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1. Introduction 

 

Let X be a compact Riemann surface of genus g and p X . Then the 

following conditions on X are equivalent: 

 

 1. There exists a non-constant meromorphic function on X which has a pole 

of order ≤ g at p and is holomorphic in \ { }X p  . 

 2. p is a Weierstrass point. 

 
This is a consequence of Riemann-Roch and Seree Duality theorems See [2]. 
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One of the important questions is the existence of meromorphic functions 

having pole at a single point p on X and is holomorphic in }\ {X p . 

 

One of the basic results in this topic is Weierstrass gap theorem, which is 
stated below: 

 

 Theorem 1: For a surface of genus 1g   there are precisely g integers 
 

  1 21 2g g                                      (1) 

 

such that there does not exist a meromorphic function on X with a pole of 

order k   at p. 

 

 The numbers j , for 1,...,j g  are called “gaps” at p and their complement 

in  are called “non-gaps”. Further, the sequence is uniquely determined by the point 

p. For proof [1], [5] and [3]. 

 

 Definition 2: A compact Riemann surface X of genus 1g   is said to 

be hyperelliptic if it is a two sheeted covering of the sphere 1 . 

 In this note we derive the following result for hyperelliptic Riemann 
surfaces: 
 

 Theorem 3: Suppose X is a hyperelliptic Riemann surface of genus g. 

There are exactly 2 2g   points 1 2 2, ..., gp p   with the following conditions: 

 

 1. For \p X  1 2 2,..., gp p   there exists a non-constant meromorphic 

function ( ))f X  which has a pole of order 1g   at p and is holo-morphic 

in \ { }X p . 

 

 2. For \p X  1 2 2,..., gp p  , every meromorphic function with a single 

pole at p, must have a pole of order 1g  . 

 
2. Some Consequences of Riemann-Roch Theorem 
 
 We define a Weierstrass point by using gap sequence as follows: 
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 Definition 4: Suppose p X  and 
 

1 20 2g g         
 

be the gap sequence at p. In terms of the gap sequence we define the weight of 

the point p, denoted by ( )p  by 

1

( ).
g

i
i

i



 

 
 Note that 0( )p    for all p X . 

 

 Definition 5: A point p X  is called a Weierstrass point if ( ) 0p  . 

 
 One can compute the number of Weierstrass points counted according to 

their weights on a compact Riemann surface  X of genus g. It is equal to  

3 ( 1) ( 1)g g g g g    . 

 

 It follows that there are no Weierstrass points on the surfaces of genus 0g   

and genus 1g  . Also from the Theorem 1, it follows that there is no non-constant 

meromorphic function on torus ( 1g   surface) with a single simple (= order 1) pole. 

 
 The following theorem gives the bounds for Weierstrass points on a com- 

pact Riemann surface of genus 2g  . 

 

 Theorem 6: Suppose X is a compact Riemann surface of genus 2g  . 

Let ( )W X  denotes the number of Weierstrass points on X. Then 
 

    2 2 ( ) 3g W X g g                                           (2) 
 

 A point p is called a hyperelliptic Weierstrass point if the non-gap sequence 

starts with 2 and the hyperelliptic Riemann surfaces are characterized by the gap 
sequence at the Weierstrass points: 

 

    1, 3, , 1}–{ 2P g                                     (3) 
 

hence the non-gaps are  2, 4, ,2Q g    



86  GOLLAKOTA V V HEMASUNDAR   

 Let X be a hyperelliptic Riemann surface and p be a Weierstrass point on X. 

 
 Then we can find 
 

             
( 1)

( ) 1 3 2 1 [1 2(
2

[ ]  )]
g g

p g g


                        (4) 

 
 Therefore, from the Equation 4 we can see that there are precisely 2 2g    

Weierstrass points on a hyperelliptic Riemann surface. 
 

 Remark 7: In terms of Weierstrass points, the hyperelliptic Riemann 

surfaces may be characterized as the surfaces that attain the lower bound on 

the number of Weierstrass points. 

 
 We restate the result which we mentioned in the beginning. For Proof 
See [2]. 
 

 Theorem 8: Let X be a compact Riemann surface of genus g and  

p X . Then the following conditions on X are equivalent: 

 

 1. There exists a non-constant meromorphic function on X which has a 

pole of order g  at p and is holomorphic in \ { }X p . 

 

 2. p is a Weierstrass point. 

 

 Remark 9: If p is not a Weierstrass point then there is no 

meromorphic function on X, with a single pole of order g . 

 
 The following theorem is a consequence of the Riemann-Roch theorem: 
 

 Theorem 10: Suppose X is a compact Riemann surface of genus g and 

p is a point of X. Then there is a non-constant meromorphic function f on X 

which has a pole of order 1g   at p and is holomorphic in \ { }X p . 
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3. Proof of Theorem 3 
 

 Proof: Let X be a hyperelliptic Riemann surface of genus g. Therefore, there 

are precisely 2 2g   Weierstrass points points on X. Let 1 2 2, ,  gp p  be the 

Weierstrass points on X. 

 

 Let 1 2 2\ ,{ ,   }gp X p p   . Therefore, p is not a Weierstrass point on X. 

From Theorem 8, there does not exist a meromorphic function ( )f X  such that f 

has a pole of order g  at p and is holomorphic in \ { }X p . 

 
 But by Theorem 10, there must exist a meromorphic function with a pole of 

order 1g   at p and is holomorphic in \ { }X p . 

 

 Therefore, it follows that there exists a meromorphic function f with a pole of 

order 1g   and is holomorphic in \ { }X p . 

 

 The second statement is nothing but rephrasing the first one.    
 
 We state another result which is a simple consequence of Weierstrass gap 
sequence for hyperelliptic Riemann surfaces and Theorem 8. 
 

 Remark 11: Suppose p is a Weierstrass point on a hyperelliptic 

Riemann surface X of genus g. If g is even there is no meromorphic function 

with a pole of order 1g   at p and is holomorphic in \ { }X p . 

 
4. Concluding remarks for the Hyperelliptic Riemann Surface of Genus 4g    

 
 As an example, we sum up everything for the case of hyperelliptic Riemann 
surfaces of genus 4g  . 

 
1. The gap sequence at the Weierstrass points is 1 3 5 7 8 2g     . 

 
2. The non-gaps are 2, 4, 6, 8 2g  . 

 
3. The number of Weierstrass points are 2. 2 10g    . 
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4. If  p is a Weierstrass point there exists a meromorphic function having pole 

 at p of order 2 and is holomorphic in \ { }X p . 

 

5. If p is a Weierstrass point there exists a meromorphic function having pole at 

 p of order 4 and is holomorphic in \ { }X p . 

 

6. If p is a Weierstrass point there is no meromorphic function with a single 

 pole of order 3 or 5. 

 

7. If p is not a Weierstrass point, a meromorphic function with a single pole 

 must have order minimum 5  and there exists a meromorphic function f on 

 X with a pole of order 5 and holomorphic in \ { }X p . But if p is a 

 Weierstrass point then there does not exist a meromorphic function  f  with a 

 single pole at p with order 5. This follows due to gap sequence of 

 hyperelliptic Riemann surfaces at                   Weierstrass  points. 
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1. Introduction 
 
 1.1 Introduction, Definitions and Notations: Let us consider that the reader 
is familiar with the fundamental results and standard notations of the Nevanlinna 
theory of meromorphic functions which are available in [6, 9, 13]. We denote by  , 
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the set of all finite complex numbers. Let f be an entire function defined on  . The 

maximum modulus function ( )fM r  of 
0

n
n

n

f a z




  on   z r    is defined as 

 

( ) max{ ( ) }fM r f z z r     . 

 

 Moreover f is non constant entire then ( )fM r  is also strictly increasing and 

continuous function of r. Therefore its inverse 

 
1 : ( (0), ) (0, )f fM M     

 
exists and is such that 

1lim ( ) .f
s

M s


   

 
 We use the standard notations and definitions of the theory of entire 
functions which are available in [12] and therefore we do not explain those in details. 
 
 For [0, )x   , we define iteration of logarithmic and exponential functions 

as  

   [ ] [ 1]log log(log ) for  1, 2, 3, .....k kx x k    

 

   [ 1][0]log ,  log expx x x x    

and 

   [ ] [ 1]exp exp(exp ) for 1, 2, 3, .....k kx x k    

 

   [0] [ 1]exp , exp log .x x x x    

 

 However let K be a class of continuous non negative function   on 

( , )   such that 0( ) ( ) 0x x    for 0x x  with ( )x    as x   . For 

any K  , we say that 0
1K   if 

 
((1 (1)) ) (1 (1)) ( ) asO x O x x       
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and 0
2K  , if 

 
(exp(1 (1)) ) (1 (1)) (exp( )) as .O x O x x       

 

 Finally for any K  , we also say that 1K   if 

 

( ) (1 (1)) ( )cx O x    as 0x x    for each (0, )c   . 

and 2K   if 

(exp( ) (1 (1)) (exp( ))cx O x    as 0x x   for each (0, )c   . 

 
 Clearly, 
 

0 0
1 1 2 2,K K K K    and 2 1.K K  

 
 Considering this, the value 
 

( , )

(log ( ))
[ ] lim sup , ( , )

(log )

f

r

M r
f K K

r
 


  



  

 

and 

(log ( ))
( ) lim inf , ( , )

(log )

f

r

M r
f K K

r


  


  

 
 

are respectively called generalized ( , )  -order and generalized ( , )  -lower order 

of an entire function f [11]. For details about generalized ( , )  -order one may see 

[11]. During the past decades, several authors made closed investigations on the 
properties of entire functions related to generalized order and in some different 
directions and we get many important results from [4, 5, 6, 7, 8, 10]. For the purpose 
of future applications, several authors rewrite the definition of generalized ( , )   

order of entire and meromorphic function in the following way after giving a minor 
modification to the original definition [11]. 
 

 Definition 1.1 [6]: The order and lower order of a meromorphic 

function f are defined as 

log ( )
lim sup

log

f
f

r

T r

r
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and        
log ( )

lim inf
log

f
f

r

T r

r



 . 

 

 If f is an entire function, then 

 
[2]log ( )

lim sup
log

f
f

r

M r

r




  

and 

[2]log ( )
lim inf

log

f
f

r

M r

r



  

 

 Using the inequality 

 

( ) ( ) (2 ) { }log  3 .[6]f f fT r r rM T cf   

 

one may easily verify the above definition for an entire function. 

 

 Juneja. et.al. {cf.  [8]}  defined ( , )p q -th order ( , )( )p q f  and ( , )p q -th 

lower order ( , )( )p q f  of an entire function f are as 

 
[ ]

( , )

[ ]

log ( )
( ) lim sup

log

p
fp q

q
r

M r
f

r




  

and 

[ ]
( , )

[ ]

log ( )
( ) lim inf

log

p
fp q

qr

M r
f

r



  

 

where .p q  The function f is said to be of regular ( , )p q  growth when 

( , )p q -th order and ( , )p q -th lower order of f are the same. Functions which 

are not of regular ( , )p q growth are said to be of irregular ( , )p q growth. 

 

 However the above definition is very useful for measuring the growth of 

entire functions. If p l  and 1q   then ( ,1) ( )( ) ( )l lf f   and 
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( ,1) ( )( ) ( )l lf f   where ( )( )l f  and ( )( )l f  are respectively known as 

generalized order and generalized lower order of function f {cf.[10]}. Also for 

2p   and 1q   we respectively denote (2,1)( )f  and (2,1)( )f  by ( )f  and 

( )f  which are classical growth indicators such as order and lower order of 

entire function f. 

 

 Definition 1.2: Let , K   .Then  we  define  generalized  ( , )thp q  

( , )  -order  denoted by ( , )
( , )[ ]p q f   and generalized ( , )thp q ( , )  -lower 

order denoted by ( , )
( , )[ ]p q f   of an entire function f as 

 

[ ]
( , )
( , ) [ ]

( ( ))
[ ] lim sup

( )

p
fp q

q
r

M r
f

r
 






  

and 

[ ]
( , )
( , ) [ ]

( ( ))
[ ] lim inf ,

( )

p
fp q

qr

M r
f

r
 





  

 

where  p, q  are  any  two  positive  integers  with .p q  Further,  an  entire  

function  f  is said to be of regular ( , )p q -growth if its ( , )p q -th order coincides 

with its ( , )p q -th lower order, otherwise f is said to be of irregular  

( , )p q -growth. 

 

 Definition 1.3: Let f and g be any two entire functions. Bernal  [1, 2] 

initiated the definition of relative order ( )g f  of f with respect to g which keep 

away from comparing growth just with exp z to find out order of entire 

functions as follows: 

 

( ) inf { 0 : ( ) ( )g f gf M r M r      for all 0( ) 0}r r    
 

   

1log ( )
lim sup

log

g f

r

M M r

r





 . 
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 Analogously, one may define the relative lower order of f with respect 

to g denoted by ( )g f as 

1log ( )
( ) lim inf

log

g f
g

r

M M r
f

r





  

 

 However, an entire function, for which order and lower order are the 

same, is said to be of regular growth. The function exp z  is an example of 

regular growth of entire functions. Further the functions which are not of 

regular growth are said to be of irregular growth. 

 

 Definition 1.4 [3]: Let , K   . The  generalized  relative  ( , )   

order  denoted  by ( , )[ ]gf   and generalized relative ( , )  -lower order 

denoted by ( , )[ ]gf   of an entire function f with respect to another entire 

function g are defined  as: 

 

1

( , )

( ( ( )))
[ ] lim sup

( )

g f
g

r

M M r
f

r
 












 
and  

                  
1

( , )

( ( ( )))
[ ] lim inf ,

( )

g f
g

r

M M r
f

r
 









  

where 1.p    

 

 Definition 1.5 [3]: Let , K   where K is defined earlier. The 

generalized relative ( , )  -type denoted by ( , )[ ]gf   and generalized relative 

( , )  -lower type denoted by  ( , )[ ]gf    of an entire function f  with respect 

to another entire function g having non-zero finite generalized relative order 

( , )   are defined as 

1

( , ) [ ]( , )

exp( ( ( ( ))))
[ ] lim sup

(exp( ( )))

g f
g f gr

M M r
f

r
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and 

      
1

( , ) [ ]( , )

exp( ( ( ( ))))
[ ] lim inf .

(exp( ( )

g f
g f gr

M M r
f

r
    











 
 

 Again the generalized relative ( , )  -upper weak type denoted by 

( , )[ ]gf   and generalized relative ( , )  -lower weak type denoted ( , )[ ]gf  of 

an entire function f with respect to another entire function g having non-zero 

finite generalized relative lower order ( , )   are defined as 

 
1

( , ) [ ]( , )

exp( ( ( ( ))))
[ ] lim sup

(exp( ( )))

g f
g f gr

M M r
f

r
    










  

and 

1

( , ) [ ]( , )

exp( ( ( ( ))))
[ ] lim inf .

(exp( ( )

g f
g f gr

M M r
f

r
    









  

 

 Definition 1.6: Let f and g be any two entire functions with maximum 

modulus functions ( )fM r  and ( )gM r  respectively, then the generalized 

relative ( , )  -order and generalized relative ( , )  -lower order) of f with 

respect to another entire function g, denoted by ( , )
( , )[ ]p q

gf   (respectively 

[ ]
( , )[ ]p

gf  ) is defined as 

 
[ ] 1

( , )
( , ) [ ]

( ( ( ))
[ ] lim sup

( )

p
g fp q

g q
r

M M r
f

r
 










  

and 

[ ] 1
( , )
( , ) [ ]

( ( ( ))
[ ] lim inf .

( )

p
g fp q

g qr

M M r
f

r
 











 
 

where p, q are any two positive integers with p q . In particular if we 

consider 1q  , then the Definition 1.6 is reduced to Definition 1.4. These 
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definitions extend the generalized relative order and generalized relative lower 

order of an entire function f with respect to another entire function g. Further 

an entire function f is said to be of regular relative ( ),p q -th growth if its 

( ),p q -th relative order coincides with its ( ),p q -th relative lower order, 

otherwise f is said to be of irregular relative ( ),p q -th growth. 

 

 Definition 1.7:  Let , K   where K is defined earlier. Let f and g be 

any two entire functions with maximum modulus functions ( )fM r  and ( )gM r

respectively, then we define ( ),p q -th generalized relative ( , )  -type denoted 

by ( , )
( , )[ ]p q

gf   of an generalized relative ( , )   order  ( , )
( , )0 [ ]p q

gf     as 

 

  

[ ] 1
( , )
( , ) ( , )

[ ]
[ ] ( , )

exp( ( ( )))
[ ] lim sup ,

exp ( )

p
g fp q

g p q
r f gq

M M r
f

r

 


 










  

 

where p, q  are positive integer such that p q . 

 

 Definition 1.8:  Let  , K     and  f, g be  any  two  entire  functions  

having  finite positive generalized relative ( , )   order  ( , )
( , )0 [ ]p q

gf    , 

where p, q  are positive integer. Then ( ),p q -th generalized relative ( , )  -type 

denoted by  ( , )
( , )[ ]p q

gf   of an entire function f with respect to another entire 

function g is define as: 
  

 the integral 

  

  

[2] [ ] 1

1
( , )

[ ]0 [ ] ( , )

exp ( )

exp exp ( )

p
g f

k
p qr f gq

M M r

r


 








 
 
  



 
 

converges for ( , )
( , )[ ]p q

gk f   and diverges for ( , )
( , )[ ]p q

gk f  .  
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 Definition 1.9: Let , K   and f and g be any two entire functions 

with maximum modulus functions ( )fM r  and ( )gM r  respectively, then we 

define ( ),p q -th generalized relative ( , )  -lower weak type denoted  by 

( , )
( , )[ ]p q

gf   of an entire  function f with respect to another entire function g 

having finite positive generalized relative ( , )  -lower order 

 ( , )
( , )0 [ ]p q

gf    as 

  

  

[ ] 1

( , )
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
[ ] lim inf ,

exp ( )

p
g fp q

g p qr f gq

M M r
f

r

 

 











 

  

where ( ),p q are positive integers such that .p q  

  

 Definition 1.10: Let , K   and f, g be any two entire functions 

having finite positive generalized relative ( , )  -lower order 

 ( , )
( , )0 [ ]p q

gf    , where p, q are positive integer. Then ( ),p q -th 

generalized relative ( , )  -lower weak type denoted by ( , )
( , )[ ]p q

gf   of an entire 

function f with respect to another entire function g is define as: 
 

 the integral 
 

  

  

[2] [ ] 1

1
( , )

[ ]0 [ ] ( , )

exp ( )

exp exp ( )

p
g f

k
p qr f gq

M M r

r

 








 
 
  

  

 

converges for ( , )
( , )[ ]p q

gk f   and diverges for ( , )
( , )[ ]p q

gk f  .  

 

 Definition 1.11: Let , K   and f and g be any two entire function 

with maximum modulus functions ( )fM r  and ( )gM r  respectively, then we 

define ( ),p q -th generalized relative ( , )  -lower type denoted  by ( , )
( , )[ ]p q

gf  of 
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an entire function f with respect to another entire function g having finite 

positive generalized relative ( , )   order  ( , )
( , )0 [ ]p q

gf    as 

 

  

  

[ ] 1

( , )
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
[ ] lim inf ,

exp ( )

p
g fp q

g p qr f gq

M M r
f

r

 


 











 

 

where ( ),p q are positive integers such that .p q  

 

 Definition 1.12:  Let , K   and f  and g be any two entire functions 

having finite positive generalized relative ( , )  order  ( , )
( , )0 [ ]p q

gf   

where p, q are positive integer. Then ( ),p q -th generalized relative ( , )  -

lower type denoted by 
( , )
( , )[ ]p q

gf   of an entire function f with respect to 

another entire function g is define as: 

 

 the integral 

  

  

[2] [ ] 1

1
( , )

[ ]0 [ ] ( , )

exp ( )

exp exp ( )

p
g f

k
p qr f gq

M M r

r


 








 
 
  

  

 

converges for ( , )
( , )[ ]p q

gk f   and diverges for ( , )
( , )[ ]p q

gk f  . 

 

 Definition 1.13:  Let , K   and  ( ) f z  and ( ) g z be any two  entire  

functions having finite positive generalized relative ( , )   lower order 

 ( , )
( , )0 [ ]p q

gf    , where  p, q  are  positive  integer. Then ( ),p q -th  

generalized  relative  upper  weak  type ( , )   denoted by ( , )
( , )[ ]p q

gf   of an 

entire function f with respect to another entire function g is defined as 
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[ ] 1

( , )
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
[ ] lim sup .

exp ( )

p
g fp q

g p q
r f gq

M M r
f

r

 


 












 

 

 Definition 1.14:  Let , K    and f and g be any two entire functions 

having finite positive generalized relative ( , )  -lower order 

 ( , )
( , )0 [ ]p q

gf    , where p, q are positive integer. Then (p, q)-th 

generalized relative ( , )  -upper weak type denoted by ( , )
( , )[ ]p q

gf   of an entire 

function f with respect to another entire function g is define as: 
 

 the integral 

  

  

[2] [ ] 1

1
( , )

[ ]0 [ ] ( , )

exp ( )

exp exp ( )

p
g f

k
p qr f gq

M M r

r


 








 
 
  

  

 

converges for ( , )
( , )[ ]p q

gk f   and diverges for ( , )
( , )[ ]p q

gk f  . 

 
 In this paper, we wish to establish the equivalence of definitions of ( ),p q -th 

generalized relative type and ( ),p q -th generalized relative lower weak type with 

their integral representations. 
 
2. Lemma 
 

 Lemma 2.1: Let , K    and f, g be any two entire functions and let 

the integral  

  

  

[2] [ ] 1

010
[ ]

exp ( )
, ( 0)

exp exp ( )

p
g f

kr A
q

M M r
dr r

r











 
 
 

  

 

converges where 0 .A    Then  
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[2] [ ] 1

[ ]

exp ( )
lim 0.

exp exp ( )

p
g f

kr A
q

M M r

r










 
 
   

 
 Proof: Since the integral 
 

  

  

[2] [ ] 1

010
[ ]

exp ( )
, ( 0)

exp exp ( )

p
g f

kr A
q

M M r
dr r

r











 
 
 

  

converges then 
 

  

  

[2] [ ] 1

10
[ ]

exp ( )

exp exp ( )

p
g f

kr A
q

M M r
dr

r












 
 
 

   if  0 ( )r R  . 

  
 Therefore, 
 

  

  

[2] [ ] 1[ ]exp exp ( )0 0

10
[ ]

exp ( )
.

exp exp ( )

A pq r r g f

kr A
q

M M r
dr

r

 




       
   




 
 
 

  

 

 Since,   [2] [ ] 1exp ( )p
g fM M r   increases with r, so 

 

  

  

[2] [ ] 1[ ]exp exp ( )0 0

10
[ ]

exp ( )

exp exp ( )

A pq r r g f

kr A
q

M M r
dr

r

 



       
   


 
 
 

  

 

  

  
  

[2] [ ] 1
0 [ ]

01
[ ]

0

exp ( )
. exp exp ( )

exp exp ( )

p
Ag f q

k
A

q

M M r
r

r
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i.e., for all large values of r, 

 

  

  

[2] [ ] 1[ ]exp exp ( )0 0

10
[ ]

exp ( )

exp exp ( )

A pq r r g f

kr A
q

M M r
dr

r

 



       
   


 
 
 



 
 

  
  

  

[2] [ ] 1
0

[ ]
0

exp ( )

exp exp ( )

p
g f

k
A

q

M M r

r








 
 
 

 

so that 

  

  

[2] [ ] 1
0

[ ]
0

exp ( )

exp exp ( )

p
g f

k
A

q

M M r

r









 
 
 

if  0 ( )r R   

 
 Therefore, 

  

  

[2] [ ] 1
0

[ ]

exp ( )
lim 0.

exp exp ( )

p
g f

kr A
q

M M r

r










 
 
 

 

 

 This proves the Lemma.    ■ 
 
3. Main Results 
 
 In this section we state the main results of the paper. 
 

 Theorem 3.1:  Let  , K   and  f,  g  be  any  two  entire  function  

having  finite positive ( , )p q -th generalized relative ( , )  -order ( , )
( , )[ ]p q

gf  ,

 ( , )
( , )0 [ ]p q

gf    and ( , )p q -th generalized relative ( , )  -type 
( , )
( , )[ ]p q

gf   

where  p, q  are any two positive integers.  Then Definition 1.7 and Definition 

1.8 are equivalent. 
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 Proof: Let ( )f z  and ( )g z be any two entire functions such that ( , )
( , )[ ]p q

gf  ,

 ( , )
( , )0 [ ]p q

gf   
 
exists , where p, q are any two positive integers. 

 
 Case I: Let 

( , )
( , )[ ] .p q

gf   
 

 
Definition 1.7   Definition 1.8. 
 

 As ( , )
( , )[ ] ,p q

gf   
 
from Definition 1.7 we have for an  arbitrary 0G   

and a sequence of values of r tending to infinity, 
 

      
( , )

[ ]
[ ] 1 [ ] ( , )

0exp ( ) exp ( ) ,
p q

f gp q
g fM M r G r


       

 

      
( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) .

G
p q

f gp q
g fM M r r


  

 
 
  

          (1) 

  

 If possible let the integral 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r


 











 
 
  

  

 
be converge.  Then by Lemma 2.1 
 

  

  

[2] [ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
lim sup 0.

exp exp ( )

p
g f

G
p qr

f gq

M M r

r


 










 
 
  

 

 

 So for all sufficiently large values of r, 
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( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) .

G
p q

f gp q
g fM M r r


  

 
 
  

 

 
 Therefore, by Equation (1) and Equation (2) we arrive at a contadriction.  
 
 Hence, 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r


 











 
 
  



 
 

diverges where 0G   is finite , which is Definition 1.8. 
 
 Now we show Definition 1.8   Definition 1.7.   
 

 Let G be any positive number. Since 

 
( , )
( , )[ ] ,p q

gf     

 
from Definition 1.8 the divergence of the integral 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r


 











 
 
  

  

 

gives an arbitrary positive   and for a sequence of values of r tending to infinity 

 

      
( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) ,

G
p q

f gp q
g fM M r r




  




 
 
  

 

         
( , )

[ ]
[ ] 1 [ ] ( , )exp ( ) ( ) exp ( )

p q
f gp q

g fM M r G r
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which implies that 
 

  

  

[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
.

exp ( )

p
g f

p q
f gq

M M r
G

r


 










 
 

 Since 0G   is arbitrary, it follows that 
 

  

  

[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
lim sup

exp ( )

p
g f

p q
r f gq

M M r

r


 









   

 

i.e., 
( , )
( , )[ ] .p q

gf     

 
 Thus, Definition 1.7 follows. 
 
 Case II: Let 
 

( , )
( , )0 [ ] .p q

gf     

 
 First we show that Definition 1.7   Definition 1.8. 
 
 Sub case (A): 
 

( , )
( , )0 [ ] .p q

gf   
 

 

 Let f, g be any two entire functions such that 

 
( , )
( , )0 [ ]p q

gf     

 

exists for positive integers p, q. Then according to Definition 1.7, for any arbitrary 

positive   and for large values of r we obtain that 
 

       
( , )

[ ]( , )[ ] 1 [ ] ( , )
( , )exp ( ) [ ] exp ( )

p q
f gp qp q

g f gM M r f r
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i.e., 

       
( , )

[ ]
( , ) ( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) ,

p q
f gp q

f gp q
g fM M r r

 
 

  

 
 

 


 
 
  

 

i.e., 

  

  

  

  

( , )
[ ]

( , ) ( , )
[ ]

[ ] ( , )
[2] [ ] 1

( , ) ( , )
[ ] [ ]

[ ] [ ]( , ) ( , )

exp exp ( )
exp ( )

exp exp ( ) exp exp ( )

p q
f gp q

f gq
p

g f

k k
p q p q

f fg gq q

r
M M r

r r

 
 

 

 
   




 

 
 

 



 
 
  

   
   
      

 

 

i.e., 
 

  

     

[2] [ ] 1

( , )
( , ) [ ]

[ ] ( , ) ( , )
[ ] ( , ) [ ]

[ ] ( , )

exp ( ) 1
.

exp exp ( ) exp exp ( )

p
g f

k p q
p q k f gf p qgq f gq

M M r

r r

   
  

 



 



 
  
 


   
   
     

 

 
 Therefore, 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

kr p q
f gq

M M r
dr r

r


 











 
 
  



 
 

 

converges for ( , )
( , )[ ]p q

gk f  . 

 

 Again  using  Definition  1.7  we  obtain  for  a  sequence  of  values  of  r  

tending  to infinity that 
 

             
( , )

[ ]( , )[ ] 1 [ ] ( , )
( , )exp ( ) [ ] exp ( )

p q
f gp qp q

g f gM M r f r
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i.e., 

       
( , )

[ ]
( , ) ( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) ,

p q
f gp q

f gp q
g fM M r r

 
 

  

 
 

 


 
 
  

   (3) 

 

so for ( , )
( , )[ ] ,p q

gk f   we get from Equation (3) that 

 

  

     

[2] [ ] 1

( , )
( , ) [ ]

[ ] ( , ) ( , )
[ ] ( , ) [ ]

[ ] ( , )

exp ( ) 1

exp exp ( ) exp exp ( )

p
g f

k p q
p q k f gf p qgq f gq

M M r

r r

   
  

 



 



 
  
 


   
   
     

.  

 

 Therefore, 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

kr p q
f gq

M M r
dr r

r


 











 
 
  

  

 

diverges for ( , )
( , )[ ] .p q

gk f   Hence, 

 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

kr p q
f gq

M M r
dr r

r


 











 
 
  

  

 

converges for 
( , )
( , )[ ]p q

gk f   and diverges for 
( , )
( , )[ ] .p q

gk f 
 

 
 Sub case (B): 

( , )
( , )[ ] 0.p q

gf    

 

 When ( , )
( , )[ ] 0p q

gf    for positive integers p, q Definition (1.7) gives for all 

sufficiently large values of r that 
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[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
.

exp ( )

p
g f

p q
f gq

M M r

r


 








  

 
 Then similarly as before we get that 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

kr p q
f gq

M M r
dr r

r


 











 
 
  

  

 
converges for 0k   and diverges for 0k  . Thus, combining Subcase (A) and 
Subcase (B) Definition 1.8 follows. 
 
 Now we show Definition 1.8   Definition 1.7. 
 
 From Definition 1.8 and arbitrary positive  , the integral  
 

  

  

[2] [ ] 1

0( , )0 [ ] 1
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

p qr f gp q
f gq

M M r
dr r

r

 
 

 








 



 
 
  

  

 
converges.  Then by Lemma 2.1 we get 
 

  

  

[ ] 1

( , )
[ ]

( , ) ( , )
[ ]

[ ] ( , )

exp ( )
0.

exp exp ( )

p
g f

p q
f gp q

f gq

M M r

r

 
 

 











 
 
  

 

 

 So, we obtain for all sufficiently large values of r that 
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[ ] 1

( , )
[ ]

( , ) ( , )
[ ]

[ ] ( , )

exp ( )

exp exp ( )

p
g f

p q
f gp q

f gq

M M r

r

 
 

 












 
 
  

 

i.e., 

     
( , )

[ ]
( , ) ( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) . exp exp ( ) ,

p q
f gp q

f gp q
g fM M r r

 
 

   




 
 
    

 

       
( , )

[ ]( , )[ ] 1 [ ] ( , )
( , )exp ( ) log [ ] exp ( ) ,

p q
f gp qp q

g f gM M r f r


 
     

  
    

  

 

i.e., 

  

  

[ ] 1

( , )
( , )( , )

[ ]
[ ] ( , )

exp ( )
lim sup [ ] .

exp ( )

p
g f p q

gp q
r f gq

M M r
f

r

 


 


 







 

 
 

 Since 0   is arbitrary, it follows that 
 

  
  

  

[ ] 1

( , )
( , )( , )

[ ]
[ ] ( , )

exp ( )
lim sup [ ] .

exp ( )

p
g f p q

gp q
r f gq

M M r
f

r

 


 










     (4) 

 
 On the other hand the divergence of the integral  
 

  

  

[2] [ ] 1

0( , )0 [ ] 1
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

p qr f gp q
f gq

M M r
dr r

r

 
 

 








 



 
 
  

  

 
implies that there exists a sequence values of r tending to infinity such that 
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[2] [ ] 1

( , ) 1
( , )[ ] 1

( , ) [ ]( , )
[ ][ ] ( , )

[ ] ( , )

exp ( ) 1
,

exp exp ( )exp exp ( )

p
g f

p q
p qf gp q f gqf gq

M M r

rr


   

  
 








 


  
  
    

 
i.e., 

     
( , )

[ ] 2
( , ) ( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) ,

p q
f gp q

f gp q
g fM M r r

 
 

  




 
 
  

 

i.e., 

       
( , )

[ ]( , )[ ] 1 [ ] ( , )
( , )exp ( ) [ ] 2 exp ( ) ,

p q
f gp qp q

g f gM M r f r


 
        

i.e., 

   

  

  
 

[ ] 1

( , )
( , )( , )

[ ]
[ ] ( , )

exp ( )
[ ] 2 .

exp ( )

p
g f p q

gp q
f gq

M M r
f

r

 


 


 





 

 
 

 Since 0   is arbitrary, it follows from above that 
 

  
  

  

[ ] 1

( , )
( , )( , )

[ ]
[ ] ( , )

exp ( )
lim sup [ ] .

exp ( )

p
g f p q

gp q
r f gq

M M r
f

r

 


 










    (5) 

 
 So from Equation (4) and Equation (5) we obtain that 
 

  

  

[ ] 1

( , )
( , )( , )

[ ]
[ ] ( , )

exp ( )
lim sup [ ] .

exp ( )

p
g f p q

gp q
r f gq

M M r
f

r

 


 










  

 

 This proves the theorem.  ■ 
 

 Remark 3.1:  We give an example below which validates Theorem 3.1. 
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 Example 1:  Let 2( ) exp( )f z z , ( ) logg z z , ( 0)z  , 4p   and 

12. ( ) exp( )q So g z z    

 

  
 [ ] 1

( , )
( , ) [ ]

( )
[ ] lim sup

( )

p
g fp q

g q
r

M M r
f

r
 










  

 

        
   [4] 2

[2]

log exp exp
lim sup

logr

r

r

  

 

        
[2] 2

[2]

log
lim sup

logr

r

r

  

 

        
[2]

[2]

log 2 log
lim sup

logr

r

r


  

 
        1.   

  Again 

  
  

  

[ ] 1

( , )
( , ) ( , )

[ ]
[ ] ( , )

exp ( )
[ ] lim sup

exp ( )

p
g fp q

g p q
r f gq

M M r
f

r

 


 










  

 

        
   

  

[4]

1
[2]

exp log exp exp( )
lim sup

exp logr

r

r

  

 

        
2log

lim sup
logr

r

r

  

 
        1.  
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 Next if we take 3k  , that is ( , )
( , )[ ]p q

gk f   we see that the value of 

the integral for 0 0,r    

 

   
  

  

[2] [ ] 1

10 ( , )
[ ]

[ ] ( , )

exp ( )
,

exp exp ( )

p
g f

kr p q
f gq

M M r
dr

r


 









 
 
  

   

 

   
  

  

[2] [4] 2

40 1
[2]

exp log exp(exp )

exp exp log ( )
r

r
dr

r




 
 
 



 

   
2

40r

r
dr

r


    

 

   
20

1
r

dr
r


 

 
 

   
0

1
,

r
   

which coverges. Next if we take 3k  , that is ( , )
( , )[ ]p q

gk f   we see that 

the value of the integral for 0 0,r    

 

   
  

  

[2] [ ] 1

10 ( , )
[ ]

[ ] ( , )

exp ( )
,

exp exp ( )

p
g f

kr p q
f gq

M M r
dr

r


 









 
 
  

   

 

   
  

  

[2] [4] 2

20 1
[2]

exp log exp(exp )

exp exp log ( )
r

r
dr

r
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2

20r

r
dr

r


    

 

   
0

[ ]
r

r 
 

 
   ,    

which diverges. 

 

 Theorem 3.2:  Let  f, ( )g A K  be  any  two  entire  functions having 

finite positive ( ),p q -th generalized relative ( , )  -lower order ( , )
( , )[ ] ,p q

gf 

 ( , )
( , )0 [ ]p q

gf    and ( ),p q -th generalized relative ( , )  -lower weak  

type, ( , )
( , )[ ]p q

gf  , where p, q  are any two positive integers. Then Definition 1.9 

and Definition 1.10 are equivalent. 

 
 Proof: Case I: Let 
 

( , )
( , )[ ] .p q

gf     

 
 Definition 1.9   Definition 1.10. 
 

 As ( , )
( , )[ ] ,p q

gf    from Definition 1.9 we get for an arbitrary positive G 

and for all sufficiently large values of r that 
 

                
     

( , )
[ ]

[ ] 1 [ ] ( , )exp ( ) exp ( ) ,
p q

f gp q
g fM M r G r


      

i.e., 

     
( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) .

G
p q

f gp q
g fM M r r


  

 
 
  

   (6) 

   

 If possible, let the integral 
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[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0),

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r

 











 
 
  

  

 
be convergent.  Then by Lemma 2.1 
 

  

  

[2] [ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
lim inf 0.

exp exp ( )

p
g f

Gr p q
f gq

M M r

r


 










 
 
  

 

 

 So, for a sequence of values of r tending to infinity, we get that 
 

      
( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) .

G
p q

f gp q
g fM M r r


  

 
 
  

  (7) 

 

 Therefore, from Equation (6) and Equation (7) we arrive at a contradiction. 
Hence, 
 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r

 











 
 
  



 
 

diverges, whenever G is finite which is Definition 1.10.  

  
 Now we show Definition 1.10   Definition 1.9.  
 

 Let G be any positive number. Since, 

 
( , )
( , )[ ] ,p q

gf     

 
from Definition 1.10 the divergence of the integral 
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[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

Gr p q
f gq

M M r
dr r

r

 











 
 
  

  

 

gives an arbitrary positive   and for all sufficiently large values of r that 

 

      
( , )

[ ]
[ ] 1 [ ] ( , )exp ( ) exp exp ( )

G
p q

f gp q
g fM M r r




  




 
 
  

  

 

              
( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) ( ) exp ( ) ,

p q
f gp q

g fM M r G r

       

 
which implies that 
 

  

  

[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
.

exp ( )

p
g f

p q
f gq

M M r
G

r


 








 

 
i.e., 

  

  

[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
lim inf .

exp ( )

p
g f

p qr f gq

M M r
G

r


 









   

 
 Since, 0G   is arbitrary, it follows that 
 

  

  

[ ] 1

( , )
[ ]

[ ] ( , )

exp ( )
lim inf .

exp ( )

p
g f

p qr f gq

M M r

r


 








   

i.e., 
( , )
( , )[ ] .p q

gf     

 
 Thus, Definition 1.9 follows. 
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 Case II: Let 
( , )
( , )0 [ ] .p q

gf     

 
 First we show that Definition 1.9   Definition 1.10. 
 

 Sub case 1( )A :   

( , )
( , )0 [ ] .p q

gf     

 

 Let f, g be any two entire functions such that 
 

( , )
( , )0 [ ]p q

gf     

 

exists for positive integers p, q.  Then according to Definition 1.9 for any arbitrary 

positive   and for large value of r we obtain that 

           
       

( , )
[ ]( , )[ ] 1 [ ] ( , )

( , )exp ( ) [ ] exp ( )
p q

f gp qp q
g f gM M r f r


 

        

i.e., 

       
( , )

[ ]
( , ) ( , )

[ ]
[2] [ ] 1 [ ] ( , )exp ( ) exp exp ( ) ,

p q
f gp q

f gp q
g fM M r r

 
 

  

 
 

 


 
 
  

 

i.e., 

  

  

  

  

( , )
[ ]

( , ) ( , )
[ ]

[ ] ( , )
[2] [ ] 1

( , ) ( , )
[ ] [ ]

[ ] [ ]( , ) ( , )

exp exp ( )
exp ( )

,

exp exp ( ) exp exp ( )

p q
f gp q

f gq
p

g f

k k
p q p q

f fg gq q

r
M M r

r r

 
 

 

 
   




 

 
 

 



 
 
  

   
   
      

 

 

 
i.e., 
 

  

     

[2] [ ] 1

( , )
( , ) [ ]

[ ] ( , ) ( , )
[ ] ( , ) [ ]

[ ] ( , )

exp ( ) 1
.

exp exp ( ) exp exp ( )

p
g f

k p q
p q k f gf p qgq f gq

M M r

r r
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 Therefore, 

  

  

[2] [ ] 1

010 ( , )
[ ]

[ ] ( , )

exp ( )
, ( 0)

exp exp ( )

p
g f

kr p q
f gq

M M r
dr r

r


 











 
 
  

  

 

converges for ( , )
( , )[ ]p q

gk f  . 

 

 Again by Definition 1.9 we obtain for all sufficiently large values of r that 

 

     
       

( , )
[ ]( , )[ ] 1 [ ] ( , )

( , )exp ( ) [ ] exp ( )
p q

f gp qp q
g f gM M r f r
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 So, for ( , )
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gk f   we get from Equation (8) that 
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 Therefore, 
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diverges for ( , )
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converges for ( , )
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gk f   and diverges for ( , )
( , )[ ]p q

gk f  . 

 

 Subcase 1( )B : 
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( , )[ ] 0p q
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when ( , )
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gf   , for any positive integer p, q Definition 1.9 gives for a 

sequence of values of r tending to infinity that 
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 Then similarly as before we get that 
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converges  for  0k   and  diverges  for  0k  . Thus, combining Subcase 1( )A  and 

Subcase 1( )B Definition 1.10 follows. 
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 Now we show that Definition 1.10   Definition 1.9. 
 

 From Definition 1.10 and arbitrary positive  , the integral 
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converges.  Then by Lemma 2.1, we get that 
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 Since 0   is arbitrary, it follows that 
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 On the other hand, the divergence of the integral 
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implies for all sufficiently large values of r that 
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 Since 0   is arbitrary, it follows from above that 
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 So, from Equation (9) and Equation (10) we obtain that 
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 This proves the theorem.  ■ 
 

             Remark 3.2: We give an example below which validates the Theorem 3.4 
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 Next if we take 2k  , that is ( , )
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which converges. Next if we take 0k  , that is ( , )
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0
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r
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   ,    

which diverges. 
 

 Corollary 3.1:  Let , K    and ( )f z  and ( )g z  be any two entire 

functions having finite positive ( , )p q -th generalized relative ( , )   order 

( , )
( , )[ ]p q

gf  ,  ( , )
( , )0 [ ]p q

gf     and ( , )p q -th generalized relative ( , )  -

lower type, ( , )
( , )[ ]p q

gf   where p, q are any two positive integers.  Then 

Definition 1.11 and Definition 1.12 are equivalent. 

 

 Corollary 3.2:  Let , K    and f, g be any two entire  functions 

having finite positive ( , )p q -th generalized relative ( , )  -lower order 

( , )
( , )[ ]p q

gf  ,  ( , )
( , )0 [ ]p q

gf     and ( , )p q -th generalized relative ( , )  - 

upper weak type , 
( , )
( , )[ ]p q

gf  , where p, q are any two positive integers.  Then 

Definition 1.13 and Definition 1.14 are equivalent. 

 
Conclusion and Future Prospect 
  
 After introducing the idea of generalized relative ( , )  -order (lower order) 

and generalized relative ( , )  -type (lower type) of an entire function of complex 

variable with respect to another entire function, where ,   are non negative 

continuous functions defined on( , )  , here in  this paper we study different 

representation of type (lower type) and upper weak type (lower type) of entire 
functions with respect to another entire function. This assumption is also used to 
modify the idea of generalized relative ( , )  - type (lower type) and generalized 

relative ( , )  -upper weak type (lower weak type) of an entire function as well as 

meromorphic function by using non-decreasing unbounded function  , where  

  : [0, ) (0, )    satisfying the following two conditions: 
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and 

   (ii) 
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log ( )

q

qr
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 Taking this modification we derive some results which will no doubt inspire 
the future researcher to derive some growth properties of entire and meromorphic 

functions of n complex variables. 
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4-TOTALMEAN CORDIAL LABELLING 
OF st(m1, m2, m3, m4, m5) 

 
 

 

 
Abstract: Let � be a graph. Let �: �(�) → {0, 1,2, … . . � 1} be a function 
where � ∈   and � > 1. For each edge ��, assign the label 

 �(��) =  �
�(�)��(�)

�
�. �is called a � – total mean cordial labeling of � if 

����(i)–  ���(j)�  ≤ 1,  for all �, � ∈ {0, 1, 2, … . . , � 1},  where ���(�) 

denotes the total number of vertices and edges labelled with 
 �, � ∈ {0, 1, 2, … . , � 1}.  A graph with admit a � – total mean cordial 
labeling is called � – total mean cordial graph. In this paper we investigate 
the    4-total    mean   cordial   labeling   of    ��(�, �), ��(1,1, � ), ��(1,2, �), 
��(2,2, �), ��(2,3, �), ��(�, �, �), ��(�, �, �, �), ��(�, �, �, �, �). 
 
Keywords: Star, Path, Complete Bipartite Graph, Union of Graph. 
 
Mathematics Subject Classification: 05C78. 

 
1. Introduction 
 

In this paper we consider simple, finite and undirected graphs only. Cordial 
labeling was introduced by Cahit [1]. The notion of �-total mean cordial labeling has 
been introduced in [5]. The 4–total mean cordial labeling behaviour of several  
graphs like cycle, complete graph, star, bistar, comb and crown have been studied in 
[5, 6, 7, 8, 9, 10, 11, 12, 13]. Super edge-magic labeling behaviour of 
��(�, �), ��(1,1, � ), ��(1,2, �), ��(2,2, �), ��(2,3, �) was studied in [4]. In this 
paper we investigate the 4-total mean cordial labeling of  
��(�, �), ��(1,1, � ), ��(1,2, �), ��(2,2, �), ��(2,3, �), ��(�, �, �), ��(�, �, �, �), ��(�, �, �, �, �).
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 Let � be any real number. Then �  stands for the smallest integer  
greater than or equal to �. Terms are not defined here follow from Harary [3] and 
Gallian [2]. 
 
2. k–Total Mean Cordial Graph 
 

Definition 2.1: Let � be a graph. Let �: �(�) → {0, 1, 2, … . . , � 1}  be a 
function where � ∈   and � > 1. For each edge ��, assign the label 

 �(��) =  �
�(�)��(�)

�
�. � is called a�–total mean cordial labeling of � if 

����(i) –  ���(j)�  ≤ 1,  for all �, � ∈ {0, 1, 2, … . . , � 1},  where  ���(�) denotes 

the total number of vertices and edges labelled with �, � ∈ {0, 1, 2, … . , � 1}.  A 
graph with admit a �–total mean cordial labeling is called �–total mean cordial 
graph.  
 
3. PRELIMINARIES   
 

Definition 3.1 [3]: The union of two graphs �� and  �� is the graph �� ∪ �� 
with �(�� ∪ ��) = �(��) ∪ �(��) and  E(�� ∪ ��) = �(��) ∪ �(��). 
 
 Definition 3.2 [3]: The complete bipartite graph ��,� is called the Star. 
 
 Definition 3.3 [4]: The graph��(��, ��, … ��) denote the disjoint union of the 
� stars  ��,��

,  ��,��
,……..,��,��

. 

 
4. Main Results 
 
 Theorem 4.1: The graph ��(�, �) is a 4-total mean cordial for all values 
of �. 
 

Proof: Let �(��(�, �)) = {�, �, ��, �� ∶ 1 ≤ � ≤ �} and �(��(�, �)) =
{���, ��� ∶ 1 ≤ � ≤ �}.  Obviously  |�(��(�, �))| + |�(��(�, �))| = 4� + 2. 

 
       Assign the labels 1,3 to the vertices �, � respectively.  
 
        Now we assign the label 0 to the � vertices ��, ��, … , ��. Next we assign the 
label 2 to the � vertices ��, ��, … , ��. 

 Clearly  ���(0) =  ���(2) = �; ���(1) = ���(3) = � + 1. 

 
 Theorem 4.2: The graph ��(1,1, �) is 4-total mean cordial for all values  
of �. 
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 Proof: Let �(��(1,1, �)) = {�, �, �, ��, ��, �� ∶ 1 ≤ � ≤ �} and 
�(��(1,1, �)) = {���, ���, ��� ∶ 1 ≤ � ≤ �}.   
 
 Note that |�(��(1,1, �))| + |�(��(1,1, �))| = 2� + 7. 
 
       Assign the labels 0,0,1,2,3 to the vertices �, �, �, ��, �� respectively.  
 
 Case 1: � ≡ 0 (��� 2). 
 

Let  � = 2� , � ∈  .   Assign the label 0 to the � vertices ��, ��, … , ��. 
Now we assign the label 3 to the � vertices  ����, ����, … , ���. 

 
Case 2: � ≡ 1 (��� 2). 

Let  � = 2� + 1 , � ≥ 0. Label the vertices ��(1 ≤ � ≤ 2�) as in Case 1. 
Next we assign the label 3 to the vertex  �����. 

Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the 
Table 1. 

 

Order of � ���(0) ���(1) ���(2) ���(3) 

� = 2� � + 2 � + 2 � + 2 � + 1 

� = 2� + 1 � + 2 � + 2 � + 3 � + 2 

 
Table 1 

 
 Theorem 4.3: The graph ��(1,2, �) is 4-total mean cordial for all values  
of �. 

 Proof: Let �(��(1,2, �)) = {�, �, �, ��, ��, ��, �� ∶ 1 ≤ � ≤ �} and 
�(��(1,2, �)) = {���, ���, ���, ��� ∶ 1 ≤ � ≤ �}.   

 
Clearly  |�(��(1,2, �))| + |�(��(1,2, �))| = 2� + 9. 

 
       Assign the labels 0,0,1,1,3,3 to the vertices �, �, �, ��, ��, �� respectively.  

Case 1: � ≡ 0 (��� 2). 

Let � = 2� , � ∈  .  Now we assign the label 0 to the � vertices 
��, ��, … , ��. Next we assign the label 3 to the � vertices ����, ����, … , ���. 
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Case 2: � ≡ 1 (��� 2). 
 
Let � = 2� + 1 , � ≥ 0. As in Case 1 assign the label to the vertices 

��(1 ≤ � ≤ 2�).  Now we assign the label 3 to the vertex  �����. 
 
Note that this vertex labeling f is a 4-total mean cordial labeling follows from 

the Table 2. 
 

Nature of � ���(0) ���(1) ���(2) ���(3) 

� = 2� � + 2 � + 3 � + 2 � + 2 

� = 2� + 1 � + 2 � + 3 � + 3 � + 3 

 
Table 2 

 
Theorem 4.4: The graph ��(2,2, �) is 4-total mean cordial for all values  

of �. 
 

 Proof: Let �(��(2,2, �)) = {�, �, �, ��, ��, ��, ��, �� ∶ 1 ≤ � ≤ �} and 
�(��(2,2, �)) = {���, ���, ���, ���, ��� ∶ 1 ≤ � ≤ �}.  
 
 Note that |�(��(2,2, �))| + |�(��(2,2, �))| = 2� + 11. 
 
       Assign the labels 0, 1, 1, 0, 1, 3, 3 to the vertices �, �, �, ��, ��, ��, �� 
respectively.  
 

Case 1: � ≡ 0 (��� 2). 
 
Let  � = 2�, � ∈  . Assign the label 0 to the � 1 vertices 

��, ��, … , ����.  
 
Now we assign the label 3 to the � + 1 vertices  ��, ����, … , ���. 
 
Case 2: � ≡ 1 (��� 2). 
 
Let � = 2� + 1 , � ≥ 0. In this case assign the label for the vertices 

��(1 ≤ � ≤ 2�) as in Case 1. Finally we assign the label 0 to the vertex  �����. 
 
Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the 

Table 3. 
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� ���(0) ���(1) ���(2) ���(3) 

� = 2� � + 2 � + 3 � + 3 � + 3 

� = 2� + 1 � + 3 � + 4 � + 3 � + 3 

 
Table 3 

 
 Theorem 4.5: The graph ��(2,3, �) is 4-total mean cordial for all values  
of �. 
 

Proof: Let �(��(2,3, �)) = {�, �, �, ��, ��, �� ∶ 1 ≤ � ≤ 2,1 ≤ � ≤ 3,1 ≤

� ≤ �} and �(��(2,3, �)) = ����, ���, ��� ∶ 1 ≤ � ≤ 2,1 ≤ � ≤ 3,1 ≤ � ≤ ��.  

 
 Obviously  |�(��(2,3, �))| + |�(��(2,3, �))| = 2� + 13. 
 
       Assign the labels 0, 1, 1, 0, 3, 1, 3, 3 to the vertices �, �, �, ��, ��, ��, ��, �� 
respectively.  
 

Case 1: � ≡ 0 (��� 2). 
 

Let � = 2� , � ∈  .  Assign the label 0 to the � vertices ��, ��, … , ��. Next 
we assign the label 3 to the � vertices ����, ����, … , ���. 
 

Case 2: � ≡ 1 (��� 2). 
 

Let � = 2� + 1 , � ≥ 0. Label the vertices ��(1 ≤ � ≤ 2�)as in Case 1. 
Now we assign the label 3 to the vertex  �����. 

 
Note that this vertex labeling f is a 4-total mean cordial labeling follows from 

the Table 4. 

Order of � ���(0) ���(1) ���(2) ���(3) 

� = 2� � + 3 � + 4 � + 3 � + 3 

� = 2� + 1 � + 3 � + 4 � + 4 � + 4 

 
Table 4 
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Theorem 4.6: The graph ��(�, �, �) is 4-total mean cordial for all values  
of �. 
 

 Proof: Let �(��(�, �, �)) = {�, �, �, ��, ��, �� ∶ 1 ≤ � ≤ �} and 
�(��(�, �, �)) = {���, ���, ��� ∶ 1 ≤ � ≤ �}.  
 
 Clearly  |�(��(�, �, �))| + |�(��(�, �, �))| = 6� + 3. 
 
       Assign the labels 2,0,1 to the vertices �, �, � respectively. 
  

Case 1: � ≡ 0 (��� 2). 
 
Let  � = 2� , � ∈  . Assign the label 0 to the 2� vertices ��, ��, … , ���. 

Now we assign the label 3 to the 2� vertices ��, ��, … , ���.  Next we assign the label 
0 to the � vertices ��, ��, … , ��. Finally we assign the label 3 to the � vertices 
����, ����, … , ���. 

 
Case 2: � ≡ 1 (��� 2). 
 
Let  � = 2� + 1 , � ≥ 0. As in case 1 assign the label to the vertices 

��, ��, ��(1 ≤ � ≤ 2�).  Next we assign the labels 0, 3, 3 to the vertices 
�����, �����, �����. 

 
Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the 

Table 5. 
 

Nature of � ���(0) ���(1) ���(2) ���(3) 

� = 2� 3� + 1 3� + 1 3� + 1 3� 

� = 2� + 1 3� + 2 3� + 2 3� + 3 3� + 2 

 
Table 5 

 

 Theorem 4.7: The graph ��(�, �, �, �) is a 4-total mean cordial for all values 
of �. 
 

Proof: Let �(��(�, �, �, �)) = {�, �, �, �, ��, ��, ��, �� ∶ 1 ≤ � ≤ �} and 
�(��(�, �. �, �)) = {���, ���, ���, ��� ∶ 1 ≤ � ≤ �}.   

Note that |�(��(�, �, �, �))| + |�(��(�, �, �, �))| = 8� + 4. 

       Assign the labels 0, 1, 2, 3 to the vertices �, �, �, � respectively.  
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        Now we assign the label 0 to the � vertices ��, ��, … , ��. Next we assign the 
label 1 to the �vertices ��, ��, … , ��. We now assign the label 2 to the � vertices 
��, ��, … , ��. Finally we assign the label 3 to the � vertices ��, ��, … , ��. 
 
    Clearly  ���(0) =  ���(1) =  ���(2) = ���(3) = 2� + 1. 

 
 Theorem 4.8: The graph ��(�, �, �, �, �) is a 4-total mean cordial for all 
values of �. 
 

Proof: Let �(��(�, �, �, �, �)) = {�, �, �, �, �, ��, ��, ��, ��, �� ∶ 1 ≤ � ≤ �} 
and �(��(�, �, �. �, �)) = {���, ���, ���, ���, ��� ∶ 1 ≤ � ≤ �}.  

 
Clearly  |�(��(�, �, �, �, �))| + |�(��(�, �, �, �, �))| = 10� + 5. 
 

       Assign the labels 0, 1, 2, 3, 1 to the vertices �, �, �, �, � respectively.  
 
        Next we assign the label 0 to the � vertices ��, ��, … , ��. We now assign the 
label 1 to the �  vertices ��, ��, … , ��. Next we assign the label 2 to the � vertices 
��, ��, … , ��.   Now we assign the label 3 to the � vertices ��, ��, … , ��. 
 

Case 1: � ≡ 0 (��� 2). 
 
Let  � = 2� , � ∈  .   Assign the label 0 to the � vertices ��, ��, … , ��. Next 

we assign the label 3 to the � vertices ����, ����, … , ���. 
 
Case 2: � ≡ 1 (��� 2). 
 
Let  � = 2� + 1 , � ≥ 0. In this case assign the label for the vertices 

��(1 ≤ � ≤ 2�).  Now we assign the labels 3 to the vertex �����. 
 
Thus, this vertex labeling f is a 4-total mean cordial labeling follows from the 

Table 6. 
 

� ���(0) ���(1) ���(2) ���(3) 

� = 2� 5� + 1 5� + 2 5� + 1 5� + 1 

� = 2� + 1 5� + 3 5� + 4 5� + 4 5� + 4 

 
Table 6 
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TWO PEBBLING PROPERTY OF  
THORN GRAPHS OF EVEN CYCLE 
 

 
 
 
 
 

Abstract: Chung defined a pebbling move on a graph G, to be the removal 
of two pebbles from one vertex and the addition of one pebble to an 
adjacent vertex.  The pebbling number of a connected graph is the smallest 
numberf(G) such that any distribution of f(G) pebbles on G allows one 
pebble to be moved to any specified, but arbitrary vertex by a sequence of 
pebbling moves.  Let ��,��,… ,�� be positive integers and G be a graph 
such that |V(G)|  =  n.  The thorn graph of the graph G with parameters 
��,��,… ,�� is obtained by attaching pi new vertices of degree 1 to the 
vertex �� of the graph G, i = 1,2,… ,n.  In this paper, we discuss about the 
pebbling number of the thorn graph of cycle with n vertices also called as 
thorn cycle and we show that it satisfies the two-pebbling property. 
 
Keywords: Graphs, Pebbling Number, Thorn Cycle, Two-pebbling 

Property. 
 
Mathematical Subject Classification (2010) No.: 05C12, 05C25, 05C38, 
                  05C76. 

1. Introduction 
 
      Pebbling in graphs was first studied by Chung [1].  A pebbling move consists 
of taking two pebbles off one vertex and placing one pebble on an adjacent vertex.  
The pebbling number of a vertex v in G is the smallest number f(G,v) such that from 
every placement of  f(G,v)  pebbles, it is possible to move a pebble to v by a 
sequence of pebbling moves.  Then the pebbling number of a graph G, denoted by 
f(G) is the maximum f(G,v) over all the vertices v in G.  Given a configuration of 
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pebbles placed on G, let p(G) be the number of pebbles placed on the graph G, q be 
the number of vertices with at least one pebble and let r be the number of vertices 
with odd number of pebbles. We say that G satisfies the two-pebbling property 
(respectively, weak or odd two-pebbling property), if it is possible to move two 
pebbles to any specified target vertex, when the total starting number of pebbles is 
2f(G)-q+1 (respectively, 2f(G)-r+1).  Note that any graph which satisfies the two-
pebbling property also satisfies the weak or odd two-pebbling property. 
 
 Theorem 1.1 [5]: The pebbling number of a path graph �� of length n is 2�. 
 
 Theorem 1.2 [5]: The pebbling number of star graph ��,� is 
 �(��,�) =  n +  2  ifn >  1. 
 
 Definition 1.1 [3]: Let ��,��,… ,�� be positive integers and G be a graph 
with |V(G)| = n.  The thorn graph of the graph G with ��,��,… ,��is obtained by 
attaching �� new vertices of degree 1 to the vertex �� of the graph G, i =  1,2,… ,n. 
 
      The thorn graph of the graph G will be denoted by �  or by � (��,��,… ,��) 
if the respective parameters need to be specified.  In this paper, we will consider the 
thorn graph with every �� ≥ 2(� = 1,2,… ,�).  
 
 Definition 1.2 [2]:  Given a configuration of pebbles placed on G, a 
transmitting subgraph of G is a path ��,��,… ,�� such that there are atleast two 
pebbles on �� and atleast one pebble on each of the other vertices in the path, 
possibly except ��.  Thus, we can transmit a pebble from�� to ��. 
 
      Throughout this paper, G will denote a simple connected graph with vertex 
set �(�) and edge set �(�).  The graph �� denotes the cycle graph with n vertices. 
 
2. Pebbling number of thorn cycle �� 
 
 Definition 2.1: Let �� be a cycle with n vertices where 
�(��) = {��,��,… ,��} and �(��) = {��,��,… ,��}. Let �� = {���,���,… ,���} 
when �� ≥ 2 and � = 1,2,… ,�.  Consider the graph �� obtained from �� such that 
 �(��) = {�� ∪ ��/  � = 1,2,… ,�} and �(��) = �(��) ∪ {�����/  � =1,2,… ,� & 

 � = 1,2,… ,��}.  Then �� is called the thorn cycle with n vertices.   
 
      In this paper, we consider the cycle �� with even vertices. 
 
 Lemma 2.1: Let �� be the thorn graph of the cycle �� with n vertices 
{��,��,… ,��}.  Let �� = {���/  � = 1,2,… ,��and each ��� is adjacent to ��} where 
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� = 1,2,… ,�.  Let � = ��
�
��� .  Let �� be the number of vertices with odd number 

of pebbles in � ��.  If we distribute � = 2
�

�
�� + ∑ ��

�
��� 2 pebbles are  

placed on the vertices of �� such that �(���) = 0,������ < 2∀� = 2,3,… ,��, 

1 ≤ � ≤ � and �(��) = 0 where p is the number of pebbles placed.  Then  
 

( i) �(� ��) = 2
�

�
�� + ∑ �� �� 1 and  

 
  (ii) �� < ∑ �� �� . 

 

 Proof: (i) Distributing � = 2
�

�
�� + ∑ ��

�
��� 2 pebbles on the vertices of �� 

such that �(���) = 0,�(��) = 0,������ < 2  ∀� = 2,3,… ,��,1 ≤ � ≤ �.  Then � �� 

receives �(� ��) = � (�� 1). Hence, �(� ��) = 2
�

�
�� + ∑ �� �� 1 . 

 
 (ii) Now, let us prove that �� < ∑ �� ��.  Clearly  �� cannot be greater than 
∑ �� ��.  It is enough to prove that  �� ≠ ∑ �� ��. 
 
 Suppose  �� = ∑ �� ��. 
 
 Case 1: If �� is even, then both ∑ �� and �� are even or both ∑ �� and �� are 
odd. 
 
 Subcase 1.1: Let us assume that both ∑ �� and �� are even.  Hence,  �� 1 
is odd.  So � (�� 1) is odd.  Distributing � (�� 1) pebbles on �� vertices, 
there exists odd vertices with even number of pebbles.  Hence, �� 1 vertices have 
odd number of pebbles. 
 
 That is, number of vertices with odd number of pebbles is odd which is a 
contradiction to the number of vertices with odd number of pebbles, �� is even. 
 
 Subcase 1.2: Now, let us assume that both ∑ �� and �� are odd.  If �� is odd, 
then �� 1 is even and � (�� 1) is odd.  Discussing as in the subcase 1.1, we 
get a contradiction to �� is even.  Therefore, we get  �� < ∑ �� ��. 
 
 Case 2: If  �� is odd then either ∑ �� is even and �� is odd or ∑ �� is odd and 
�� is even. 
 
 Subcase 2.1: Let us assume that ∑ �� is even and �� is odd. Then,  �� 1 is 
even and � (�� 1) is even.  Now distributing these even pebbles on �� vertices, 
there exists even vertices with odd number of pebbles.  That is, number of vertices 
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with odd number of pebbles is even which is a contradiction to number of vertices 
with odd number of pebbles, �� is odd. 
 
 Subcase 2.2: Now, let us assume that ∑ �� is odd and �� is even.  If �� is 
even, then �� 1 is odd and � (�� 1) is even.  Discussing as in the subcase 2.1, 
we get a contradiction to �� is odd.  Therefore,  �� < ∑ �� ��. 
 
 Theorem 2.1: Let �� be the thorn graph of cycle with n vertices where n is 

even.  Then the pebbling number of the thorn cycle is �(��) = 2
�

�
�� + ∑ �� 2 

where �� ≥ 2 ,� = 1,2,… ,� ,� ≥ 4. 
 
 Proof: Let �(��) = {��,��,… ,��}.  Let � = ��

�
���  where Let 

 �� = {���/  � = 1,2,… ,�� and each ��� is adjacent to ��}.   

 

 Assume that 2
�

�
�� + ∑ �� 3 pebbles are placed on the vertices of �� as 

follows. 
 

(i) �(��) = 0 ��� �(���) = 0. 
 

(ii)        ������ = 1,� = 2,3,… ,
�

�
1,

�

�
,

�

�
+ 2,… ,� and � = 1,2,… ,��. 

 

(iii) ������ = 1,� = 2,3,… ,��. 

 

(iv) � ���

�
��,�� = 1,� = 2,3,… ,��

�
��.  

 

(v) � ���

�
��,1� = 2

�

�
�� 1. 

 
      If ��� be our target vertex, then by the above distribution a pebble cannot be 

moved to ��� as the length of the path (��

�
��,���) is 

�

�
 .  

 

 Therefore,  �(��) ≥ 2
�

�
�� + ∑ �� 2. 

 

 Now let us show that  �(��) ≤ 2
�

�
�� + ∑ �� 2. 

 
 Case 1: Suppose that the target vertex is �� where 1 ≤ � ≤ � ��� 
 �(��) = 0. 
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 If ������ ≥ 2 for some � = 1,2,… ,�� then we can move one pebble from 

��� �� ��.  If ������ < 2  for all � = 1,2,… ,�� and let �(��) = � for some � ≥ 0.  

Then the number of pebbles on � �� is at least 2
�

�
�� + ∑ �� 2 �� �.  Then 

the number of pebbles that can be brought to �� is at least 
�

�
�

��
�∑ ������������

�
.  

Since, �� < ∑ �� ��,  �� will get at least 
�

�
�

��
����

�
 pebbles.  Then the total number 

of pebbles on �� will be at least 
�

�
�

��
����

�
+ � = 2

�

�
�� +

���

�
> 2

�

� �� � ≥ 0  and  

 � ≥ 4.  Hence, one pebble can be moved to ��.  
 
 Case 2: Suppose that the target vertex is ��� where � = 1,2,… ,�  and 

� = 1,2,… ,��.  Without loss of generality, let us assume that ��� be our target vertex 
and �(���) = 0.  If �(��) ≥ 2 then one pebble can be moved to ���.  If �(��) = 1, 

then if there exists atleast one vertex ���(� ≠ 1) such that ������ ≥ 2 then 

{���,��,���} forms a transmitting subgraph.  Hence, one pebble can be moved to ���.  

If ������ < 2 for all � = 1,2,… ,��, then the number of pebbles on �� �� is at 

least 2
�

�
�� + ∑ �� 2 (�� 1) = 2

�

�
�� + ∑ �� �� 1, then proceeding as in 

case 1, one pebble can be moved to �� and from �� one pebble can be moved to ���. 
If �(��) = 0, then the following cases arise. 
 

 Subcase 2.1: If ������
� ≥ 4 for only one �� ≠ 1 and �(���) < 2 for all 

� ≠ 1,��, then two pebbles can be moved from ����
to �� and hence one pebble can 

be moved to ���. 
 

 Subcase 2.2: If there exists at least two vertices ����
,����

 with ������
� ≥ 2 

and ������
� ≥ 2 where ��,�� ≠ 1 among the vertices ���,���,… ,����

 then we can 

move one pebble from ����
 to ��.  So {����

,��,���} forms a transmitting subgraph.  

Hence, one pebble can be moved to ���. 
 

 Subcase 2.3: If 2 ≤ ������
� < 4 for only one �� ≠ 1 and �(���) < 2  for all 

� ≠ 1,�� then we can move one pebble from ����
to ��.  Then the number of pebbles 

on �� �� is at least  
 

2
�

�
�� + ∑ �� 2 (3 + �� 2) = 2

�

�
�� + ∑ �� �� 3. 

 

      Now proceeding as in Case 1, �� will get atleast 2
�

�
�� +

���

�
≥ 2

�

� as 

� ≥ 0 ��� � ≥ 4.  Hence, another pebble can be moved to ��.   
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 Thus, �� gets two pebbles and one pebble can be moved to ���. 
 
 Subcase 2.4:  If �(���) < 2 for all � ≠ 1, then the number of pebbles on 

�� �� is at least 2
�

�
�� + ∑ �� 2 (�� 1).  Let �(��) = �,� ≥ 0.  Then the 

number of pebbles on � �� is at least 2
�

�
�� + ∑ �� �� 1 �.  Let �� be the 

number of vertices with odd pebbles on � ��. Then the number of pebbles that can 

be brought to �� is atleast  
�

�
�

��
�∑ ������������

�
≥

�
�
�

��
�∑ ����������∑ �������

�
    as 

�� < ∑ �� ��.  Then the total number of pebbles �� have will be at least 

 
�

�
�

��
��

�
+ � ≥ 2

�

�
�� +

�

�
≥ 2

�

�
��.  Thus, two pebbles can be moved to �� and hence 

one pebble can be moved to ���.  Hence, the result. 
 
3. Two Pebbling Property 
 
 Definition 3.1 [4]: We say a graph G satisfies the 2-pebbling properly if two 
pebbles can be moved to any specified vertex, when the total starting number of 
pebbles is 2f(G) q + 1, where q is the number of vertices with at least one pebble. 
 
 Theorem 3.1: Let �� be the thorn graph of the cycle ��with n vertices. Then 
�� satisfies the two pebbling properly when n is even. 
 
 Proof: Let P be the number of pebbles on the thorn cycle Cn* and q be the 

number of vertices with attest one pebble and � + � = 2 �2
�

�
�� + ∑ �� 2� + 1. We 

consider the following two types of possible target vertices. 
 
 Case 1:  Suppose that the target vertex is �� where 1 ≤ k ≤ n,  
if �(��) = 1, then the number of pebbles on all the vertices except �� is 

 2 �2
�

�
�� + ∑ �� 2� + 1 � 1 > 2

�

�
�� + ∑ �� 2. Since,  � ≤ � + ∑ ��.  Since, 

�(��) = 2
�

�
�� + ∑ �� 2, we can put one more pebble on �� using the 

 2 �2
�

�
�� + ∑ �� 2� + 1 � 1 pebbles. 

 
 If  �(��) = 0,  then we consider the following cases. 
 

 Subcase 1.1: Suppose that ������ ≥ 2 for some ��� (� = 1,2,… ,��). Then 

we can move one pebble to ��. Using the remaining 2 �2
�

�
�� + ∑ �� 2� + 1 � 2 

pebbles, we can move another pebble to ��. 
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 Subcase 1.2: Suppose that ������ < 2 for some ��� (� = 1,2,… ,��). 

Since, � < � 1 + ∑ �� as �(��) = 0 we have 
 

� ≥ 2 �2
�

�
�� + ∑ �� 2� + 1 (� 1 + ∑ ��) = 2

�

�
�� + ∑ �� (� + 2). 

 

 Now �(�� ��) ≥ 2
�

�
�� + ∑ �� (� + 2) ��. Let  �(��) = �,� ≥ 0. 

Then the number of pebbles on � ��is atleast 2
�

�
�� + ∑ �� (� + 2) �� �. Let 

�� be the number of vertices with odd number of pebbles in � ��. The number of 

pebbles that can be brought to ��is atleast    
�

�
�

��
�∑ ���(���)������ ��

�
, where  

�� < ∑ �� ��.  Therefore, �� will get at least 2
�

�
�� ��(���)

�
 pebbles.  Now �� has 

atleast 2
�

�
�� + �

��(���)

�
> 2

�

�
�� pebbles.  Hence, two pebbles can be moved to ��. 

 
 Case 2: Suppose that the target vertex is ���  where � = 1,2,… ,��. Without 

loss of generality, let us assume that the target vertex is ���.  If �(���) = 1, then the 
number of pebbles on all the vertices except ��� is 
 

2 �2
�

�
�� + ∑ �� 2� + 1 � 1 > 2

�

�
�� + ∑ �� 2 as � ≤ � + ∑ ��. 

 

 Since, �(��) = 2
�

�
�� + ∑ �� 2 , we can put one more pebble on ���.  If 

�(���) = 0, then we consider the following cases. 
 
 Subcase 2.1:  If �(��) ≥ 2, then we can move one pebble from �� to ���.  

Using the remaining 2 �2
�

�
�� + ∑ �� 2� + 1 � 2 pebbles, we can move another 

pebble to ���. 
 
 Subcase 2.2: Consider �(��) = 1.  If there is atleast one vertex ����

(�� ≠ 1) 

with ������
� ≥ 2 then {����

,��,���} forms a transmitting subgraph.  Using the 

remaining 2 �2
�

�
�� + ∑ �� 2� + 1 � 3 pebbles, we can move another pebble to 

���.  If  �(���) < 2 for all � ≠ 1, and if �(��) = �,� ≥ 0 then the number of 

pebbles placed on � �� is at least 2 �2
�

�
�� + ∑ �� 2� + 1 � (�� 1) �.  

Let �� be the number of vertices with odd pebbles in � ��, then the number of 

pebbles that can be brought to �� is atleast 
���

�
�

��
�∑ ����������(����)��� ��

�
.  Now as 

� is the number of vertices with atleast one pebble, we have � ≤ � + ∑ ��.  Hence, 
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�� gets at least 
�

�
�

��
�∑ ������������ ��

�
.  We have �� ≤ ∑ �� �� 1, then the 

number of pebbles that can be brought to �� is atleast 
�

�
�

��
�����

�
. 

 

 Now, �� has atleast 2
�

�
�� 2

�

�

�

�
+ � pebbles.  That is 

 

�(��) ≥ 2
�

�
�� �

�
= 2

�

�
�� + 2

�

� + 2
�

�
�

�
> 2

�

�
�� + 2

�

�. 

 
Hence three pebbles can be moved to �� and thus two pebbles can be moved to ���. 
 
 Subcase 2.3:  If �(��) = 0 and if there exists atleast two vertices 

����
,����

(��,�� ≠ 1) with ������
� ≥ 2,������

� ≥ 2 then we can move two pebble 

each from ����
and ����

 to ��.  Thus, �� get two pebbles and one pebble can be 

moved to ���.  Using the remaining 2 �2
�

�
�� + ∑ �� 2� + 1 � 4 pebbles we 

can move another pebble to ��� as � ≤ � 2 + ∑ �� 1.  If there is only one vertex 

����
(�� ≠ 1) with ������

� ≥ 4  and  �(���) < 2 for all � ≠ 1,�� then we can move 

two pebbles from ����
 to ��.  So {��,���} forms a transmitting subgraph.  Now we 

have atleast 2 �2
�

�
�� + ∑ �� 2� + 1 � 4 (�� 2) remaining pebbles.   

 
 Let �(��) = � ,� ≥ 0, then we have � ≤ � + ∑ ��.  Then by proceeding as in 

Subcase 2.2, �� will get at least 2
�

�
�� 2 > 2

�

�
��.  Hence, two pebbles can be moved 

to �� and one pebble can be placed on ���.  If there is only one vertex ����
(�� ≠ 1) 

with 2 ≤ ������
� ≤ 3 and �(���) < 2 for all � ≠ 1,�� we can move one pebble from 

����
 to ��.  Then we have atleast 2 �2

�

�
�� + ∑ �� 2� + 1 � 3 (�� 2) 

remaining pebbles.  Again, by proceeding as in subcase 2.2, �� will at least get 

2
�

�
�� �

�
> 2

�

�
�� + 2

�

� .  Hence, we can move three pebbles to ��, and two pebbles 

can be moved to ���.   
 
 If �(���) < 2 for all �(� ≠ 1) and if �(��) = �,� ≥ 0, then the number of 

pebbles placed on � �� is atleast 2 �2
�

�
�� + ∑ �� 2� + 1 � (�� 1) �.  

Now, proceeding as in Subcase 2.2, �� will get at least 2
�

�
�� � + �.  Hence,  

�(��) ≥ 2
�

�
��.  Hence, four pebbles can be moved to ��.  Thus, two pebbles can be 

moved to ���. 
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4. Conclusion and open problem 
 
      In this paper, we determined the pebbling number of the thorn even cycle and 
also we have proved that the thorn path satisfies the 2-pebbling property. The 
pebbling number of the thorn odd cycle is an open problem. 
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Abstract: In this paper we introduce a subclass of analytic univalent 
functions defined with a differential operator asoociated to Mittag-Leffler 
function. Also we have studied the coefficient estimate, growth and distortion 
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1. Introduction 
 

Let A be the class of analytic functions 

 

  





  
2

( ) n
n

n

f z z a z                   (1.1) 

  

in the unit disc   }: 1{U z z with normalization (0) 0f , (0) 1f' . The 

subclass S of class A, consisting of functions of type (1.1) that are univalent in U . 

 

 Also let T be the subclass of S consisting functions of the type  
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2

( ) ( 0  )  ,n
n n

n

f z a z a z Uz




                                   (1.2) 

 

which was introduced and studied by Silverman[8]. 

 

 Now if ( )g z A  has the form 

    




  
2

( )  n
n

n

g z z b z ,           (1.3) 

 

the convolution (i.e. Hadamard product) of f and g is denoted by f g  and is defined 

as 

  




       

2

 )(   ( ) ) ( ) (  ( ) n
n n

n

f g g f z a bz zz z U .          (1.4) 

 

 The Mittag-Leffler function  ( )E z  introduced by Mittag Leffler[4] and its 

generalization  ,E  studied by Wiman[10] given by 

 

    







 


0

( )
( 1)

n

n

z
E z

n
  

and 

     
 






 

,
0 ( )

n

n

z
E

n
 

 

where   , ,  ( ) 0Re     and     0( )Re . 

 

The function  ,Q  defined by Srinivasulu[9] 

 

        , ,( ) ( ) ( )  Q z z E z                (1.5) 

 

and further the differential operator    ( , :)m f A AD  studied by him is given by 

 

       0
,( ,     ( )) ( ) ( )D zf Qzf z   
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             1
, ,,   1 ( ) ( ))( ) ( ) ( ) ( ) ( ( )D f f Q Qz z z f zz z   

               

        1 1) ( ) ) ( ))( ,     ( ( ,m mzD f f zD D . 

 

 It is easy to see that if ( )f z  is given by equation (1.2) then the definition of 

the operator 
mD  takes the form 

 

         




  
2

)( ,     )( ,( ) ,m m n
n n

n

D f a zz z   

where  

   


    
 


  
  

( )
( , , ) 1 1 .    

1
[ ( ]

( ( ) )
)m m

n n
n

  

 

 In this paper, with the operator 
mD , we define the following new class. 

 

 Definition 1.1: The function ( )f z  of the form (1.1) is in the class 

( , , , , )mS      if it satisfies the inequality  

 

  

 

 


     




  

{ ( , ) ( )} 1

2 [{ ( , ) ( )} ] [{ ( , ) ( )} 1]

m

m m

D f z '

D f z ' D f z '
            (1.6) 

 

where   ,  with  ( ) 0Re and  ( ) 0Re , 0 ,  ,   1and  0 1 . 

 

Further we define ( ,  ,  ,  ,  ) ( ,  ,  ,  ,  )m mT S T           ∩ . 

 
  We note that, such classes were earlier studied extensively by Aouf and Cho[1], 
Aouf  et.al.[6]  and others {[3], [2], [5], [7]}. 
 
2. Main Results 
 

 Theorem 2.1: A function ( )f z  of the form (1.1) belongs to the class 

), ,( , ,mS       if 
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2

, ,( )[ (1 2 1 2)] ( )1)m
n

n
nn a      





      

 

where   ,  with  ( ) 0Re and  ( ) 0Re , 0 ,  ,   1and  0 1 . 

  
 Proof: Assume that the inequality holds true and let |z| = 1 from (1.6) we 
have 
 

{ ( , ) ( )} 1 [{ ( , ) ( )} ] [{ ( , ) ( )} 1]m m mD f z ' D f z ' D f z '                     

1

2

( , , )m n
n n

n

na z   






    

 

  1 1

2 2

2 (1 ) 2 ( , , ) ( , , )m n m n
n n n n

n n

na z na z           
 

 

 

    
 

 

2 2

( , , ) 2 (1 ) (2 1) ( , , )m m
n n n n

n n

n a n a           
 

 

            

 

2

[1 ](2 1)] ( , , ) 2 (1 ) 0.m
n n

n

n a       




          

          □   

 Theorem 2: A function ( )f z  of the form (1.2) belongs to the 

), ,( , ,mT       if and only if 

 

  
2

, , 1 2( )[ ( )] )( )1 2 1m
nn

n

n a       




               (2.1) 

 

where   ,  with  ( ) 0Re and  ( ) 0Re , 0 ,  ,   1and  0 1 . 

  
 Proof: In the view of Theorem 2.1, we need only to prove the necessity. 

Assume that, ( )f z  belongs to the class ), ,( , ,mT     
 
then we have 
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1

2

{ ( , ) ( )} 1

2 (1 ) (2 1) ( , , )

m

m n
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D f z '

na z

  

      
 




   
  

 

   

1
2

1
2

( , , )

2 (1 ) (2 1) ( , , )

m n
n nn

m n
n nn

na z

na z

   


      

 


 



 

  




. 

 
 Since ( )Re z z     

 

  

1
2

1
2

( , , )
Re .

2 (1 ) (2 1) ( , , )

m n
n nn

m n
n nn

na z

na z

   


      

 


 


  
 

     




           (2.2) 

 

 Now, choosing the values of z on the real axis so that { ( , )}mD '    is real.  

Upon clearing the denominator in (2.2) and letting 1z   through real axis we get 
 

2 2

( , , ) 2 (1 ) (2 1) ( , , )m m
n n n n

n n

na na           
 

 

      

 
which implies the inequality (2.1).                      □   
 

 Corollary 2.2.1: If  ),( , , , ) (mf z T       if and only if 

 

   
2 (1 )

[1 (2 1)] ( , , )
n m

n

a
n

 

     




 
              (2.3) 

where equality holds for the function 

 

  
2 (1 )

( ) .
[1 (2 1)] ( , , )

n

m
n

f z z z
n

 

     


 

 
           (2.4) 

 

Theorem 2.3: Let 1( )f z z  and 
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2 (1 )

( )
[1 (2 1)] ( , , )

n

m
n

f z z z
n

 

     


 

 
            (2.5) 

 

then ( , , ,) ,( )mf Tz        if and only if it can be expressed as 

 

1 1

( ) ( ), 0, 1.n n n n
n n

f z w f z w w
 

 

     

 

Proof: Suppose ( )f z  can be written as in (2.5) then 

 

2

2 (1 )
( ) .

[1 (2 1)] ( , , )

n
n m

n n

f z z w z
n

 

     






 

 
  

 Now, 
 

1
2 2

2 (1 ) [1 (2 1)] ( , , )
1 1.

2 (1 ) [1 (2 1)] ( , , )

n m
n

n nn m
n nn

w w w
       

       

 

 

  
   

  
   

 

 Thus, ( , , ,) ,( )mf Tz       . 

 

 Conversely, let us assume that ( , , ,) ,( )mf Tz       then by using (2.3) 

we get 

[1 (2 1)] ( , , )
, 2

2 (1 )

m
n

n n
n

w a n
     

 

 
 


 

and 

1
2

1 n
n

w w




    

Then we get 

    
1

( ) ( ).n n
n

f z w f z




                    

          □  
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 Theorem 2.4: The class ), ,( , ,mT       is a convex set. 

 
 Proof: Consider, 
 

, ,
2

( ) , 0, 1,2n
j n j n j

n

f z z a z a j




     

belongs to the class ), ,( , ,mT      . It is sufficient to show that the function ( )h z

given by 
 

1 2( ) ( ) (1 ) ( ), 0 1h z f z f z        

 

is in the class ), ,( , ,mT      . We get, 

,1 ,2
2

 1 .( ) [ ( ) ] n
n n

n

h z z a a z 




     

 
Now, from Theorem (2.2) and with easy calculation we get, 

        ,1 ,2
2 2

( , , ) [1 (2 1)] ( , , ) [1 (2 1)](1 )m m
n n n n

n n

n a n a             
 

 

        

     2 (1 ) (1 )2 (1 )            

     2 (1 )     

which gives us ( , , ,) ,( )mh Tz       . Hence, ), ,( , ,mT      is convex  

set.          □   

 
 Now, we will obtain the radii of close to convexity and starlikeness for the 

class ), ,( , ,mT      . 

 

 Theorem 2.5:  Let the function ( )f z  be defined by (1.2) belongs to the 

class ), ,( , ,mT       then ( )f z  is close to convex of order (0 1)    in 

the disc 1z r   . Where, 
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1

1

1
2

(1 )[1 (2 1)] ( , , )
inf .

(1 )

m n
n

n
r

      

 





    
  

  
 

 

The result is sharp with extremal function ( )f z is given by (2.4). 

 Proof: Given ), , , ,(mf T       and f is close to convex of order δ. 

We have, 
 
    ( ) 1 1| |f' z    .                                   (2.6) 

Consider, the left hand side of (2.6) 

1

2

( ) 1  | | n
n

n

f' z na z






     . 

 
 The last equation is bounded above by 1 –    
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2

1
1

n
n

n

n
a z








  


  

 

but, (( ) , , , , )mf z T      if and only if 

 

2

[1 (2 1)] ( , , )
1.

2 (1 )

m
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n
n

n
a

     

 





 



  

 

 Thus, equation (2.6) is true if 
 

1 [1 (2 1)] ( , , )
.

1 2 (1 )

m
n nnn

z
     

  
  

  
 

 

 
Or equivalently 

1
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which completes the proof of Theorem (2.5).     □                   

 

 Theorem 2.6: Let the function ( )f z  be defined by (1.2) belongs to 

the class ), ,( , ,mT      then ( )f z is starlike of order ( )0 1    in the 

disc 2 z r   .  

 Where, 

1

1

2
2

(1 ) [1 (2 1)] ( , , )
inf .

( ) (1 )

m n
n

n

n
r

n

      

  





    
  

   
 

The result is sharp with the extremal function  ( )f z  given by (2.4).  

 

 Proof: Given ), , , ,(mf T      and f is starlike of order δ. We have, 

 

    
( )

1 1 .
( )

zf' z

f z
                (2.7) 

 

 Now, for the left hand side of equation (2.7) we have, 
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2

( 1)( )
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f z a z

 


 


  
 

  




 

 
 The last equation is less than 1   if 
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using the fact that ),( , , ,  ) (mf z T       if and only if 
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 Thus, equation (2.7) is true if 
 

1
[1 (2 1) ( , , )

.
1 2 (1 )

m
nn

nn
z

     

  


 
  

 
 

 

  

 Or equivalently 

1
(1 ) [1 (2 1)] ( , , )

( )2 (1 )

m
nn

n
z

n

      

  


  
  

 
 

 

which gives the condition for starlikeness.     □   
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  , 

( ) ( )n nz x f x , the  nth  Fibonacci polynomial ; and when 0( ) 2z x   and 1( )z x x , 

( ) ( )n nz lx x , the nth Lucas polynomial. They can also be defined by the Binet-

like formulas. Clearly, (1)n nf F , the  nth Fibonacci number; and (1)n nl L , the 

nth Lucas number [1, 5]. 
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 Pell polynomials

( ) (2 )n np fx x  and ( ) (2 )n nq lx x

 

 On the other hand, let 

1 1( )z x  , )( ) (n nz Jx x

1 1( )z x  , )( ) (n nz jx x

2( )n nJ J  and n nj j

respectively. Clearly, ( )n nJ F

 
 Gibonacci and Jacobsthal polynomials are linked by the relationships 

( 1)/2 1( ) /( )n
n nJ f xx x 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional when there is 

let n ng f  or , nl   n nb p

2 1E x  ,  x E  

 

 It follows by the Binet

1lim .m

m m

l

f



   

 
 1.1 Fundamental Gibonacci Identities
following properties: 

   

             

  2 1 1n n n nl f l f x    

  2 1 1 2 2n n n n nl f l f f x      

  2 1 1n n n nf l f l x    

  2 1 1 2 2n n n n nf l f l f x      

 THOMAS KOSHY 

Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

( ) (2 )n nq lx x , respectively [5]. 

On the other hand, let 1( )a x   and ( )b x x . When 0( )z x 

)(x , the nth Jacobsthal polynomial; and when 0( )z x

)(x , the nth Jacobsthal Lucas polynomial. Correspondingly, 

 2( )n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

1( )n nJ F ; and 1( )n nj L  [2,  5]. 

Gibonacci and Jacobsthal polynomials are linked by the relationships 

/( )J f x  and  
/2

( ) 1/( )
n

n nj x x l x  [3, 4, 5]. 

In the interest of brevity, clarity, and convenience, we omit the argument in 

when there is no ambiguity; so nz  will mean ( )nz x . In addition, we 

,   n nb p  or  ,nq    n nc J   or  ,nj  2  4x  , 2  ,

x E  , and 4 1D x  , where ( )n nc c x . 

It follows by the Binet-like formulas that 1lim m

m m

f

l





Fundamental Gibonacci Identities: Gibonacci polynomials satisfy the 

2
1 2 1 ( 1)nn n nf f l x     ;    

     1 2 1  ( 1)n
n n nl l l x     ;    

2 1 1  1( )n
n n n nl f l f x     ;     

2 1 1 2 2 2 1( )n
n n n n nl f l f f x       ;    

1
2 1 1  ( 1)n

n n n nf l f l x
     ;     

2 1 1 2 22 ( 1)n
n n n n nf l f l f x       .    

  

are defined by 

0( )z x   and 

2( )z x   and 

. Correspondingly, 

Lucas numbers, 

Gibonacci and Jacobsthal polynomials are linked by the relationships 

In the interest of brevity, clarity, and convenience, we omit the argument in 

In addition, we 

2  ,x     





 and 

Gibonacci polynomials satisfy the 

  (1) 

  (2) 

  (3) 

  (4) 

  (5) 

  (6) 
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 These properties can be confirmed using the Binet-like formulas. It follows 
by identities (3) – (6) that 
 

   2 2 2 2 2
2 1 1 2 22( 1)n

n n n n nl f l f xf x       ;   (7) 

 

   2 2 2 2 1 2
2 1 1 2 22( 1)n

n n n n nf l f l xf x
       .   (8) 

 
2. Telescoping Gibonacci Sums 
 
 We now establish two telescoping gibonacci sums, where k ≥ 0 and λ ≥ 1 are 
integers. 
 
 Lemma 1: 

   2 1 2

1 1 1

.n k n k k

n n k n k k

f f f

l l l

   

   




    

    

 
      

      (9) 

 

 Proof: Since 2 1

1 1

m
n k n k

n n k n k

f f

l l

 

 
   

   

 
  

 
  is a telescoping sum, we have 

 

2 1 2 2

1 1 1 1

.
m

n k n k m k k

n n k n k m k k

f f f f

l l l l

   

   
      

      

 
    

 
  

 
 This yields the desired result.                    □   

 
 Lemma 2: 

   2 1 2

1 1 1

.n k n k k

n n k n k k

l l l

f f f

  
 

  



    

    

 
     

 
                 (10) 

 

 Proof: Using the fact that 1lim m

m m

l

f



  , the  proof follows as above.  

So, in the interest of brevity, we omit the details.                              □  
  
 These two lemmas play a pivotal role in our discourse. 
 
 



160 THOMAS KOSHY  

3. Additional Gibonacci Polynomial Sums 
 
 With the above identities and lemmas at our disposal, we are now ready for 
further explorations. 
 
 The next two theorems invoke the lemmas with 1  . 
 

 Theorem 1: Let k be a nonnegative integer. Then 

 

   2

11 2 2 1

( 1)
.

( 1)

n k
k

n k
kn n k

x f

ll x


 




  


 
 

               (11) 

 
 Proof: It follows by identities (2) and (3) that 
 

   1 2 2 1  ( 1)n k
n k n k n kl l l x
       ;  

 

  2 1 1  ( 1)n k
n k n k n k n kl f l f x
         . 

 
 By Lemma 1, we then have 
 

  1

1

2

2

1

12

( 1)

( 1)

n k

n k
n k n k

n k n k n k n

n

k

k

l f l fx

l ll x

      



    





  

 

        
1

2 1

112 2 1

( 1)

( 1)

n k
n k

n k
n k n k

n

n n k

k

n

fx

l ll

f

x

 


    

     
  

  
    

 

           2

1

k

k

f

l

 



 


, 

 
as desired.                                              □  
 
 This implies, 
 

2

11 2 2 1

( 1) 5 5
.

10( 1)

n k
k

n k
kn n k

F

LL
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 It then follows that 
 

 
1 2 1

( 1) 5 5

10( 1)

n

n
n nL



 

  


 
 ;  

1 2 3

( 1) 5 3 5

30( 1)

n

n
n nL



 

 


 
 ; 

 

 
1 2 5

( 1) 5 2 5

20( 1)

n

n
n nL



 

  


 
 ;  

1 2 7

( 1) 15 7 5

70( 1)

n

n
n nL



 

 


 
 . 

 
 The next result invokes Lemma 2 with 1   . 

 

 Theorem 2: Let k be a nonnegative integer. Then 

 

   
1

2

2
11 2 2 1

( 1) 1
.

( 1)

n k
k

n k
kn n k

x f

ll x


  




  

  
     

              (12) 

 
 Proof: Using identities (1) and (4), we get 
 

   2
1 2 2 1   ( 1)n k

n k n k n kf f l x
        ; 

        1
2 1 1     ( 1)n k

n k n k n k n kf l f l x 
         . 

 
 By Lemma 2, we then have 
 

  
1

2 1

2
2 2 1 1

1( 1)

( 1)

n k

n k
n k n k n k

n k n k n k n kf l f lx

l x f f

 




  

   

   


  
  

 

        
1

2
11 12

2

1

1

2

( 1) 1

( 1)

n k n k
n k

n k
n k n kn nn k

x

f fl

l

x

l 
  


    

   
  

   
    

 

           2

2
1

1 k

k

l

f
 



 
   

 
, 

 
as desired.                      □
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 This yields 
 

1
2

11 2 2 1

( 1) 5 5
.

10 5( 1)

n k
k

n k
kn n k

L

FL

  



  

 
 

 
  

 
 Consequently, we have 

 

 1 2 1

( 1) 1 5

10( 1)

n

n
n nL



 

 


 
 ;  

1 2 3

( 1) 3 5

10( 1)

n

n
n nL



 

  


 
 ; 

 

 
1 2 5

( 1) 2 5

10( 1)

n

n
n nL



 

 


 
 ;  

1 2 7

( 1) 7 3 5

30( 1)

n

n
n nL



 

  


 
 . 

 

 Gibonacci Delights : By combining these two theorems, we can extract 

interesting dividends: Adding equations (11) and (12), we get 
 

2 2
2

2 2 2
11 2 2 1

2 1
.k

kn n k

x f

ll x






  

   
    


 

 
 This implies 
 

2

2
11 2 2 1

1 15 3 5 3

50 51

k

kn n k

F

LL




  


 




 
 
 In particular, this yields 
 

 
2

1 2 1

1 15 3 5

501n nL



 





 ;  

2
1 2 3

1 5 3 5

501n nL



 





 ; 

 

 
2

1 2 5

1 15 6 5

1001n nL



 





 ;  

2
1 2 7

1 45 21 5

3501n nL



 





 . 

 
 Likewise, subtraction of the two equations yields 
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2
2 2 1 2

2 2 2
11 2 2 1

2( 1) 1
.

n k
n k k

kn n k

xl f

ll x


 

  

  

    
    


 

 
 This implies, 

2 2 1 2

2
11 2 2 1

( 1) 10 2 5 2
.

25 51

n k
n k k

kn n k

L F

LL

 
  

  

 
 




 
 
 It then follows that 

 

 

2 1

2
1 2 1

( 1) 2 5

251

n
n

n n

L

L




 





 ;  2 3

2
1 2 3

( 1) 10 6 5

751

n
n

n n

L

L




 

 



 ; 

 

 2 5

2
1 2 5

( 1) 5 4 5

501

n
n

n n

L

L




 

 



 ; 2 7

2
1 2 7

( 1) 20 14 5

1751

n
n

n n

L

L




 

 



 . 

 
 The next two theorems employ the lemmas with 2  .  

 

 Theorem 3: Let k be a nonnegative integer. Then 

 

  
2 2 2

2 2 2 2

2 2 2
1 2 2 1 1

2( 1)
.

[ ( 1) ]

n k
n k k

n k
n n k k

xf x f

l x l


 

  


   

 
 

  
             (13) 

 
 Proof: Lemma 1, coupled with identities (2) and (7), yields 
 

              
2 2

2 2 2

2 2 2
1

2 2 2
2 1

2 1

1

2

2( 1)

[ ( 1) ]

n k n k

n

n k
n k

k
n

n

k n k

k n

n k

kxf x

l

l

x

f l

l l

f      


 


    

 

 


   

   

  

        
2 2

2 1

2

2
2 2 2

2
1

2
1 12 2 1

2( 1)

[ ( 1) ]

n k
n k

n k
n nn k n k

n k n k

n k

xf x

l x

f f

l l

 
 


   

   

 

  
      

    

 

                  
2 2

2

2 2
1

k

k

f

l

 



 


, 

as desired.                      □     
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 Consequently, we have 
 

2 2
2 2 2 2

2 2
1 2 2 1 1

2( 1) 1
.

5[ ( 1) ]

n k
n k k

n k
n n k k

F F

L L


 

  


   

 
 

 


 
 

 In particular, we then get 
 

     

2 2

2
1 2 1

2( 1) 1 7 5

10[ ( 1) ]

n
n

n
n n

F

L




 

   


 
 ; 

1
2 4

2
1 2 3

2( 1) 1 23 9 5

90[ ( 1) ]

n
n

n
n n

F

L

 


 

   


 
 ; 

 

     2 6

2
1 2 5

2( 1) 1 21 8 5

80[ ( 1) ]

n
n

n
n n

F

L




 

   


 
 ; 

1
2 8

2
1 2 7

2( 1) 1 103 49 5

490[ ( 1) ]

n
n

n
n n

F

L

 


 

   


 
 . 

 
 The next result invokes Lemma 2. 

 

 Theorem 4: Let k be a nonnegative integer. Then 

 

  
1 2 2

2 22 2 2 2

2 4 2
1 2 2 1 1

2( 1) 1
.

[ ( 1) ]

n k
n k k

n k
n n k k

xf x l

l x f


  
  


   

  
        

               (14) 

 
 Proof: With identities (1) and (8), Lemma 2 yields 
 

  

2 2 2 21 2
2 2 2

2 4 2 2
2

2 1

2

1

1 1

2( 1)

[ ( 1) ]

n k
n k

n k
n k n

n

k n k

k n k n k n kxf x

l x

f l f l

f f

 
 



    

  









 






 
  

 

        
1 2

2 2 1

2 4 2 2
1 12 2 1

2
2 1

1

22( 1) 1

[ ( 1) ]

n k
n k

n k
n nn k n k n

n k n k

k

xf x

l

l

x f

l

f


  

 



     

 
  

       
    

 

            
2

2 2 2

4 2
1

1 k

k

l

f
 



 
      

, 

 
confirming the given result.                    □   
 

This theorem implies, 
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1 2
22 2 2 2

2 2 2
1 2 2 1 1

2( 1) 1 1
5 .

25[ ( 1) ]

n k
n k k

n k
n n k k

F L

L F


  
  


   

  
      

  

 
 It then follows that 
 

     

1
2 2

2
1 2 1

2( 1) 1 3 5 5

50[ ( 1) ]

n
n

n
n n

F

L

 


 

   


 
 ;         2 4

2
1 2 3

2( 1) 1 17 5 5

50[ ( 1) ]

n
n

n
n n

F

L




 

   


 
 ; 

 

     
1

2 6

2
1 2 5

2( 1) 1 19 10 5

100[ ( 1) ]

n
n

n
n n

F

L

 


 

   


 
 ;      2 8

2
1 2 7

2( 1) 1 107 45 5

450[ ( 1) ]

n
n

n
n n

F

L




 

   


 
 . 

 
 Next we explore the Pell versions of the theorems. 
 
4. Pell Implications 
 

 Using the relationship ( ) (2 )n nb gx x , we can find the Pell versions of 

equations (11) – (14): 
 

       

2

11 2 2 1

( 1)

4 22( 1)

n k
k

n k
kn n k

x p

E qq x


 




  


 

 
 ; 

 

        
1

2

2
11 2 2 1

( 1) 1

22( 1) 8

n k
k

n k
kn n k

x p

E qq x E


  




  

  
  

  
 ; 

 

    
2 2 2

2 2 2 2

2 2 2
1 2 2 1 1

( 1) 1

4[ 2( 1) ] 4

n k
n k k

n k
n n k k

xp x p

q x E q


 

  


   

  
      

 ; 

 

  
1 2 2

2 22 2 2 2

2 4 2
1 2 2 1 1

( 1) 1
4

[ 2( 1) ] 64

n k
n k k

n k
n n k k

xp x q
E

q x E p


  
  


   

  
      

  

 
 They yield 
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      2

11 2 2 1

( 1) 2 2

4( 1)

n k
k

n k
kn n k

P

QQ

 



  

 
 

 
 ; 

 

      
1

2

11 2 2 1

( 1) 2 2

32 16( 1)

n k
k

n k
kn n k

P

QQ

  



  

 
 

 
 ; 

 

  
2

2 2 2 2

2 2
1 2 2 1 1

( 1) 1 3 2

8( 1) 4[ ]

n k
n k k

n k
n n k k

P P

Q Q

 
  


   

  
 

 
 ; 

 

  
1 2

2 2 2 2

2 2
1 2 2 1 1

( 1) 1 3 2 2

8( 1) 16[ ]

n k
n k k

n k
n n k k

P Q

Q P

  
  


   

  
 

 
 , 

 
respectively. 
 
 Next we explore the Jacobsthal versions of the theorems. 
 
 
5. Jacobsthal Consequences 
 
 Using the Jacobsthal-gibonacci relationships in Section 1, we will now find 
the Jacobsthal versions of equations (11) – (14). In the interest of brevity and clarity, 

we let A denote the fractional expression on left-hand side of the given equation and 

B its right-hand side, and LHS and RHS those of the desired Jacobsthal equation, 

respectively. 
 

  5.1 Jacobsthal Version of Equation (11): Proof:  Let 

2 1

( 1)
.

( 1)

n k

n k
n k

x
A

l x




 




 
 Replacing x with 1/ x , and multiplying the numerator 

and denominator of the resulting expression with n kx  , we get 
 

    
2 2 1

( 1)

( 1)

n k

n k
n k

A
xl




 




 
  



 SUMS INVOLVING EXTENDED GIBONACCI POLYNOMIALS

    

    

   

where (1 / )n ng g x  and

 

 Next we let B  

numerator and denominator of the resulting expression with 
 

   B

 

   RHS =

 

where (1 / )n ng g x  and

 
 This, combined with equation (15), yields the desired Jacobsthal version:
 

   

where ( )n nc c x .  

 
 It then follows that
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(2 2 1)/2

2 2 1

( )

( 1)

n k

n k n k
n k

x

x l



  
 




 
  

     
2 2 1

( )

( )

n k

n k
n k

x

j x




 




 
 ; 

       
1 2 2 1

( )
LHS

( )

n k

n k
n n k

x

j x

 


  




 
 ,             

(1 / ) and ( )n nc c x . 

2

1

k

k

f
B

l

 



 


. Replace x with 1/ x , and then multiply each 

numerator and denominator of the resulting expression with ( 1)/2kx  . This yields

( 1)/2
2

( 1)/2
1

1

2

k
k

k
k

D x f
B

D x l








  ; 

2

1

1
RHS =

2
k

k

D J

D j





 , 

(1 / ) and ( )n nc c x . 

This, combined with equation (15), yields the desired Jacobsthal version:

2

11 2 2 1

( ) 1

2( )

n k
k

n k
kn n k

x D J

D jj x

 



  

 
 

 
 ,             

                   

It then follows that 
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           (15)  

 

, and then multiply each 

. This yields 

This, combined with equation (15), yields the desired Jacobsthal version: 

            (16) 

             □   
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   2

11 2 2 1

( ) 5 5

10( 1)

n k
k

n k
kn n k

x F

LL

 



  

 
 

 
 ; 

   2

11 2 2 1

( 2) 2

3( 2)

n k
k

n k
kn n k

J

jj

 



  


 

 
 . 

 
 Next we find the Jacobsthal consequence of equation (12). 
 

  5.2 Jacobsthal Version of Equation (12): Proof: We have 
1

2 1

( 1)
.

( 1)

n k

n k
n k

x
A

l x

 


 




 
Replacing x with 1/ x , and then multiplying the 

numerator and denominator of the resulting expression with n kx  , we get 
 

    
1

2 2 1

( 1)

( 1)

n k

n k
n k

A
xl

 


 




 
  

        
(2 2 1)/2

2 2 1

( )

( 1)

n k

n k n k
n k

x

x l



  
 

 


 
  

        
2 2 1

( )

( )

n k

n k
n k

x

j x




 

 


 
 ; 

         
1 2 2 1

( )
LHS

( )

n k

n k
n n k

x

j x




  

 


 
 ,              (17) 

 
 

where (1 / )n ng g x and ( )n nc c x . 

 

 Next we let 2

1

k

k

l
B

f
 



   . Replacing x with 1/ x , and then multiplying 

the numerator and denominator of the resulting expression with ( )/2n kx 
 yields 
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   2

2
1

( 1)

2
k

k

D Dx l
B

x fD





 
  

 
  

 

      
( 2)/2

2

2 /2
1

( 1)1
;

2

k
k

k
k

D D x l

D x f






 
  

  
  

 

         2

2
1

( 1)1
RHS ,

2
k

k

D D j

JD





 
  

 
  

 

where (1 / )n ng g x and ( )n nc c x . 

 
 Combined with equation (17), this yields the desired Jacobsthal version: 
 

  2

2
11 2 2 1

( ) ( 1)1
,

2( )

n k
k

n k
kn n k

x D D j

Jj x D

 



  

   
  

  
               (18) 

 

where ( )n nc c x .         □   

 
 In particular, this yields 
 

   2

11 2 2 1

( ) 5 5

10 5( 1)

n k
k

n k
kn n k

x L

FL

 



  

  
 

 
 ; 

 

   2

11 2 2 1

( 2) 2

3 9( 2)

n k
k

n k
kn n k

j

Jj

 



  

 
 

 
 . 

 
 5.3 Jacobsthal Version of Equation (13): Proof: Let 

2
2 2

2
2 1

2( 1)

[ ( 1) ]

n k
n k

n k
n k

xf x
A

l x


 


 

 


 
. Replacing x with 1/ x , and multiplying the 

numerator and denominator of the resulting expression with 2 2 1n kx    , we get 
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2 2

2

2 2 1

1 1
2( 1)

1
( 1)

n k
n k

n k
n k

f
x xA

l
x


 


 

 

 

  
 

  

          
(2 2 1)/2 2 2

2 2 2

(2 2 1)/2 2
2 2 1

2( ) [ ]

[ ( 1) ]

n k n k n k
n k

n k n k
n k

x x f x

x l

   
 

  
 

 


 
  

       

2 2
2 2 2

2
2 2 1

2( )

[ ( ) ]

n k n k
n k

n k
n k

x J x

j x

 
 


 

 


 
 ; 

         

2 2
2 2 2

2
1 2 2 1

2( )
LHS

[ ( ) ]

n k n k
n k

n k
n n k

x J x

j x

 
 


  

 


 
 ,             (19) 

where (1 / )n ng g x and ( )n nc c x . 

 

 Now let 
2 2

2

2 2
1

k

k

f
B

l

 



 


. Replacing x with 1/ x , and then multiply each 

numerator and denominator of the resulting expression with 1kx 
. This yields 

 

   
2 ( 1)/2 2

2

2 ( 1)/2 2
2

( 1) [ ]

4 [ ]

k
k

k
k

D x f
B

D x l








  ; 

 

   
2 2

2

2 2
1

( 1)
RHS

4

k

k

D J

D j






  , 

 

where (1 / )n ng g x and ( )n nc c x . 

 
 This, coupled with equation (19), yields the desired Jacobsthal version: 
 

  

2 2 2 2
2 2 2 2

2 2 2
1 2 2 1 1

2( ) ( 1)

( ) 4[ ]

n k n k
n k k

n k
n n k k

x J x D J

j x D j

 
  


   

  
 

 
 ,             (20) 
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where ( )n nc c x .                     □  

 
 In particular, this yields 

   
2

2 2 2

2 2
1 2 2 1 1

2( 1) 1 3 5

10( )[ ]

n k
n k k

n k
n n k k

F F

L x L


  


   

  
 

 
 ; 

 

          
2

2 2 2

2 2
1 2 2 1 1

2( 2) 4 4

9( 2)[ ]

n k n k
n k k

n k
n n k k

J J

j j

 
  


   

 
 

 
 . 

 
 Next we find the Jacobsthal consequence of Theorem 4. 
 
 5.4 Jacobsthal Version of Equation (14): Proof: We have 

1 2
2( ) 2

2 2
2( ) 1

2( 1)

[ ( 1) ]

n k
n k

n k
n k

xf x
A

l x

 
 


 

 


 
. Replace x with and then multiply the numerator and 

denominator of the resulting expression with 2 2 1n kx    . We then get 
 

    

1
2 2

2

2 2 1

1 1
2( 1)

1
( 1)

n k
n k

n k
n k

f
x xA

l
x

 
 


 

 


 
  

 

  

          
(2 2 1)/2 2 2

2 2 2

(2 2 1)/2 2
2 2 1

2( ) [ ]

[ ( ) ]

n k n k n k
n k

n k n k
n k

x x f x

x l x

   
 

  
 

  


 
  

       

2 2
2 2

2
2 2 1

2( )

[ ( ) ]

n k n k
n k

n k
n k

x J x

j x

 
 


 

  


 
 ; 

         

2 2
2 2

2
1 2 2 1

2( )
LHS

[ ( ) ]

n k n k
n k

n k
n n k

x J x

j x

 
 


  

  


 
 ,             (21) 

where (1 / )n ng g x and ( )n nc c x . 
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 Now let
2

2 2 2

4 2
1

1 k

k

l
B

f
 



 
      

. Replacing x with 1/ x , and then 

multiply each numerator and denominator of the resulting expression with 1kx 

yields 
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where (1 / )n ng g x and ( )n nc c x . 

 
 Combining this with equation (21) yields the desired Jacobsthal version: 
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 ,             (22) 

 

where ( )n nc c x .                         □  

 
 It follows from this equation that 
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6. Chebyshev and Vieta Consequences 
 

 Chebyshev polynomials nT  and nU , Vieta polynomials nV  and nv , and 

gibonacci polynomials are linked  by  the  relationships  1 )( ()n
n

nV i f xx i  , 
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( ) ( )n
n nv x i l ix  , 1( ) ( /2)n nV x U x  and ( ) 2 ( /2)n nv x T x  [3, 4, 5] where 

1i   ; they can be employed to find the Chebyshev and Vieta versions of the 
theorems. In the interest of brevity, we omit them; but we encourage gi- bonacci 
enthusiasts to explore them. 
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