2 )

j%+1
6. Chebyshev and Vieta Consequences

Chebyshev polynomials 7, and U, , Vieta polynomials V, and v, , and

gibonacci polynomials are linked by the relationships V,(z)=4""'f,(=iz),
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0, (@) = "l (~iz), V,(2)=U, (z/2) and v,(z)=2T,(z/2) [3, 4, 5] where

1 = +—1; they can be employed to find the Chebyshev and Vieta versions of the
theorems. In the interest of brevity, we omit them; but we encourage gi- bonacci
enthusiasts to explore them.
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