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Abstract: Inthis note we show that how to compute the dimension of holo-
morphic quadratic differentials on a compact Riemann surface of genus g > 2.

Keywords: Compact Riemann Surfaces, Holomorphic Quadratic
Differentials.

Mathematical Subject Classification No.: 30G10, 32G15.
1. Introduction

A Riemann surface is a complex manifold with complex dimension 1. For a
more detailed definition Refer [1]. In general on a given topological surface, there are
many inequivalent complex structures. The set of inequivalent complex structres on a
given topological surface is known as the moduli space. The moduli space is a
complicated one and is a topic for advanced research. The interplay between the
complex structure of a Riemann surface and the geometry induced by a quadratic
differential was given in the paper of Hubbard and Masur [3].

Let X be a compact Riemann surface of genus g. A holomorphic quadratic
differential ¢ is an assignment of a holomorphic function ¢;(z;) to each local
coordinate chart z; such that if there is another chart z;, then

(Pj(zj)d'z? = ¢;(z;)dz;
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2
or @i(z) = %‘(Zj){—]j
and Z; = h/(Zj) .

In 1857, Riemann published his work on the deformation of complex

structures. He called the number of independent parameters the deformation depends as
moduli. It is known that the moduli for compact Riemann surfaces of genus g > 2

is equal to 3g — 3 (complex parameters) which is also the same as the dimension of
holomorphic quadraticdifferentialsona compact Riemannsurface ofgenus g > 2.

In this note we show how to compute the dimension of holomorphic
quadratic differentials. The reader may refer to [1] for Cohomology groups,

Riemann-Roch and Serre Duality theorems. The role of quadratic differentials in the
moduli of Riemann surfaces may befound in [2], [4].

2. The Dimension of Holomorphic Quadratic Differentials

Theorem 1: Let X be a compact Riemann surface of genus g>2.

The dimension of holomorphic quadratic differentials on X is 3g—3.
Proof: Let X be a compact Riemann surface of genus g. Let K be the

canonical bundle (whose holomorphic cross sections are precisely the abelian
differentials of first kind) on X.

By the Riemann Roch theorem, for any holomorphic bundle & e Hl(X, 0",
we have,

dim H(X,0(§)) - dim H'(X,0(&)) = 1 - g + deg& ()
and from the Serre duality theorem
dim H'(X,0(8)) = dim H(X, O (K¢ ™) &)
Therefore, by writing

E=K’=K®K
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and using the Eq. 1 and Eq. 2 we can deduce that
dim H°(X,0(&)) - dim H*(X,0(K&EY)) =1-g+degé
which implies,
dim H*(X,0 (K ® K))—dim H*(X,0(K ™)) =1- g + deg K*

but,
deg K =2¢g -2

= degK_1 =2-2¢g<0
= dim H'(X,0 (K1) =0 .

Therefore we have,

dim H*(X,0(K?)) = dim H*(X,0 (K ® K)) (3)
=1-g+4g9—4 4
=39-3 ®)

where H’(X,0(K?)) denotes the holomorphic quadratic differentials on X. m

Note: The dimension of the space of holomorphic quadratic differentials is
independent of the complex structure of a Riemann surface of genus g¢.

Summary 2: According to Riemann well known formula the complex
structure of a compact Riemann surface X of genus ¢g>2 (with no

punctures) depends on 3g — 3 parameters.

= the number of linearly independent quadratic differentials on X

= the mazimal number of simple closed curves on X whose homotopy
classes represented by mnon-intersecting curves which are not homotopic to
each other. See [4].
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zno(x) = a(x) 241 () + b(2) 2, (x) , Where z is a positive integer variable; a(x),

b(z), zy(x), and z (z) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=x and b(z)=1. When zy(z)=0 and z(z)=1,
z,(z)=f,(x), the nth Fibonacci polynomial ; and when zy(z) =2 andz(z) = z,

z,(z) =1,(x), the nth Lucas polynomial. They can also be defined by Binet-like

formulas. Clearly, f,(1)=F,, the nth Fibonacci number; and [,(1) = L, , the nth
Lucas number [1, 5, 6].
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Pell polynomials p,(x) and Pell-Lucas polynomials ¢, (z) are defined by
pp(2) = f,(22) and ¢,(x)=1,(2z), respectively. In particular, the Pell numbers

P, and Pell-Lucas numbers @, are given by F, =p,(1)=f,(2) and

2Q, = 4,(1) = 1,(2), respectively [6].

Suppose a(z)=1 and b(z)=2z. When zy(z)=0 and z(z)=1,
z,(z) =J,(x), the nth Jacobsthal polynomial ; and when z,(z) =2 and z(z) =1,
z,(x) = j,(x), the nth Jacobsthal-Lucas polynomial [3, 6]. Correspondingly,
J,=J,2) and j,= j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J,,(1) = £, and j,(1) =L, .

Gibonacci and Jacobsthal polynomials are linked by the relationships

To(z) = 2" V2f (1/Vz) and j,(2) = 2?1, (1/ V) [6]

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will meanz,(z). In

addition, we let g,=f,or I,, b, = p, or q,, ¢, =J,(z) or j,(z),A=Vz*+4,

2a(z)=x+A,and 2f(x)=xz—A. It follows by the Binet-like formulas [6] that

lim Imtk - a”(z)
m—>o0 gm

1.1 Gibonacci Generating Functions: Fibonacci polynomials f, and Lucas

polynomials g, are generated by the generating functions f(¢) and [(¢) [6]:

1) = = Y " ()

0y =—2= e, @)

respectively, where z > 1.
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By the Ratio test [8], both series converge if [t|< lim I ; that is, if

=% Gptd
t < 1 = 2 .
alz) a+A

2. Gibonacci Polynomial Series

With the brief background above, we now explore the convergence of both

gibonacci polynomial series for a special family of values of ¢, beginning with the

Fibonacci series.

2.1 Fibonacci Polynomial Series: The following theorem identifies the value
of'the Fibonacci polynomial series (1) for a special family of .

Theorem 1: Let k and A be arbitrary positive integers, and u =1+ Az .
Then

0 k 1 k u”
5SSt >

r=1 p=1 % T IU 1

Proof: With z>1, we have \/:c2+4<a:+2; SO T+A<2+2z.

Consequently, 0 < 1 < 2 ;thatis, 0 < 1 < 2 .
l+z z+A 1+z  a(x)
: 1 1 1
With 4>2, we have 1+ Az >1+x. So, 0< <

< .
1+Az 14z «a(x)
Since (1+A4z)™ >(1+2)">1+x, it follows that

O<1<1<1<1

(1+Az)™  (1+z2)" l+z  a(2)

b

where r>1.
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. A 1 1
Consequently, the Fibonacci series Z t"f, converges when t=——=—
el (1+Az)" "
and r>1.
This implies
. 1/u"
fA/u") =
T 1
1—--2 _
’LLT u2r
u?"
W —pd -1

Consequently, we have

k

0 k
(b P
n=1 r=1u r=1
k o
:TZZ;UQT zu” =1

as desired.

With u =1+ Az, it follows by the theorem that

> Lp =t
—f = :
=" u? —au—1

ilJru"f 3 U N u?

2n JIn

o U u? —zu—-1 u' —zu? -1

1+u’+u2"f B U N u? N u?
3 n =
u”" w—zu—-1 ut—zut-1 u®—aud -1
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3n

1+u" +u Tyu U u? u? ut
Z == t t T3
] u—zu—1 u —zut-1 w -z -1 o —aut-1
In particular, we then get
- F, - 1+2" 26
>h- > - 2
P n
o2 9 11
§1+2"+2"2F 138 il+2"+2"2+23"F 33,862
=2 " 55 = in " 13,145

With A =2, it follows by Theorem 1 that

- 1+3" 258
Z 2n n T Srp

~ g 3557

b

3.
5

0 n n2 0 n n2
21—1—3 +3 o 190,443 Zl+3 +3 +3 7 1,254,037,452

33" " 2488557 & " 1,612,331,545

n=1

An Interesting Case: Let A =M, =2" -1, a Mersenne number [4].

With x =1, we have u =2". It then follows from equation (3) that

0 k k 2\/7‘
ngl(rzl2vrnj f;L - 2122‘/7"——2”"—1

With v =5, we then get

iFn _ 32 i1+32" _ 34,536,416
~3om 9917 — g9 T 1,038,123,041°

Next we explore the Lucas version of Theorem 1. It also identifies a family
of values of ¢ for which Lucas polynomial series (2) converges.
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2.2 Lucas Polynomial Series: As before, the Lucas polynomial series also

converges by the Ratio test for |t| < @
a(x

Theorem 2: Let k and A be arbitrary positive integers, and
u=1+ Az . Then

o k 1 . k 2u27‘ —ru” 4
Z Z u™ n Z 2 r : ( )

1
converges for t=—-.
U

This implies

Consequently, we have

n=0\r=1

as desired.
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With A =1=z, it follows from equation (4) that

© k
n=0\r=1
This yields,
= L,

T =6
el
i1+2”+22”L _ 118
o S " 11°

k 2r+1 r
22+l _ 9
Ln:Z 2r r '
o127 —2" 1
- 1+2" 94
2ol =
= 2 11
i +2“+22"+23”L 33,658
= ! 2,629

When z =1 and A =2, equation (4) gives

OOL
25 =

X 1+3" 432
P A

3n n
n=0 3

An Interesting Case: With 1 =M, =2" -1,

equation (4) yields

358,167
49,771 °

o0 1 n
Z +27Z]3 I, - 366;
fr Sl 20 71

i +3" + 3 433 I 2,969, 627,604

= 322, 466,309

r=1, and u=2",

JL _Z 2‘4\/7"_21/7" .

— 41/7’ _ 2\/7" _ 1

12,148
2,629

21+4” L -

2n
n=0 4
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i L, 24 i 1+8" 186,152
T 2 n = s
= 8" 11 = 8" 44,341

v L 49, L6, 63,643,408
=16" 239’ = 16" " 15,601,681

Next we explore the Pell implications of formulas (3) and (4).
3. Pell Versions

Let k£ and A be arbitrary positive integers, and w =1+2Az. With the

gibonacci-Pell relationship b,(z) = g,,(2x), it follows from equations (3) and (4)
that

k r

= 1 w
Pn=, —— (5)
ngl E w™ n rgl ,w2r _ 2wa -1
> (&1 Eooow? —ogw”
Z Z ™ In = Z 2 r (6)
n=0\r=1W r=1W — 2zw —1

respectively.

With W =w(l) = 1+ 24, they yield

k r
Z 1 Pnzz w

W 2wt —1

M s

S

Il

—_

<

I

—_
3
3

k

1 W27‘ _ WT’
™ Q" = T or
2 w é W2 —ow" -1

M s

3
Il
o
<
1l
—

respectively.

In particular, with 4 =1, we then have
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= P < 1+3" 51
_Z = 50 Z 2n Pﬂ = 570
n=193 2 n=1 3 31
143" 432" 35,211 S 1+3" + 32” 3% 56,743,098
3n P” = : ) Z P” = ? .
= 3 20,894 ~ 33,419,953
— 1 + 3” 129
2 =3 >0, -
n=0 3 n=0 3 31
¥ 1+3" +3" o, - 2435t i +3" + 32” +3%" o, - 207.726.726
o ST S 10,4477 & " 33,419,953
With 4 =2, they yield
- P 5 o 1+5" 115
z _Z = Z +2n P, = —;
n=1 ) 14 n=1 5 287
3 1+5"+5 1,803,885 i +5" +5 +53" _176,285,907,310
b " 4412338 & " 429,512,424,103
- 10 1 + 5" 710
Z Q_s = > Z Qn =
o0 b 7 "m0 5 287
ius” +5% 0 - 7,682,020 i 1+5" +5 +5%" 0 - 1,925,792,328, 740
b S " 2,206,169 & " 429512424103

Finally, we pursue the Jacobsthal versions of formulas (3) and (4).

4. Jacobsthal Implications

Using the gibonacci-Jacobsthal relationships, we now explore the Jacobsthal
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consequences of formulas (3), and (4). In the interest of brevity and clarity, we let A

denote the left side of the given equation and B its right side, and LHS and RHS the

left-hand side and right-hand side of the corresponding Jacobsthal formula to be

found.

k
4.1 Jacobsthal Version of Formula (3): Proof: Let A= zf—”
r=1 (1 + lx)m

Replacing z with 1/+/z in A, and then multiplying the numerator and denominator

of the resulting expression with 2D e get

. l(r=Dn+1]/2[,(n-1)/2

%

= x(n—l)/Z(\/E_'_ﬂ)rn

ix r 1)7L+1]/2J

r=1 \/— + l)”’n

k ko [(r-1)n+1]/2
LHS= {Z M}

n=1 |r=1 (\/E‘Fﬁv)rn
where f, = f,(1/~z) and J, = J, (7).

i (1+ Az)"

. Replacing =z with 1/vz
T+ Az)* —z(1+ Az) -

Next we let B =

in B, this yields

B Zk: 23PNT + A)
r:1$r+1 /2(\/—_‘_2) .Z’(\/E-l-ﬂ)r _z(r+3)/2

VZ(NT + A)
(r- 1/2(\/—_'_1)27’ (Nz + ) _ /2

RHS = Z
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Equating the two sides gives the desired Jacobsthal version:

M s

(7

n=1

I P v,
r=1 (Vo + A)™ b ZE(T*D/Q(\/E + /1)27‘ —(Nz + ) _ (D)2

where J, =J,(z) . a

In particular, this yields

F, S 1+2" 26
z = 25 z 2 n T T7> []
n=1 2” n=1 2” 11
> F 3 S 1+3" 258
2 = 2B = o
n=1 n=1

as found earlier.

Next we explore the Jacobsthal counterpart of equation (4).

k
4.2 Jacobsthal Version of Formula (4): Proof: We have A = Zf—”

r=1 (1 + ﬂm)m

Replace = with 1/~z in A, and then multiply the numerator and denominator of

the resulting expression with 2" V72 This yields

z(r—l)n/Q(zn/an)

.

) (\/E+ﬂ,>rn

i T (r— 1)n/2

ST+ m ’

LHS = Z [Zﬁ}

n=0[r 1(\/_‘*‘1)7”
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where [, =1,(1/~z) and j, = j,(z).

k ro_
We have B = Z AL+ Az) —w
1+ A2) —a(1+ Az) -1

Replacing x with 1/~/x , this

yields
k o0 (r-1)/2
bl (VoY ) S A N/ ) e
Combining the two sides, we get the desired Jacobsthal counterpart:
i i l,(r—l)n/Z i \/—_'_ﬂ)Qr _l,(r—l)/Q
n=0| r=1 (Nz + l)m SNz + AT =2V Ay =22
where j, = j’n(x) . O

In particular, this yields

- - 1+2" 94
D> =& = 6; > — L, = —; [2]
=2 =9 11
= L, o 1+3" 366
2o =3 2 = =
n=0 3” n=0 3 ! 71

as found earlier.
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Z,49(%) = a()z,,,(x) + b(z)z,(x), where z is an arbitrary integer variable;a(z),

b(x), 2y(x),and z(x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When 2,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial, and when z,(z) =2 and z(z) =z,
z,(z) =1,(z), the nth Lucas polynomial. They can also be defined by the Binet-like
formulas. Clearly, f,(1) = F,

n?o

the nth Fibonacci number; and [, (1) = L,, , the nth

Lucas number [1, 4].
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Pell polynomials p,(x) and Pell-Lucas polynomials q,(z) are defined by
p,(z) = f,(2z) and ¢,(z)=1,(2x), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers (@, are given by P, =p,(1)=f(2) and

n

2Q, =q,(1) =1,(2), respectively [3, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or [,,and b, = p, or g,.
. . | .y
It follows by the Binet-like formulas that lim =~ =—, lim —=A,

n—w ln A n—»0 fn

limp—”zi,and limq—”=2E,whereA=\/x2+4 and £ =~22 +1.

n—wo q, 2F n—w p,

1.1 Two Fundamental Gibonacci Identities: It follows by the Binet-like
formulas for f, and [, [4] that

f2n + ( - 1)n+kf2k = fn+kln—k; (1)

G Jn—tn s - @))

These two results play a pivotal role in our discourse. With this background,
we now begin our explorations.

2. Generalized Gibonacci Polynomial Products

We split our discussion into two cases, depending on the parity of £ in
identities (1) and (2).

2.1 A Generalization with k£ Odd: When £ is odd, identities (1) and (2)
yield
f2(2n) +ht = hBo-kbnsks (3)

f2(2n) —hr = bnsrbn-k- (4)
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With these two identities, we now establish the first result.

Theorem 1: Let k be an odd positive integer. Then

k
+ fo1
ben) + b 1] By Ak -
n=(k+1)/2 fQ(Qn) = bk =1 by_1
k>1,0dd

Proof: Using recursion [4], we will first establish that

ﬁ f2(2n) + ka _ ﬁ f27~,1 . ﬁ l2m+2r7k' ) (6)
n=(k+1)/2 fQ(Qn) _f2k r=1 2r-1 =1 2m+2r-k
k>1,0dd

To this end, we let 4, = LHS and B,, = RHS. Using identities (3) and
(4), we then have

B, — ﬁ 12m+2r—k . ﬁ 12m+2(r—1)—k

Bm—l r=1 2m+2r—k =1 f2m+2(r—1)—k

— me—klZmHﬁ
f‘2m+kl2m—k
_ hem) + b
bem) — bk

Ay
Ay

Recursively, this implies that

An _ Anr _

_ Ak
B, B, B(k+1)/2

k

_ fQ(k+1) + f?k . H 127"—1

. i f(k+1)+2r—k
g

f12(k+1) - ka r=1 f2r—1 r (k+1)+2r-k
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ll f2k+1 fl l2k+1
=1.

Consequently, A, = B,, , confirming formula (6).

Since lim L3 = A, it follows from equation (6) that

n—>o fn

0 k k

[ e ey
ne(byj2 Ren) —Re rii ke 30
k>1,0dd

k
— H f27"—1 . Ak ,
r=1 1’27‘*1
as desired. O
In particular, we have

[e'e]

T hen tho _ hiflshhk AP
=g Pen) = ho  hisksizl

[e'e]

By + 55 .
H 2(2n) _ KR EF R 9545 .
=g Fon) =95 LyL3lsl;Ly

With £ odd, equations (1) and (2) also yield

bens) t bt = bnvickbnsi-is (7)

f2(2n+1) —hr = basi—kbnsick- 3

They help us establish the next result.
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Theorem 2: Let k be an odd positive integer. Then

ben+1) + b ﬁ 1
-1

n=(k+1)/2 f2(2n+1) - ka
k>1,0dd

2

Proof: Again, using recursion [4], we will first confirm that

k

f‘2(2n+1) + f2k H ﬁ f2m+(2r+1)—k

m

n=(k+1)/2 f2(2n+1) - f2k =1 2 r=1 l2m+(2r+l)—k
k>1,0dd

23

)

(10)

Suppose A,, = LHS and B,, = RHS. Using identities (7) and (8), we then

get

Bl

k
Bm H 2m+ 2r+1)— H 12m+(27'—1)—k

Bm 1 r=1 m+(27+1) ko r=1 f2m+(27‘—1)—k

— f2m+1+k12m+17k
meJrl—kLZerlJrk

_ f2(2m+1) + f2k;

bem) — b

A
An

Recursively, this yields

An _ A _ Ak
By By B2
fQ k+2) + f2k ﬁ 2r ﬁ lk+1 (2r+1)-

f2k+2 — bk v br v frrn)e@ean)-k



24 THOMAS KOSHY

fQZQk+2 r=1 “2r r=1 f2k+2

=1.

Consequently, A, = B,, , confirming formula (10).

The given result now follows from equation (10), as desired.

Equation (9) yields

2 ]%(2”+1) + flO

_ blylglshy 1

n=3 f2(2n+1) - flO

“ Fyongr) +55

blifilfio A° ’

_ LlyLslslg N5

n=3 FQ(2n+1) - 55

RFFFR, 125

2.2 A Gibonacci Delight: Equation (5), coupled with (9), yields a delightful

consequence:

H Jon + Pt _ ben) + B bensr) + b
n=k+1 J2n ok n=(k+1)/2 f2(2n ka =(k+1)/2 f2 2n+1) — Jok
k=1,0dd k>1,0dd k>1 odd

k
— H fQT 1 H (1 1)
l2r 1 =1
This yields
© k
H Fy, + By, :HFQr 1 H
n=k+1 FQTZ _‘FQk r=1 LZT 1 r=1 ‘FQT
k>1,0dd
ﬁ Py +55 _ MEsFsFRFy  LylyLelylyy
noe Fon =95 Lilslsl7Ly EF,FKE,
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We now turn to the case k with even parity.

2.3 A Generalization with k even: When £ is even, identities (1) and (2)
yield
fQ(?n) + f2k = .f‘2n+kl2n—k; (12)

fQ(?n) - ka = f2n—kl2n+k : (13)
respectively.
With these two identities at our disposal, we now establish the next result.

Theorem 3: Let k be an even positive integer. Then

© k
n +
[T ety 14)
nekija+1 @n) — hr 0 Fr
k>2,even

Proof: With recursion [4], we will now establish that

f2(2") + ka — ﬁ ﬁ me +2r— k (15)
n=k/2+1 fQ(Q") = Ja =1 or r=1 2m+2r—k
k>2;even

To begin with, 4, = LHS and B,, = RHS. Using identities (12) and (13),
we then have

k k
Bm me+2r—k . 12m+2(r—1)—k

Bm—l r=1 12m+2r—k r=1 f2m+2(r—l)—k

— meJrk'Zanfk
merklZerk

_ hem) * b

bem) — b

_ A
Ay
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Recursively, this yields

A _ Ay __ Aspe
B

m Bmot B, j2+1)

_ D) + Foi ) d br : bi-2r14

fQ(ls+2) - ka r=1 l27' r=1 f2k—27-+4

gf_Hf_Hz_

f2 l2]€+2 r=1 127’ r=1 f27’+2

=1.

Thus, A, = B,, , confirming formula (15).

Jn

Since  lim — =l, the given result follows from equation (15), as

(o]
n— n

desired. O

In particular, we have

ﬁ f2(2n) + f12 _ 6141618110112 . i
n=4 fQ(Qn) —he  Alikkhohiz A°

[ e * 144 DLilelsholy | 1
ot Poony — 144 BE,FFFoF, 125°

Next, we explore the counterpart of Theorem 2, using the identities

bens) t bt = bnvi—tbnsicr (16)

fZ(QnH) —hr = bnsickbnsi-k- (17)

where £ is an even positive integer.
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Theorem 4: Let k be an even positive integer. Then

(18)

= hens t b _ ﬁ
)

n:]{;/Q f2(2n+1) - ka‘
k>2,even

Proof: With recursion [4], we will first confirm that

ﬁ f2(2n+1) + f2k _ ﬁ f2r—l . ﬁ l2m+(2r+1)—k (19)
n=k/2 f2(2n+1) - f2k r=1 2r-1 =1 f2m+(2r+1)—k
k>2;even

Once again, we let 4, = LHS and B,, = RHS. Using identities (16) and
(17), we then get

k

m l2m+ 2r+1)— i f2m+(27‘—1)—k
L

m—1 r=1 f2m+ 2r+l)-k  r=1 l2m+(27'—1)—k

— f2m+1fkl2m+1+k
me+1+k12m+1—k

_ f2(2m+1) + f2k;

bem) — b

A
An

Recursively, this yields

An _ Anoy _ A

B, B, B(k:/2)

— fQ(kJrl) +ka . d l‘27’71 . d f2r+1

lfQ(k‘Fl) - fék r=1 lf27‘*1 r=1 l2T+1

fll‘2k+1 erl Hf27’+1

f‘2k+1l1 r= 1.}[‘27‘ 1 r=1 2r+1
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fl l‘2k+l ll ka+1
ll f2k+l fl l‘2k+l

=1.

Consequently, A, = B,, , confirming formula (19).

Since lim f—” = — the given result follows from equation (19).
n—eo [, A

In particular, we have

ﬁ hen + hio _ Wikl . AS
e vy —h2 bkl

T Beny +144 ERERRE, .53
neg Foni1) —144  LiLglsLyLgly,

2.4 A Second Gibonacci Delight: It follows from Theorems 3 and 4 that

H fzn + b _ ﬁ han) + b . ﬁ bens) + b

n=k+1 — Jok n=k/2+1 f2(2n) — bk n=k/2+1 f2(2n+1) = b
k>2,even k>2,even k>2,even
H f?r 1 H l‘Zr (20)
127“ 1 r=1
This implies

o0

k
H F'2n + F'Qk — H
n=k+1 By, — Fyy, r=1 LQT 1 r=1 FQr

k>2;even

]t N - H

n="7 ‘F1277/ - 144 r=1 L27” 1 r=1 ‘F’QT
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2.5 A Gibonacci Treasure: Combining equations (11) and (20), we get

ﬁ f2n+f2k

n=k+1 f2n - ka
k>1

In particular, we have

Puth _h b,
Ilzn hoh o

- f2n+f6
n=4an_fG

_hbk
Lyl

bl .
hiis”

We also have
o0
n=k+1 F12n - Fék

k>1
and hence [2, 4]

n=2
3. Alternate Forms

Using the identity 12 — A fn2

(20), and (21) in terms of both f, and [, .

H ~A*fi —

nhuA%ﬁn ﬁw
k>1

H Fén+Fék —

f[

k k
_ er—l . 2
}:[1 g 2r

1)
fon + i f1f3 bl
IIQH Lo bl bf
T bt ks _ hihl blisl )
nss bn =K bkl Rhifks

ﬁanJrl_
FQn_l

k

ka)

e

=4(-1)" [4], we can rewrite equations (11),

For example, equation (21) yields

(22)
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This implies,

H L2n 5F‘2k 4 F27 1 H

n=k+1 5(F12n }72]@) r= 1L27 1 r= 1F27
k>1

In particular, we then have

n= 25(FQn_1)

H 3, -49 7
TL35(FQn_3) 2

4. Pell Implications

Using the relationship b,(z) = ¢, (2z), we can find the Pell versions of
equations (4) through (22). In the interest of brevity, we will showcase only those of
(21) and (22):

k
DPon + P2k _ yr P21 T %20

)
n=k+1 Pon = P2k =1 ©r-1 =1 Por
k>1

H G, — AE pY; — 4 _ 1Pt 7%
n=k+1 4E (p2n ka) r=1 QQT—I r=1 pQT

k>1
respectively.
They yield
0 k k
H F)2n+F)2k: F)Qr—l_HQQT,
n=k+1 F)Qn - P2k r=1 QQrfl r=1 F)Qr
k=1
k
H QQn 2P2k F)Qr 1 H%
n=k+1 2(})271 _PQk) r= 1Q27’ 1 r=1 F)QT
k>1

respectively.
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In particular, we then get
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1. Introduction

The concept of group theory was originated on the basis of axiomatic
definition and first appeared through permutation groups in the 2nd half of the
eighteenth century. In 1854, Cayley proved that a group need not be a permutation
group or even finite group and the abstract notion of a group thus appeared first [4].

Many authors [1, 2, 4] had made several attempts to develop the subject.
Euler considered algebraic operations on numbers modulo an integer and Gauss
established some properties of cyclic and, in general, of abelian groups and also
explicitly stated the associative law on composition. Galois [4, 6] was the first to use
the word ‘group’ and his contribution on group theory was published in 1846 by
Liouville. Now Galois group is also called the permutation group. Moreover, the
author introduced the notion of normal subgroups and honoured as the first
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mathematician pioneering in group theory. In 1870, Kronecker [6, 7] gave the
definition of abelian group to generalize Gauss’s work, but it was not in conformity
with the definition of permutation group. Weber also gave a similar definition in
1882 which involved the cancellation property. The formal axioms and the
corresponding definitions are the basic algebraic structure of ‘group’ in modern
algebra.

Klein [3] worked on the function theory and non-euclidean geometry
connecting geometry and group theory and solved the general equations of the fifth
degree using the group of the icosahedron for which the word ‘vierergruppe (four-
group)’ was used here. Later vierergruppe was transformed into Klein 4-group.

Lagrange [5] investigated that the order of a subgroup of a finite group is a
divisor of the groups order. However, Sylow [5] showed the inverse of Lagrange

theorem for prime integer in 1959. The author illustrated that for a prime p, if p™
(m is natural number) is a divisor of the order of a group G, then G contains a
subgroup of order p™ .

In the present paper we study some results on the order and abelianity of the
groups containing equi-ordered elements, except the identity. The paper is an
extension and generalization of Klein 4-group. From this we can obtain an idea about

the matter whether it is possible to have the existence of a group with elements of
order 2 or more like Klein 4 group or more ordered groups.

2. Notations

(G,(Lp ),.), (n= 0,1,2, ...), is a finite non-product group having all elements
(except identity element) of order p satisfying o (G((]p )) <o (Gl(p)) <..<o (G,S;p )) <...
and there does not exist any group containing all elements of order p other than
identity and having order lying between G,S,p ) and G,E,’i)l ,Vk . For our convenience,

we shall use the notation G,, instead of G,(lp ).

The identity element of the group G,, is denoted by ‘e’.

The set {a, a®, ..., a’™'} is denoted by (a).



3. Definitions

I. 1st category box: The set consisting all elements, except e, of the group

G, is called the nth order 1st category box (boa-1) of G, and is denoted by B™ .

II. 2nd category box: The composition of two different nth order box-I, say

B™ and Bg.")

denoted by BZ(T?

(1 # j) is called the nth order 2nd category box (box-11 ) and is

III. Power box: A box is said to be power boz if all its elements can be
expressed as some power (< p) of an element of this box. For example, all B

type boxes or (a) Va € G,,, are power boxes but any B(k), k >1 type box is not

power box.

IV. Component: The disjoint B" ™V type boxes in a B type box are

called the components of that box.

4. Lemmas

Lemma 1: p is prime.

Proof: If possible, let p = mn(m,n < p) and order of all elements are p.

n

Thus, for some a € @G, , a’ =e=a"" =e=(a")" =e= the order of a™ is

n(<p), a contradiction, as all elements are of order p. Therefore p is prime.

Lemma 2: (| is cyclic as well as abelian.

Proof: For a € Gy,{a,a*, ..., a’',a” = e} = G, and clearly G, is cyclic
as well as abelian.

Lemma 3: All elements except e of G , are generators of G| .
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Proof: For anyr(< p), ris not a divisor of p, so that for a(# €) € G, the

(p=Dr _p

order of a” is p. Therefore, the group {a”,a*", ...,a ,a’" = e} is equivalent to

{a,a, ...,a"™ a? = ¢} or G, forall r(< p) and consequently a” is a generator of
Gy forall r(< p).

Lemma 4: Let the sets {a;};,{b;}; and {¢;}; indicate same ordered Ist

category boxes. If a;b = ¢; then, a;b; # ¢, or a;b, # ¢, forany ¢, s # 1.

Proof:  There exist c;,c; €{c;}; such thate, =cjc; = ¢ Now if

aby = ¢, = cjop = cjaby, then a, = cja; which is a contradiction because every box
is well composed (i.e. the composition of any two elements of a box is either an
element of same box or e). Similarly a;b, = ¢, is contradicted by b, = b;c;,.

Lemma 5: Two Oth ordered boxes BZ(O) and B§-0> are either disjoint or

equivalent.

Proof: Each of the given two power boxes contain (p — 1) elements. These

boxes with e form two cyclic groups. Therefore the groups are either disjoint or
equivalent and consequently the boxes are of same type.

Lemma 6: B™(n > 0) is a union of some power boxes.

Proof: The order of all elements of B™ are p and the number of elements of
B s (p—-1). B™ and {e} form a group with order greater than p so that the
number of elements of B are greater than (p—1) as n > 0. By composition
rule, for any a(# e) € B™, 4eG, and {a,d®, ..., a" '} = G, and consequently

{a,a®, ..., a" '} or (a) ¢ B™
Since B has more than (p—1) elements and «a is arbitrary, so

B™ =U(a).
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Lemma 7: (G, has many power boxes, say, B or (a;), where

- . _ 2 _ p-1 _ :
=123, ... . If we consider a;.aq; =, aj.af =aq, ...,a;.af = a, (say) (with
the help of Lemma 4) then,
— p=2 _ p—1 _ .
ap.a; = ap, ceey ceey ceey ceey aj.aq =0a;, ap.aq —aj,
p- p- p=l _ .
5 5 5 5 a;.ay =0z, Qp.0q = ij > ap.ay = a,

2
aI.alzaj, a,.a; = ag, Qp.Qp =Qpy  oeny caey caey caey

Similarly in case of the composition of B g, the first and second

7
positions of the elements are interchanged.

Proof: The proof is trivial. This result shows that if a]-.Bl(O) or (Bl(o) .a;) is
complete, then all those elements by which a; is composed with B are

j
automatically completed corresponding to Bfo) .

5. Theorem

5.1 Theorem 1: A finite non-product group (G, ) containing all

n
elements, except identity element, of order p is of order p2 , where n is a non
negative integer. Moreover, the group is abelian.

Proof: We prove the theorem in the following steps.

Step 1: Existence and order of G|

0
Noting that G exists and is cyclic, so it is abelian and is of order p i.e. p2 .

Thus, it contains only one power box.

Since o(G}) > p, so G; must consist of at least two different power boxes,

say, Bl(o) =(b) and Béo) = (by) . By closer property, B{O).Béo) isin G;. Now using
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Lemma 4, by.by, b.b3, ...,by.b ™" are all members of (p —1)distinct power boxes.
As the boxes are power boxes and each contains (p — 1) elements, so by any initial
assumption for b;.by, bl.bg, s 0y O ! satisfying Lemma 4 and Lemma 7, Bl(o).Béo)
is complete if all elements are commutative. Therefore, we see that, if the elements

are abelian, B{O).BQ(O), Bl(o), Béo) and {e} form a group with order

1
(p+1)  (p-1) + 1 =p’—1+1=p*=p".

— — ——
Number of  Number of | FOlf
power boxes  elements identity

in each box  element

1
Thus, any group described above with order lying between p and p> may

1
not exist. Therefore o(G;) = p* .

Step 2: Abelianity of G|

Now suppose, if possible, that there also exists a non-abelian ;. Then in

this G, 3 at least two elements q, b such that ab # ba . Here two cases may arise.

Case 1: ab vand ba are elements of two different power boxes. Let
ab=c, ba=d and we have ad” =c”a, for y =1,2, ...,(p—1). Then by Lemma

4, the elements ad,ad’, ...,ad?™ are members of different (p—1) power boxes
and not of {(a), (c¢) and {d). Thus, the number of power boxes exceeds the number

(p+1). Again ad’# d”a and ac” #c’a, (y =1,2, ...,(p— 1)) and from these we

get many unequal relations. Therefore, by our assumption the composition table
cannot be completed by finite number of elements.

Case 2: ab and ba are elements of the same power box. Let ab = ¢,

ba = ¢o where ¢, ¢, € (c). Therefore, we have cyb = be; # bey and by Lemma 4,

cob and be, are members of two different power boxes. Thus, the case is
transformed into Case 1.
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Therefore, we conclude that G is abelian.

Step 3: Abelianity of G,,, (n > 1)

We first show that if G,,(n > 1) exists then it is abelian.

Consider two elements a, bin G, (n > 1). If a and b are elements of the same
power box, then obviously they are commutative and if not, then (a) -{b),{a),{b)

and {e} form a G type subgroup of G,, . This subgroup is abelian and contains a and
b and so ab = ba (by step 2). Since a and b are arbitrarily chosen from G,,, so all its

elements are commutative and consequently G,, is abelian.
Step 4: Order and existence of G, (n > 1)

0 1

We have seen that o(Gy) = p* and o(G;) = p* .
k

Now suppose o(G;) = p> . Obviously we have o(Gy,;) > o(G,) and in

k

G, there must exist p”>  elements which form a Gy, type subgroup. So, by

Lagrange’s theory, o(G))|o(Gyy1). Again both of o(Gy,,) >0(G,) and
k

o(G)| o(Gryy) imply o(Gyiq) > o(2p* —1). Thus, 3 at least two distinct th

ordered boxes-I'in G, .

Using the closer property, the combination of these two boxes are also in

k
G).1. So by Lemma 4, we see that another (p? —1) number of disjoint kth ordered

boxes-I are contained in Gj ;.

Since all these elements are commutative and all kth ordered boxes-I are the

k
union of some power boxes (from Lemma 6), so these (p2 +1) number of kth

ordered boxes along with {e} form a abelian group with order
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k k k k+1
2 2 2% \2 2
(P +1) (p° -+ 1 =(p” ) -1l+1=p
——— e —
Number of Number of . FOlf
kth order elements identity
boxes in each box  element

k k+1
and no group can be formed with order lying between p? and p> " . Thus, by the

principle of induction we get o(G,,) = .

We now consider the existence of G, (n =2,3,...). Forming a group by
2 f+1
taking only p? elements (putting %k =1, in the described p” " elements of this

part), the structure of G, is shown first.

There are (p2 + 1) number of distinct B type well-composed boxes say

Bl(l),Bél),...,B(é) each of which has (p+1) disjoint power boxes. Suppose

p°+1
) (p+1) (p+1)
Bi( ) = U ijo) = U (a;;) . We now construct BZ-(l),Vz' =1, 2,...,(p2 +1). Taking
j=1 j=1
;1,09 = aig,aﬂa?g = al-4,...,al-1a§_1 =aip+1) (We may arrange another way

following Lemma 4), Bl(l) is complete and the inner composition between the
elements of Bl(l) are known for all 7 =1, 2,...,(p2 +1). Now our interest is on

Bl(l).BQ(D and so following Lemma 4, select

_ 2 _ p-1 _
(11821 = A31, 411021 = 41, ) 11431 = A(p+1)1 >
_ 2 _ p-1 _
(11022 = Q(p+2)1» 11022 = Q(p+3)1> sy 11899 = Q(2p)1 »
110 =q, aj,a3 =q, aalt =a
1192(p+1) = Yp(p-1)+3)1> “1192(p+1) = Yp)p-1)+4)1s  »+-+> 11%(p+1) = (p2+1)1'

This choice directly completes (a;1). Bél) . But {a;5). Bél) is not come out.
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. . . )
Again setting (using Lemma 4) aj2a91 = @422, 412021 = Q(pa3)2> o

-1 . . .

1903, = a3,)2, We immediately obtain (a12>.(a21>,(a13>.(a23>,(a14>.(a2ﬂ> and
2

other similar (p —3) terms. The last selections give us many restrictions. For

example,
A(p+2)3 = A13023 = (a11012) (a1092) = (a11091) (a12092) = (a31)(a12a92) -

So that a;45a99 1is neither an element of Bél) nor of B((;)Jr2) . Following all the

restrictions and Lemma 4 we can set ajp{agy), a12ag3), .. a12ay(,4+1)) and

Bl(l).Bél) i.e. the box Bflg is automatically completed. Now completed. Now

commutative property and Lemma 7 complete all boxes
Bgﬁlj);z',j =1,2...,(p2 +1),i # j. Therefore the formation of G, is shown and

2
O(Gz) = P2 .

2

3
Similarly we can show a group G5 such that o(G3) = p~ . In this case, we

2
have to form a group by (p2 + 1) well-composed disjoint B type boxes each of

which has (p2 +1) number of B type boxes. Following the above rules and steps,
at least a 2nd ordered 2nd category box can be filled up and that box completes all
other. In the successive process we can form the groups G4,G5,..,G,,,... with above
described order.

This proves the theorem.

52 Theorem 2: If (G,.)is a finite product group, where

G =G; xG; x...x G, and each G; contains all elements of order p except identity,
defined as

ab = (a;,a;,...a,).(b;,bj,..b,) = (a;b;,a;.b;,...a,.b,) for any a,b € G,a;,b; € G;,V,;,

then o(G) = o(G;) x o (G;) x...x(G,).
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Proof: Obviously G contains all elements of order p except identity and
theorem 2 immediately follows from theorem 1.

6. Conclusions

Here we used four steps to prove the theorem 1. The first two steps show the
existence, order and abelianity of (G;), whereas last two steps are used to prove

(with the help of previous steps) the same for G,,n >1, due to dissimilarities
between (G;) and G,,,n > 1.

Theorem 2 is elementary, as it is well known that the order of a product
group is equal to the product of the order of each individual group, so its proof is
obvious.

It is not possible to extend a group composing G,, and G, for m #n. So

any group having order p™ (p is prime), not of the form an is either a cyclic group

or a product group like G; xG; x...x G, . In both cases the group is abelian. This
shows that Sylow subgroup is abelian.
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R. Ponragj' | PAIR MEAN CORDIAL LABLEING OF

< 5| SOME CORONA GRAPHS

Abstract: Let a graph G = (V,E) be a (p,q) graph. Define

S p is even

P =19p-1 and M = {#+1,42,....,+p} called the set of labels.
P is odd,

Consider a mapping A : V = M by assigning different labels in M to the

different elements of V when p is even and different labels in M to

p 1 elements of V and repeating a label for the remaining one vertex

when p is odd. The labeling as defined above is said to be a pair mean
cordial labeling if for each edge uv of G, there exists a labeling

w if A(w) + A(v) is even and 'W)Jrzﬂ if A(w) + A(v) is odd

such that [S;, S| <1 where S;, and Sjc respectively denote the
number of edges labeled with 1 and the number of edges not labeled with 1.
A graph G for which there exists a pair mean cordial labeling is called pair
mean cordial graph. In this paper, we investigate the pair mean cordial
labeling of some corona graphs like L, © Ky, L, © 2K;, L, © K, , W, ©
K, W,, © 2K;, W,, © K, gear graph, G,, © K;, G,, © 2K; and G,, © K,.

Keywords: Ladder Graph, Wheel Graph and Gear Graph.

Mathematic Subject Classification No.: 05C78.
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1. Introduction

In this paper, we consider only finite, simple and undirected graphs. For
basic notation and terminology in graph theory we refer to F. Harary [3]. A detailed
survey of various graph labeling is explained in Gallian [2]. The concept of cordial
labeling was introduced by I. Cahit [1]. Ponraj et al. [6] discussed pair difference
cordial labeling of some corona related graphs. We have been introduced the concept
of pair mean cordial labeling in [4] and investigate pair mean cordiality of some
snake graphs in [5]. In this paper, we investigate the pair man cordial labeling of
some corona graphs like L, O K;, L, ©2K;, L, O K;,,W,, © K;, W, © 2K,
W, © K,, gear graph, G, © K;, G, © 2K; and G,, © K,.

2. Preliminaries

Definition 2.1: Let G; = (V4, E;) and G, = (V,, E;) be two graphs. The join
Gy + G, as G1 U G,. Together with all the edges joining vertices of V; to the vertices
of V,.

Definition 2.2: The corona graph G; © G, is the graph obtained by taking
one copy of G; and n copies of G, and joining i vertex of G; with an edge to every
vertex in the it copy of G,, where G; is graph of order n.

Definition 2.3: The ladder L,, is the product of P, X K, with 2n vertices and
3n 2 edges.

Definition 2.4: The graph W,, = C,, + K; is called the wheel graph.

Definition 2.5: The gear graph G,, is obtained from the wheel W,, by adding
a vertex between every pair of adjacent vertices of the cycle C,,.

3. Pair Mean Cordial Labeling

Definition 3.1: Let a graph G = (V,E) be a (p,q) graph. Define

D is even
1 and M = {£+1,%2,...., £p} called the set of labels. Consider a

p= pis odd,

SRR

2
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mapping A: V — M by assigning different labels in M to the different elements of V
when p is even and different labels in M to p  lelements of V and repeating a label
for the remaining one vertex when p is odd. The labeling as defined above is said to
be a pair mean cordial labeling if for each edge uv of G, there exists a labeling

A if Au) +Aw) is even and Xy ha) +Aw) is odd such

that [S;, Sze| <1 where S;, and Sjc respectively denote the number of edges
labeled with 1 and the number of edges not labeled with 1. A graph G for which there
exists a pair mean cordial labeling is called pair mean cordial graph.

Theorem 3.2: The ladder graph L,, is pair mean cordial [4].
Theorem 3.3: The wheel graph W, is pair mean cordial [4].
Theorem 3.4: The graph L,, © Kj is pair mean cordial for all n > 2.

Proof: Let V(L, © K1) ={u;,vi,x;,yi:1 <i<n} and
E(L, © K;) = {ujujr1,vvi41:1<i<n 1} {wv,u;x;,v;y;:1<i<n}. Then
there are 4n vertices and 5n 2 edges. This proof'is divided into two cases:

Case (i) n is odd: First assign the labels 1, 5,.., 2n+ 1 to the vertices
Uq, U, ..., Uy, respectively. Then we assign the labels 4,8, ...,2n 2 respectively to
the vertices uy,uy,...,U,—q. We assign the labels 2,6,..,2n to the vertices
Xq1,X3, --., Xn, respectively. Also we assign the labels 3, 7,.., 2n+ 3 respectively
to the vertices x5, X4, ..., Xn—1. Next we give the labels 3,5, ...,2n 1 to the vertices

Vq,Vy, ..., Up_q respectively. Assign the label 1 to the vertex v,. Finally we give the
5n-3
2

labels 2, 4,.., 2n respectively to the vertices y;, Vs, ..., . Hence §,11 =
5n—-1
2

and §,1§ =

Case (ii) n is even: As in Case (i), assign the label to the vertices
v;, ¥, 1 <i<n. Assign the labels 1, 5.., 2n+3 to the vertices
Uq,Us, ..., Uy_q1 respectively. Then we assign the labels 4,8, ...,2n respectively to the
vertices Uy, Uy, ..., U,. Also we assign the labels 2,6,..,2n 2 to the vertices
X1,X3, ., Xn—q respectively. Finally we assign the labels 3, 7,.., 2n+1
5n-2 =
=S

respectively to the vertices x5, Xy, ..., X,. Hence, S, L =5 = Sk
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Theorem 3.5: The graph L,, © 2K is pair mean cordial for all n > 2.

Proof: Let V(L, © 2Ky) = {u;, vy, x;, yi,a;, bin 1 < i <nj} and
(L, O 2Ky) = {wujpq, vivip: 1 <i<n 1} {wv, wixg, wiy, via;, vibi: 1 < i < n}.

Then there are 6n vertices and 7n 2 edges. This proof is divided into two
cases:

Case (i) n is odd: First assign the labels 1, 4,.., 3n+ 2 to the vertices

Uq, Uy, ..., Uy, respectively. Then we assign the labels 4,10, ...,3n 5 respectively to
the vertices vq,vVs, ..., Un_. We assign the labels 5, 11,.., 3n+4+4 to the
vertices vy, Uy, ..., Up_1 respectively. Also we give the label 1 to the vertex v,,. Next
we give the labels 2,5, ...,3n 1 respectively to the vertices xq, X3, ..., X,. We assign
the labels 3,6, ...,3n to the vertices yy, ¥5, ..., Y, respectively. Then we give the labels
2, 8,.., 3n+1 respectively to the vertices aq,as, ..., a,. We give the labels

6, 12,.., 3n+ 3 to the vertices a,, ay, ..., a,_q respectively. Then we assign
the labels 3, 9,.., 3nrespectively to the vertices b4, bs, ..., b,,. Finally assign the
labels 7,13, ...,3n 2 to the vertices by, by, ..., b,_; respectively. Hence, §,11 = 7n2_3

= n-1
and Sy¢ = o

Case (ii) n is even: As in case (i), Assign the label to the vertices
u;, x;, ¥, 1 <1 <n. Assign the labels 4,10,...,3n 2 respectively to the vertices
V1,V3, .., Un_1- Then we assign the labels 5, 11,.., 3n+1 to the vertices
Vg, Uy, ..., Uy respectively. Now we give the labels 2, 8,..., 3n+ 4 respectively
to the vertices a4, as, ..., a,—1. We give the labels 6, 12,.., 3n to the vertices
a,,Qy, ..., a, respectively.  Then we assign the labels 3, 9,.., 3n+3
respectively to the vertices by, b3, ..., b,_1. Finally assign the labels 7,13,...,3n 5

to the vertices by, by, ..., b,_, respectively. Finally assign the label 1 to the vertex b,,.

n-2 =
> = Sli

Hence, S;, =

Theorem 3.6: The graph L,, © K, is pair mean cordial for all n > 2.
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Proof: Let V(L, © K;) = {u;, vy, x;,¥i,a;, b1 < i <n}and (L, O K;) =
{fuiuir, viviz:1 <i<n 1} U {wv;, wix;, Wiy, X yi, via;, vib, a;bi: 1 < i < n} .
Then there are 6n vertices and 9n 2 edges. This proofis divided into two cases:

Case (i) n is odd: First assign the labels 3,6,...,3n to the vertices

Uq, Uy, ..., U, respectively. Then we assign the labels 2, 8,.., 3n+1
respectively to the vertices vq, V3, ..., V. We assign the labels 7,13,...,3n 2 to the
vertices V,, Uy, ..., Vp_1 Tespectively. Next we give the labels 1, 4,.., 3n+42

respectively to the vertices x4, X5, ..., X,. We assign the labels 2,5,...,3n 1 to the
vertices yi,V,, -, Yn respectively. Then we give the labels 3, 9,.., 3n
respectively to the vertices a4, as, ..., a,. We give the labels 5, 11,.., 3n+4to
the vertices a,, aq, ..., a,_1 respectively. Then we assign the labels 4,10, ...,3n 5
respectively to the vertices by, bs,..,b,—,. Now assign the Ilabels

6, 12,.., 3n+ 3 to the vertices by, by, ..., b,_; respectively. Finally assign the
In-3 Iin-1
o

label 1 to the vertex b,,. Hence, S; = and Sy =

Case (ii) n is even: As in case (i), Assign the label to the vertices
U, x;, ¥, 1 <i<n. Assign the labels 2, 8,.., 3n+4 respectively to the
vertices vq,V3, ..., Vp—1. Then we assign the labels 7,13,...,3n 5 to the vertices
Uy, Uy, -, Up_o tespectively. We assign the label 3n + 1 to the vertex v,,. Now we
give the labels 3, 9,.., 3n+ 3 respectively to the vertices aq, as, ..., a,_1. We
give the labels 5, 11,.., 3n+ 7 to the vertices a,,ay, ..., a,_, respectively.
Give the label 1 to the vertex a,. Then we assign the labels 4,10,...,3n 2

respectively to the vertices bq,b3,...,b,_q. Finally assign the labels
m-2 =
2 VM

6, 12,..., 3nto the vertices b, by, ..., b, respectively. Hence, gfh =

Theorem 3.7: The graph W,, © K; is pair mean cordial for all n > 3.

Proof: Let V(W, OKy)) ={uu,v,v;"1<i<n} and (W,, OK;)=
fuv ,uv,vivi"1<i<n} {vivi;1:1<i<n 1}U{v,v;}. Then there are
2n + 2 vertices and 3n + 1 edges. This proof is divided into two cases:

Case (i) n is odd: First assign the labels n,1 to the vertices u,u’
respectively. Then we assign the labels 1, 3,.., n+ 2 respectively to the
vertices Vq,Vg3, ...,VUp_,. We assign the labels 3,5,..,n 2 to the vertices
Vg, Uy, ..., Up_3 respectively. Also we give the labels n + 1,n + 1 respectively to
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the vertices v,_q,v,. Next we give the labels 2,4,..,n 1 to the vertices
V1, V3, ..., v,_, ' respectively. We assign the labels 2, 4,.., n+ 3 to the vertices

vy, v,y ..., Vp—3 ' respectively. Finally we give the labels n 1, n to the vertices

. = 3n+1 =
Vn_1', Uy respectively. Hence, S, = = Sag.

Case (ii) n is even: First assign the labels -n 1,1 to the vertices u,u’
respectively. Then we assign the labels 2,4,..,n respectively to the
verticesvy, Vs, ..., Vn—q1. We assign the labels 2, 4,.., n to the vertices

Vg, Uy, ..., Uy respectively. Next we give the labels 1, 3,.., n+ 1 to the vertices

V1,v3', ..., V1 respectively. Finally we assign the labels 3,5,..,n+1 to the
. . = 3 = 3n+2

vertices v, ', v, ..., " respectively. Hence, Sy, = 7” and Sy¢ = n2+

Theorem 3.8: The graph W,, © 2K; is pair mean cordial for all n > 3.

Proof: Let VW, O2K)={uu, u'\v,v;',v;"1<i<n} and
W, © 2K;) = {uv,uu", uv, vy, viv;": 1 <i<n} {vv:1<i<n 13u{vw}.
Then there are 3n + 3 vertices and 4n + 2 edges. This proof is divided into two
cases:

. . : . 3n+3 , —3n-1 .
Case (i) n is odd: First assign the labels %,1,% to the vertices

-3n+1

u, u',u" respectively. Then we assign the labels 1, 4, ..., respectively to the

3n-1

vertices vy, Vs, ..., Uy,. We assign the labels 4,7, ..., to the vertices vy, Vg, v, Up_1

. . 3n+1 . .
respectively. Next we give the labels 2,5, ,nT respectively to the vertices
—-3n+5

vy, v3'...,v,. We assign the labels 2, 5,.., to the vertices

. . 3n-3 .
vy, v, ..., V1 Tespectively. Now we assign the labels 3,6, ... ,nT respectively to

—3n+3
"3 to the

the vertices v,",v3", ...,v,_»". Also we give the labels 3, 6,...,

-3n-3
"2 to the vertex

vertices v, ", v,", ..., v,,_1 " respectively. Finally we give the label

v,". Hence, §;, =2n+1 = Sje.

-3n-2

to the vertices u, u’, u"
—-3n+4

Case (ii) n is even: First assign the labels 1,1,

respectively. Then we assign the labels 1, 4,.., respectively to the
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3n+2

vertices vy, V3, ..., Vp—1. Also we assign the labels 4,7,..,—— to the vertices

. . 3n-2 .
Uy, Uy, ..., Uy Tespectively. Next we give the labels 2,5, ,nT respectively to the

—3n+2 .
to the vertices

vertices v;',v3',...,Up—1" We assign the labels 2, 5,...,
. . 3 .
vy, v, ..., vy respectively. Now we assign the labels 3,6, ,771 respectively to the

. . . -3 .
vertices v1 ", 13", ..., v,_1". Finally we give the labels 3, 6, ,Tn to the vertices

v,",vs", .., vy tespectively. Hence, S, = 2n+1 = Sje.
Theorem 3.9: The graph W,, O K, is pair mean cordial if n is even.

Proof: Let VW, © Ky) = {u,u', u", v, v, v;""1 <i <n} and
W, © Ky) = {uu', uu"”",uv;, viv;",viv;" : 1 <i<n} {vjvp:1<i<n 1}U{vv}
Then there are 3n + 3 vertices and 4n + 2 edges. This proof is divided into two
cases:

Case (i) n is odd: Suppose A is a pair mean cordial. Then if the edge uv get
the label 1, the possibilities are A(u) + A(v) =1 or A(u) + A(v) = 2. Hence the

5n+1 = 5n+5
. Then S;c = .
2 1 2

maximum number of edges label 1 is % That is g}tl <

< < 5n+5 5n+1
Therefore, Syc S, = (

5 > ) = 2 > 1, a contradiction.

-3n-2

Case (ii) n is even: Assign the labels 1,1, to the vertices u,u’,u”

respectively. Then we assign the labels 3,6,...,3771 respectively to the

—3n+2 .
to the wvertices

vertices vy, Vs, ..., Up—1. We assign the labels 2, 5,..,
—3n+4

Uy, Uy, ..., Uy Tespectively. Next we give the labels 1, 4,..., respectively to

: . -3 .

the vertices v, ', v3', ..., vp_1 . Also we assign the labels 3, 6,..., Tn to the vertices
. . 3n—2 .

vy, vy, ..., Uy Tespectively. Now we assign the labels 2,5, ... ,nT respectively to the

3n+2 .
to the vertices

vertices v, ", v3",...,v_1". Finally we give the labels 4,7, ...,
5n+2 5n+4

2

vy, v, ", ..., v, " respectively. Hence, §,11 = and glf =

Theorem 3.10: The gear graph G,, is not pair mean cordial for all n > 3.



52 R. PONRAJAND S. PRABHU

Proof: Let V(G,) ={wv;,v;":1<i<n} and (G,) = {uv;,v;v;"11 <i <
n} {(VivipLvivis1<i<n 1} U{v,'vq,vpvi}.
Then there are 2n + 1 vertices and 4n edges. Suppose A is a pair mean cordial. Then
if the edge uv get the label 1, the possibilities are A(u) + A(v) =1 or A(u) +
A(v) = 2. Hence the maximum number of edges label 1 is 2n 1. That is S, <
2n 1. Then Sye > 2n + 1. Therefore, Sz S, =22n+1 (2n 1 =2>1,a
contradiction.

Theorem 3.11: The graph G, © K; is pair mean cordial for all n > 3.

Proof: Let V(G, © K;) = {u,u/,v;,v;'w;,w;:1 <i<n} and E(G, ®
Ky) = {uv, vivy", wiw;, viw;: 1 < i <n} {vjv,wWiv4:1<i<n 1} U
{uu’, v, v, w,v;} . Then there are 4n + 2 vertices and 6n + 1 edges.

First assign the labels 1, 2n 1 to the vertices u, u’ respectively. Then we
assign the labels 3,5, ...,2n + 1 respectively to the vertices vy, vy, ..., v,. We assign
the labels 2, 4,.., 2n to the vertices vy, vy, ..., v, respectively. Also we give
the labels 1, 3,.., 2n+ 1 respectively to the vertices wy, w,, ..., w,,. Finally we
give the labels 2,4,..,2n to the vertices wy,w,,..,w, respectively. Hence,
Sp, =3nand S;e =3n+ 1.

Theorem 3.12: The graph G,, © 2Kj; is pair mean cordial for all n > 3.

Proof: Let V(G, © 2K,) = {w, v, u" v, v, v;',wi,w;',w;": 1 < i < n} and
(Gn O 2K1) =
{uvy, vivy', viv;", wiw;" , wiw; ", v;wi: 1 < i < n} (Vv wivipi 1 <i<n
1} U {uu’, uu", v,v;, w,v1} . Then there are 6n + 3 vertices and 8n + 2 edges.

First assign the labels 1,1, 3n 1 to the vertices u,u’,u” respectively.
Then we assign the labels 4,7, ...,3n + 1 respectively to the vertices v, vy, ..., v,. We

assign the labels 2, 5,.., 3n+1 to the vertices vy, v,/ ...,v," respectively.
Next we assign the labels 3, 6,.., 3n respectively to the vertices
v v, ., v, Also we give the labels 1, 4,.., 3n+2 to the vertices

Wy, Wo, ..., W, respectively.
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Now we give the labels 2,5,..,3n 1 respectively to the vertices
wywy', ...,w,’. Finally we give the Ilabels 3,6,..,3n to the vertices
wy'wy ", .., wy, " respectively. Hence gl:t =4n+1= g,lg.

Theorem 3.13: The graph G,, © K, is pair mean cordial for all n = 3.

Proof: Let V(G, © K,) = {w,u', u",v;,v;", v, w,w;/,w;": 1 < i <n} and
(Gn O KZ) = {uvi, vivi’, V;iV; ”, WiWi,' W;W; ”, VWi, Ui "Ui”, w; 'Wi”: 1<i<
!

n} {vivipL,wivipr1<i<n 1} U {uu,uu",u'u", v,v, wav1} . Then there are
6n + 3 vertices and 10n + 3 edges.

First assign the labels 1,1, 3n 1 to the vertices u,u’,u" respectively.
Then we assign the labels 2, 5,.., 3n+1 respectively to the vertices
Vq1,Vg, ..., V. We assign the labels 3, 6,.., 3n to the vertices vy, v, ..., v’
respectively.

Next we assign the labels 4,7,..,3n+ 1 respectively to the vertices
vy v, ., v Also we give the labels 3,6, ...,3n to the vertices wq, Wy, ..., Wy,
respectively. Now we give the labels 1, 4,.., 3n+2 respectively to the

vertices wy Wy, ..., Wy,

"

Finally we give the labels 2,5,...,3n + 1 to the vertices wy",w,", ..., wy
respectively. Hence, S;, = 5n + 1and Sy = 5n + 2.
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1. Introduction

Extended gibonacci polynomials z,(z) are defined by the recurrence
2,49(2) = a(x)z, ., (z) + b(x)z,(z), where x is an arbitrary integer variable;a(z),

b(x), zy(x),and z (x) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=x and b(z)=1. When z,(z)=0 and 2z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and z/(z) =z,
z,(z) =1,(z), the nth Lucas polynomial. Clearly, f,(1)=F,, the nth Fibonacci
number; and [, (1) = L, , the nth Lucas number [1, 4].



56 THOMAS KOSHY

On the other hand, let a(z) =1 and b(x) =z . When z5(z)=0 and z;(z)=1,
2, (x)=J,(x), the nth Jacobsthal polynomial ; and when zy(z) =2 and z(z) =1,

2, (z) = j,(x), the nth Jacobsthal-Lucas polynomial. They too can be defined by the
Binet-like formulas

1,(0) =D @) = () (),

where D =~4z+1, 2u(z)=1+D, and 2v(xz) =1-D. It follows by the Binet-

like formulas that lim 2% = D. Correspondingly, J, = J,(2) and j, = j,(2) are

n—w Jn

the nth Jacobsthal and Jacobsthal Lucas numbers, respectively. Clearly,

Jn(l) =F,;and ]n(l) =L, [4].

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas

polynomials are closely related by the relationships J,(z) = (=172 f,(1/~x) and
n (x) = xn/2ln(1/\/5) [23 3, 4] .

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or I,, ¢, =J,, Jjn, AN2? +4, D=~Ar +1.

1.1 Generalized Gibonacci Polynomial Products: Using the gibonacci
identities [6]
Fon + ()" oy = fukdogs

f2n - (_1)n+kf.2k = fn—kln+k >

we established the following infinite Fibonacci products [6]:

w !
Bl han) + Fr Il B gk (1)

b

n=(k+1)/2 f2(2”> - ka r=1 l2r—1
k>1,0dd
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7 Rennthe prhe L o
n=(k+1)/2 benvy =be 3 By A* ’

k>1,0dd

k k
H f2n+ka:]‘_[.1027’71‘1_[_7’7 (3)

n=k+l 421 ka r=1 l‘2r71 r=1 f2r

k>1,0dd
T Peothe prhe L @
n=k/2+1 f2(2n) - -ka r=1 -fQT Ak
k>2,even
) k
H f2(2n+1) + f2k _ H f2r—1 ) Ak ; (5)
n=k/2 f2(2n+1) - ka =1 2r-1
k>2,even

nk+lf ka 'r]_’r’l'r]_fQT

k>2 even
+
H f2n f2k Hf?r 1 Hl27’ (7)
n=k+l 2n f2k r=1 2r
k>1

2. Generalized Jacobsthal Polynomial Products

Using the gibonacci-Jacobsthal relationships, we will now explore the
Jacobsthal versions of the above equations. In the interest of clarity and convenience,

we let A denote the fractional expression on the left side of each equation and B the

corresponding right side, and LHS and RHS the corresponding sides of the Jacobsthal
equation to be found.

+
2.1 Jacobsthal Version of Equation (1): Let A = M where £ >1

f2(2n) - ka
and odd. Replacing z with 1/~z, and then multiplying the numerator and the

(4n-1)/2

denominator with z , we get
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+
Ao ben) + b
ben) = for

l_(4n—1)/2f2(2n) + $2n_k[$(2k_l)/2f2k]

HnD/2p

o) — Z‘Qn_k[l‘(Qk_l)/szk]

0

Joom + 22" K Iy,
LHS = 2(2n) T 2k

2n—k !
n=(k+1)/2 J2(2n) -z Joy,
k>1,0dd

where f, = f,(1/~z) and J, =J, ().

Now, let B = E-A. Replace z with 1/~z, and then multiply the
r—1

numerator and the denominator with >~/ This yields

BIfQT_l' D

Lerl xl/?

ml/Q[x(QT’fQ)/Qer_l] D

x(2r—1)/2l2r_1 21/2

_ 2 o1 D
Jor—1 xk/?

bapr Jyy D

o1 Jor—1 Tk /2

RHS ==z
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where g, = g¢,(1/~z) ande, =¢,(z).

Equating the two sides, we get

= Jopn) + 7"y, _ b Tor
n=(k+1)/2 Ja(2n) = 902"7]“(7% rel J2r—1
k>1,0dd
It then follows that [6]

- 5(27Z) + Fék _ k }727‘71 . 5k/2 .

n=(br1)/2 Foeny = For 721 Lora

k>1,0dd

ﬁ Ja(2n) + 227 Iy B i Jor 1 gk

n=(k+1)/2 JQ(QH) - 22n—k Jop r=1 Jor-1

k>1,0dd

2.2 Jacobsthal Version of Equation (2): Let A =

This yields
e b1y + b

ben+1) — bk

x(4n+1)/2f2(2n+1

2(2n+1) — f2k

with 1/~ , and then multiply the numerator and the denominator with =z

.DF .

f2(2n+1) + ka

: n x2n7k+1[l_(2k71)/2f2k]

H /2 ot

2n—k+1
Jo@n+1) + Jor,

2n—k+1
‘]2(2n+1) -z Jor,

o0

J + 27L*1€+1J
LHS = 22n+1) T 2k

n=(k+1)/2 Jo(2n+1) ~ 2" Ty,

k>1,0dd

= l_ank'Jrl[x(Qk'fl)/Qka]

59

®)

. Replace z

(4n+1)/2
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where f, = f,(1 /Nz) and J, =J,(z).

Now, let B = mi Replace z with 1/~/z, and then multiply the
2r-1

numerator and the denominator with z°"/2 . This yields

L, L2
br D
1,27"/267‘ . $1/2

B x1/2[x(27~71)/2f2r] D

where g, = ¢g,(1/~vz) and ¢, = ¢, ().
Combining the two sides, we get

2n—
Joons1) +

koo
2% -
2n—kil =11 o, ©)
n=(k+1)/2 J2(2n) - Jo <1 J2r

k>1,0dd
In particular, this yields [6]

ﬁ Fyopi1y + By =1£[L2r' 1

n=(k+1)/2 FZ(2n+l) - Iy, r=1 B, 5k/2
k>1,0dd
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0 —k c .
Jo@ns1) + 22" gy _ ﬁ Jor 1

n=(k+1)/2 Jo(2n+1) =
k>1,0dd

2.3 Jacobsthal Version of Equation (3): Equation (8), coupled with
equation (9), yields the Jacobsthal version of equation (3):

o0 —k k koo
H Jon + 2" "oy, _ HJ2r—1 DR LT 22 1
n=k+1 J27L - :1:”7k<]2k r=1 j27’—1 r=1 JQ?" Dk
k>1,0dd
k k.
— H ‘].27”—1 X Jor (10)

r=1 J2r-1 =1 Joy

In particular, we then have [6]

© k k
H Fyy + By, _HFQrA _HLQT
B, - By, F.
n=k+1 2n — L2k r=1 LZT—I r=1*2r
k>1,0dd
0 n—k k k.
I1 Jon +27 "ok _ e 7 Rr
—k . °
n=k+1 J2n -2" JQk r=1 J2r-1 r=1 JQ?"
k>1,0dd

+ b
2.4 Jacobsthal Version of Equation (4): With A:M’ as
ben) = For

Subsection 2.1, we get

Jogan) + 2" Ty,

LHS= ]
nekj2+1 Jazn) = 27 Ty
k>2 even

b

where J,, = J,(z).
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. o1 . .
With B = L2—’ . X as in Subsection 2.2, we get
2r

k

RHS = Thr L
r=1 J27’ Dlf
where ¢, = ¢, ().
Equating the two sides then yields
0 J " + $2n,7k(] k .
R, (11)
n=k/2+1 JQ(Qn) -7 Jop  r=l Jar D

k>2even
This implies [6],

ﬁ }72(2”) + By, _ ﬁ Ly, ) 5k/2
n=k/2+1 F2(2n) — By o By 5

k>2,even

ﬁ J2(2n) +

n=k/2+1 JQ(Qn,) - 22n_k<]2k r=1 ‘]27’ 3k .

k>2,even

f2(2n+1) + ka

2.5 Jacobsthal Version of Equation (5): With A= s

, a
h(on+1) — Jok

Subsection 2.2, with B = @ - A, as in Subsection 2.1, we get
r—1

2n—-k+1
Joni1) + @ Jo

LHS= ]
n=k/2 Joaner) =2y
k>2even
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Ly
RHS = Hﬂ . DF
r=1 J2r-1

respectively, where ¢, =c,(z).

Combining the two sides then yields

o0

1 Joan+1) + 22", 3 b Tor Dk (12)

In—k+ly ;
n=k/2 J2(27’L+1) - " JQ]C r=1 .]27‘—1
k>2even

This yields [6]

i F12(2n+1) + Fék _ i 1727‘,1 ) 5k X

n=Fk/2 F'2(2n+1) - Fy, =1 Ly,

k>2,even

ﬁ Joens1) + 22 I _ ﬁ Jor_1 3

2n—k+1 )
n=k/2 J2(2n+]_) _2 " JQk r=1 .727‘—1
k>2even

2.6 Jacobsthal Version of Equation (6): It follows by equations (10) and
(12) that

® —k k koo
I1 Jon + 2" op St Ty Jor (13)
n=k+1 JQ,,, - $n7kJ2k r=1 jQr_1 r=1 J2r
k>2even
Thisyields [6]
T Zeetfo _pploes pple
n=k+1 ‘FQH - FQk r=1 LQT—l r=1 FQr
k>2,even

Additionally, wehave
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ﬁ Jon +2n_k<]2k :ﬁJQr—l ﬁ]i

n—k )
n=k+1 J2n -2 J2k r=1 Jor-1 r=1 JQr
k>2,even

Finally, we explore the Jacobsthal version of the Fibonacci delight in
equation (7).

2.7 Jacobsthal Version of Equation (7): It follows by equations (11) and

(13) that
k k

o —k ,

H Jon + 3" " Ty _ H Jor1 7 Por (14)
n=k+1 Jgn - ‘Tnikjgk r=1 j2r—1 r=1 J27’

k=2

This yields [6]

9] k k
H E, +F, :HFQr—l HLzr .

n=k+1 F’Qn - F’Qk r=1 LZT’fl r=1 }727‘
k>1

ﬁ Ton +2" " Ty :ﬁJQT—l ﬁ]z_r

n=k+1 Ja, — 2n_kJ2k. =1 Jor—1 y=1 Jor
k21
3. Alternate Form
Using the identity j2 — D*J2 = 4( — )" [4], we can rewrite equation (14) in

terms of both J,, and j, :

0 -2 _ x2n72kD2J22k _ 4x27l ﬁ J22n _ x2n72k¢]22k

H Jon —

2 n—k 2 n—=k 2
neks1 D (Jon —2" " Jop) n=k+1 (Jop, — 2" " Jop)
k>1 k>1
‘]27‘71 . Jor

=1 Jor-1 =1 Jor
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It then follows that [6]

k
H L2n +5}72k 4 }727’ 1 H
n=k+1 5(F?n FQk) r=1 L2T 1 r=1 FQr
k>1

In particular, we have [4, 5]

n n 7
M2 s, -2 -1

n=2 5(Fy, — 1) n=3 5(Fyy, — 3) 2
Additionally, we have
T B 94T 4 e P
n=k+1  9(Jay, —2n7kJ2k)2 o1 Jor-1 o1 Jor
k21
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Z,49(x) = a(x)z, () + b(x)z, (), where z is an arbitrary integer variable;a(z),

b(x), zy(x),and 2 (x) are arbitrary integer polynomials; and n > 0.

Suppose a(z) =z and b(z) =1. When z,(z) =0 and z(z) =1, 2,(z) = f,(z), the

nth Fibonacci polynomial; and when z,(z) =2 and z (z)

Il
8
N

3
—~
8
~—

Il

5~

—~
8

~—
=+
=
(¢

nth Lucas polynomial.

Clearly, f

n

(1) = F,, the nth Fibonacci number; and [,(1) = L, , the nth

n

Lucas number [1, 4].
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On the other hand, let a(z)= 1 and b(z) =2. When 2zy(z)=0 and

2 (x)=1, z,(x)=J,(z), the nth Jacobsthal polynomial ; and when z,(z) =2 and

zi(z) =1, z,(x)=73,(z), the nth Jacobsthal-Lucas polynomial. They too can be
defined by the Binet-like formulas

Ju(@) = L@@ g (1) = (@) + (),

D

where D =4z +1, 2u(z)=1+D, and 2v(z)=1. It follows by the Binet-like

formulas that lim 2% = D). Correspondingly, J, =J,,(2) and j, = j,(2) are the

n—»0 Jn

nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, J,, (1) = F;, ; and
Jn(1) = L, [4].

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas

polynomials are closely related by the relationships J, (z) = 22 p (1/~z) and

@) = 2" 21,0/V7)[2,3,4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(x). In

addition, we let g, =f, or [,,¢c, =J, or j,,and A = Va? +4.
I _

It follows from the Binet-like formulas that lim ﬁ = 1 and lim =+ =D.
n—w g, D n—w j,

1.1 Some Fundamental Jacobsthal Identities: Using the gibonacci-
Jacobsthal relationships, it follows from the gibonacci identities [6]

B+ (=" fop = Frsiduis

f2n - ( - l)nJrkf2k = fn—kln+k7
that

Jon + (= 1" R o = T s (1)
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Jon = (=" *2"F Jop = T tdnsks )

where ¢, = g,(z) and ¢, = ¢,(2).

1.2 Generalized Jacobsthal Polynomial Products: In [7], we established
the following infinite Jacobsthal products:

e J o+ 2n7k(]
H 2(2 ) T 2k _ H J.27,71 ] Dk : (3)

—k
n=(k+1)/2 J2(2n) ~ LY AP

k>1,0dd
o 2n+1-k ‘
I1 Jons) + 87 gy 3 ﬁ Jor 1 )
J _ 2n+1—kJ B J Dk :
n=(k+1)/2 Y2(2n+1) — T ok r=1Y2r
k>10dd
« —k k ko
M I RO s
I1 —=1]= o (5)
n=k+1 J2n -z JQk r=1 r-1 p=19Y2r
k>1,0dd
% M-k _
I1 Toom) + 2o :ﬁhr L. 6)
—k k B
n=k/2+1 J2(2n) - $2n Jop. r=1 Joyy D

k>2,even

0 JQ oms1) + 1'27L+17k<]2k. J 7‘7
H (2n+1) =H21‘Dk5 (7)

2n+1-k :
n=k/2 J2(2n+1) -z Jop  r=1 J2r-1

k>2,even

* n—k k koo
H Jon + T ok _ H Jar1 H J2r ®)
—k . .
Y 2"y, v=1 J2r-1 oyl Jo,
k>2,even

® -k k E oo
Jon + 2" " Top 77 J2ret T Jor 9
H n—k - H ; ’ H J : ( )
n=k+1 J2n -z J2k r=1 Jor-1 r=1Y2r
k>1

Our goal in this discourse is to confirm the validity of formulas (3) through
(8) and hence (9), using graph-theoretic techniques. To this end, we first present a
brief introduction to the needed graph-theoretic tools.
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2. Graph-Theoretic Tools

To confirm these Jacobsthal results, consider the weighted Jacobsthal

digraph in Figure 1 with vertices v; and v, [4, 5]. It follows from its weighted

x
adjacency matric M = [1 0 that

Vi Vz
1

Figure 1: Weighted Jacobsthal Digram

Jn+1 I‘]n
J zJ,

n n

M" =

)

where J, =J,(z) and n>1 .

Let A be the set of closed walks of length n originating at v;, and B the set
of those of length n in the digraph. Let 7, denote the sum of the weights of the
elements in A, and U, the sum of those in B. Then 7, =J,,; and

U, =Jys1 +xJ,_1 = j,,where ¢, =c,(z).

Let A, B, and C denote the sets of closed walks of varying lengths
originating at vertex v. Then the sum of the weights of the elements in the product set

Ax Bx(C is defined as the product the sums of the walks in each component [5].

Obviously, this definition can be extended to any finite number of components in the
product. These facts play a major role in the graph-theoretic proofs.

With these tools at our disposal, we are now ready for the graph-theoretic
explorations.
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3. Graph-Theoretic Confirmations
We begin our explorations with equation (3).

3.1 Confirmation of Formula (3): Proof: Let k be an odd positive integer

and w the weight of the edge v;v, . Consider the product

m 2n—k
T4n71 +w T2k71

2n—k
n=(k+1)/2 Lin_1 —w To—
k>1,0dd

lm—I Jo(an) + 2" Ty,
2n—k ’
n=(k+1)/2 J202n) =T oy,
k>1,0dd

We will now compute the product P,, in a different way. To this end, we let

k k
T
* 2r—2
p= ] L
r=1 Uyt 32 Tomezr-1o
k>1,0dd k2Lodd

U2m+2rfk'

k k .
H J2r71 . Jom+2r—k

r=l j2r71 r=1 J2m+2r7k’
k>1,0dd k>1,0dd

where m > 1. Using identities (1) and (2), we then get

1

1

J.
A =T
r=1 J2r-1 p=1 Jori1

Jor+1

. J1j3 . J4 +.’L’J2
S Ji—ndy
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1 J 1 j 3 J 3 i
* 2r—1 | 2r+1 2r—1 . 2r+1

Py =Tt T2 T2 ]
r=1 22r-1 p=1Y2r+1 =1 J2r-1 ,=1Y2r+1

s i
J3j1 J7j1

_ J4 +ZEJ2 .JS +'1“‘]6
J4_ZEJ2 Jg_l'Jﬁ

=B.

Based on these two initial values of P, , we conjecture that P, = P,
where m > 1.

We will now establish this conjecture using recursion [4, 6]. To this end, we

have
* k . k
Pm — Jom+2r—k . J2m+2(r—1)—k
Pnﬂ;—l r=1 Joms2r—k r=1 j2m+2(7‘71)7k
k>1,0dd k>1,0dd
_ Jom—kJom+k

J2m+kj2m—k

Jom) + $2m_kj2k

Joom) — 2" Ty

PmZPm—l_ _Pl =1
B, P, B

Thus, P, = P, as conjectured
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s 2n—k k Eoo.
ﬁ J2(2”) tT J2k — J27‘71 . J2m+2r—k (10)
n=(k+1)/2 J2(2n) - .’E27L7kg]2k r=1 Jor—1 r=1 J2m+2r—k
k>Lodd k>1,0dd k>1,0dd
Since lim 2~ = D , this yields formula (3) as desired. O
n—»

n

3.2 Confirmation of Formula (4): Proof: With k an odd positive integer,

and w, T,,, and U,, as before, we let

m

T, +w
Qm — H 4n+1

2n+1-k
n=(k+1)/2 Lin1 —w Ty
k>1,0dd

2n+1-k
Tor1

m 2n+1-k
_ H Joon1) + Jor
B In+l-k
n=(k+1)/2 Jan+1) =2 Jok
k>,0dd

We will now compute this product in a different way. To achieve this,

consider the product

k k

Q= [ L= [ Dzt

TQrfl r=1 U2m+(27‘+1)7k’
k>1,0dd k>1,0dd

>

Jor 2m+(2r+1)—k
- ) D —
r=1 Jar r=1  J2m+(2r+1)-k
k>1,0dd k21,0dd

where m > 1. With identities (1) and (2), we then get

1]. Ly
QF = il—[ 2r+2

r=1 J2r r=1 j27’+2
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_ J4j2 _ JG +I2J2
‘]2j4 ‘]6 _132:]2

=Q;
1. 3 3
QF = ]2_7’.1—[&]2”2 H Jor 'HJ-QHQ
r=1 Joy r=1 J2r+2 p= 1J2r r=1 J2r+2
_ 4o _ JsJo
Joga Jods

. Jﬁ +.’L’2J2 . Jl[) +.’L’2J6
JG —IQJQ Jl(] —I2J6

=@.

Using these two initial values of (,,, we conjecture that Q,, =Q,,,
where m > 1.

We will now establish this using recursion [4, 6]. We have

k k
Q;kn _ J2m+ 2r+1)— H ]2m+ 2r—1)—
r Toms@r 1)
Q-1 =1 Bmt@ril)—k =1 Jome@r—1—k
k>1,0dd k>1,0dd

— J2m+1+k.72m+17k

Jom+1-kJom+1+k

2m+1-k
_ Jogman) + 2 Jop
h 2m+1-k
J2(2m+1) -z Jo
= —Qm
Qm—l

Recursively, this implies that
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Q_m: Qm—l _,..—&:1
Q. Qn o)

This confirms the conjecture:

m 2n+1-k k . k .
H J2(2n+1) +z Jor _ Jor H Jom+(2r+1)-k a1
J _ 2n+17k’J - J J .
n=(k+1)/2 Y2(2n+1) — L 2k r=1 Y2r =1 Y2m+(2r+1)-k
k>1,0dd k>1,0dd

k>1,0dd

Since lim J—” = 1 , this yields formula (4) as desired.
n—»0 JTL

3.3 Confirmation of Formula (5): Proof: It follows by equations (10) and
(11) that

2m+1 n—*k k [
1 MZHJQT%'DIC' B 1

—k B T
n=k+1 J2n - :L,n JQk r=1 J2r-1 r=1 J27‘ D
k>1,0dd

© n—k k koo

H Jon + 2 " Jop :H‘]Qr—l H J2r
—k .

n=k+1 JQTL - :I;n JQk- r=1 J2r—1 r=1 JQT’

k>1,0dd

Y

as expected.

Consequently, we have [7]

0 k k
I1 ‘FQn+‘F2k:H‘F2r—1_HL2T.
F'2n - Fék r=1 Lerl r=1 }727‘

n=k+1
k>1,0dd
o n—k k koo
I1 Jon +27 " op _yy 21 T 2r
n=k+1 JQn - 2n—k JQ/C r=1 j27‘71 r=1 J2r

k>1,0dd
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3.4 Confirmation of Formula (6): Proof: Let k be an even positive integer.

With w, T;,, and U,, as before, we let

m

R, = Ik
n=k/2+1 Ty 1 —w Top
k>2,even

Jo(an) + 2" My,

m
- H 2n—k
n=k/2+1 J2(2n) =77 "oy,
k>2,even

We will now compute this product in a different way. To accomplish this,
consider the product

k k

* U, T2m+(2r—1)—k
R = H 2r Zemierm)7h
r=1 T2r—1 r=1 U2m+2r—k
k>2even k>2even

k . k J
= H Jor H 2m+2r—k
- . b

r=1 Jar r=1  Jem+2r-k
k>2,even k=2,even

where m > 2.
We then have

2]. 2 g
R;:Hil—[ 2r+2

r=1 J2r r=1 j27’+2

_Jﬁjg _Jg +.Z'2J4
JQjG J8 —$2J4
2 2 4

. . 4
R = J2r H Jors2 H Jor Y J2r+2
3 . .
r=1 Jor r=1 J2r+2  ,=1 Jor r=1 J2r+2
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_Jedr _ w0k
 Jads Jadio
Iy + 2y Ty + 2Py
CJe— 22, Ty — 22

:RB‘

77

Using these two initial values of R, we predict that R, =R,

where m > 2.

We will now confirm this conjecture using recursion [4, 6]. We have

k

*
fou _ 1 Lamezrs
R:n—l r=1 j2m+27‘7k

k>2,even k>2,even

_ J2m+kj2m—k
JQm—kaerk

J2(2m) + l_mek;JQk

J2(2m) - IQmikJQk;

This implies

By By T
Ry

R, R
Consequently R, = R,, as desired:

Jogon) + 2" Ty,

m
H 2n—k

n=k/2+1 J2(2n) -z Jop =1

k>2,even

1l
—_

r

This yields formula (6), as desired.

Jom+2(r—1)k

J2m+2(7‘71)7k

(12)
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3.5 Confirmation of Formula (7) Proof: With k, w, 1,,, and U, as before,

we let
m 2n+1-k
S H T4n+1 +w TQk'fl
m T _ 2n+1—kT
n=k/2 t4p+1 —W 2k-1
k>2,even
m 2n+1-k
_ H Jo@n+1) + Jor
- 2n+1-k
n=k/2 J2(2n+1) - Jo
k>2even
We will now compute S, in a different way. To this end, consider the
product

s 11 ez qp Yemeras

r=1 UQT—I r=1 T2m+2r—k

_ ﬁ Jor_q ) i j2m+(2r+1)—k

pol 2r-1 =1 J2m+(27’+1)—k
where ¢, =¢,(z) and m >1.

We then get
2

2 .
J
* 2r—1 Jor+1
si=T1-+11
r=1 2r-1 =1 Jors1

. J1j5 . Jﬁ +.’L’J4
Isji Jo —xy

2 g 2 . 4 4 .
Sy = H ‘27’71 . Jor+1 H 2r—1 H Jor+1

r=1 2r-1 =1 Jors1 r=1 22r-1 =1 Jori1

_ s s

Jsin Jon
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_ ‘]6 +1'J4 . ‘]10 +ZEJ8
J6_$J4 Jlo_l'(]g

ZSQ.

Based on these two initial values of S, , we conjecture that S, =S, ,
where m > 1. We will now confirm this using recursion [4, 6].

We have

S:;L :ﬁjQW*'(QT""l)—k . i J2m+(2r—1)—k

S:n—l r=1 J2m+(27'+1)—k r=1 j2m+(27'—1)—k

_ Jomi1-kJom+1+k

J2m+1+kj2m+1—k

_ Jo@m+1) + fUQmH_kJQk
Jo@m+1) — 2" T
— Sm
Smfl
This implies,
Sm _Sm—l L SQ =1
Sm Sm1 S5

Consequently S;, = S,, confirming the conjecture:

m

2n+1-k k koo
H Joons1) + Jor _ Jorq Jom+(2r+1)-k

= (13)

2n+1-k )
nek/2 Jo@nin) — T R R R T R 9L Y S

k>2,even

where ¢, = ¢,(x). Clearly, this yields formula (7), as desired. O
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3.6 Confirmation of Formula (8): Proof: It follows by equations (12) and
(13) that

2m+1

— m 2n—k m 2n+1-k
H Jo, + 2" kJQk B H Jon) +2 Joy, H Joons1) + Joy,

n—k 2n—k 2n+1-k
n=k+1 Jop =T " Jop  n=k/241 J2(2n) -z Jor  n=k/2 J2(2n+1) e Jor,
k=2,even k>2,even k>2,even

0 n—=k k koo

I1 Jon + 27" Ty, :HJQT—l _H]Qr (14)
—k . P

n=k+1 JQn —z" JQk r=1 2r-1 =1 J2r

k>2even

as desired. 0
Finally, we explore the graph-theoretic proof of formula (9).

3.7 Confirmation of Formula (9): Proof: It follows by equations (12) and
(14) that

00 n—=k 0 n—k o n—k
H Jop + 2" g _ 1—[ Jop + 27 "oy ] H Joy, + 27 "y

—k —k —k
=kl Jog =" o kel Jop =" op n=ke1 Jy — 2"y
k>1 k>1,0dd k>2,even

k

k .
— H J27’—1 . Jor (15)

b
vl Jor—1 po1 Jor

as desired. O

It follows from formula (15) that [6]

0 k k
H F12n +FQk :HJ{TQT—I HL27 .
b
n=k+1 By, — By, r=1 Ly, 4 r=1 F
k>1

0 k k
I I e I
n;kﬂ 5(Fy, — F2k)2 et Lor1 32 For
=1
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