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1. Introduction 
 
 A Riemann surface is a complex manifold with complex dimension 1. For a 
more detailed definition Refer [1]. In general on a given topological surface, there are 
many inequivalent complex structures. The set of inequivalent complex structres on a 
given topological surface is known as the moduli space. The moduli space is a 
complicated one and is a topic for advanced research. The interplay between the 
complex structure of a Riemann surface and the geometry induced by a quadratic 
differential was given in the paper of Hubbard and Masur [3]. 
 
 Let X be a compact Riemann surface of genus g. A holomorphic quadratic 

differential ϕ  is an assignment of a holomorphic function ( )i izϕ  to each local 
coordinate chart iz  such that if there is another chart jz , then 
 
    2 2( ) ( )j j j i i iz dz z dzϕ ϕ=   
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or    
2

( ) ( ) j
i i j j

i

dz
z z

dz
ϕ ϕ

 
=  

 
  

and ( )i jz h z= . 
 
 In 1857, Riemann published his work on the deformation of complex 
structures. He called the number of independent parameters the deformation depends as 
moduli. It is known that the moduli for compact Riemann surfaces of genus 2g ≥  
is equal to 3 3g −  (complex parameters) which is also the same as the dimension of 
holomorphic quadratic differentials on a compact Riemann surface of genus 2g ≥ . 
 

 In this note we show how to compute the dimension of holomorphic 
quadratic differentials. The reader may refer to [1] for Cohomology groups, 
Riemann-Roch and Serre Duality theorems. The role of quadratic differentials in the 
moduli of Riemann surfaces may be found in [2], [4]. 
 
2. The Dimension of Holomorphic Quadratic Differentials 
 
 Theorem 1: Let X be a compact Riemann surface of genus 2g ≥ . 

The dimension of holomorphic quadratic differentials on X is 3 3g − . 
 
 Proof: Let X be a compact Riemann surface of genus g. Let K be the 
canonical bundle (whose holomorphic cross sections are precisely the abelian 
differentials of first kind) on  X. 
 
 By the Riemann Roch theorem, for any holomorphic bundle 1 ,( )H Xξ ∗∈  , 
we have, 

 0 1) (dim ( , ( ) dim , ( ) 1 de) gH X H X gξ ξ ξ− = − +                   (1) 
 

and from the Serre duality theorem 
 
  1 0 1dim ( , ( ) dim ,) ( ))(H X H X Kξ ξ −=                                    (2) 
 
 Therefore, by writing 
 
    2K K Kξ = = ⊗   
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and using the Eq. 1 and Eq. 2 we can deduce that 
 

0 0 1dim ( , ( )) dim ( , ( )) 1 degH X H X K gξ ξ ξ−− = − +    
 

which implies, 
 

0 0 1 2dim ( , ( )) dim ( , ( )) 1 degH X K K H X K g K−⊗ − = − +   
but, 
    deg 2 2K g= −   
 
       1deg 2 2 0K g−⇒ = − <   
 
           0 1dim ( , ( )) 0H X K −⇒ =  . 
 
 Therefore we have, 
 
  0 2 0dim ( , ( ))  dim ,  (   ( ))  H X K H X K K= ⊗                        (3) 

           1 4 4g g= − + −                                           (4) 
 

                     3 3g= −                                                      (5) 

where 0 2( , ( ))H X K  denotes the holomorphic quadratic differentials on X.     ∎ 
 
 Note: The dimension of the space of holomorphic quadratic differentials is 
independent of the complex structure of a Riemann surface of genus g. 
 
 Summary 2: According to Riemann well known formula the complex 

structure of a compact Riemann surface X of genus 2g ≥  (with no 

punctures) depends on 3 3g −  parameters. 
 
 = the number of linearly independent quadratic differentials on X 

 = the maximal number of simple closed curves on X whose homotopy 

classes represented by non-intersecting curves which are not homotopic to 

each other. See [4]. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence  

2 1( ) ( ) ( ) ( ) ( )n n nz x a x z x b x z x   , where x is a positive integer variable; ( )a x , 

( )b x , 0( )z x ,  and  1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  ,  

( )  ( )n nz x f x ,  the  nth Fibonacci polynomial ; and when 0( ) 2z x   and 1( )z x x , 

( ) ( )n nz x l x , the nth Lucas polynomial. They can also be defined by Binet-like 

formulas. Clearly, (1)n nf F , the nth Fibonacci number; and (1)n nl L , the nth 

Lucas number [1, 5,   6]. 
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 Pell polynomials

( ) (2 )n np x f x  and 

nP  and Pell-Lucas numbers

2 (1) (2)n n nQ q l  , respectively [6].

 Suppose ( ) 1a x

( )  ( )n nz x J x , the nth  

( ) ( )n nz x j x , the 

2( )n nJ J  and   n nj j

respectively.  Clearly,

 Gibonacci and Jacobsthal polynomials are linked by the relationships 
( 1)/2( ) (1/ )n

n nJ x x f x

 
 In the interest of brevity, clarity, and convenience, we omit the argume

the functional notation, 

addition, we let   n ng f

2 ( )x x    , and  

lim ( )km k

m m

g
x

g



 .

 

 1.1 Gibonacci Generating Functions

polynomials ng  are generated

 

   

 

   

 
respectively, where x
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Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

 ( ) (2 )n nq x l x , respectively. In particular, the Pell numbers

Lucas numbers nQ  are given by (1) (2)n n nP p f 

2 (1) (2) , respectively [6]. 

( ) 1a x   and  ( )b x x . When 0( ) 0z x   and

th  Jacobsthal polynomial ; and when 0( ) 2z x   and

, the nth Jacobsthal-Lucas polynomial  [3, 6].  Corr

2( )n nj j  are the  nth  Jacobsthal and Jacobsthal-Lucas numbers, 

Clearly, (1)n nJ F   and  (1)  n nj L . 

Gibonacci and Jacobsthal polynomials are linked by the relationships 

( ) (1/ )n nJ x x f x  and  /2( ) (1/ )n
n nj x x l x   [6]. 

In the interest of brevity, clarity, and convenience, we omit the argume

the functional notation, when there is no ambiguity;  so nz  will mean

  n ng f or nl , n nb p  or nq , ( )n nc J x  or  ( )nj x ,   

 2 ( )x x    .  It follows by the Binet-like formulas

lim ( )x . 

Gibonacci Generating Functions: Fibonacci polynomials  f

generated by the generating functions ( )f t  and ( )l t  [6]:

 
2

1

( )
1

n
n

n

t
f t f t

xt t





 
 

  ;    

 
2

0

2
( )

1

n
n

n

xt
l t l t

xt t






 

 
 ,   

1x  . 

  

( ) are defined by 

Pell numbers 

(1) (2)n n nP p f   and

and 1( ) 1z x  , 

( ) 2 and 1( ) 1z x  ,  

rrespondingly, 

Lucas numbers, 

Gibonacci and Jacobsthal polynomials are linked by the relationships 

In the interest of brevity, clarity, and convenience, we omit the argument in 

will mean ( )nz x . In 

( ) 2 4x   , 

like formulas [6] that 

nf  and Lucas 

( )t [6]: 

               (1) 

   (2) 
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By the Ratio test [8], both series converge if  
1

lim n

n n

g

g
t

 

   ; that is, if  

1 2

( )
t

x 
 

 
.  

 
2. Gibonacci Polynomial Series 
 
 With the brief background above, we now explore the convergence of both 

gibonacci polynomial series for a special family of values of t, beginning with the 

Fibonacci series. 

 
 2.1 Fibonacci Polynomial Series: The following theorem identifies the value 

of the Fibonacci polynomial series (1) for a special family of t. 

 

 Theorem 1: Let k and λ be arbitrary positive integers, and 1u x  . 

Then 

   
2

1 1 1

1

1

k k r

nrn r r
n r r

u
f

u u xu



  

 
 

    
   .                       (3) 

 

 Proof: With 1x  , we have 2 4 2x x   ; so 2 2x x    . 

Consequently,  
1 2

0
1 x x

 
  

; that is,  
1 2

0
1 ( )x x

 


.  

 

 With  2  ,  we  have  1 1x x   .  So, 
1 1 1

 0
1 1 ( )x x x 

  
 

. 

   

 Since  1  1  1 (( ) )rn rnx x x     ,  it  follows  that 

 

1 1 1 1
 0

1 ( )(1 ) (1 )rn rn x xx x 
   

 
, 

 
where   1r  . 
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Consequently, the Fibonacci series 
1

n
n

n

t f



  converges when 

1 1

(1 )r r
t

x u
 


 

and 1r  . 
 
 This implies 

   

2

1/

1
1

(1/ )
r

r

r r

u
f

x

u u

u

 

   

      
2 1

r

r r

u

u xu


 
.  

 Consequently, we have 

   
1 1 1

1
(1/ )

k k
r

nrn
n r r

f f
u

u


  

 
 

 
 

     

      
2

1 1

k r

r r
r

u

u xu


 

  

as desired.                        □ 
 

 With  1u x  , it follows by the theorem that 
 

             
2

1

1

1
nn

n

u
f

u u xu






 

  ; 

 

       

2

2 2 4 2
1

1

1 1

n

nn
n

u u u
f

u u xu u xu






 

   
   

 

         

2 2 3

3 2 4 64 3
1

1

1 1 1

n n

nn
n

u u u u u
f

u u xu u xu u xu
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32 2 3 4

4 2 4 6 84 3 4
1

1

1 1 1 1

nn n

nn
n

uu u u u u u
f

u u xu u xu u xu u xu





  
   

       
   

 
 In particular, we then get 
 

                        
1

2
2

n
n

n

F




 ;                      2
1

1 2 26

2 11

n

nn
n

F





 ; [2] 

 

     
2

3
1

1 2 2 138

2 55

n n

nn
n

F




 
 ;  

32

4
1

21 2 2 33, 862

2 13,145

nn n

nn
n

F




  
 .   

 
 With  2  , it follows by Theorem 1 that 
 

                    
1

3

53

n
n

n

F




 ;               2
1

1 3 258

3553

n

nn
n

F





 ;  

 

2

3
1

1 3 3 190, 443

248, 8553

n n

nn
n

F




 
 ;    

32

4
1

1 3 3 3 1,254, 037, 452

1, 612, 331,5453

nn n

nn
n

F




  
 .   

 

 An Interesting Case:  Let 2 1M 
    , a Mersenne number  [4].  

With 1x  , we have  2u  .  It then follows from equation (3) that 
 

2
1 1 1

1 2

2 2 2 1

k k r

nrn r r
n r r

f


  



  

 
 

    
   . 

 
 With 5  , we then  get 
 

  
1

32

99132

n
n

n

F




 ; 
2

1

1 32 34, 536, 416

1, 038,123, 04132

n

nn
n

F





 .   

 
 Next we explore the Lucas version of Theorem 1. It also identifies a family 

of values of  t  for which Lucas polynomial series (2) converges. 
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 2.2 Lucas  Polynomial Series

converges by the Ratio test

 

 Theorem 2

1u x  . Then 

   

 

 Proof : As in the proof of Theorem 1, 

1 1
0

( )r xu 
   for every positive

converges for  
1
rt

u


 
 This implies 

   
 

   
 
 Consequently, 
 

   

 

   

  

as desired.  

 THOMAS KOSHY 

Lucas  Polynomial Series: As before, the Lucas polynomial series also 

Ratio test  for 
1

( )
t

x
 .  

2: Let k and λ be arbitrary positive integers,

 
2

2
1 1 1

1 2

1

k k r r

nrn r r
n r r

u ru
l

u u xu



  

  
 

    
   .  

As in the proof of Theorem 1, ( ) 0u x   

for every positive integer r. Consequently, Lucas series (2) 

1
ru

 . 

 

 
2

2
(1/ )

1
1

r

r r

x
ur

l u
x

u u




 

  

  

2

2

2

1

r r

r r

u xu

u xu




 
. 

Consequently, we have 

 
0 1 1

1
(1/ )

k k
r

nrn
n r r

l l u
u



  

 
 

 
 

     

    
2

2
1

2

1

k r r

r r
r

u ru

u xu




 
 ,  

                                                              

  

As before, the Lucas polynomial series also 

integers, and 

   (4)  

( ) 0   and hence 

Lucas series (2) 

                                                          □ 
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 With  1 x   , it follows from equation (4) that 
 

2 1

2
0 1 1

1 2 2

2 2 2 1

k k r r

nrn r r
n r r

L
 

  

  
 

    
   . 

 
 This yields, 
 

  0

6
2

n
n

n

L




 ;                     2
0

1 2 94
;

2 11

n

nn
n

L







  

 

      
2

3
0

1 2 2 118

2 11

n n

nn
n

L




 
 ;           

2 3

4
0

1 2 2 2 33, 658

2 2, 629

n n n

nn
n

L




  


 

 
 When  1x   and  2  , equation (4) gives 
 

                   
0

3
3

n
n

n

L




 ;              2
0

1 3 366

713

n

nn
n

L





 ;  

 
2

3
0

1 3 3 358,167

49, 7713

n n

nn
n

L




 
 ;    

2 3

4
0

1 3 3 3 2, 969, 627, 604

322, 466, 3093

nn n

nn
n

L




  
 .   

 

 An Interesting Case: With 2 1M 
    , 1x  , and 2u  , 

equation (4) yields 
 

0 1 1

1 2.4 2

2 4 2 1

k k r r

nrn r r
n r r

L
 

  



  

  
 

    
   . 

 
 This implies, 
 

  0

28

114
n
n

n

L




 ;              2
0

1 4 12,148

2, 6294

n

nn
n

L





 ; 
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  0

24

118
n
n

n

L




 ;              2
0

1 8 186,152

44, 3418

n

nn
n

L





 ; 

 

             0

496

23916

n
n

n

L




 ;            2
0

1 16 63, 643, 408

15, 601, 68116

n

nn
n

L





 ; 

 
 Next we explore the Pell implications of formulas (3) and (4). 
 
3. Pell Versions 
 

 Let k and λ be arbitrary positive integers, and 1 2w x  . With the 

gibonacci-Pell relationship  (2( ))n nb gx x , it follows from equations (3) and (4) 

that  
 

   
2

1 1 1

1

2 1

k k r

n rrn r
n r r

w
p

w w xw



  

 
 

   
                               (5) 

 

   

2

2
0 1 1

1 2 2

2 1

k k r r

nrn r r
n r r

w xw
q

w w xw



  

  
 

    
  

                           

(6) 

respectively. 
 
 With  (1) 1 2W w    , they yield 

 

2
1 1 1

1

2 1

k k r

n rrn r
n r r

W
P

W W W



  

 
 

   
    

2

2
0 1 1

1

2 1

k k r r

nrn r r
n r r

W W
Q

W W W



  

  
 

    
    

respectively. 
 

 In particular, with 1  , we then have 
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                        1

3

23

n
n

n

P




 ;                    2
1

1 3 51
;

313

n

nn
n

P







  

 

    
2

3
1

1 3 3 35,211

20, 8943

n n

nn
n

P




 
 ;       

2 3

4
1

1 3 3 3 56, 743, 098

33, 419, 9533

n n n

nn
n

P




  


 

 

                        0

3
3

n
n

n

Q




 ;                  2
0

1 3 129
;

313

n

nn
n

Q







  

 

    
2

3
0

1 3 3 54, 354

10, 4473

n n

nn
n

Q




 
 ;     

2 3

4
1

1 3 3 3 207,726, 726

33, 419, 9533

n n n

nn
n

Q




  


 

 

 With 2  , they yield 

 

                   
1

5

145

n
n

n

P




 ;              2
1

1 5 115

2875

n

nn
n

P





 ;  

 

2

3
1

1 5 5 1, 803,885

4, 412, 3385

n n

nn
n

P




 
 ;  

2 3

4
1

1 5 5 5 176,285,907,310

429,512, 424,1035

nn n

nn
n

P




  
 .   

 

                  
0

10

75

n
n

n

Q




 ;          2
0

1 5 710

2875

n

nn
n

Q





 ;  

 
2

3
0

1 5 5 7,682,020

2,206,1695

n n

nn
n

Q




 
 ;  

2 3

4
0

1 5 5 5 1,925,792,328,740
;

429,512,424,1035

nn n

nn
n

Q




  
  

 

 Finally, we pursue the Jacobsthal versions of formulas (3) and (4). 
 
4. Jacobsthal Implications 
 
 Using the gibonacci-Jacobsthal relationships, we now explore the Jacobsthal 
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consequences of  formulas (3), and (4). In the interest of brevity and clarity, we let A 

denote the left side of the given equation and B its right side, and LHS and RHS the 

left-hand side and right-hand side of the corresponding Jacobsthal formula  to be 

found. 

 4.1 Jacobsthal Version of Formula (3): Proof: Let 
1 (1 )

k
n

rn
r

f
A

x




 . 

Replacing  x  with 1/ x  in A, and then multiplying the numerator and denominator 

of the resulting expression with ( 1)/2nx   , we get 
  

   

[( 1) 1]/2 ( 1)/2

( 1)/2
1 ( )

[ ]r n nk

n rn
r

x x fnA
x x 

  







   

 

      
[( 1) 1]/2

1 ( )

k r n
n

rn
r

x J

x 

 






 ; 

 

          
[( 1) 1]/2

1 1

LHS
( )

k k r n
n

rn
n r

x J

x 

 

 

  
  

  
  , 

 

where  1/( )n nf f x  and ( )n nJ J x . 

 

 Next we let 
2

1

(1 )
.

(1 ) (1 ) 1

k r

r r
r

x
B

x x x



 




   
  Replacing x  with 1/ x  

in B, this  yields 

       
3/2

( 1)/2 2 ( 3)/2
1

( )
.

( ) ( )

k r

r r r r
r

x x
B

x x x x x



  





   
  

 

  
( 1)/2 2 ( 1)/2

1

( )
RHS .

( ) ( )

k r

r r r r
r

x x

x x x x
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 Equating the two sides gives the desired Jacobsthal version: 

 

       
( 1) /2

( 1)/2 2 ( 1)/2
1 1 1

( )
.

( ) ( ) ( )

k k rr n

nrn r r r r
n r r

xx
J

x x x x x



  

 

 
  

  
 

      
          (7) 

 

where  ( )n nJ J x  .           □ 

 

 In particular, this yields 

 

  1

2
2

n
n

n

F




 ;  2
1

1 2 26

112

n

nn
n

F





 ;  [2]              

 

  1

3

53

n
n

n

F




 ;  2
1

1 3 258

3553

n

nn
n

F





  

 
as found earlier. 
 

 Next we explore the Jacobsthal counterpart of equation (4). 
 

 4.2 Jacobsthal Version of Formula (4): Proof: We have 
1 (1 )

k
n

rn
r

f
A

x




 . 

Replace  x  with 1/ x   in  A, and then multiply the numerator and denominator of 

the resulting expression with ( 1)/2nx  . This yields 
 

   

( 1) /2 /2

1

( )

( )

r n nk

rn
r

x x lnA
x 








   

 

      
( 1) /2

1 ( )

k r n
n

rn
r

x j

x 








 ; 

 

          
( 1) /2

0 1

LHS
( )

k k r n

nrn
n r

x
j

x 
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where 1/( )n nl l x  and ( )n nj j x . 

 

 We have  
2

1

2(1 )

(1 ) (1 ) 1

k r

r r
r

x x
B

x x x



 

 


   
  Replacing  x with 1/ x , this 

yields 
2 ( 1)/2

2 ( 1)/2 /2
1

2( )
RHS .

( ) ( )

k r r

r r r r
r

x x

x x x x



 






 


   
  

 

 Combining the two sides, we get the desired Jacobsthal counterpart: 

 

2 ( 1)/2( 1) /2

2 ( 1)/2 /2
0 1 1

2( )
.

( ) ( ) ( )

k k r rr n

nrn r r r r
n r r

x xx
j

x x x x x



  

 


  

   
 

      
    

 

where  ( )n nj j x .                      □ 
 

 In particular, this yields 

 

  0

6
2

n
n

n

L




 ;  2
0

1 2 94

112

n

nn
n

L





 ;  [2]              

 

  0

3
3

n
n

n

L




 ;  2
0

1 3 366

713

n

nn
n

L





 , 

as found earlier. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x f x , the nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. They can also be defined by the Binet-like 

formulas. Clearly, 1( )n nf F ,  the  nth  Fibonacci number; and 1( )n nl L , the nth 

Lucas number [1,  4]. 
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 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

( )( 2)n np fx x  and ( )( 2)n nq lx x , respectively. In particular, the Pell numbers 

nP  and Pell-Lucas numbers nQ  are given by 1 2( ) ( )n n nP p f   and

2 1 2( ) ( )n n nQ q l  , respectively [3, 4]. 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let n ng f  or nl , and n nb p  or nq . 

 

 It follows by the Binet-like formulas that 
1

lim n

n n

f

l



,  lim n

n n

l

f
  ,

1
lim

2
n

n n

p

q E
 , and lim 2n

n n

q
E

p
 , where 2 4x    and 2 1E x  . 

 
 1.1 Two Fundamental Gibonacci Identities: It follows by the Binet-like 

formulas for  nf  and nl  [4] that 

 

   2 2( 1)    n k
n k n k n kf f f l

    ;     (1) 

   2 2( 1)   n k
n k n k n kf f f l

    .     (2) 

 These two results play a pivotal role in our discourse. With this background, 
we now begin our explorations. 
 
2. Generalized Gibonacci Polynomial Products 
 

 We split our discussion into two cases, depending on the parity of k in 

identities (1) and (2). 
 

 2.1 A Generalization with k Odd: When k is odd, identities (1) and (2) 

yield 

2(2 ) 2 2 2   n k n k n kf f f l   ;     (3) 

   2(2 ) 2 2 2  n k n k n kf f f l   .     (4) 
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 With these two identities, we now establish the first result. 
 

 Theorem 1: Let k be an odd positive integer. Then 

 

2 1

2 1( 1)/2 1
1,odd

2(2 ) 2

2(2 ) 2

k
kr

rn k r
k

n k

n k

f

f

ff

f l




  



 


       (5) 

 Proof: Using recursion [4], we will first establish that 

 

  2 1 2 2

2 1 2 2( 1)/2 1 1
1,odd

2(2 ) 2

2(2 ) 2

m k k
r m r k

r m r kn k

n k

r
k

n k r

f l

l

f

f f f

f
  

     


 



   .                (6)

      

 To this end, we let LHSmA   and   RHSmB  . Using identities (3) and 

(4), we then have 

    
2 2( 1)2 2

1 2 2 2 2( 1)1 1

k k
m r km m r k

m m r k m r kr r

lB l

B f f

   

      

    

   2 2

2 2

m k m k

m k m k

f l

f l
 

 

  

   
2(2 ) 2

2(2 ) 2

m k

m k

f f

f f





 

   
1

m

m

A

A 

 . 

 
 Recursively, this implies that 
 

        

( 1)/21

1 ( 1)/2

km m

m m k

AA A

B B B



 

     

 

   

2( 1) 2 ( 1) 22 1

2( 1) 2 2 1 ( 1) 21 1

k k
k k k r kr

k k r k r kr r

f f fl

f f f l
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   1 2 1 1 2 1

1 2 1 1 2 1

k k

k k

f l l f

l f f l
 

 

      

 
   1.   
 

 Consequently, m mA B , confirming formula (6). 

 

 Since lim n

n n

l

f
  , it follows from equation (6)  that 

 

  

2 1

2 1( 1)

2(2 ) 2

2(2 ) 2/2 1 1
1,odd

k k
r

rn k r r
k

n k

n k

f f

f f

f

l




   



  


  

 

  
       

          

            2 1

2 11

k
kr

rr

f

l




   , 

as desired.            □ 
 
 In particular, we have 
 

   51 3 5 7 9

1 3 5 7 93

2(2 ) 10

2(2 ) 10

;
n

n

n

f f f f f

l

f

f l

f

l l lf








 


  

 

   
2(2 )

2(2 )

1 3 5 7 9

1 3 5 7 93

55

55
25 5

n

n

n

F F F F F

L L L L L

F

F






 


 . 

  

 With k odd, equations (1) and (2) also yield 

 

2(2 1) 2 2 1 2 1   n k n k n kf f f l      ;    (7) 

  2(2 1) 2 2 1 2 1  n k n k n kf f f l      .    (8) 

 

 They help us establish the next result. 
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 Theorem 2: Let k be an odd positive integer. Then 

   2

2( 1)/2

2(2 1) 2

2(2 1 1
d

)
,o

2
1 d

1
k

r

k
rn

n

k
k

k

n k r

f lf

f f f



  













  .                        (9)  

  
 Proof: Again, using recursion [4], we will first confirm that 
 

  2

2( 1)/2 1 1
1,od

2(2 1) 2 2 (2 1)

2(2 1) 2 2 (2 1)
d

m k k
r

rn k r

n k

r
k

m r k

n k m r k

f f f

f f

l

f l

 

  

 

 


 

 



   .             (10) 

 

 Suppose LHSmA   and   RHSmB  . Using identities (7) and (8), we then 

get 

     
1 1

2 (2 1) 2 (2 1)

2 (2 1) 2 (2 1)1

k
m r k m r k

m r k m r k

k
m

m r r

B

B

f l

l f

   



 

      

     

   

2 1 2 1

2 1 2 1

m k m k

m k m k

f l

f l
   

   

  

   
2(2 1) 2

2(2 1) 2

m k

m k

f f

f f









 

   
1

m

m

A

A 

 . 

 
 Recursively, this yields 
 

        

( 1)/21

1 ( 1)/2

km m

m m k

AA A

B B B



 

     

 

   

2( 2) 2 ( 1) (2 1)2

2( 2) 2 2 ( 1) (2 1)1 1

k k
k k k r kr

k k r k r kr r

f f lf

f f l f
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   2 2 2 2 2 2

2 2 2 2 2 21 1

k k
k r k

k r kr r

f l f l

f l l f
 

  

      

   1.  

 Consequently, m mA B , confirming formula (10). 

 

 The given result now follows from equation (10), as desired.     □ 

 

 Equation (9) yields 

 

   

2(2 1) 10

2(2

2 4 6 8 10

5
2 4 6 8 103 1) 10

1
;

n

nn

f l l l l l

f f f f f

f

f f






 



  

 

   
2(2 1)

2(

2 4 6 8 10

2 4 6 8 11) 03 2

55

55

5

125n

n

n

L L L L L

F F F F F

F

F









 



 . 

 
 2.2 A Gibonacci Delight: Equation (5), coupled with (9), yields a delightful 
consequence: 
 

    
1 ( 1)/2

2(2 )

( 1)/2
1,odd 1,odd 1,od

2 2(2 1) 22 2

2 2 2(2 ) 2 2(2 1)

d

2n k n k n k
k k

n k n kn k

n k n k n k

k

f f f ff f

f f f f f f





  

     
  

 




 
     

 

      2 1 2

2 1 21 1

k k
r r

r rr r

f l

l f


 

   .                (11)  

 
 This yields 

   2 1 2

2 1 21 1 1
1,od

2

2 2
d

2
k k

r r

r rn k r r

n k

n k
k

F F

F

F L

L FF




   


 



     

 

                    

1 3 5 7 9 2 4 6 8 10

1 3 5 7 9 2 4 6 8 10

2

6 2

55

55
.n

nn

F F F F F L L L L L

L L L L L F

F

F F F FF
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 We now turn to the case k with even parity. 

 

 2.3 A Generalization with k even: When k is even, identities (1) and (2) 

yield  

  
2(2 ) 2 2 2   n k n k n kf f f l   ;     (12) 

  2(2 ) 2 2 2  n k n k n kf f f l   .                   (13) 

respectively. 
 
 With these two identities at our disposal, we now establish the next result. 
 

 Theorem 3: Let k be an even positive integer. Then 
 

   2

2/2 1 1
,2

2(2 ) 2

2(2 ) 2

even

1
k

r

k
rn k

k

n k

rn k

f f

f

l

f f



  









                                      (14) 

 

 Proof: With recursion [4], we will now establish that 
 

  
2(2 ) 2

2(2

2

) 2

2 2

2 2 2/2 1 1 1
,2 even

m
n k

n

k k
r m r k

r m r kn k r

k

k r

f f

f

f

f lf

l  

    



 



   .              (15) 

 

 To  begin with, LHSmA   and   RHSmB  .  Using identities (12) and (13), 

we then have 

       
2 2( 1)2 2

1 1 12 2 2 2( 1)

m r km r k

m r k m r

k

r k

k
m

m r

lf

l f

B

B

   

     

     

   

2 2

2 2

m k m k

m k m k

f l

f l
 

 

  

   
2(2 ) 2

2(2 ) 2

m k

m k

f f

f f





 

   
1

m

m

A

A 

 . 



26 THOMAS KOSHY  

 Recursively, this yields 
 

        

( /2 1)1

1 ( /2 1)

km m

m m k

AA A

B B B



 

     

   

2( 2) 2 2 2 2 4

2( 2) 2 2 2 2 41 1

k k
k k r k r

k k r k rr r

f f f l

f f l f

  

   


  


 

 

   2 2 2 2 2 2

2 2 2 2 2 21 1

k k
k r r

k r rr r

l f f l

f l l f
 

  

       

   1.  

 

 Thus, m mA B , confirming formula (15). 

 

 Since  
1

lim n

n n

f

l



, the given result follows from equation (15), as  

desired.             □ 
 
 In particular, we have 
 

     2 42(2 ) 12

2(2 ) 12

6 8 10 12

6
2 4 6 8 10 124

1

n

n

n

l l lf f l l l

f f ff ff f f








 


   

  

 
 

   2 42(2 )

2(2

6 8 10 12

2 4 6 8 10) 124

1144

144 125

n

nn

L L L L L L

F F F F F

F

F F





 



 . 

 
 Next, we explore the counterpart of Theorem 2, using the identities 
 

2(2 1) 2 2 1 2 1   n k n k n kf f f l      ;    (16) 

  2(2 1) 2 2 1 2 1  n k n k n kf f f l      .                  (17) 

where k is an even positive integer. 
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 Theorem 4: Let k be an even positive integer. Then 

 

   
2(2 1) 2

2(2 1)

2 1

2 1/2 1
,2 e n

2

ve

.
k

kr

rn k r

k

n k

n k

f

l

f f

f f








 







                                (18) 

 
 Proof: With recursion [4], we will first confirm that 
 

  
2 (2 12(2 1) 2

2(2 1) 2

)2 1

2 1 2 (2 1)/2 1 1
,2 even

m k k
m r kr

r m r

n k

kn k r r

k

n k

f f

f f

lf

l f

  

     







 



                         (19) 

 Once again, we let LHSmA   and   RHSmB  . Using identities (16) and 

(17), we then get 

     
1 1

2 (2 1) 2 (2 1)

2 (2 1) 2 (2 1)1

k
m r k m r k

m r k m r k

k
m

m r r

B

B

l f

f l

   



 

      

     

   

2 1 2 1

2 1 2 1

m k m k

m k m k

f l

f l
   

   

  

   
2(2 1) 2

2(2 1) 2

m k

m k

f f

f f









 

   
1

m

m

A

A 

 . 

 

 Recursively, this yields 
 

        

( /2)1

1 ( /2)

km m

m m k

AA A

B B B




     

   

2( 1) 2 2 1 2 1

2( 1) 2 2 1 2 11 1

k k
k k r r

k k r rr r

f f l f

f f f l

  

   


  


 

 

   

1 2 1 2 1 2 1

2 1 1 2 1 2 11 1

k k
k r r

k r rr r

f l l f

f l f l
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   1 2 1 1 2 1

1 2 1 1 2 1

k k

k k

f l l f

l f f l
 

 

      

   1.  
 

 Consequently, m mA B , confirming formula (19). 

 

 Since 
1

lim n

n n

f

l



the given result follows from equation (19). 

 
 In particular, we have 
 

     61 3 5 7 9 11

1 3 5 7 9 113

2(2 1) 12

2(2 1) 12

n

n n

f f f f f f

l l l l l

f f

lf f




 





    

 

   
2(2 1)

2(2 1)

31 3 5 7 9 11

1 3 5 7 9 113

144

144
5

n

n

n

F F F F F F

L L L L L

F

F L















 . 

 
 2.4 A Second Gibonacci Delight: It follows from Theorems 3 and 4 that 
 

 
1 /2 1 /2 1

,2 even , ,2 even 2 eve

2(2 ) 2 2(2 1) 22 2

2 2 2(2 ) 2 2(2 1) 2

n

n k n k

n k n kn k

n k nn k n
k k

kk

k

f f f ff f

f f f f f f

  

    












 




 
    

   2 1 2

2 1 21 1

k k
r r

r rr r

f l

l f


 

   .                           (20)  

 
 This implies 
 

2 1 2

2 1 21 1 1
,2 eve

2

2
n

2

2

;
k k

r r

r

n k

n rn k r r
k

k

F L

L

F

F F

F

F




   


 



    

 

2

2

6 6
2 1 2

2 1 27 1 1

144

144
r r

r rn r r

n

n

F L

L F

F

F




  




    . 
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  2.5 A Gibonacci Treasure: Combining equations (11) and (20), we get 
 

   2 1 2

2 1 2

2 2

2 21 1 1

1

k k
r r

r rn k rn k r

k

n kf f lf

f f l f




   







   .                             (21) 

 

 In particular, we have 

 

 2 2

2

1 2

1 22 2nn

nf f

f f

f l

l f





 



 ;   1 3 2 4

1 3 2 43

2 4

2 4n

n

n

f f l l

l

f f

f lf f f





 



 ; 

 

 1 3 5 2 4 62 6

2 6 1 3 5 2 4 64n

n

n

f f f l lf f

f f

l

l l l f f f








  ;  1 3 5 7 2 4 6 8

1 3 5 7 2 45

2

6

8

8 82

n

n n

f f f f l l l l

l l l l f f f f

f f

f f





 



 . 

 
        We also have 
 

2 1 2

2 1 2

2 2

2 21 1 1
1

k k
r r

r rn k rn k r
k

n kF F LF

F F L F




   






   , 

and hence [2, 4] 

2

22

1
3

1
n

nn

F

F









 . 

3. Alternate Forms 
 

 Using the identity 2 2 2 4( 1)  n
n nl f     [4], we can rewrite equations (11), 

(20), and (21) in terms of both  nf   and nl .  For example, equation (21) yields 

 

  
2 2 2 2 2
2 2 2 2

2 2 2
1 12 2 2 2

1 1

4

( ) ( )

n k n k

n k n kn k n k
k k

l f f f

f f f f

 

   
 

   


  
    

 

    2 1 2

2 1 21 1

k k
r r

r rr r

f l

l f


 

   .        (22) 
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 This implies, 
 

2 2
2 2 2 1 2

2
2 1 21 1 12 2

1

5 4

5( )

k k
n k r r

r rn k r rn k
k

L F F L

L FF F




   


 
 


   . 

  
 In particular, we then have 

    
2
2

2
2 2

9
3

5( 1)

n

n n

L

F









 ; 

 

    
2
2

2
3 2

49 7

25( 3)

n

n n

L

F









 .  

 

4. Pell Implications 
 

 Using the relationship (2( ))n nb gx x , we can find the Pell versions of 

equations (4) through (22). In the interest of brevity, we will showcase only those of 
(21) and (22): 

   22 2

2

1 2

2 1 21 1 12
1

;
k k

r r

r rn k r

n k

n k r
k

p p p

pp p

q

q




   


 



     

   
2 2 2
2 2 2 1 2

2 2
2 1 21 1 12 2

1

4 4
,

4 ( )

k k
n k r r

r rn k r rn k
k

q E p p q

q pE p p




   


 
 


     

respectively. 
 
 They yield 
 

   22 2

2

1 2

2 1 21 1 12
1

;
k k

r r

r rn k r

n k

n k r
k

P P P

PP P

Q

Q




   


 



     

        
2 2
2 2 2 1 2

2
2 1 21 1 12 2

1

2 1

2( )

k k
n k r r

r rn k r rn k
k

Q P P Q

Q PP P




   


 
 


   , 

respectively. 
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 In particular, we then get 
 

    2

22

2 3

2 2
n
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 ; 

 

    
2
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2
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 .   
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Abstract: Taking p as the order of all elements, except the identity one, of 

some finite non-product groups 0 1, ,..., , ...nG G G  arranged in successive 

order, a theorem is proved regarding the existence, order and abelianity of 
the groups and also the case of the product groups is discussed separately. 
 
Keywords: Klein 4-Group, Equi-Ordered Elements, Finite Non-Product 

and Product Group. 
 
Mathematical Subject Classifications No.: 20D05. 

 
1. Introduction 
 
  The concept of group theory was originated on the basis of axiomatic 
definition and first appeared through permutation groups in the 2nd half of the 
eighteenth century. In 1854, Cayley proved that a group need not be a permutation 
group or even finite group and the abstract notion of a group thus appeared first [4]. 
 
 Many authors [1, 2, 4] had made several attempts to develop the subject. 
Euler considered algebraic operations on numbers modulo an integer and Gauss 
established some properties of cyclic and, in general, of abelian groups and also 
explicitly stated the associative law on composition. Galois [4, 6] was the first to use 
the word ‘group’ and his contribution on group theory was published in 1846 by 
Liouville. Now Galois group is also called the permutation group. Moreover, the 
author introduced the notion of normal subgroups and honoured as the first 
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mathematician pioneering in group theory. In 1870, Kronecker [6, 7] gave the 
definition of abelian group to generalize Gauss’s work, but it was not in conformity 
with the definition of permutation group. Weber also gave a similar definition in 
1882 which involved the cancellation property. The formal axioms and the 
corresponding definitions are the basic algebraic structure of ‘group’ in modern 
algebra. 
 
 Klein [3] worked on the function theory and non-euclidean geometry 
connecting geometry and group theory and solved the general equations of the fifth 
degree using the group of the icosahedron for which the word ‘vierergruppe (four-
group)’ was used here. Later vierergruppe was transformed into Klein 4-group. 
 
 Lagrange [5] investigated that the order of a subgroup of a finite group is a 
divisor of the groups order. However, Sylow [5] showed the inverse of Lagrange 

theorem for prime integer in 1959. The author illustrated that for a prime p, if mp   

(m is natural number) is a divisor of the order of a group G, then G contains a 

subgroup of order mp . 

 
 In the present paper we study some results on the order and abelianity of the 
groups containing equi-ordered elements, except the identity. The paper is an 
extension and generalization of Klein 4-group. From this we can obtain an idea about 
the matter whether it is possible to have the existence of a group with elements of 
order 2 or more like Klein 4 group or more ordered groups. 
 
2. Notations 
 

 ( ) ,  (  ( ,. 0,1,2,  . .) . )p
n nG  , is a finite non-product group having all elements 

(except identity element) of order p satisfying ( ) ( ) ( )
0 1( ) ( ) ( )p p p

kG G G          

and there does not exist any group containing all elements of order p other than 

identity and having order lying between ( )p
kG  and ( )

1
p

kG   , k .  For our convenience, 

we shall use the notation nG instead of ( )p
nG . 

 

 The identity element of the group nG  is denoted by ‘e’. 

 

 The set 2 1,   ,  ..{ }.,   pa a a    is denoted by a  . 



3. Definitions 
 

 I. 1st category box: The set consisting all elements, except e, of the group 

nG  is called the nth order 1st category box (box-I ) of nG  and is denoted by ( )nB . 

 

 II. 2nd category box:  The composition of two different nth order box-I, say

( )n
iB and ( )  ( ) n

jB i j  is called the nth order 2nd category box (box-II ) and is 

denoted by ( )
,
n

i jB . 

 

 III. Power box: A box is said to be power box if all its elements can be 

expressed as some power (<  )p  of an element of this box. For example, all (0)B  

type boxes or a  na G  , are power boxes but any ( ),   1kB k   type box is not 

power box. 
 

 IV. Component:  The disjoint ( 1)nB  type boxes in a ( )nB type box are 

called the components of that box. 

 
4. Lemmas 
 

 Lemma 1: p is prime. 

 

 Proof: If possible, let ( , )p mn m n p   and order of all elements are p. 

Thus, for some na G , ( )p mn m na e a e a e       the order of ma  is

(< )n p , a contradiction, as all elements are of order p. Therefore p is prime. 

 

 Lemma 2:  0G  is cyclic as well as abelian. 

 

 Proof: For 2 1
0 0,{ , ,  ...,   , }p pa G a a a a e G    and clearly 0G  is cyclic 

as well as abelian. 
 

 Lemma 3:  All elements except e of 0G  , are generators of 0G . 
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 Proof:  For any (< )r p , r is not a divisor of p, so that for 0( )a e G  , the 

order of ra  is p. Therefore, the group 2 ( 1), ,  ...{ }, ,r r p r pra a a a e   is equivalent to 

2 ( 1), ,  ...,{ , }p pa a a a e  or 0G  for all ( )r p  and consequently ra  is a generator of 

0G  for all ( )r p . 

 

 Lemma 4: Let the sets { }i ia ,{ }i ib  and { }i ic  indicate same ordered 1st 

category boxes.  If 1 1 1 a b c  then, 1t sa b c  or 1 t sa b c  for any t, 1s  . 

 

 Proof:  There exist jc , { }k i ic c  such that 1 1s j kc c c c c  . Now if

1 1 1 1t s j ja b c c c c a b   , then 1t ja c a  which is a contradiction because every box 

is well composed (i.e. the composition of any two elements of a box is either an 

element of same box or e). Similarly 1 t sa b c  is contradicted by 1t kb b c . 

 

 Lemma 5:  Two 0th ordered boxes (0)
iB  and (0)

jB  
are either disjoint or 

equivalent. 
 
 Proof: Each of the given two power boxes contain ( 1)p  elements. These 

boxes with e form two cyclic groups. Therefore the groups are either disjoint or 

equivalent and consequently the boxes are of same type. 
 

 Lemma 6: ( )( 0)nB n   is a union of some power boxes. 

 

 Proof: The order of all elements of ( )nB  are p and the number of elements of 

(0)B is ( 1)p  . ( )nB  and {e} form a group with order greater than p so that the 

number of elements of ( )nB are greater than ( 1)p   as 0n  . By composition  

rule, for any ( )( ) na e B  ,  na G  and 2 1, , ...,{ }  p
na a a G   and consequently 

2 1, , ...{ },  pa a a   or ( )na B   .  

 

 Since ( )nB   has more than ( 1)p   elements and a is arbitrary, so 
 

( )n

a
B a   . 
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 Lemma 7: nG  has many power boxes, say, (0)B or ia  , where

1,2, 3,  ...i   . If we consider 1.j ka a a , 2 1
1 1. ,  ..., . p

j l j xa a a a a a   (say) (with 

the help of Lemma 4) then, 
 

1. ,k la a a   ,  ,  ,  ,  
2

1. p
k xa a a  ,   1

1. p
k ja a a  ;  

 

       ,  ,  ,  ,  3
1. p

l xa a a  ,  2
1. p

l ja a a  ,   1
1. p

l ka a a  ; 
 

1.x ja a a ,   2
1.x ka a a ,    3

1.x la a a ,  ,  ,  ,  ,  . 

 

 Similarly in case of the composition of (0). jB a , the first and second 

positions of the elements are interchanged. 
 

 Proof: The proof is trivial. This result shows that if (0)
1.ja B  or (0)

1( ). jB a  is 

complete, then all those elements by which ja  is composed with (0)B are 

automatically completed corresponding to (0)
1B . 

 
5. Theorem 
 

 5.1 Theorem 1: A finite non-product group ( )nG  containing all 

elements, except identity element, of order p is of order 2np , where n is a non 

negative integer. Moreover, the group is abelian.  
  

  Proof: We prove the theorem in the following steps. 
  

 Step 1: Existence and order of  1G   

 

 Noting that 0G  exists and is cyclic, so it is abelian and is of order p i.e. 
02p . 

Thus, it contains only one power box. 
 

  Since 1( )G p , so 1G  must consist of at least two different power boxes, 

say, (0)
11B b    and (0)

22B b   . By closer property, (0) (0)
1 2.B B  is in 1G . Now using 
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Lemma 4, 2 1
1 2 1 2 1 2. , . ,  ..., . pb b b b b b   are all members of ( 1)p  distinct power boxes.      

As the boxes are power boxes and each contains ( 1)p  elements, so by any initial 

assumption for 2 1
1 2 1 2 1 2. , . ,  ..., . pb b b b b b   

satisfying Lemma 4 and Lemma 7, (0) (0)
1 2.B B  

is complete if all elements are commutative. Therefore, we see that, if the elements 

are abelian, (0(0)
1

) (0) (0)
2 1 2. , ,B B B B  and {e} form a group with order 

 


12 2 2

ForNumber of
identityelements

in each b

Number of
power boxes

ox element

( 1) ( 1) 1 1 1p p p p p       
 

. 

 

 Thus, any group described above with order lying between p and 
12p  may 

not exist. Therefore 
12

1( )G p . 

 

 Step 2: Abelianity of 1G   

 

 Now suppose, if possible, that there also exists a non-abelian 1G . Then in 

this 1,  G   at least two elements a, b such that ab ba . Here two cases may arise. 

 
 Case 1: ab  vand ba  are elements of two different power boxes. Let 

ab c , ba d  and we have ad c a  , for 1,2,  ...,( 1)p   .  Then by Lemma 

4, the elements  2 1, ,  ..., pad ad ad   are members of different ( 1)p    power boxes 

and not of a  , c   and d  . Thus, the number of power boxes exceeds the number 

( 1)p  . Again ad d a   and ac c a  , 1,2,  ..  ( ).,( 1)p    and from these we 

get many unequal relations. Therefore, by our assumption the composition table 
cannot be completed by finite number of elements. 
 

 Case 2: ab  and ba  are elements of the same power box. Let 1ab c ,

2ba c   where 1 2,    c c c   . Therefore, we have 2 1 2   c b bc bc   and by Lemma 4, 

2c b  and 2bc  are members of two different power boxes. Thus, the case is 

transformed into Case 1. 
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 Therefore, we conclude that 1G  is abelian. 

 

 Step 3: Abelianity of , ( 1)nG n    

 

 We first show that if ( 1)nG n   exists then it is abelian. 

 

 Consider two elements a, b in ( 1)nG n  . If a and b are elements of the same 

power box, then obviously they are commutative and if not, then , ,a b a b           

and {e} form a 1G  type subgroup of nG . This subgroup is abelian and contains a and 

b and so ab ba  (by step 2). Since a and b are arbitrarily chosen from nG , so all its 

elements are commutative and consequently nG  is abelian. 

 

 Step 4:  Order and existence of , ( 1)nG n   

 

 We have seen that 
02

0( )G p  and 
12

1( )G p . 

  

 Now suppose 2( )
k

kG p . Obviously we have 1( ) ( )k kG G    and in 

1kG   there must exist 2kp  elements which form a kG  type subgroup. So, by 

Lagrange’s theory, 1( ) ( )k kG G  | . Again both of 1( ) ( )k kG G    and 

1( ) ( )k kG G  |  imply 2
1( ) (2 1)

k

kG p    . Thus,   at least two distinct kth 

ordered boxes-I in 1kG  . 

 
 Using the closer property, the combination of these two boxes are also in 

1kG  .  So by Lemma 4, we see that another 2( 1)
k

p   number of disjoint kth ordered 

boxes-I are contained in 1kG  .  

 

 Since all these elements are commutative and all kth ordered boxes-I are the 

union of some power boxes (from Lemma 6), so these 2( 1)
k

p   number of kth 

ordered boxes along with {e} form a abelian group with order 
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12 2 2 2 2

ForNumber of
identityelements

in each box element

Number of
th order
boxes

( 1) ( 1) 1 ( ) 1 1
k k k k

k

p p p p


      
 

 

and no group can be formed with order lying between 2kp
 
and 

12kp


. Thus, by the 

principle of induction we get 2( ) n
nG p . 

 

 We now consider the existence of , ( 2, 3, )nG n   . Forming a group by 

taking only 
22p elements (putting 1k  , in the described 

12kp
   

elements of this 

part), the structure of 2G is shown first. 

 

 There are 2( 1)p  number of distinct (1)B type well-composed boxes say 

(1) (1) (1)
1 2 2 1

, , ,
p

B B B


  each of which has ( 1)p   disjoint power boxes. Suppose 

( 1) ( 1)
(1) (0)

1 1

p p

iji ij
j j

B B a
 

 

     . We now construct (1) 2, 1, 2, ,( 1)iB i p   . Taking 

2 1
1 2 3 1 2 4 1 ( 1)2, , , , p

i i i i i i i i pia a a a a a a a a
    (we may arrange another way 

following Lemma 4), (1)
iB  is complete and the inner composition between the 

elements of (1)
iB  are known for all 21,2, ,( 1)i p  . Now our interest is on 

(1) (1)
1 2.B B  and so following Lemma 4, select 

 

11 21 31,a a a      2
11 21 41a a a ,      ,       1

11 ( 1)121
p

pa a a
 , 

 

11 22 ( 2)1pa a a  ,    2
11 22 ( 3)1pa a a  ,       ,      1

11 (2 )122
p

pa a a  , 

 
                                          
 

11 2( 1) ( ( 1) 3)1p p pa a a   ,  2
11 2( 1) ( ) 1) 4)1,p p pa a a      , ,       

1
11 22( 1) ( 1)1

p
p p

a a a
 

 .  

 

 This choice directly completes (1)
11 2.a B  . But (1)

12 2.a B  is not come out. 
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 Again setting (using  Lemma 4)  12 21 ( 2)2pa a a  ,   2
12 21 ( 3)2pa a a  ,    ,

1
12 (2 )221

p
pa a a  , we  immediately obtain 12 21 13 23 14 5

2
2

. , . , . pa a a a a a              and 

other similar ( 3)p   terms. The last selections give us many restrictions. For 

example, 
 

( 2)3 13 23 11 12 21 22 11 21 12 22 31 12 22( )( ) ( )( ) ( )( )pa a a a a a a a a a a a a a     . 

 

 So that 12 22a a   is neither an element of (1)
3B  nor of (1)

( 2)pB  . Following all the 

restrictions and Lemma 4 we can set 12 22 12 23 12 2( 1). ,   . , ...  . pa a a a a a        and

(1) (1)
1 2.B B  i.e. the box (1)

1,2B  is automatically completed. Now completed. Now 

commutative property and Lemma 7 complete all boxes 
(1) 2
, ; , 1,2 ,( 1),i jB i j p i j   . Therefore the formation of 2G  is shown and 

22
2( )G p . 

 

 Similarly we can show a group 3G  such that 
32

3( )G p . In this case, we 

have to form a group by 
22(   1)p   well-composed disjoint (2)B  type boxes each of 

which has 2( 1)p   number of (1)B type boxes. Following the above rules and steps, 

at least a 2nd ordered 2nd category box can be filled up and that box completes all 

other. In the successive process we can form the groups 4 5, ,.., ,...nG G G  with above 

described order. 
 
 This proves the theorem. 
 

  5.2 Theorem 2: If ( ,.)G is a finite product group, where 

...i j xG G G G     and each iG  contains all elements of order p except identity, 

defined as  
  

. ( , ,... ).( , ,... ) ( . , . ,... . ) for any  , , , ,i j x i j x i i j j x x i i i ia b a a a b b b a b a b a b a b G a b G     , 

 

then ( ) ( ) ( ) ... ( )i j xG G G G       . 
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 Proof: Obviously G contains all elements of order p except identity and 

theorem 2 immediately follows from theorem 1. 
 
 6. Conclusions 
 
 Here we used four steps to prove the theorem 1. The first two steps show the 

existence, order and abelianity of 1( )G , whereas last two steps are used to prove 

(with the help of previous steps) the same for , 1nG n  , due to dissimilarities 

between 1( )G  and , 1nG n  . 

 
  Theorem 2 is elementary, as it is well known that the order of a product 
group is equal to the product of the order of each individual group, so its proof is 
obvious. 
 

 It is not possible to extend a group composing mG  and nG   for m n . So 

any group having order mp  (p is prime), not of the form 2np is either a cyclic group 

or a product group like i j xG G G   . In both cases the group is abelian. This 

shows that Sylow subgroup is abelian. 
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PAIR MEAN CORDIAL LABLEING OF 
SOME CORONA GRAPHS 
 

 
 
 
 
 
 

Abstract: Let a graph � = (�,�) be a (�,�) graph. Define 

 � = �

�

�
     � �� ����

�� �

�
  � �� ���,

� and � = {± 1,± 2,… .,± �} called the set of labels. 

Consider a mapping � ∶� → �  by assigning different labels in �  to the 

different elements of � when � is even and different labels in �  to 

 � 1 elements of � and repeating a label for the remaining one vertex 

when p is odd. The labeling as defined above is said to be a pair mean 

cordial labeling if for each edge �� of �, there exists a labeling 
�(�)��(�)

�
 �� �(�) + �(�) is even and 

�(�)��(�)��

�
 �� �(�) + �(�) is odd 

such that  �����
����

� �≤ 1 where ����
 and ����

�  respectively denote the 

number of edges labeled with 1 and the number of edges not labeled with 1. 

A graph � for which there exists a pair mean cordial labeling is called pair 

mean cordial graph. In this paper, we investigate the pair mean cordial 

labeling of some corona graphs like �� ⊙ ��, �� ⊙ 2��, �� ⊙ �� ,� � ⊙

�� � � ⊙ 2��, � � ⊙ ��, gear graph, �� ⊙ ��, �� ⊙ 2�� and �� ⊙ ��. 

 

Keywords: Ladder Graph, Wheel Graph and Gear Graph. 

 

Mathematic Subject Classification No.: 05C78. 

 



46  R. PONRAJ AND S. PRABHU 
  

 

1. Introduction 

 

 In this paper, we consider only finite, simple and undirected graphs. For 

basic notation and terminology in graph theory we refer to F. Harary [3]. A detailed 

survey of various graph labeling is explained in Gallian [2]. The concept of cordial 

labeling was introduced by I. Cahit [1]. Ponraj et al. [6] discussed pair difference 

cordial labeling of some corona related graphs. We have been introduced the concept 

of pair mean cordial labeling in [4] and investigate pair mean cordiality of some 

snake graphs in [5]. In this paper, we investigate the pair man cordial labeling of 

some corona graphs like  �� ⊙ ��, �� ⊙ 2��, �� ⊙ ��,� � ⊙ ��, � � ⊙ 2��, 

� � ⊙ ��, gear graph, �� ⊙ ��, �� ⊙ 2�� and �� ⊙ ��. 

 

2. Preliminaries 

 

 Definition 2.1: Let �� = (��,��) and �� = (��,��) be two graphs. The join 

�� + �� as �� ∪ ��.  Together with all the edges joining vertices of �� to the vertices 

of ��. 

 

 Definition 2.2: The corona graph �� ⊙ �� is the graph obtained by taking 

one copy of  �� and � copies of �� and joining ��  vertex of �� with an edge to every 

vertex in the  ��  copy of ��, where �� is graph of order �. 

  

 Definition 2.3: The ladder �� is the product of �� × �� with 2� vertices and 

3� 2 edges. 

 

 Definition 2.4: The graph � � = �� + �� is called the wheel graph. 

 

 Definition 2.5: The gear graph �� is obtained from the wheel � � by adding 

a vertex between every pair of adjacent vertices of the cycle ��. 

 

3. Pair Mean Cordial Labeling 

 

 Definition 3.1: Let a graph � = (�,�) be a (�,�) graph. Define 

 � = �

�

�
     � �� ����

�� �

�
  � �� ���,

� and � = {± 1,± 2,… .,± �} called the set of labels. Consider a 
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mapping �:� → �  by assigning different labels in �  to the different elements of � 

when � is even and different labels in �  to � 1elements of � and repeating a label 

for the remaining one vertex when p is odd. The labeling as defined above is said to 

be a pair mean cordial labeling if for each edge �� of �, there exists a labeling 
�(�)��(�)

�
 �� �(�) + �(�) is even and 

�(�)��(�)��

�
 �� �(�) + �(�) is odd such 

that �����
����

� �≤ 1 where ����
 and ����

�  respectively denote the number of edges 

labeled with 1 and the number of edges not labeled with 1. A graph � for which there 

exists a pair mean cordial labeling is called pair mean cordial graph. 

 

 Theorem 3.2: The ladder graph �� is pair mean cordial [4]. 

 

 Theorem 3.3: The wheel graph � � is pair mean cordial [4]. 

 

 Theorem 3.4: The graph �� ⊙ �� is pair mean cordial for all � ≥ 2. 

 

 Proof: Let �(�� ⊙ ��) = {��
�,��,��,��:1 ≤ � ≤ �} and  

�(�� ⊙ ��) = {��
�����,������:1 ≤ � ≤ � 1} {��

���,����,����:1 ≤ � ≤ �}. Then 

there are 4� vertices and 5� 2 edges. This proof is divided into two cases: 

 

 Case (i) � is odd: First assign the labels 1, 5,… , 2� + 1 to the vertices 

��,��,… ,�� respectively. Then we assign the labels 4,8,… ,2� 2 respectively to 

the vertices ��,��,… ,��� �. We assign the labels 2,6,… ,2� to the vertices 

��,��,… ,�� respectively. Also we assign the labels 3, 7,… , 2� + 3 respectively 

to the vertices ��,��,… ,��� �. Next we give the labels 3,5,… ,2� 1 to the vertices 

��,��,… ,��� � respectively. Assign the label 1 to the vertex ��. Finally we give the 

labels 2, 4,… , 2� respectively to the vertices ��,��,… ,��. Hence ����
=

��� �

�
 

and  ����
� =

��� �

�
. 

 

 Case (ii) � is even: As in Case (i), assign the label to the vertices 

��,��,1 ≤ � ≤ �. Assign the labels 1, 5,… , 2� + 3 to the vertices 

��,��,… ,��� � respectively. Then we assign the labels 4,8,… ,2� respectively to the 

vertices ��,��,… ,��. Also we assign the labels 2,6,… ,2� 2 to the vertices 

��,��,… ,��� � respectively. Finally we assign the labels 3, 7,… , 2� + 1 

respectively to the vertices ��,��,… ,��. Hence,  ����
=

��� �

�
= ����

� . 
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 Theorem 3.5: The graph �� ⊙ 2�� is pair mean cordial for all � ≥ 2. 

 

 Proof: Let �(�� ⊙ 2��) = {��
�,��,��,��,��,��:1 ≤ � ≤ �} and  

(�� ⊙ 2��) = {��
�����,������:1 ≤ � ≤ � 1} {��

���,����,����,����,����:1 ≤ � ≤ �}.  

 

 Then there are 6� vertices and 7� 2 edges. This proof is divided into two 

cases: 

 

 Case (i) � is odd: First assign the labels 1, 4,… , 3� + 2 to the vertices 

��,��,… ,�� respectively. Then we assign the labels 4,10,… ,3� 5 respectively to 

the vertices ��,��,… ,��� �. We assign the labels 5, 11,… , 3� + 4 to the 

vertices ��,��,… ,��� � respectively.  Also we give the label 1 to the vertex ��. Next 

we give the labels 2,5,… ,3� 1 respectively to the vertices ��,��,… ,��. We assign 

the labels 3,6,… ,3� to the vertices ��,��,… ,�� respectively. Then we give the labels 

2, 8,… , 3� + 1 respectively to the vertices ��,��,… ,��. We give the labels 

6, 12,… , 3� + 3 to the vertices ��,��,… ,��� � respectively.  Then we assign 

the labels 3, 9,… , 3� respectively to the vertices ��,��,… ,��. Finally assign the 

labels 7,13,… ,3� 2 to the vertices ��,��,… ,��� � respectively. Hence, ����
=

��� �

�
 

and ����
� =

��� �

�
. 

 

 Case (ii) � is even: As in case (i), Assign the label to the vertices 

��,��,��,1 ≤ � ≤ �. Assign the labels 4,10,… ,3� 2 respectively to the vertices 

��,��,… ,��� �. Then we assign the labels 5, 11,… , 3� + 1 to the vertices 

��,��,… ,�� respectively.  Now we give the labels 2, 8,… , 3� + 4 respectively 

to the vertices ��,��,… ,��� �. We give the labels 6, 12,… , 3� to the vertices 

��,��,… ,�� respectively.  Then we assign the labels 3, 9,… , 3� + 3 

respectively to the vertices ��,��,… ,��� �. Finally assign the labels 7,13,… ,3� 5 

to the vertices ��,��,… ,��� � respectively. Finally assign the label 1 to the vertex ��. 

Hence,  ����
=

��� �

�
= ����

� . 

 

 Theorem 3.6: The graph �� ⊙ �� is pair mean cordial for all � ≥ 2. 
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 Proof: Let �(�� ⊙ ��) = {��
�,��,��,��,��,��:1 ≤ � ≤ �} and (�� ⊙ ��) =

{��
�����,������:1 ≤ � ≤ � 1}∪ {��

���,����,����,����,����,����,����:1 ≤ � ≤ �} . 

Then there are 6� vertices and 9� 2 edges. This proof is divided into two cases: 

 Case (i) � is odd: First assign the labels 3,6,… ,3� to the vertices 

��,��,… ,�� respectively. Then we assign the labels 2, 8,… , 3� + 1 

respectively to the vertices ��,��,… ,��. We assign the labels 7,13,… ,3� 2 to the 

vertices ��,��,… ,��� � respectively. Next we give the labels 1, 4,… , 3� + 2 

respectively to the vertices ��,��,… ,��. We assign the labels 2,5,… ,3� 1 to the 

vertices ��,��,… ,�� respectively. Then we give the labels 3, 9,… , 3� 

respectively to the vertices ��,��,… ,��. We give the labels 5, 11,… , 3� + 4 to 

the vertices ��,��,… ,��� � respectively.  Then we assign the labels 4,10,… ,3� 5 

respectively to the vertices ��,��,… ,��� �. Now assign the labels 

6, 12,… , 3� + 3 to the vertices ��,��,… ,��� � respectively. Finally assign the 

label 1 to the vertex ��. Hence,  ����
=

��� �

�
 and ����

� =
��� �

�
. 

 

 Case (ii) � is even: As in case (i), Assign the label to the vertices 

��,��,��,1 ≤ � ≤ �. Assign the labels 2, 8,… , 3� + 4 respectively to the 

vertices ��,��,… ,��� �. Then we assign the labels 7,13,… ,3� 5 to the vertices 

��,��,… ,��� � respectively.  We assign the label 3� + 1 to the vertex ��. Now we 

give the labels 3, 9,… , 3� + 3 respectively to the vertices ��,��,… ,��� �. We 

give the labels 5, 11,… , 3� + 7 to the vertices ��,��,… ,��� � respectively.  

Give the label 1 to the vertex ��. Then we assign the labels 4,10,… ,3� 2 

respectively to the vertices ��,��,… ,��� �. Finally assign the labels 

6, 12,… , 3� to the vertices ��,��,… ,�� respectively. Hence, ����
=

��� �

�
= ����

� . 

 

 Theorem 3.7: The graph � � ⊙ �� is pair mean cordial for all � ≥ 3. 

 

 Proof: Let �(� � ⊙ ��) = {�,���,��,��
�:1 ≤ � ≤ �} and (� � ⊙ ��) =

{����,���,����
�:1 ≤ � ≤ �} {������

�:1 ≤ � ≤ � 1}∪ {����
�}. Then there are 

2� + 2 vertices and 3� + 1 edges. This proof is divided into two cases: 

 

 Case (i) � is odd: First assign the labels �,1 to the vertices �,�′ 

respectively. Then we assign the labels 1, 3,… , � + 2 respectively to the 

vertices ��,��,… ,��� �. We assign the labels 3,5,… ,� 2 to the vertices 

��,��,… ,��� � respectively.  Also we give the labels � + 1,� + 1 respectively to 
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the vertices ��� �,��. Next we give the labels 2,4,… ,� 1 to the vertices 

��′,��′,… ,��� �′ respectively. We assign the labels 2, 4,… , � + 3 to the vertices 

��′,��′,… ,��� �′ respectively. Finally we give the labels � 1, � to the vertices 

��� �′,��′ respectively. Hence,����
=

����

�
= ����

� . 

 

 Case (ii) � is even: First assign the labels – � 1,1 to the vertices �,�′ 

respectively. Then we assign the labels 2,4,… ,� respectively to the 

vertices��,��,… ,��� �. We assign the labels 2, 4,… , � to the vertices 

��,��,… ,�� respectively. Next we give the labels 1, 3,… , � + 1 to the vertices 

��′,��′,… ,��� �′ respectively. Finally we assign the labels 3,5,… ,� + 1 to the 

vertices ��′,��′,… ,��′  respectively. Hence, ����
=

��

�
 and ����

� =
����

�
.  

 

 Theorem 3.8: The graph � � ⊙ 2�� is pair mean cordial for all � ≥ 3. 

 

 Proof: Let �(� � ⊙ 2��) = {�,���,�′′,��,��
�,��′′:1 ≤ � ≤ �} and 

(� � ⊙ 2��) = {����,����,���,����
�,���� ′′ ∶1 ≤ � ≤ �} {������

�:1 ≤ � ≤ � 1}∪ {����
�} . 

Then there are 3� + 3 vertices and 4� + 2 edges. This proof is divided into two 

cases: 

 

 Case (i) � is odd: First assign the labels 
����

�
,1,

� ��� �

�
 to the vertices 

�,�′,�′′ respectively. Then we assign the labels 1, 4,… ,
� ����

�
 respectively to the 

vertices ��,��,… ,��. We assign the labels 4,7,… ,
��� �

�
 to the vertices ��,��,… ,��� � 

respectively.  Next we give the labels 2,5,… ,
����

�
 respectively to the vertices 

��′,��′,… ,��′. We assign the labels 2, 5,… ,
� ����

�
 to the vertices 

��′,��′,… ,��� �′ respectively. Now we assign the labels 3,6,… ,
��� �

�
 respectively to 

the vertices ��′′,��′′,… ,��� �′′. Also we give the labels 3, 6,… ,
� ����

�
 to the 

vertices ��′′,��′′,… ,��� �′′ respectively. Finally we give the label 
� ��� �

�
 to the vertex 

��′′. Hence,  ����
= 2� + 1 = ����

� . 

 

 Case (ii) � is even: First assign the labels 1,1,
� ��� �

�
 to the vertices �,�′,�′′ 

respectively. Then we assign the labels 1, 4,… ,
� ����

�
 respectively to the 
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vertices ��,��,… ,��� �. Also we assign the labels 4,7,… ,
����

�
 to the vertices 

��,��,… ,�� respectively.  Next we give the labels 2,5,… ,
��� �

�
 respectively to the 

vertices ��′,��′,… ,��� �′. We assign the labels 2, 5,… ,
� ����

�
 to the vertices 

��′,��′,… ,��′ respectively. Now we assign the labels 3,6,… ,
��

�
 respectively to the 

vertices ��′′,��′′,… ,��� �′′. Finally we give the labels 3, 6,… ,
� ��

�
 to the vertices 

��′′,��′′,… ,��′′ respectively. Hence,  ����
= 2� + 1 = ����

� . 

 

 Theorem 3.9: The graph � � ⊙ �� is pair mean cordial if n is even. 

 

 Proof: Let �(� � ⊙ ��) = {�,���,�′′,��,��
�,�� ′′:1 ≤ � ≤ �} and  

(� � ⊙ ��) = {����,����,���,����
�,���� ′′ ∶1 ≤ � ≤ �} {������

�:1 ≤ � ≤ � 1}∪ {����
�}. 

Then there are 3� + 3 vertices and 4� + 2 edges. This proof is divided into two 

cases: 
 

 Case (i) � is odd: Suppose � is a pair mean cordial. Then if the edge �� get 

the label 1, the possibilities are �(�) + �(�) = 1 or �(�) + �(�) = 2. Hence the 

maximum number of edges label 1 is 
����

�
. That is ����

≤
����

�
. Then ����

� ≥
����

�
. 

Therefore,  ����
� ����

≥
����

�
�

����

�
� = 2 > 1, a contradiction. 

 

 Case (ii) � is even: Assign the labels 1,1,
� ��� �

�
 to the vertices �,�′,�′′ 

respectively. Then we assign the labels 3,6,… ,
��

�
 respectively to the 

vertices ��,��,… ,��� �. We assign the labels 2, 5,… ,
� ����

�
 to the vertices 

��,��,… ,�� respectively.  Next we give the labels 1, 4,… ,
� ����

�
 respectively to 

the vertices ��′,��′,… ,��� �′. Also we assign the labels 3, 6,… ,
� ��

�
 to the vertices 

��′,��′,… ,��′ respectively. Now we assign the labels 2,5,… ,
��� �

�
 respectively to the 

vertices ��′′,��′′,… ,��� �′′. Finally we give the labels 4,7,… ,
����

�
 to the vertices 

��′′,��′′,… ,��′′ respectively. Hence,  ����
=

����

�
 and ����

� =
����

�
. 

 

 Theorem 3.10: The gear graph �� is not pair mean cordial for all � ≥ 3. 
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 Proof: Let �(��) = {�,���,��
�:1 ≤ � ≤ �} and (��) = {���,����

�:1 ≤ � ≤

�} {������
�,��′����:1 ≤ � ≤ � 1}∪ {��′��,����

�} .  

Then there are 2� + 1 vertices and 4� edges. Suppose � is a pair mean cordial. Then 

if the edge �� get the label 1, the possibilities are �(�) + �(�) = 1 or �(�) +

�(�) = 2. Hence the maximum number of edges label 1 is 2� 1. That is ����
≤

2� 1. Then ����
� ≥ 2� + 1. Therefore, ����

� ����
≥ 2� + 1 (2� 1) = 2 > 1, a 

contradiction. 
 

 Theorem 3.11: The graph �� ⊙ �� is pair mean cordial for all � ≥ 3. 

 

 Proof: Let �(�� ⊙ ��) = {�,���,��,��
�,��,��

�:1 ≤ � ≤ �} and E(�� ⊙

��) = {���,����
�,����

�,����:1 ≤ � ≤ �} {������
�,������:1 ≤ � ≤ � 1}∪

{��′,����,����
�} . Then there are 4� + 2 vertices and 6� + 1 edges.  

 

 First assign the labels 1, 2� 1 to the vertices �,�′ respectively. Then we 

assign the labels 3,5,… ,2� + 1 respectively to the vertices ��,��,… ,��. We assign 

the labels 2, 4,… , 2� to the vertices ��
′ ,��

′ ,… ,��
′   respectively.  Also we give 

the labels 1, 3,… , 2� + 1 respectively to the vertices ��,��,… ,��. Finally we 

give the labels 2,4,… ,2� to the vertices ��
′ ,��

′ ,… ,��
′  respectively. Hence, 

 ����
= 3� and ����

� = 3� + 1. 

 

 Theorem 3.12: The graph �� ⊙ 2�� is pair mean cordial for all � ≥ 3. 

 

 Proof: Let �(�� ⊙ 2��) = {�,���,�′′,��,��
�,��

��,��,��
�,�� ′′:1 ≤ � ≤ �} and 

(�� ⊙ 2��) =

{���,����
�,����′′ ,����

�,����′′ ,����:1 ≤ � ≤ �} {������
�,������:1 ≤ � ≤ �

1}∪ {��′,��′′ ,����,����
�} . Then there are 6� + 3 vertices and 8� + 2 edges.  

 

 First assign the labels 1,1, 3� 1 to the vertices �,�′,�′′  respectively. 

Then we assign the labels 4,7,… ,3� + 1 respectively to the vertices ��,��,… ,��. We 

assign the labels 2, 5,… , 3� + 1 to the vertices ��′,��′,… ,��′  respectively. 

Next we assign the labels 3, 6,… , 3� respectively to the vertices 

��′′,��′′,… ,��′′.  Also we give the labels 1, 4,… , 3� + 2 to the vertices 

��,��,… ,�� respectively.  
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 Now we give the labels 2,5,… ,3� 1  respectively to the vertices 

��′,��′,… ,��′. Finally we give the labels 3,6,… ,3� to the vertices 

��′′,��′′,… ,��′′  respectively. Hence ����
= 4� + 1 =  ����

� . 

 Theorem 3.13: The graph �� ⊙ �� is pair mean cordial for all  � ≥ 3. 

 

 Proof: Let �(�� ⊙ ��) = {�,���,�′′,��,��
�,��

��,��,��
�,��′′:1 ≤ � ≤ �} and 

(�� ⊙ ��) = {���,����
�,����′′,����

�,����′′,����,��′��′′,��′��′′:1 ≤ � ≤

�} {������
�,������:1 ≤ � ≤ � 1}∪ {��′,��′′,�′�′′,����,����

�} . Then there are 

6� + 3 vertices and 10� + 3 edges.  

 

 First assign the labels 1,1, 3� 1 to the vertices �,�′,�′′  respectively. 

Then we assign the labels 2, 5,… , 3� + 1 respectively to the vertices 

��,��,… ,��. We assign the labels 3, 6,… , 3� to the vertices ��′,��′,… ,��′  

respectively.  

 

 Next we assign the labels 4,7,… ,3� + 1 respectively to the vertices 

��′′,��′′,… ,��′′.  Also we give the labels 3,6,… ,3� to the vertices ��,��,… ,�� 

respectively. Now we give the labels 1, 4,… , 3� + 2  respectively to the 

vertices ��′,��′,… ,��′.  

 

 Finally we give the labels 2,5,… ,3� + 1 to the vertices ��′′,��′′,… ,��′′  

respectively. Hence,  ����
= 5� + 1 and  ����

� = 5� + 2. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x f x , the nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. Clearly, (1)n nf F , the nth Fibonacci 

number; and (1)n nl L , the nth Lucas number [1, 4]. 
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 On the other hand, let ( ) 1a x   and ( )  b x x . When  0( )   0z x   and 1( )  1 z x  ,  

 ( ) ( )n nz Jx x , the nth Jacobsthal polynomial ; and when 0( ) 2z x   and 1( ) 1z x  , 

( ) ( )n nz jx x , the nth Jacobsthal-Lucas polynomial. They too can be defined by the 

Binet-like formulas 

( ) ( )
( )

n n

n
u x v x

J x
D


    and   ( ) ( ) ( )n n

nj x u x v x  , 

where 4 1D x  ,  2 ( ) 1u x D  , and 2 ( ) 1v x D  . It follows by the Binet-

like formulas that lim n

n n

j
D

J
 . Correspondingly, (2)n nJ J  and (2)n nj j   are 

the nth Jacobsthal and Jacobsthal Lucas numbers, respectively. Clearly,

(1)n nJ F ; and (1)n nj L  [4]. 

 
 Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas 

polynomials are closely related by the relationships ( 1)/2( ) (1 / )n
n nJ x x f x  and 

/2( ) (1/ )[2, 3, 4]n
n nj x x l x . 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let n ng f  or ,nl  ,n nc J  ,nj  2 4,x   4 1D x  .  

 
 1.1 Generalized Gibonacci Polynomial Products: Using the gibonacci 
identities [6] 

2 2( 1)      n k
n k n k n kf f f l

    ; 

 

2 2( 1)     n k
n k n k n kf f f l

    , 

 
we established the following infinite Fibonacci products [6]: 
 

  
2(2 ) 2 2 1

2(2 ) 2 2 11( 1)/2

1,odd

k
n k kr

n k rrn k

k

f f f

f f l




 




  


  ;                              (1) 



              GENERALIZED JACOBSTHAL POLYNOMIAL PRODUCTS  57 

  
2(2 1) 2 2

2(2 1) 2 21( 1)/2

1,odd

1
k

n k r

k
n k rrn k

k

f f l

f f f




  




 

 
  ;                              (2) 

            2 2 2 1 2

2 2 2 1 21 11
1,odd

,
k k

n k r r

n k r rr rn k
k

f f f l

f f l f




  



 


                   (3) 

        
2(2 ) 2 2

2(2 ) 2 21/2 1

2,even

1
k

n k r

k
n k rrn k

k

f f l

f f f



 




 

 
  ;                              (4) 

    
2(2 1) 2 2 1

2(2 1) 2 2 11/2

2,even

k
n k kr

n k rrn k

k

f f f

f f l


 

 




  


  ;                 (5) 

            2 2 2 1 2

2 2 2 1 21 11
2,even

k k
n k r r

n k r rr rn k
k

f f f l

f f l f




  



 


   ;                (6) 

                                       2 2 2 1 2

2 2 2 1 21 11
1

k k
n k r r

n k r rr rn k
k

f f f l

f f l f




  



 


   .                (7) 

 
2. Generalized Jacobsthal Polynomial Products 
 
 Using the gibonacci-Jacobsthal relationships, we will now explore the 
Jacobsthal versions of the above equations. In the interest of clarity and convenience, 

we let A denote the fractional expression on the left side of each equation and B the 

corresponding right side, and LHS and RHS the corresponding sides of the Jacobsthal 
equation to be found. 
 

 2.1 Jacobsthal Version of Equation (1): Let 
2(2 ) 2

2(2 ) 2

n k

n k

f f
A

f f





 where 1k   

and odd.  Replacing x with 1/ x , and then multiplying the numerator and the 

denominator with (4 1)/2nx  ,  we get 
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2(2 ) 2

2(2 ) 2

n k

n k

f f
A

f f





 

     
(4 1)/2 2 (2 1)/2

2(2 ) 2

(4 1)/2 2 (2 1)/2
2(2 ) 2

[ ]

[ ]

n n k k
n k

n n k k
n k

x f x x f

x f x x f

  

  





  

                               
2

2(2 ) 2

2
2(2 ) 2

n k
n k

n k
n k

J x J

J x J









  

                                  
2

2(2 ) 2

2
( 1)/2 2(2 ) 2
1,odd

LHS
n k

n k

n k
n k n k
k

J x J

J x J




 







 , 

 

where (1 / )n nf f x  and   ( )n nJ J x . 
 

 Now, let 2 1

2 1

r

r

f
B

l




   . Replace x with  1/ x ,  and  then  multiply  the  

numerator and the denominator with (2 1)/2rx  . This yields 
 

   2 1

1/2
2 1

r

r

f D
B

xl




    

 

                   
1/2 (2 2)/2

2 1

(2 1)/2 1/2
2 1

[ ]r
r

r
r

x x f D

x xl







    

 

                   1/2 2 1

/2
2 1

r

k
r

J D
x

j x





    

 

                      
/2 2 1

2 11

RHS
/2

k k
k r

rr

J D
x

j xk




    

 

                   2 1

2 11

k
kr

rr

J
D

j




  ,  
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where (1 / )n ng g x  and ( )n nc c x . 

 
 Equating the two sides, we get 
   

2
2(2 ) 2 2 1

2
2 1( 1)/2 12(2 ) 2

1,odd

n k k
n k kr

n k
rn k rn k

k

J x J J
D

jJ x J





  




 


  .   (8) 

 
 It then follows that [6] 
 

          
2(2 ) 2 /22 1

2(2 ) 2 2 1( 1)/2 1

1,odd

5
k

n k kr

n k rn k r

k

F F F

F F L




  




 


  ; 

 
 

  
2

2(2 ) 2 2 1

2
2 1( 1)/2 12(2 ) 2

1,odd

2
3

2

n k k
n k kr

n k
rn k rn k

k

J J J

jJ J





  




 


   

 

 2.2 Jacobsthal Version of Equation (2): Let 
2(2 1) 2

2(2 1) 2

n k

n k

f f
A

f f









. Replace x 

with 1/ x , and then multiply the numerator and the  denominator with (4 1)/2nx  . 

This yields 

   
2(2 1) 2

2(2 1) 2

n k

n k

f f
A

f f









  

 

       
(4 1)/2 2 1 (2 1)/2

2(2 1) 2

(4 1)/2 2 1 (2 1)/2
2(2 1) 2

[ ]

[ ]

n n k k
n k

n n k k
n k

x f x x f

x f x x f

   


   






  

 

                    
2 1

2(2 1) 2

2 1
2(2 1) 2

n k
n k

n k
n k

J x J

J x J

 


 






  

 

                        
2 1

2(2 1) 2

2 1
( 1)/2 2(2 1) 2
1,odd

LHS
n k

n k

n k
n k n k
k

J x J

J x J

 


 
  






 , 
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where (1 / )n nf f x  and   ( )n nJ J x . 

 Now, let 2 1

2 1

1r

r

l
B

f




 


. Replace x with  1/ x ,  and  then  multiply  the  

numerator and the denominator with 2 /2rx . This yields 
 

   
1/2

2

2

r

r

l x
B

f D
    

 

                   

1/22 /2
2

1/2 (2 1)/2
2[ ]

r
r

r
r

x l x

Dx x f
    

 

                   
1/2

2

1/2
2

r

r

j x

Dx J
    

 

                      

/2
2

1/2
1 2

RHS

kk
r

k
r r

j x

Dx J

    

 

                   2

21

1
k

r

k
rr

j

J D

  ,  

 

where (1 / )n ng g x  and ( )n nc c x . 

 
 Combining the two sides, we get 

  
2 1

2(2 1) 2 2

2 1
2( 1)/2 12(2 ) 2

1,odd

1
n k k

n k r

n k k
rn k rn k

k

J x J j

JJ x J D

 


 
  




 


  .                (9) 

 In particular, this yields [6] 
 

          
2(2 1) 2 2

/2
2(2 1) 2 2( 1)/2 1

1,odd

1

5

k
n k r

k
n k rn k r

k

F F L

F F F




  




 


  ; 
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2 1

2(2 1) 2 2

2 1
2( 1)/2 12(2 1) 2

1,odd

2 1

2 3

n k k
n k r

n k k
rn k rn k

k

J J j

JJ J

 


 
  



 


   

 
 2.3 Jacobsthal Version of Equation (3): Equation (8), coupled with 
equation (9), yields the Jacobsthal version of equation (3): 
 

2 2 2 1 2

2 1 21 1 12 2
1,odd

1
k kn k

kn k r r

n k k
r rn k r rn k

k

J x J J j
D

j JJ x J D

 



   




   


    

                                                            2 1 2

2 1 21 1

k k
r r

r rr r

J j

j J


 

   .                         (10) 

 In particular, we then have [6] 
 

   2 2 2 1 2

2 2 2 1 21 1 1
1,odd

k k
n k r r

n k r rn k r r
k

F F F L

F F L F




   



 


    

 

       2 2 2 1 2

2 1 21 1 12 2
1,odd

2

2

k kn k
n k r r

n k
r rn k r rn k

k

J J J j

j JJ J

 



   




 


   . 

 2.4 Jacobsthal Version of Equation (4): With 
2(2 ) 2

2(2 ) 2

n k

n k

f f
A

f f





, as 

Subsection 2.1, we get 
 

2
2(2 ) 2

2
/2 1 2(2 ) 2
2,even

LHS
n k

n k

n k
n k n k
k

J x J

J x J




 







 , 

where ( )n nJ J x . 
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 With 2

2

1r

r

l
B

f
 


, as in Subsection 2.2, we get 

 

2

21

1
RHS

k
r

k
rr

j

J D

  , 

where ( )n nc c x . 

 
Equating the two sides then yields 
 

        
2

2(2 ) 2 2

2
2/2 1 12(2 ) 2

2,even

1
n k k

n k r

n k k
rn k rn k

k

J x J j

JJ x J D




  




 


  .                           (11) 

 
 This implies [6], 

   
/2

2(2 ) 2 2

2(2 ) 2 2/2 1 1

2,even

5

5

k k
n k r

k
n k rn k r

k

F F L

F F F



  




 


   

 

            
2

2(2 ) 2 2

2
2/2 1 12(2 ) 2

2,even

2 1

2 3

n k k
n k r

n k k
rn k rn k

k

J J j

JJ J




  




 


  . 

 2.5 Jacobsthal Version of Equation (5): With 
2(2 1) 2

2(2 1) 2

n k

n k

f f
A

f f









, as 

Subsection 2.2, with 2 1

2 1

r

r

f
B

l




   , as in Subsection 2.1, we get 

 

   
2 1

2(2 1) 2

2 1
/2 2(2 1) 2

2,even

LHS
n k

n k

n k
n k n k

k

J x J

J x J
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   2 1

2 11

RHS
k

kr

rr

J
D

j




   

respectively, where  ( )n nc c x . 

 
 Combining the two sides then yields 
 

        
2 1

2(2 1) 2 2 1

2 1
2 1/2 12(2 1) 2

2,even

n k k
n k kr

n k
rn k rn k

k

J x J J
D

jJ x J

 
 

 
 




 


                        (12) 

 
 This yields [6] 
 

        
2(2 1) 2 2 1

2(2 1) 2 2 1/2 1

2,even

5
k

n k kr

n k rn k r

k

F F F

F F L


 

  




 


  ; 

 

         
2 1

2(2 1) 2 2 1

2 1
2 1/2 12(2 1) 2

2,even

2
3

2

n k k
n k kr

n k
rn k rn k

k

J J J

jJ J

 
 

 
 




 


  . 

 
 2.6 Jacobsthal Version of Equation (6): It follows by equations (10) and 
(12) that 

  2 2 2 1 2

2 1 21 1 12 2
2,even

k kn k
n k r r

n k
r rn k r rn k

k

J x J J j

j JJ x J

 



   




 


   .                          (13) 

 
 This yields [6] 

   2 2 2 1 2

2 2 2 1 21 1 1
2,even

k k
n k r r

n k r rn k r r
k

F F F L

F F L F




   



 


   . 

  
 Additionally, we have 
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       2 2 2 1 2

2 1 21 1 12 2
2,even

2

2

k kn k
n k r r

n k
r rn k r rn k

k

J J J j

j JJ J

 



   




 


   . 

 Finally, we explore the Jacobsthal version of the Fibonacci delight in 
equation (7). 
 
  

 2.7 Jacobsthal Version of Equation (7): It follows by equations (11) and 
(13) that 

    2 2 2 1 2

2 1 21 1 12 2
2

k kn k
n k r r

n k
r rn k r rn k

k

J x J J j

j JJ x J

 



   




 


   .              (14) 

 
This yields [6] 
 

   2 2 2 1 2

2 2 2 1 21 1 1
1

k k
n k r r

n k r rn k r r
k

F F F L

F F L F




   



 


   ; 

 

       2 2 2 1 2

2 1 21 1 12 2
1

2

2

k kn k
n k r r

n k
r rn k r rn k

k

J J J j

j JJ J

 



   




 


   . 

 
3. Alternate Form 
 

 Using the identity 2 2 2  4( )nn nj D J x    [4], we can rewrite equation (14) in 

terms of both nJ  and nj : 

 
  

 
2 2 2 2 2 2 2 2 2 2
2 2 2 2

2 2 2
12 2 2 21
11

4

( ) ( )

n k n n k
n k n k

n k n k
n kn k n kn k
kk

j x D J x J x J

D J x J J x J

  

 
  


  


 
    

 

         2 1 2

2 1 21 1

k k
r r

r rr r

J j

j J


 

   . 
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 It then follows that [6] 

2 2
2 2 2 1 2

2
2 1 21 1 12 2

1

5 4

5( )

k k
n k r r

r rn k r rn k
k

L F F L

L FF F




   


 
 


   . 

 In particular, we have [4, 5] 
 

  
2
2

2
2 2

9
3

5 1( )

n

n n

L

F









  ;  

2
2

2
3 2

49 7

25 3( )

n

n n

L

F









 . 

 
 Additionally, we have 
 

2 2 1
2 2 2 1 2

2
2 1 21 1 12 2

1

9.4 4

9( 2 )

k kn k n
n k r r

n k
r rn k r rn k

k

j J J j

j JJ J

  



   



 
 


   . 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , ( ) ( )n nz x f x , the 

nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , )( ) (n nz lx x , the 

nth Lucas polynomial. 

 

 Clearly, 1( )n nf F , the nth Fibonacci number; and 1( )n nl L , the nth 

Lucas number [1, 4]. 
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 On the other hand, let ( )  1a x   and ( )  b x x .  When  0( )= 0z x   and

1( )  1 z x  ,  ( ) ( )n nz Jx x , the nth Jacobsthal polynomial ; and when 0( ) 2z x   and

1( ) 1z x  , ( ) ( )n nz jx x , the nth Jacobsthal-Lucas polynomial. They too can be 

defined by the Binet-like formulas 
 

( ) ( )
( )

n n

n
u x v x

J x
D


     and ( ) ( ) ( )n n

nj x u x v x  , 

 

where 4 1,D x   2 ( ) 1u x D  , and 2 ( ) 1v x  . It follows by the Binet-like 

formulas that lim n

n n

j
D

J
 . Correspondingly, (2)n nJ J  and (2)n nj j  are the 

nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, (1)n nJ F ; and 

(1)n nj L  [4]. 

 
 Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas 

polynomials are closely related by the relationships ( 1)/2 (1( ) / )n
n nxJ x f x  and  

/2
( ) (1/ )[2, 3, 4]

n
n nj x x l x . 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let    n ng f  or nl , n nc J  or  nj , and 2 4x   . 
 

 It follows from the Binet-like formulas that 
1

lim n

n n

J

j D
   and lim n

n n

j
D

j
 . 

 

 1.1 Some Fundamental Jacobsthal Identities: Using the gibonacci-
Jacobsthal relationships, it follows from the gibonacci identities [6] 
 

   2 2( 1)      ;n k
n k n k n kf f f l

      

   2 2( 1)      ,n k
n k n k n kf f f l

                  

that 

   2 2( 1)      ;n k n k
n k n k n kJ x J J j 

                                  (1) 
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   2 2( 1)      ,n k n k
n k n k n kJ x J J j 

                                (2) 

where ( )n ng g x  and     ( )n nc c x . 

 
 1.2 Generalized Jacobsthal Polynomial Products: In [7], we established 
the following infinite Jacobsthal products: 
 

2
2(2 ) 2 2 1

2
2 112(2 ) 2( 1)/2

1,odd

n k k
n k kr

n k
rrn kn k

k

J x J J
D

jJ x J





 




 


  ;                        (3) 

 
2 1

2(2 1) 2 2

2 1
212(2 1) 2( 1)/2

1,odd

1
n k k

n k r

n k k
rrn kn k

k

J x J j

JJ x J D

 


 
 




 


  .                              (4) 

 2 2 2 1 2

2 1 21 12 21
1,odd

;
k kn k

n k r r

n k
r rr rn kn k

k

J x J J j

j JJ x J

 



  




 


                   (5) 

    
2

2(2 ) 2 2

2
212(2 ) 2/2 1

2,even

1
n k k

n k r

n k k
rrn kn k

k

J x J j

JJ x J D




 




 


  ;                          (6) 

   
2 1

2(2 1) 2 2 1

2 1
2 112(2 1) 2/2

2,even

n k k
n k kr

n k
rrn kn k

k

J x J J
D

jJ x J

 
 

 





 


  ;                  (7) 

             2 2 2 1 2

2 1 21 12 21
2,even

k kn k
n k r r

n k
r rr rn kn k

k

J x J J j

j JJ x J

 



  




 


   .                            (8) 

  

   2 2 2 1 2

2 1 21 12 21
1

.
k kn k

n k r r

n k
r rr rn kn k

k

J x J J j

j JJ x J

 



  




 


        (9)  

                                        
 Our goal in this discourse is to confirm the validity of formulas (3) through 
(8) and hence (9), using graph-theoretic techniques. To this end, we first present a 
brief introduction to the needed graph-theoretic tools. 
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2. Graph-Theoretic Tools 
 

 To confirm these Jacobsthal results, consider the weighted Jacobsthal 

digraph in Figure 1 with vertices 1v  and 2v  [4, 5]. It follows from its weighted 

adjacency matrix   
1

1 0

x
M

 
   
  

 that  

 

 
Figure 1: Weighted Jacobsthal Digram 

1

1

,
n nn

n n

J xJ
M

J xJ




 
   
    

 

where ( )n nJ J x  and 1n   . 

 Let A be the set of closed walks of length n originating at 1v , and B the set 

of those of length n in the digraph. Let nT  denote the sum of the weights of the 

elements in A, and nU  the sum of those in B. Then 1n nT J   and

1 1n n n nU J xJ j    , where ( )n nc c x . 
 

 Let A, B, and C denote the sets of closed walks of varying lengths 

originating at vertex v. Then the sum of the weights of the elements in the product set 

A B C   is defined as the product the sums of the walks in each component [5]. 

Obviously, this definition can be extended to any finite number of components in the 
product. These facts play a major role in the graph-theoretic proofs. 
 
 With these tools at our disposal, we are now ready for the graph-theoretic 
explorations. 
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3. Graph-Theoretic Confirmations 
 
 We begin our explorations with equation (3). 
 

 3.1 Confirmation of Formula (3): Proof:  Let k be an odd positive integer 

and w the weight of the edge  1 2v v . Consider the product 

 

   
2

4 1 2 1

2
( 1)/2 4 1 2 1
1,odd

m n k
n k

m n k
n k n k
k

T w T
P

T w T


 


   






  

 

         
2

2(2 ) 2

2
2(2 ) 2( 1)/2

1,odd

n km
n k

n k
n kn k

k

J x J

J x J




 







 .  

 

 We will now compute the product mP  in a different way. To this end, we let 

 

   2 2 2 2

2 1 2 2 111
1,odd1,odd

k k
r m r k

m
r m r krr

kk

T U
P

U T

   

   


     

 

               2 1 2 2

2 1 2 211
1,odd1,odd

k k
r m r k

r m r krr
kk

J j

j J
  

  


    

 
where 1m  .  Using identities (1) and (2), we then get 
 

   
1 1

2 1 2 1
1

2 1 2 11 1

r r

r rr r

J j
P

j J
  

  

  
 

 

         1 3 4 2

3 1 4 2

J j J xJ

J j J xJ


 


  

 

         1P ; 
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1 1 3 3

2 1 2 1 2 1 2 1
2

2 1 2 1 2 1 2 11 1 1 1

r r r r

r r r rr r r r

J j J j
P

j J j J
    

      

      
 

 

         1 3 1 7

3 1 7 1

J j J j

J j J j
 

 
 

         4 2 8 6

4 2 8 6

J xJ J xJ

J xJ J xJ

 
 

 
  

 

         2P . 
 

 Based on these two initial values of mP , we conjecture that m mP P    

where m ≥ 1. 
 
 We will now establish this conjecture using recursion [4, 6]. To this end, we 
have 
 

     
2 2( 1)2 2

2 2 2 2( 1)1 11
1,odd 1,odd

k k
m r km m r k

m r k m r kr rm
k k

JP j

J jP


   


     

 

     

   2 2

2 2

m k m k

m k m k

J j

J j
 

 

   

   
2

2(2 ) 2

2
2(2 ) 2

m k
m k

m k
m k

J x J

J x J









  

   
1

m

m

P

P 

 . 

 
 Recursively, this implies that 
 

1 1

1 1

1m m

m m

P P P

P P P



  


    . 

 

 Thus, m mP P  , as conjectured 
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2

2(2 ) 2 2 1 2 2

2
2 1 2 21 12(2 ) 2( 1)/2

1,odd 1,odd
1,odd

n km k k
n k r m r k

n k
r m r kr rn kn k

k k
k

J x J J j

j JJ x J


  


    

 



 


   .            (10) 

 

 Since lim n

n n

j
D

J
 , this yields formula (3) as desired.                  □ 

 

 3.2 Confirmation of Formula (4): Proof: With k an odd positive integer, 

and w, nT , and nU  as before, we let 

 

   
2 1

4 1 2 1

2 1
( 1)/2 4 1 2 1
1,odd

m n k
n k

m n k
n k n k
k

T w T
Q

T w T

 
 

 
   






   

 

               
2 1

2(2 1) 2

2 1
2(2 1) 2( 1)/2

,odd

n km
n k

n k
n kn k

k

J x J

J x J

 


 
 







 . 

 
 We will now compute this product in a different way. To achieve this, 

consider the product 

   2 2 2

2 1 2 (2 1)11
1,odd1,odd

k k
r m r k

m
r m r krr

kk

U T
Q

T U

  

   


     

 

               
2 (2 1)2

2 2 (2 1)11
1,odd1,odd

k k
m r kr

r m r krr
kk

Jj

J j

  

  


   , 

 
where 1m  .  With identities (1) and (2), we then get 
 

   
1 1

2 2 2
1

2 2 21 1

r r

r rr r

j J
Q

J j
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2

4 2 6 2

2
2 4 6 2

J j J x J

J j J x J


 


  

         1Q ; 

   
1 1 3 3

2 2 2 2 2 2
2

2 2 2 2 2 21 1 1 1

r r r r

r r r rr r r r

j J j J
Q

J j J j
  

    

      
 

 

         4 2 8 2

2 4 2 8

J j J j

J j J j
 

 
 

         
2 2

6 2 10 6

2 2
6 2 10 6

J x J J x J

J x J J x J

 
 

 
  

 

         2Q . 

 

 Using these two initial values of mQ , we conjecture that  m mQ Q  , 

where 1m  . 
 
 We will now establish this using recursion [4, 6]. We have 
 

     

2 (2 1) 2 (2 1)

2 (2 1) 2 (2 1)1 11
1,odd 1,odd

k k
m r k m r km

m r k m r kr rm
k k

J jQ

j JQ


     


      

 

     

 

    2 1 2 1

2 1 2 1

m k m k

m k m k

J j

J j
   

   

   

 

    
2 1

2(2 1) 2

2 1
2(2 1) 2

m k
m k

m k
m k

J x J

J x J

 


 






  

 

    
1

m

m

Q

Q 

 . 

 
 Recursively, this implies that 
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1 1

1 1

1m m

m m

Q Q Q

Q Q Q



  


   

 
 
 This confirms the conjecture: 

 

    
2 1

2(2 1) 2 2 (2 1)2

2 1
2 2 (2 1)1 12(2 1) 2( 1)/2

1,odd 1,odd
1,odd

n km k k
n k m r kr

n k
r m r kr rn kn k

k k
k

J x J jj

J JJ x J

 
   

 
    

 



 


   .            (11) 

 

 Since 
1

lim n

n n

J

j D
 , this yields formula (4) as desired.      □ 

 
 3.3 Confirmation of Formula (5): Proof: It follows by equations (10) and 
(11) that  
 

            
2 1

2 2 2 1 2

2 1 21 12 21
1,odd

1
m k kn k

kn k r r

n k k
r rr rn kn k

k

J x J J j
D

j JJ x J D

 



  




   


   ; 

 

                          2 2 2 1 2

2 1 21 12 21
1,

,
k kn k

n k r r

n k
r rr rn kn k

k odd

J x J J j

j JJ x J

 



  




 


    

 
as expected.            □ 
 
 Consequently, we have [7] 
 

   2 2 2 1 2

2 2 2 1 21 1 1
1,odd

k k
n k r r

n k r rn k r r
k

F F F L

F F L F




   



 


   ; 

 

        2 2 2 1 2

2 1 21 1 12 2
1,odd

2

2

k kn k
n k r r

n k
r rn k r rn k

k

J J J j

j JJ J

 



   




 


   . 
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 3.4 Confirmation of Formula (6): Proof: Let k be an even positive integer. 

With w, nT , and nU  as before, we let 

 

   

2
4 1 2 1

2
/2 1 4 1 2 1

2,even

m n k
n k

m n k
n k n k
k

T w T
R

T w T


 


   






   

 

               
2

2(2 ) 2

2
2(2 ) 2/2 1

2,even

.
n km

n k

n k
n kn k

k

J x J

J x J




 







  

 
 We will now compute this product in a different way. To accomplish this, 
consider the product 
 

   

2 (2 1)2

2 1 2 21 1
2,even 2,even

k k
m r kr

m
r m r kr r

k k

TU
R

T U

  

   
 

     

 

               2 2 2

2 2 211
2,even2,even

k k
r m r k

r m r krr
kk

j J

J j
 

 


   , 

where 2m  . 
 
 We then have 
 

   

2 2
2 2 2

2
2 2 21 1

r r

r rr r

j J
R

J j
 

 

    

         
2

6 2 8 4

2
2 6 8 4

J j J x J

J j J x J


 


  

         2R ; 

   
2 2 4 4

2 2 2 2 2 2
3

2 2 2 2 2 21 1 1 1

r r r r

r r r rr r r r

j J j J
R

J j J j
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         6 2 10 2

2 6 2 10

J j J j

J j J j
   

         
2 2

8 4 12 8

2 2
8 4 12 8

J x J J x J

J x J J x J

 
 

 
  

         3R . 

 Using these two initial values of mR , we predict that m mR R    

where 2m  . 
 
 We will now confirm this conjecture using recursion [4, 6]. We have 
 

        

2 2( 1)2 2

2 2 2 2( 1)1 11
2,even 2,even

k k
m r km m r k

m r k m r kr rm
k k

jR J

j JR


   


     

 

     

    2 2

2 2

m k m k

m k m k

J j

J j
 

 

   

    
2

2(2 ) 2

2
2(2 ) 2

m k
m k

m k
m k

J x J

J x J









  

    
1

m

m

R

R 

 . 

 
 This implies 

1 2

1 2

1.m m

m m

R R R

R R R



  


   

 
 

 Consequently m mR R   as desired:  

                                

 

2
2(2 ) 2 2 2 2

2
2 2 21 12(2 ) 2/2 1

2,even

n km k k
n k r m r k

n k
r m r kr rn kn k

k

J x J j J

J jJ x J


 


   




 


   .                       (12) 

 This yields formula (6), as desired.                   □ 
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 3.5 Confirmation of Formula (7) Proof: With k, w, nT , and nU  as before, 

we let 

   

2 1
4 1 2 1

2 1
/2 4 1 2 1

2,even

m n k
n k

m n k
n k n k

k

T w T
S

T w T

 
 

 
  









 
 

         

2 1
2(2 1) 2

2 1
2(2 1) 2/2

2,even

.
n km

n k

n k
n kn k

k

J x J

J x J

 


 










 
 

 We will now compute mS  in a different way. To this end, consider the 

product 

   

2 (2 1)2 2

2 1 2 21 1
2,even 2,even

k k
m r kr

m
r m r kr r

k k

UT
S

U T

   

   
 

     

 

               
2 (2 1)2 1

2 1 2 (2 1)11

k k
m r kr

r m r krr

jJ

j J

  

   

    

where ( )n nc c x  and  1m  . 

 
 We then get 

   

2 2
2 1 2 1

1
2 1 2 11 1

r r

r rr r

J j
S

j J
  

  

    

         1 5 6 4

5 1 6 4

J j J xJ

J j J xJ


 


  

         1S ; 

   
2 2 4 4

2 1 2 1 2 1 2 1
2

2 1 2 1 2 1 2 11 1 1 1

r r r r

r r r rr r r r

J j J j
S

j J j J
    

      

        

         1 5 1 9

5 1 9 1

J j J j

J j J j
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         6 4 10 8

6 4 10 8

J xJ J xJ

J xJ J xJ

 
 

 
  

         2S . 

 

 Based on these two initial values of mS , we conjecture that m mS S  , 

where 1m  .  We will now confirm this using recursion [4, 6]. 
 
 We have 
 

      

2 (2 1) 2 (2 1)

2 (2 1) 2 (2 1)1 11

k k
m r k m r km

m r k m r kr rm

j JS

J jS


     


      

     

 

    2 1 2 1

2 1 2 1

m k m k

m k m k

J j

J j
   

   

   

 

    
2 1

2(2 1) 2

2 1
2(2 1) 2

m k
m k

m k
m k

J x J

J x J

 


 






  

 

    
1

m

m

S

S 

 . 

 This implies, 

1 2

1 2

1.m m

m m

S S S

S S S



  


   

 

 Consequently m mS S   confirming the conjecture:

 
  

  

2 1
2(2 1) 2 2 (2 1)2 1

2 1
2 1 2 (2 1)1 12(2 1) 2/2

2,even

n km k k
n k m r kr

n k
r m r kr rn kn k

k

J x J jJ

j JJ x J

 
   

 
    




 


   .     (13) 

 

where ( )n nc c x .  Clearly, this yields formula (7), as desired.                  □ 
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 3.6 Confirmation of Formula (8): Proof: It follows by equations (12) and 
(13) that 
 

2 2 12 1
2(2 ) 2 2(2 1) 22 2

2 2 1
1 /2 1 /22 2 2(2 ) 2 2(2 1) 2

2,even 2,even 2,even

n k n km m mn k
n k n kn k

n k n k n k
n k n k n kn k n k n k

k k k

J x J J x JJ x J

J x J J x J J x J

   


   
     

  

 
 

  
    

 

        2 2 2 1 2

2 1 21 1 12 2
2,even

k kn k
n k r r

n k
r rn k r rn k

k

J x J J j

j JJ x J

 



   




 


   ,              (14) 

as desired.                                                □ 
 

Finally, we explore the graph-theoretic proof of formula (9). 
 
 3.7 Confirmation of Formula (9): Proof: It follows by equations (12) and 
(14) that 
 

2 2 2 2 2 2

1 1 12 2 2 2 2 2
1 1,odd 2,even

n k n k n k
n k n k n k

n k n k n k
n k n k n kn k n k n k

k k k

J x J J x J J x J

J x J J x J J x J

    

  
     
  

  
 

  
    

 

         2 1 2

2 1 21 1

k k
r r

r rr r

J j

j J


 

   ,               (15) 

as desired.             □ 

 It follows from formula (15) that [6] 

 

   

2 2 2 1 2

2 2 2 1 21 1 1
1

k k
n k r r

n k r rn k r r
k

F F F L

F F L F




   



 


   ; 

 

        
2 2
2 2 2 1 2

2
2 1 21 1 12 2

1

5 4

5( )

k k
n k r r

r rn k r rn k
k

L F F L

L FF F
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