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Thomas Koshy | CONVOLUTIONS OF EXTENDED
TRIBONACCI-GIBONACCI
POLYNOMIAL PRODUCTS
OF ORDERS 2 AND 3

Abstract: We develop convolutions of extended gibonacci and tribonacci
polynomial products of order 2, and extract their numeric counterparts.

Keywords: Extended Gibonacci Polynomials, Fibonacci, Lucas
Polynomials, Extended Tribonacci Polynomials, Extended
Tribonacci Gibonacci Polynomials.

Mathematical Subject Classification (2020) No.: Primary 11B37, 11B39,
11B83, 11CO08.

1. Introduction

1.1 Extended Gibonacci Polynomials: Fxtended gibonacci polynomials
z,(x) are defined by the recurrence 2, ,,(z) = a(x)z,,,(x) + b(x)z, (), where z is

an arbitrary copmlex variable; a(x), b(z), z,(z), and 2 (x) are arbitrary copmlex
polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when zy(z) =2 and z/(z) =z,

z,(z) =1,(z), the nth Lucas polynomial.
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Clearly, f,(1)=F,, the nth Fibonacci number; and [,(1) =L, , the nth
Lucas number [1, 8, 10].

Pell polynomials p,(z) and Pell-Lucas polynomials g, () are defined by
p,(z) = f,(2z) and gq,(z) =1,(2x), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers @), are given by P, =p,(1)=/f(2) and

n

2Q, = q,(1) =1,(2), respectively [8, 10].

Suppose a(z)=1 and b(z)=z. When z,(z)=0 and z(z)=1,
z,(z) = J,(z), the nth Jacobsthal polynomial; and when z,(z) =2 and z(z) =1,
z,(z) = j,(z), the nth Jacobsthal Lucas polynomial [6, 10]. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J, (1) = F,, and j,(1) = L

n

1.2 Extended Tribonacci Polynomials: Extended tribonacci polynomials

w, (z) are defined by the recurrence w,,3(z) = °w,.o(z) + 2w, () + w, (),

where z is an arbitrary complex variable; wy(z), w(x), and wy(x) are arbitrary
complex polynomials; and n > 0.

Suppose wy(z) =0, wy(z) =1, and wy(z)=z*. Then w,(z)=t,(z), the nth
tribonacci polynomial ; and when wy(z) = 3, w(z) = 2%, and w?(z) = z* + 2z,

w,(z) =k, (x), the nth tribonacci-Lucas polynomial.

Tribonacci polynomials ¢,(z) were originally studied by Hoggatt and
Bicknell [5, 10], and tribonacci-Lucas polynomials k,(z) by Kose, Yilmaz, and
Taskara [7]. Correspondingly, ¢,(1) = T,,, the nth tribonacci number, first studied
by M. Feinberg when he was a 14-year old; and k,(1) = K,,, the nth tribonacci-
Lucas number, originally studied by M. Catalani [2].

Both gibonacci and tribonacci polynomials can be extended to negative
subscripts. For example, ¢_1(z) =0, to(z) =1, and ¢t 3(z) = —z; and k(z) = -z,

k_o(z) = —2*, and k_g(z) = 22° +3.
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As can be expected, there is an interesting relationship between tribonacci
and tribonacci-Lucas polynomials; it can be confirmed using induction [7]:

kn(x) = ZBQtn(l‘) + 21‘2&71,71(1‘) + 3tn72 (ZL‘) . (1)

Consequently, formulas involving tribonacci-Lucas polynomials can be
rewritten in terms of tribonacci polynomials. Formula (1) implies that

KTL = Tn + 2Tn_1 + 3TTL—2 . (2)

Using the identity J,,_(z) + zJ,_;(z) = j,(z) [10], we can express formulas
involving Jacobsthal-Lucas polynomials in terms of Jacobsthal polynomials.

In the interest of clarity, brevity, and convenience, we omit the argument in

the functional notation, when there is no ambiguity; so z, will mean z,(z). We also
omit a lot of basic algebra.

A polynomial product of order m is a product of polynomials z,,; of the

form []z7,, , where D s; =m [9,12].
k>0 sj=1

1.3 Generating Functions: Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal,
Jacobsthal-Lucas, tribonacci, and tribonacci-Lucas polynomials can be generated by
generating functions [4, 7, 10, 11]:

< Z 2—zz
[@)= 3 fon =2 ()= Y hen = ——2
ne0 l-z2-2 =0 l-z2-2
& 2z < 2—2xz
ple)= 2 pa" = q2)= 2 @2 =
) nz_‘b ! 1-2zz — 422 ) ;;6 ! 1-2zz — 422
B - _ z . N - nw_  2-z
= . =—- = =
J(2)= Y J, (@) N CEDIEACT 2
o0 l-2z—-122 o0 1-2-z2
u(z)—itz”— & ; k(z)—ikz”— 3= 20% - a2
=" 1-a2z— 222 — 23~ = 1-a22z— 222 — 23

When z =1, they yield the corresponding numbers, except for Jacobsthal
and Jacobsthal-Lucas numbers; they are generated when = = 2.
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Formula (1) can easily be established using the generating functions u and £.
To see this, we have

kz = (3 -22%2 — 22°u

o0 o0 o0 o0
D kg2 =3 t,z" =22 Db, 12" =1 Dt 92"
n—-1 n=0 n=1 n=2

Consequently,
kn =3ty — 21‘2% —at,_q .

This, coupled with the tribonacci recurrence t,,, = zt, + xt,_ +t,_ o,
yields the desired relationship.

With this background, we are now ready for the discourse on tribonacci-
gibonacci convolutions.

2. Convolutions of Order 2

2.1 Tribonacci-Fibonacci Convolutions: It follows from the generating
functions v = u(z) and f = f(z) that

1—95(1—3]—5’ =2
f U

2(zu—f)=[(x —1)+ 23] fu. 3)

Rewriting this in terms of power series, we get

0 0 n o (n-3
Z (J:tnfl - f;zfl)zn = (l‘ - 1) z [z trfnr} 2"+ Z [z trfnr3} Z".

n=1 n=0\r=0 n=3\ r=0
This implies
n+1 n—-2
xtn - fn = (.’E - 1) Z trfn—r+1 + Z trfn—r—Q’ (4)
r=0 r=0

Consequently, we have [4]
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n-2
E, = Z T Fy s (5)
r=0

It also follows from (4) that

n+1 n—2
2xtn (2‘77) —Pn = (2‘77 - 1) Z tr (2$)pn—r+1 + Z tr(zx)pn—r—2;
r=0 r=0
n+1 n—2
2tn (2) - Pn = Z tr(Q)Pn—r+1 + Z tr(z)Pn—r—Q
r=0 r=0

2.2 Tribonacci-Lucas Convolutions: Using the generating functions
u =u(z) and | = {(z), we have

vt 1o 22
l
p_l=2+422) 5z
l
2zu — x?2u — 2l = [(z — 1) + 2% ]ul. (6)

Translating this into power series, we get

o0 o0 0 n
20 ) 42" =2 D b, g 2" - Z Lo 2" =(z—1) >ty |27
n=0 n=1 n r=0

=0

n=3\ r=0

o (n-3
+ z EZ t,‘lnrgJ 2"

2xt, — x2tn—1 by =(z- 1)2 bl + Z bl —r_3- (7
r=0

In particular, we have
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2T, —-Th 1 — Ly = Z T Ly 35 (®)
n n—3
4$tn (2$) - 4$2tn—1 (2$) L (2$ - 1)2 tr (2$)Qn—r + Z tr (Qx)Qn—r—Z%;
r=0 r=0
2() in_zt Qnr+zt Qan

Formula (8) also appears in [4].

2.3 Tribonacci-Jacobsthal Convolutions: Using the generating functions
u=u(z) and J =J(z), we have

2
1—2—1:22:3;

1—a2 —g22 — 23 = 2.
u
Subtracting, we get
u—J =[(z? = 1)+ 2%Jud. 9)

This yields

> (@) = Ju (@) —x-lZ{Zt ]Z"+Z{Zt }

n=0 n=0| r=0 n=2| r=0

(@)~ T, (1) = (@2 = )Y 4, ( i Jos ol (10)

Clearly, formula (5) follows from this. When x = 2, formula (10) yields

tn(z)_‘]n: 327’ nr+zt nr2
r=0
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2.4 Tribonacci-Jacobsthal-Lucas Convolutions: It follows from the
generating functions u = u(z) and j = j(z) that

1—2—1:22:2_2;
J

z
1—22z—222 —23 =2,
u

Subtracting, we get
(2=2)u—2j=[(x> —1)z + 23]uyj. (11)
Now replace the generating functions with their power series expansions:

2Ztnzn_Ztn—lzn_zjn—l(x)zn:(x2_1)2[z rin—r— 1 :|
n=0 n=1 n=1 n=1

+ Z Z rin—r— 3
n=3| r=0
This gives the summation formula
n—1
Qtn =ty _jnfl( ): 2 _1 Ztr]n r— 1 Z tr]n r— 3 (12)

r=0

Clearly, this yields formula (8). In addition, we have

2tn (2) - tn—l (2) - jn—l = 37’5: tr (Q)jn—r—l +Ti tr (2)jn—r73'

Next we investigate convolutions of order 2 involving tribonacci-Lucas
polynomials and the extended gibonacci subfamilies. The steps involved remain

basically the same; so, in the interest of brevity, we omit the basic algebra.

2.6 Tribonacci-Lucas—Fibonacci Convolutions: It follows by the
generating functions k£ = k(z) and f = f(z) that
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xzk — (3 =222z —x22)f =[(z — 1) + 23] kf. (13)

k fn—r] 2"

o (n-3
+> [Z k, fn,,gJ 2.

This implies

Y kygz" =3 2" 4222 ) 2" ) fr02 = Z[
n=0 n=0 n=1 n=2

n=0

||tv1:

n=3\ r=0

Since, 22%f, | + af,_o = xf, + 22f,_; and P, +Q, = P,,; [8, 10], we then

have
n-3
xknl"'(x 3)fn+xfn 1= ‘T 1Zkfn T+Zkfnr3: (14)
r=0 r=0

n+1

k()+P +Qn1_zkfnr+l+zk fnrQ

Since 2F, — F,,_; = L,_;, it follows from formula (14) that [4]

n—2
L, = Z K.F, . (15)
r=0
That is
n—2
T, +2T, 1 + 3T, 9 — L, = (T, + 2T, + 3T, _5)F,_, 5.
r=0

2.6 Tribonacci-Lucas—Lucas Convolutions: Employing the generating
functions k£ = k(z) and [ =1[(z), we get

(22 —222)k — (3 -22%2 —x2?) = [(x = 1) + 23]kL. (16)

This yields
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20 ) k2" =2 Y kyg2" =3 12" +222 Y 1,z
n=0 n=1 n=0 n=1

+x2l,, o2t =(z—1 ZEZM 4}

n=2 n=0\r=0

o (n-3
+Y (Z krln_r_?,}z”.

n=3\ r=0

Using the recurrence [, = xl,_; +[,_o, this yields
n n—3
2ak, — %k, + (@ =3), + 2%, = (z =) D kbyy + D kg (17)
r=0 r=0

It follows from this equation that

n n—3
Q‘Tkn@m) - 4x2kn—l(2x) + (2$ - 3)qn + 4$2qn—1 = (2$ - 1) Z kr(zx)qn—r + Z kr(zx)Qn—r—i% >
=0 r=0
n n—-3
kn(Q)_an—l(z)_Qn+4Qn 1 :Z Qn r+zk Qn r=3-
r=0 r=0

Since, 2L, — L,_1=5F,_1, it also follows from formula (17) that [4]

n-3
2K, - K,y —5F,_1 =Y K.L, , . (18)
r=0
This implies
n-3
2T, + 3T,y + 4T, 5 = 3T, 3 =5k, ;= z (T +2T, 1 + 3T, 5) Ly 3.
r=0

2.7 Tribonacci-Lucas—Jacobsthal Convolutions: Using the generating
functions & = k(z) andJ = J(z), we get

2k — (3 =212 —x2%)J =[(2® = 1)z + 23]k J. (19)



92 THOMAS KOSHY

Consequently,

D ka2t =3 T (@) +202 ) T, 2
n=1 n=0

n=1

0 o [ n-1
+z Z Jn—?(x)zn = (xQ - 1) Z |:Z krjn—r—l(x)] 2"
n=2

n=1| r=0

o [n-3
+ Z [Z krjn—r—S(x)] 2"
n=3| r=0

This implies
n—-1

k;nfl_3Jn($)+2l‘2<]nfl(x)+$Jn72( ) ZL‘ _1 ZkJn —r— 1 ZkJn —r— 3
r=0
(20)
Since, 3F, _oF, | —F, o =1L,_;, formula (18) follows from this. In
addition, since 3.J,, —8J,_1 —2J,_o =2J, —7J,_;, it also follows that

n—1

kn—l(z) -2, +7Jy1 =3 Z kr(z)Jn—r—l + Z kr(Q)Jn—r—S'
r=0 =

2.8 Tribonacci-Lucas—Jacobsthal-Lucas Convolutions: Using the
generating functions %k = k(z) and j = j(z), we get

(2-2)k—=(3-22%2—22%)j =[(2? = 1)z + 23]kj. (21)

It then follows that

2 Z k,z" — Z ky_1z2" —3 Z I ()2
n=0 n=1 n=0

+ 222 i Jp12" + T i Jng(2)2" = (22 = 1) i[

n=1 n=2 n=1
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an _kn—l _3jn(x)+2x2jn—1( )+x.]n 2\T) = Z ]n —r— 1 Z ]n —r— 3

When x =1, this yields formula (18).

Since 37, — 8J,-1— 2Jp—2 = 2j, — 7Jn_1, it also follows that

n—1 n-3
2k, (2) - kn—l(z) =20, + TJp1=2 Z kr(z)jn—r—l + Z Ky Jn—r—3-
r=0 r=0

Finally, we explore convolutions of order 2 involving tribonacci and
tribonacci-Lucas polynomials.

2.9 Tribonacci—Tribonacci-Lucas Convolutions: It follows from the generating
functions v and k that kz = (3 — 2222 — 22%)u, so

(uk)z= (3 —22%2 — 22%)u?

n=0\r=0 n=1\r=0

P IS L R

o (n-2
- Z [Z trkn_r_glz”.

n=2\_r=0
Consequently, we have

n—1 n n-1 n-2
Z trkn—r—l =3 Z bty — 227 Z ttp—r1 = LEZ trtn—r—Q;
r=0 r=0 r=0

r=0

n-1 n n—1 n-2
z Tranrfl =3 Z Tr Tnfr -2 Z TrTnfrfl - Z TrTn7T72
r=0 r=0 r=0 r=0
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1. Introduction

Eztended tribonacci polynomials z,(x) are defined by the recurrence
Zni3(T) = 222, 19(2) + 22,1 () + 2, (x) , where z is an arbitrary complex variable;

20(x), z(x), and 2zo(z) are arbitrary complex polynomials; and n > 0. They can be
extended to negative subscripts.

When z5(z)=0, z(z)=1, and z(z)=22, z,(z)=t,(z), the nth
tribonacci polynomial, and when zy(z) =3, 2 (x) =22, and z(z) = z* + 2z,

2, (z) = k,(x), the nth tribonacci-Lucas polynomial. Tribonacci polynomials were
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originally studied by Hoggatt and Bicknell [3, 7], and tribonacci-Lucas polynomials
by Yilmaz and Taskara [10, 4].

Tribonacci numbers T, = t,(1) were originally studied by Feinberg in 1963
when he was a 14-year old ninth-grader [2, 7], and tribonacci-Lucas numbers

K, =k, (1) by Yilmaz and Taskara [10, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). We also
omit a lot of basic algebra.

The @-matrix for Fibonacci polynomials [7] has a tribonacci counterpart [3]:

where @ = Q(x). It then follows by induction that

tn+1 tn tnfl
Q" =|at, +t,. Tl +l, o Tb_o+1, 3|,

tn tn -1 tn -2

where n > 1; it can be used to generate tribonacci polynominals [3].

1.1 A Link Between Tribonacci and Tribonacci-Lucas Polynomials: The
polynomials ¢, and k, are closely linked by the relationship

kn = .T2tn + 2.’Etn_1 + 3tn_2 . (1)

Although it follows by induction [4], it can easily be established using the
generating functions for ¢, and &, [8].

Consequently, K,=T,+2T, 1 +31,,
=T +T +21, 5 -
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It follows by tribonacci recurrence and equation (1) that

kn = (x2tn + xtn—l + tn—2) + xtn—l + 2tn—2
=ty tat, g + 2tn—2

= traceof ), .

Next we briefly cite combinatorial models for ¢, and k, .

2. Combinatorial Models

Suppose we would like to tile an nx1 board with 1x1,2x1, and 3x1

tiles. We call such a board an n-board, and such tiles as squares, dominoes, and
triminoes. The weight of a square is 22, that of a domino is z, and that of a trimino
is 1. The weight of a tiling is the product of the weights of the tiles in the tiling. The
weight of the empty tiling is defined as 1. The sum of weights of such tilings of an

n-board is t,,1, where n > 0 [6, 7]; there are T}, such tilings of an n-board.

Consequently, there are 7,.; compositions of a positive integer n using the
summands 1, 2, and 3 [6, 7].

Using equation (1), we can now interpret &, combinatorially:

" ) (sum of the weights of J (sum of the weights of J
n+l =

+
tilings of an n — board ! tilings of an (n — 1)-board

sum of the weights of
tilings of an (n —2)-board |

3. Addition Formulas

As in the case of Fibonacci and Lucas polynomials, tribonacci and

tribonacci-Lucas polynomials satisfy analogous addition formulas:
lnn = bpsaly + Tyl + it 0 + 1, 11,13 )

km+n = 2fm+1kn + xtmkn—l + tmkn—Q + tm—lkn—l : (3)
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Using the concept of breakability [1, 7] in tilings, we can establish formula

(2) [6, 7]. Formula (2), coupled with formula (1), yields formula (3); we omit the
basic algebra for brevity.

Next we establish both addition formulas using graph-theoretic techniques.
4. Graph-theoretic Models
Consider the weighted tribonacci digraph D with vertices v, vy, and

v3 in Figure 4, where a weight is assigned to each edge [6, 7]. Clearly, its

weighted adjacency matrix is the Q-matrix.

Figure 1: Tribonacci Digraph

A walk from vertex wv; to vertex wv; 1S a sequence
V; =€ — U — -+ —Ujq —€;_y —v; of vertices v, and edges e, where edge ¢ is
incident with vertices v; and vy . The walk is closed if v; = v;; otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a
walk is the product of the weights of the edges along the walk.

We can employ the matrix " to compute the weight of a walk of length n

from any vertex v; to any vertex v;, as the following theorem shows [5, 6].

Theorem 1: Let M be the weighted adjacency matrixz of a weighted,
connected digraph with vertices v, vy,...,v,. Then the ijth entry of the
matriz M" gives the sum of the weights of all walks of length n from v; to v;,

where n > 1. O
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The next result follows from this theorem.

Corollary 1: The ijth entry of Q" gives the sum of the weights of all
walks of length n from wv; to wv; in the tribonacci digraph D, where 1<1,

j<n. O

It follows by the corollary that the sum of the weights of all closed walks of
length n originating at v; is ¢,,;; that from v to v, is ¢, ; that from w» to v is

xt, +1t,_1; and that from vy to v; 1is ¢, . These results play a pivotal role in the

confirmation proofs.

Proof of Formula (2): Let A be the set of closed walks of length m +n —1

originating at v; . The sum S of their weights is given by S = t,,,,, .

We will now compute S'in a different way. To this end, let w be an arbitrary

walk in A.

Case 1: Suppose w lands at v; after m steps: subwalk from v, to v,

length m

subwalk from v; to v; . The sum of the weights such walks is %,,,t, .

length n-1

Case 2: Suppose w lands at v, after m steps: subwalk from v; to vy

length m

subwalk from v, to v, . The sum of the weights such walks is ,, (zt,_; +t,_5).

length n—1

Case 3: Suppose w lands at v; after m steps: subwalk from v; to v3

length m

subwalk from w3 to v; . The sum of the weights such walks is ¢,,_1¢,_; .

length n—1
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The cumulative sum S is then given by
S = lsitn + 1y (xtn—l + tn—?) +lpaly—-

This, coupled with the earlier value of S, yields the desired result. O

Proof of Formula (3): The sum §,, of the weights of closed walks of length
n originating at v is given by S,, = t,,,1 . It then follows by equation (1) that

sum of the weights of sum of the weights of
ky,.n = x? | closed walks of length + 2z | closed walks of length
m +n —1 originating at v; m +n —2 originating at v;
sum of the weights of

+ 3| closed walks of length

m + n — 3 originating at v;
= ZI}QSern,1 + 288 n-2 + 3Smin-3 - (4)

We will now compute the sum S*= 225,,,,_1 +2%S,,,n_2 + 3S,1n_3 in a

different way. Let A, B, and C denote the sets of closed walks of length m +n —1,

m+n—2,and m +n — 3, all originating at v;, respectively. Let w be an arbitrary
walk in A.

Case 1: Suppose w begins with a loop: subwalk vy
%,—/

length 1
subwalk from v, to v; . The sum of the weights such walks is z2t,,.,_; .

length m+n-2

Case 2: Suppose w does not begin with a loop. If w lands at v, and returns to

v, then w is of the form subwalk v;v,v; subwalk from v; to v; . The sum of the

length 2 length m+n-3
weights such walks equals xt,, ., _s.
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On the other hand, if w lands at v, and then at v;, and returns home, then

w is of the form subwalk vjuyv3v; subwalk from v; to v; . The sum of the

length 3 length m+n—-4

weights such walks equals ?,,,,_3 .

Combining the two cases, we get

— 2
Sm+n71 =T tm+n71 + (:L’tvaan + tm+n73)

=1

m+n
This implies, S,,4—2 = tpen_1 and S,,.,_3 = tin_o. Thus,
S* = 228, -1 + 228,409 + 38,03
= 2%y + 2Tt 1 + 3tyino
= 22 (tyy 1ty + Tty + tpty_o + by 1ty 1)
+ 22(t 1ty + Tty +tntng +tn_ith2)

+ 3(t7n+1tn—2 + xtmtn—i’) + tmtn—4 + tm—ltn—B)

= b1 (2, +23t, | + 3t,_o) + at,, (2%, 1 + 2xt, 5 + 3t,_3)
+ tm(le"n72 + 2$tn73 + 3tn74) + tmfl (xztnfl + 2l‘tn72 + 3tn73)

= tm+1kn + xtmkn—l + tmkn—Q + tm—lkn—l : (5)

Equating the two values of S* in equations (4) and (5) yields the
desired result. [As a byproduct, the above equations give an algebraic proof of

formula (3)]. O

In particular, we have

Km+n = Tm+1Kn + TmKn—l + TmKn—2 + Tm—lKn—l : (6)

Next we develop the Binet-like formulas for ¢, and k,.
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5. Binet-like Formulas

Let (a, B, and y) be the solutions of the characteristic equation

23 =12222 +32z+1, and A and an arbitrary solution. One of them is real and the
other two are complex conjugates of each other.

Clearly,
a+pf+y=x1°

af + Py +ya =
afy=1.

The general solution of the tribonacci recurrence is ¢, = Aa" + B" + Cy",

where the unknowns A, B, and C can be determined using the initial conditions

ty =0, t =1, and t, = 22. Omitting a lot of basic algebra, we get the Binet-like
formula

n+1 n+1 n+1
o
t, = P +—7r .

Yoa=Pla-y) B-a)B-r) (r-a)yr-p)

In particular

an+l ﬁn+l yn+1
T, = + + : (7N
(@a=-p)a-y) B-a)B-y) (r-a)r-p)

14319 +3V33 + {19 3433

3

1):1+a)\/319+3\/£+a)2\/319—3\/£'
3 )
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iy 1+ @19+3933 + 03319 - 3733
3 )

y =y

—1+\/§
0=—

2

Let u = A(1). Since z? + % =24, we have
7

=-a?+4a-1;
a
(B-a)(B-7) =— B +4p5-1;
p
(y—a)(y = p) =244y -1,
Y

where o = a(1), S = p(1),and y = y(1). Consequently, we can rewrite formula (7)
in a slightly different form [9]:

an n n
T, =— b T ®)
—a +4a-1 —-p°+4p-1 -y " +4y-1

5.1 A Formula for {5, : Formula (8) has an interesting byproduct. It can be
used to express 3, as a sum of three binomial sums. To this end, let 4 be an

arbitrary solution of 23 = 2222 + 2z + 1. We then have [4]

A=A -+

n

=i[iJ(z3 -1y
i=0
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_ i[:‘ (222 — z2)

1=0
M) f} (i)ww
i=0 j=0 J

Using the Binet-like formula for ¢, , this yields

no1 n i i
t3n = Z Z i | ti+j'
i=0 j=0 J

Let
g _ /u?m
HT e
-yt +4u-1
ST 03 M| M P
—y2+4y—1¢:oj:0 A
Then T3, =S¢ + S5 +5,.

5.2 An Alternate Formula for t;,: Addition formula (2) also can be

employed to develop a formula for 3, . We have

2 2
bop—1 =1t T xt,_1 + 2tn71tn72;
2
ton, = lpsity + 2ty +tt, o+,

2 2
t2n+l = tn+1 + xtn + 2tntn—1’

Then

2
t3y = lygily + Tloyt, 1 +lopt, o +toy 1,
_ 42 3 2
- tn+ltn + xtn+1tntn—1 + tn+1tntn—2 + xtn + 3tntn—l

20t b, gt o+ T+t o + Bt o 2D .
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This implies
Ty = Ty Ty + Ty DTy + Ty T, + T, + 310T,
+21,T, T, » + T, T + T,T, 5 + 3T, T, , + 2T, .

5.3 A Summation Formula For £k;,: Using the Binet-like formula

k, = Aa" + BB" + Cy" and equation (9), it follows that

k3n = Z Z [:LJ [ZJ xi+j]€i+j7

i=0 j=0 J

where A, B, and C are rational functions and can be found using the initial conditions

ko =3, k =%, and k* =z* + 2z [4].

Using formula (3), we then have

t2n+1]€n + xthkn—l + thkn—Z + t?n—lkn—l = kdn

Consequently, we have

Ty, + 213, + 313, 9= 13,11 + 13,1 + 213, 5
= TZn-%—lKn + T?nKn—l + TZnKn—Z + T2n—1Kn—1

= KSn
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
20 () = a(2)z,,,,(x) + b(x)z,(x), where x is an arbitrary complex variable; a(zx),

b(x), zy(z), and z(z) are arbitrary complex polynomials; and n > 0. Obviously,
the definition can be extended to negative subscripts. [2,3].

[

Suppose a(z)=xz and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when zy(z) =2 and z/(z) =z,
z,(z) =1,(z), the nth Lucas polynomial. In particular, f,(1) = F, and [,(1) = L,

are the nth Fibonacci and Lucas numbers, respectively.
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On the other hand, let a(z)=1 and b(z)=x. Suppose z,(z)=0 and
z(z)=1. Then z,(z)=J,(z), the nth Jacobsthal polynomial ; and if z,(z) = 2
and z/(z)=1. Then z,(z)=1,(z), the nth Jacobsthal-Lucas polynomial. Their
numeric counterparts are given by J,, = J,,(2) and j, = j,(2) [2, 3, 4].

Fibonacci and Lucas polynomials, and Jacobsthal and Jacobsthal-Lucas
polynomials are linked by the relationships J,(z) = 2 f,(1/~z)  and

Gu@) =" (2) [2,3,4],

In the interest of brevity, clarity, and convenience, we often omit the argument
in the functional notation; so z, will mean z,(z).

2. Jabinomial Coefficients

n

Gibonomial coefficients H ﬂ , studied in [3] (notice the change in the

T
I

n *
notation), are defined by H ﬂ = *fn* )
r f fl fn—'l'

where fi = fifi1...fofi, fy =1, and 0 <r <n. Correspondingly, we define the

n

jabinomial coefficients(Jacobsthal binomial coefficients) H ﬂ , by
T

J

[,
" J fr (w)fn—r(x)

where J),(7) = J,(2)J,_1(2)...Jy(z)Jy(z), Jy *(x) =1,and 0<r<n.

(n—1)/2
z

Since J,(z) = fn(w), it follows that

J;(l‘) = ‘]n(x)*]nfl(l‘) cee JQ(z)Jl(ZI;)a
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=[] [ @] [ p | [ ]

n(n-=1)/4 .«

="y, @)

where u = 1/v/z.
In particular, we then have
=2 ).
For example, 2° £ (1/7/2) = 165 = J2.

It follows from equations (1) and (2) that

n=rlf, xr(f’*l)/4fr*(u)x(nfr)(nfrfl)ﬂfi_r(u)

_ xn(n—r)r/Q‘ f;(u)
B () f - (u)

:x(nfr)r/Q |:|:ni|i| 7 3)
iy

n
Suppose H ﬂ (2) denotes the value of the jabinomial coefficient at
n-—r
J

where f, = f,(u).

z =2 . Then
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For example,

o(7-3)3/2 H7H (NE) = 25 FA/NR) £0/42) K1/42)
311, FaND |

= 3,311

Ll

n n ||
It follows from equation (1) that H ﬂ = H } and hence
r n

=T
J

[o] - 2], - ey 2] -

Next we present a graph-theoretic interpretation of jabinomial coefficients.

2.1 Graph-theoretic Interpretation: Consider the weighted digraph D; in
Figure 1 with vertices v; and vy [5]. The sum of the weights of closed walks of
length n originating at v; is J,,,(z), and that of those originating at v, is z.J,,_;(z).

Consequently, the sum of the weights of all closed walks of length n in D; is

Jn+l(z) + x‘]n—l(z) = ]n(z) [4]

[ ¥y

Figure 1: Weighted Jacobsthal Digraph D,
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Let W, denote the product of the sums of weights wj; of closed walks of

length £ originating at v;, where 1 <k < n. Then

n—1 n—1
W = [Twr = [[76a(2) = Tn().
k=1 k=1

n Vanl
r 7 erlwnfrfl .

(We can employ the same technique to give a graph-theoretic interpretation
of gibonomial coefficients using the weighted Fibonacci digraph D, in Figure 2 [5].)

Thus,

Vi V2

1

Figure 2: Weighted Fibonacci Digraph D,

2.2 Jabinomial Recurrences: Jabinomial coefficients satisfy gibinomial-like

18 R S
) Hn_ lﬂJ et H:«L: 11HJ Tueret; )

recurrences:

where J, = J,(z).

We can establish these recurrences using the addition formula [4]

Jinsn (l‘) =Jpmi ($)Jn (l‘) +ady, (x)‘]nfl (l‘) .
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Forexample,
" J J:J;—r
= Ju-1 (‘]rJrlJn—r +$Jrjn—r—1>
Y
Ju-1 .

i O o

where J, =J,(z). Figure 3 shows a pictorial representation of this recurrence.

[ e

ol

Figure 3

Since J,,,(z) + zJ,_1(z) = j,(z), it follows by recurrences (4) and (5) that

2 H:T :H - |I r :|:| (Jpp1 +2dq) H:T _ 1}} (Jpeyir + 2Ty q)
J J p
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g A S R

where J,, = J,(z) and j, = j,(z). Consequently,

where j, = j, (2) :

Forexample,

! 2)g ! 2)J3 =51,170 =2 i 2

-+ = = .

| @i || || @75 =51 | @

J J J
Recurrence (4), coupled with the initial conditions
0 1 1

HOH =1= HOH = Hlﬂ, implies that every jabinomial coefficient is an integer-

valued polynomial.

2.3 Jabinomial Polynomial Array: Both recurrences can used to construct a
Pascal-like triangular array for jabinomial coefficients, as in Figure 4. Figure 5 shows
its numeric version.

1 r+1 xr+1 1
1 2 + 1 27 + 3z +1 21 + 1 1

Figure 4: Jabinomial Polynomial Array
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1 1
1 (1) 1
1 3 3 1
I 5 (15) 5 1
1155 55 11 1

Figure 5: Jabinomial Numeric Array

Next we explore the central jabinomial coefficients.
2.4 Central Jabinomial Coefficients: The central jabinomial coefficients

2n
H ﬂ satisfy an intriguing property; see the circled numbers in Figure 5. By
n
J

recurrence (4), we have

This property has an interesting byproduct. Since

(R ey

it follows that J,, (z) = J,,(x)j,(z) and hence J,, = J,j, [4].

2.5 Star of David Property: Like gibonomial coefficients, jabionomial
coefficients also satisfy the Star of David property:
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1 e

see Figure 6.

Figure 6

We can establish this property also algebraically:

* * *
Jn—l Jn Jn+1

LHS = T T Tk gx
J?'—l‘]n—r J7'+1Jn—r—1 JrJn—r+1

* * *

— Jn—l Jn+1 Jn

* 7% * * * *
JrJn—r—l ‘]r+1Jn—r ‘]r—l‘]n—rJrl

LI,

= RHS.

Next we present the occurrences of jabinomial coefficients in two different
contexts and some special cases.
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3. Jabinomial Occurrences

3.1 Product of Jacobsthal Recurrences: Jabinomial coefficients occur in
the characteristic equation of the product of n polynomial recurrences

Zp+2= Zp1 T T2y 0

r=0 r

ntl n+1
Z (_1)t7’ xl‘q‘,l — {|: }} Zﬂ,*T+1 — 0 ,
J

where ¢, denotes the nth triangular number n(n +1)/2. This follows by letting

h=—-x,n=0, j=r,and k =n+1 inequation (3) in [7].
When n =1,2,3,4, and 5, it yields the following characteristic equations:
2P —z—x=0;
B —(z+1)2 —a(z+1)z+2° =0;
220+ —a(z+1) 2z +1) 22 + 2320+ D)z + 25 = 0;
2P —(2® +3x+ 1)z — 22z +1)(2® + 32 +1)2°
+ 222z +1)(2® + 3z +1)2" +2%(2® + 3+ 1)z -2 = 0
L —(z+1)Bz+1)2° —z(z+1)(3z+1)(2® + 3z +1)2*
L (z+1)Br+1)2° —z(z+1) Bz +1)(2® + 3z +1)2*
+ 222z +1)Br+1)(2® +3z+1)2° + 28z + )3z +1) (2 + 3z +1)2°
— 2z +1)(3z +1)z -2 = 0.
respectively.

Correspondingly, we have the following recurrences for powers of Jacobsthal
polynomials:
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Jpio = Jp1 +xdy;
Trvs = @+ Do + 2z + 1540 — 27
Jo = Qe+ D)o +a(z+1)(2e +1)J2 5 —a® (2 +1)T0, — 2573,
Jihs =(@® +3z+ 1), + 22z +1) (2 + 3z +1)J) 5
- m3(2x +1) (m2 + 3z + 3)Jf,f+2 - mG(m2 + 3z + 1)Jf,f+1 + mlOJf,f;
T2 =@ +D)Bz+1)J0 s +x(z+1) Bz +1)(2® + 3z +1)J],,
— 232z +1) Bz + 1) (2 + 3z + 1)), 5 —2%(z + 1) Bz + 1) (2 + 3z + 1)J;
+ 2%z + 1) Bz + 1)J2, + 2T,
where J, = J,(z).
In particular, we then have
Jnva = Jns1 + 2y
Jois =300 + 50, -85
Tnea = 55 + 300100 — 4077, — 64735
Jies =11J0, +110J0,5 — 440, 5 — 70471 +1024.3;

Jooe = 2100, + 46272, —3080J2, 5 — 1478477 5 + 2150472, + 32768J2;

respectively.

3.2 Addition Formulas: Jabinomial coefficients also occur in the addition
formula involving the sum of products of m +1 terms of sequences satisfying the
Jacobsthal recurrence:

m m .
(_1>t7~+7“xtr71 |:|: r j|i| J777,n-,+—+7711—r = JmJ(m+1)(n+m/2) (7
r=0 J
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where J, =J,(z). This follows from formula (5) in [7] by letting U,=J,(x),

k=m,j=r, and q;,=n for 1<4<k. Notice that the second subscript
on the RHS <can be expressed in terms of a triangular number:
(m+1)(n+m/2)=(m+1)n+t,.

As can be predicted, formula (7) also has interesting special cases.
For example, when m =1,2,3,4, and 5, it yields the following addition formulas,

where J, = J,(z):

VERER Y P RE
Tova + @ Tyn = 2T = 2y 3
Tuss + (@ + Do —2° (@ + 1y — 2%, = (2 + 1) 405
5 5 3 5
Jn+4 + l‘(2l‘ + 1)Jn+3 -z (l‘ + 1) (2$ + 1)Jn+2
—2%Qz + )J) 0 + 2T = (2 + 1) (22 + D5y i10;
IS s +a(@? +3x+1)J0,, — 232z + 1) (2 + 3z +1)JC, 4
—25Q22 +1)(2® + 32+ 1)JS 5 + 2102 + 32 +1)J5
15 76 _ 2
+2°J, =(x+1)2z +1)(z” + 3z + 1)Jgp415-
In particular, we have
T + 205 = Janaa
Tova + 251 =815 = 25,3
Tus + 6510 =240 =64, = 3J4,16
5 5 5 5 5 _ )
Jn+4 + 10Jn+3 - 120Jn+2 - 320Jn+1 + 1024Jn - 15J5n+10a

JO, s +2278, , — 4408, 5 - 35200°, 5 +11264J°,, + 3276278 = 16576,
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Thomas Koshy | A SUBFAMILY OF THE EXTENDED
TRIBONACCI POLYNOMIALS FAMILY

Abstract: We present a new member of the extended tribonacci polynomial
family, a link among the subfamilies, Binet-like and addition formulas for
the tribonacci family and a summation formula for a special case. We also
present combinatorial and graph-theoretic models for the subfamilies, and
confirm the addition formula for the new subfamily using graph-theoretic
tools.

Keywords: Extended Tribonacci Polynomials, Binet Addition Formula,
Combinatorial Models.
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11B39, 11Cxx.

1. Introduction

Extended tribonacci polynomials z,(x) are defined by the third-order
recurrence z,,3(z) = £°2,,9(2) + £,,41(z) + 2, (z), where z is an arbitrary complex

variable; zy(z), 2z1(x), and 2(z) are arbitrary complex polynomials; and n > 0.

When z5(z) =0, z(z) =1, and z(z) =2, z,(z)=t,(z), the nth tribonacci
polynomial  [2, 6, 8]; when zy(z)=3, z(z)=2>, and z(z) =2z +2z,

2, (z) = k,(x), the nth tribonacci-Lucas polynomial [3, 8, 10]; and when



122 THOMAS KOSHY

(@) =2 -3, z@)=2'—2° +z,and z(x)=2° -2 +2° 2 241, z,(2) = d,(2),
a new member of the extended family. Table 1 shows the first six members of the
subfamily {d,(z)}.

Table 1: First Six Polynomials

n d,(z)

02*-3

1| z' -2 +2

2 | 2% -2t +223 22 +1

3 2® —2® +32° - 34% +34° -3

4 21 —2® + 42" —42° + 62" — 62 + 22

5 2% =2 +52° =527 +102°% =102 + 723 -5z +1

Tribonacci numbers 1, and tribonacci-Lucas numbers K, are given by
t,(1) and k,(1), respectively [1, 3, 6, 8, 10]. Correspondingly, we have a new family
of numbers D,,, defined by D, =d,(1). Table 2 shows the first 10 numbers 7,,,
K,,and D,.

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). We also
omit a lot of basic algebra.

Table 2: Numbers 7,,, K,, and D, for 0 <n <9 —

3

jan)
—
[N}
w

4 5 6 7 8 9

|
(en]
[
[
[N}

4 7 13 24 44 81

X
w
—
w
\]

11 21 39 71 131 241

S
|
[\
=
=
s}

2 3 5 10 18 33
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The polynomials %, , k,, and d, , and hence their numeric counterparts can
be extended to negative subscripts. For example, ¢.; =0, t 9 =1, and {3 =-=x;

kq=-x, ko=—2%, and k3=22+3; and d =z+1, dy =2*, and

dg=—-22°-3.

There is a close relationship between tribonacci and tribonacci-Lucas
polynomials:

k’n, = ‘TQtn + 2:Et’n,fl + 3tn72 (1)

=ty 2l 1+ 2tn—2' (2)

Formula (1) can be confirmed using induction [3] or the generating functions

2 2
2 3-2x°2z—zz2 . . . .
u = 5 . . and k= 5 5 of tribonacci and tribonacci-
l—-x"2z—22" -2 l-zz2—22" -2

Lucas polynomials, respectively [7].

Using the generating functions for d,, and t,,, we now develop a formula for

d,, in terms of tribonacci polynomials.

2. A Formula For d,

o0
Let d = Z d,z". Using standard generating function techniques, we can
n=0

show that

? =3+ (22 + 1)z + (x +1)2°

1-2%2 — 2% - 23

d=

By the generating functions d and u, we have

dz=[2* =3+ 22° +2)z + (v + 1)2*]u

o0

Sd, 2" =@ =3)Y 2" + (22 +2)Y t, 2" (T +1)D 1, p2"

n=1 n=0 n=1 n=2
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dn = (:EQ - 3)t7l+1 + (2"1“2 + x)tn + (.fL' + l)tnfl
= (thnJrl + at, + tnfl) - 3tn+1 + 2$2tn + xt, 1
=lp+2 = 3tn+1 - xgtn+1 + x($2tn+1 + oty + tn—l) + thn

= (iE + 1)tn+2 - (x3 + 3)tn+l + thn' (3)

This yields
Dn = 2Tn+2 - 4Tn+1 + Tn-

Consequently, D, =T, (mod 2); so D, and 7, have the same parity; see
Table 2.

3. A Link among The Tribonacci Subfamilies

Using induction, we now establish a link among the three subfamilies of the
extended tribonacci family.

Theorem 1: Let n > 0. Then t,. .o =k, +d,, .

Proof: Clearly, the formula works when n =0, 1, and 2.

Now assume it is true for n, n—1, and n—2, where n >2. By the
tribonacci recurrence, we then have

2
tn+3 =z tn+2 + xtn+1 + tn
2
=z (kn + dn) + x(kn—l + dn—l) + (kn—Z + dn—2)
= fpy1 t+ dn+1'

So the formula works for n + 1 also. Induction then guarantees that the given
formula works for all n > 0, as desired. O

It follows by the theorem that 7., ,, = K,, + D,, .

Theorem 1, coupled with formula (2), can be used to develop an alternate
formula for d, in terms of tribonacci polynomials:
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dn = lp+2 _kn
= (xztn,+1 + zt, + tnfl) - (t7l+1 + 2t + 2tn72)
= (ZBQ - 1) lpe1 + 2ty — (l‘ - 1) b1 — 2tn72' (4)

Consequently, D, =T, —2T,_, and hence 7, and D, have the same
parity, as found earlier.

It follows by Theorem 1 and formula (2) that
tn+2 = kn + [(IEQ - 1) tn+1 + :Etn - (:I; - 1) tnfl - 2tn72:| .
= Ky + (2,00 +2at, +3t, 1) —tyey — 3ty — (T +2)t,_1 —2t, o

= Rpy1 T kn —lpy1 —at, — (l‘ + 2) by—1 — 2ty 9.

In particular, we have

Tn+2 = Kn+1 + Kn - Tn+1 - Tn - 3Tn—1 - 2Tn—2 (5)

Tn+3 =K,n+K,-3T,,-2T, -
It follows from formula (5) that
2T =K + K, - 2( Tha+ Tn—2>'

Consequently, K, ; = K, (mod 2). Since both K, and K; are odd, this
implies that every K, is odd. (This follows by the tribonacci recurrence also, since
Ky, K; and K, are all odd.)

Using Theorem 1, we now present an alternate proof of property (2).

3.1 An Alternate Proof of Property (2): It follows by the generating
functions d and & that

3 - 2277 — a2? _x2—3+(2x2+a?)z+(a:+1)z2

k d
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(3-24%2 —22°)d = [2* = 3+ (22 + 2)z + (z + 1)2°k

32 d, 2" —22° Z d, 12" — ZBZ d, 92" = (2% - 3)2 k2" + (227 + :B)Z k,_12"
n=0 n=1

n=0 n=1 n=0

+ (@ +1)D kyoz"

n=2
3dn - 21‘2(17%1 - l‘dan = (1‘2 - 3)kn + (2$2 + x)knfl + (ZL‘ + 1)]%72' (6)

By Theorem 1, this yields

l‘2kn + l‘knfl + k;n72 = 3( dn + kn) - 2$2(dn71 + knfl) - l‘( dn72 + kn72)
ky = 3t,.q — 22, —at,

2
=ty t+ Q(thrl -z, - xtnfl) + 2t
= tn+1 + xtn—l + 2tn—2 s

as desired.

Next we explore an addition formula for d,, .
4. Addition Formulas

Using Theorem 1, and the addition formulas [§]
bn = tmyrty + Tlypty 1 + bty o + 1, 0t 15

karn = tm+1kn + xtmknfl + tmkn72 + tmflknfla
we have

dm+n = tpyne2 — km+n
= (tm+1tn+2 + Tty + bty + tm—ltn+1)
- (tm+1kn + ‘Ttmkn—l + tmkn—Z + tm—lkn—l)

= ty1dy + Tlydy g +lpdy o + by ydy g - ™)



A SUBFAMILY OF THE EXTENDED TRIBONACCI POLYNOMIALS 127
Combining the three addition formulas, we get
Zman = tmy1Zn T T2y 1 + 12y 0 + 1y 12, 1> ®)
where z; =t;, k;, or d;.
In particular,
Zm+n = Tm+1Zn + Tmanl + T;an%Q + Tmflznfla
where Z; =T, K;,or D;.
It follows from formula (8) that
23p = lop12n T Thp2y_1 + o2y 9 + 12,15
Z?m = TQ7L+1Zn + TQnanl + CZ—VQHZH*Q + T27L*1Z7L*1‘

We will revisit these formulas later.

5. Binet-Like Formulas

Next we explore the Binet-like formula for the extended tribonacci
polynomial z,. To this end, let & = a(z), £ = f(z), and y = y(z) be the solutions
of the characteristic equation 2® —2°2%> —22—1=0. The general solution of the
tribonacci recurrence is z, = Aa" + BB" + Cy" , where the unknowns A, B, and C

can be found using the initial conditions. This yields the desired Binet-like formula

:22—21(ﬂ+7/)+20ﬁ7/an+22—Z1(7+a)+Z07a n+z2—z1(a+/3)+z0a,8 n

(@-p)a-y) (B-a)(B~-7) (r—a)(y - p)

n

)

Let A be an arbitrary solution of 2® — 222> —22—-1=0.

It then follows from equation (9) that
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n+1 n+1 n+1
a B 4

t, = + +
(a-B)la-y) B-a)B-r) (r-a)(r-p)

n

= A 0" + BgB" +C,y", (10)

22
where A =———.
2222 +220+3

It also follows from equation (9) that

n+l n+l n+l
T o__ ¢ P 7 (11)

Toa=plla-y) (B-a)B-7) (r-a)y-p)

Kn — an +ﬂ7l +}/71

D, =C,a" + C’ﬂﬂ" + Cﬂ/",
22

where a=a(l), f=p1),and y = y(1);A=a, f, or y;and C; =——.
22 +2+3

1
2_2-1=0, ,u2+—2=2,u.
Y7,

Since ;= A(1) is a solution of z* — z

Consequently, we can rewrite formula (11) in a slightly different form [9]:

an n n
T, = 5 + 2ﬁ + 27/ .
—a" +4da-1 —-p°+4p-1 -y +4y-1

Next we show that z3, can be expressed as a double summation.

6. A Summation Formula for z3,

Recall that A is an arbitrary solution of the equation z° = z%2% + 2z +1.
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Then [3]
A5 =A% =1)+1]"

=X\, -y

([
i=0j=0\"* ) \J
It then follows by formula (9) that

S [2] (J 7z

i=0 j=0
where 2z, =t,, k,,or d,.Consequently, by equation (8), we have

ton12n + Tlop2y_1 + tap2y_o oy 12,1 = 23,

This implies

T2n+1Zn + TQnZn—l + TQnZn—Q + TQn—lzn—l = Z3n

where Z, =1, , K,,,or D,.

Next we briefly cite combinatorial models for z,, .
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7. Combinatorial Models

Suppose we would like to tile an n x1 board with 1x1, 2x1, and 3x1
tiles. We call such a board an n-board, and such tiles as squares, dominoes, and

triminoes. The weight of a square is #” , that of a domino is z, and that of a trimino
is 1. The weight of a tiling is the product of the weights of the tiles in the tiling. The
weight of the empty tiling is defined as 1. Then the sum of weights of such tilings of

an n-board is ¢,,;, where n > 0 [5, 6]; there are T,,; such tilings of an n-board.

As a result, there are T,.; compositions of a positive integer n using the
summands 1, 2, and 3 [5, 6].

Using equations (1) and (2), we can now interpret k, combinatorially [8]:

o sumof the weights of sum of the weights of
= +
" tilings of an (n —1)-board v tilings of an (n —2)-board

sum of the weights of
tilings of an (n — 3)-board

sum of the weights of sum of the weights of
tilings of an n-board ! tilings of an (n —2)-board

sum of the weights of
tilings of an (n —3)-board

There are K,, =T, +271,,_y +31,,_o = T,,,1 + T,,_1 +2T,,_5 such tilings.

It then follows by Theorem 1 that

sum of the weights of sum of the weights of
tilings of an n-board

d =
" Ltilings of an (n +1)-board
L sum of the weights of J ( sum of the weights of J

v tilings of an (n —2)-board tilings of an (n —3)-board
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There are D, = 1,,,, — K,, such tilings.
Next we establish addition formula (7) using graph-theoretic techniques.
7. Graph-Theoretic Models

Consider the weighted tribonacci digraph D with vertices vy, vy and
vy in Figure 1, where a weight is assigned to each edge [5, 6]. Clearly it weighted

adjacency matrizis the (-matrix.

Figure 1: Tribonacci Digraph

A walk  from vertex v; to vertex wv; is a sequence

v; of vertices v, and edges ¢, where edge ¢, is

TC Uiy T TV T 6 T Y
incident with vertices v, and v, . The walk is closed if v; = v;; otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a walk
is the product of the weights of the edges along the walk.

Its weighted adjacency matrizis the (-matrix [2, 6, 8]:

2

o 1
RQ=|z 0
1 0

oS = O

Where ) = Q(x) . It then follows by induction that
tn+1 tn tnfl
Qn = :vtn + tn—l .’L’tn_l + tn_g .’L'tn_g + tn_3 .

tn tnfl tn -2
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The #j-th entry of Q" gives the sum of the weights of all walks of length n

from any vertex v; to any vertex v; [4,5, 6, 8], where 1 <4, j<3.
Consequently, by Theorem 1, we have

. sum of the weights of closed walks
2T of length n +1 originating at v;

k

n

o [ sum of the weights of closed walks
B n —1 of length n originating at v;

Lsum of the weights of closed walksJ
J’_

of length n —2 originating at v;
Lsum of the weights of closed Walksj

of length n — 3 originating at v;

sum of the weights of closed walks
" | of length n +1 originating at v,

o [ sum of the weights of closed walks
! of length n —1 originating at v;
5 sum of the weights of closed walks

! of length n — 2 originating at v;

sum of the weights of closed walks
of length n —3 originating at v;
With this background, we are now ready for the confirmation of formula (7).

Proof: Let S, denote the sum of the weights of closed walks of length n

originating at v;. Then S, =t,,;. We then have
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km+n = $25m+n—1 + 2$Sm+n—2 + 3Sm+n—3

2
dm+n = Om4n+l — T Sm+n—1 _2$Sm+n—2 - 35m+n—3 .

(12)

We will now compute the sum S = Sm+n+1 - :L‘QSernfl - 2$Sm+n72 - 3Sm+n73
in a different way. Let A, B, C, and D denote the sets of closed walks of length

m+n+1l, m+n—-1, m+n—2 and m+n — 3 all originating at v; , respectively.
Let w be an arbitrary walk in A.

Case 1: Suppose w begins with a loop: subwalk v v, subwalk from v; to v, .

length1 length m+n

The sum of the weights such walk is I‘Ztm sl

Case 2: Suppose w does not begin with a loop. If w lands at vy and returns

home, then w is of the form subwalk vy subwalk from ¢ to v . The sum of the

length 2 length m+n+1

weights such walks equals «t,,,,, .

On the other hand, if w lands at vy, then v5, and then returns home, then w

is of the form subwalk vwyvsv; subwalk from v to ;. The sum of the weights such

length 3 length m+n—2

walks equals ¢,,,,_1-

Combining the two cases, we get

2
Sm+n+1 =Ty ene t+ (xtm+n + tm+n71)

=tlpn+2°

It then follows that S, ., 1 =t,n, Spman—2 =tmin_1, and

Smin-3=tmin—2-
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Thus, by the addition formulas for £, and £, , and Theorem 1, we have

2
S =tyins2 = T lpen = 2Tty 1 — by
= tm+(7l+2) —kmin

= (tm+1tn+2 + ‘rtmthrl + tmtn + t7ﬂ*1t7l+1)
_(tm+1kn + xtmknfl + tmkn72 + tmflknfl)

= tm+1dn + xtmdn—l + tmdn—Q + tm—ldn—l :

Equating this value of S with that in equation (12) yields the desired result. O
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1. Introduction

Let @ be the set of all sequences, real or complex numbers and [, ¢ and ¢
respectively be the Banach spaces of bounded, convergent and null sequences
x = (z3,), normed by ||z| =sup |z, | , where k € N, the set of positive integers.

k

Recently, Kizmaz [6] defined the sequence spaces
lo(A)={z=(z;,): Az €.},
c(A)={z =(x): Az e ¢},

and co(A) ={z = (z): Az e ¢} ,

where Az = x;, — 21,4 -
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Subsequently difference sequence spaces have been studied by several authors

([31, [4], [11], [13], [16], [17]).

Definition 1.1: 4 function f :[0,00) — [0,%0) is called a modulus if
€)) f(z)=0 ifandonlyif =0,

Gi)  flz+y) < f@)+f(y), forall o,y>0,

(ii)  f isincreasing,

(iv)  fiscontinuous from the right at 0.

it follows from (2) and (4) that f must be continuous everywhere on [0,).

Let X be a sequence space. Then the sequence space X(f) is defined as

X(f) =A{z = (z;) : (f(jz])) € X}
for a modulus f([10], [12], 15]).

Kolk [7], [8] gave an extension of X(f) by considering a sequence of
moduli F' = () i.e.
X(F)={z =(z): (f(]z])) e X}

After then Gaur and Mursaleen [5] defined the following sequence spaces
L(F.A) = {z = (2): A e L(F)} ,
co(F,A) ={z = (z) : Az € ¢o(F)}
for a sequence of moduli F' = (f;).
The notion of sequence of moduli was further generalized in [1] and [2].

For a sequence of moduli F' = (f,) we give following conditions
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(T;)sup fi(t) <o forall t >0;
k

(T3)lim f;.(t) = 0 uniformlyin £ >1,
t—0
When f; = f(k 2 1), where f is modulus, then condition (7}) and (73) are
automatically fulfilled.

The following inequality will be used throughout the paper.

If 0<p, <supp, =H, K =max(1,277") then
lag + by PP < K(lag [PF + |b [P*) (1.1)

forall k and a; ,b, € C. Also |a|” < max (,]a|") for all a € C'. Throughout the

paper summation without limits run from 1 to .

In the present paper we define some generalized difference sequence spaces
by using a sequence of moduli. Also we discuss some topological properties and
inclusion relation between these spaces.

Definition 1.2: Let F =(f,) be a sequence of moduli and suppose

A = (a,; (1)) be a nonnegative regular matrix, we define
WO [Aa A7 F7 b, 5]

= {x € w:1im Y a, (D [fi(| Ay |)]PF = 0,5 2 0, uniformly in z} ,
n L

WI[AA,F, p,s]

= {x € w:1im Y a (D [fi(| Azy — L) = 0,5 = 0, uniformly in z}
n k

for some L}

WA A F,p,s| = {fv € @ :sup X an (D[ (| Az )] < 00,}-
n k
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When f.= f and p,=1 for all k, we have the following sequence spaces;
WI[AA F,p,s| = WI[A A, f,s]

= {m e w:1im)_ a (k7 [f(| Az — L [)]=0,5 20, uniformly in z}
n L

Similarly
WHlA, A F p,s] = Wo[A A, f,s] and W [A A F, p,s] = W,[AA,f,s].

If x € W[A, A, f,s] we say that z is strongly A(7) summable to L with respect
to the modulus f.

When fi,=f, Az =z, s=0, p,=1 forall £

q ‘ L (i+1<k<i+n)
an an (1) = 0, otherwise.

We have the following sequence spaces which were defined by Pehlivan [14],

W[A,A, F, p,s] = W[f]
i+n
= {x € w:lim Z [f(| 2, —L])]=0, uniformlyin 7 for some L}
" k=isl

Similarly Wy[AA,F, p,s]= Wylf] and W,[A AF,p,s|= W[f].

If = e W[f] we say that z is almost convergentto L.

Further if we take f.(z) = x, for all £, in the above sequence spaces we have
the sequence spaces which were defined by Lorentz [9].
If we set A =(a,.(i))=(C,1) Cesaro matrix for all 7 and f,=f, s=0,

Az =z, p, =1 for all £, we have the following generalized sequence spaces due to
Maddox [10].
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W(f)z{xea) hrn Zf z, —L|)]= }

k 1

Similarly we can define W (f) and W, (f).

If zeW(f), we say that z is strongly summable to L with respect to the
modulus f.

2. Main Results

Theorem 2.1: Let A=(a,(i)) be a nonnegative regular matrix and
F= (f,) be asequence of moduli, p = (p,) be a bounded sequence of positive real
numbers.  Then the sequence spaces Wy[AAF,p,s|, W[AA,f, p,s] and
WA, A, F, p,s] are linear spaces over the complex field C.

Proof: We consider only Wy[A, A, F, p,s]. Others can be treated similarly.
Let 2,y € Wo[A, A, F,p,s] and A, pu € C, there exists M, and N, integers such that

|1| <M, and |,u| < N, . Since f; is subadditive and is linear, we have
Zank A((Azy + pyg))1*
< Z%k U AT Ay) + fi] | (Agg)I™
< K(My)" %‘, g (D[ (Ay ) )7
Z%k lfe(Ayp)I* By (1.1)

For n — oo, wehave Az + py € Wo[A, A, F, p,s].

Therefore, this is a linear space over C. O
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Theorem 2.2: Let A=(a,;(i)) be a nonnegative regular matrix and

= (fi,) be sequence of moduli, if (T}) holds then
WolA, A F,p,s| c WA A F,p,s] c W[4 A F,p,s].

Proof: It is clear that Wo[A, A F,p,s] c W[AAF, p,s] and
WolA, A F,p,s| c W,[A A F,p,s]. For second inclusion let = € W[A A, F,p,s]

then by definition, we have

Zank (] Az DR = Zank (] Az =L+ L|)J*
< KY ay, (DK °[fil| Azp =L )PF + K an (k[ (| L )]
P P

There exists an integer D such that |L| < D . Hence we have

Zank fk |Al‘k | pk < Kzank [fl;(| Axk —-L |)]pk +KDfl; Zank k;_
k

Since A is regular and x € W[A A, F, p,s] we get z € W, [A,A, F, p,s] and
this completes the proof. O

Theorem 2.3: Let A=(a,(i)) be a nonnegative regular matrix and
= (f,) be sequence of moduli, p = (p;) be a bounded sequence of positive real

numbers. Then WylA A, F,p,s] and W[A,A,F,p,s] are linear topological space
paranormed by g defined by

1
s [Tt tanar

where M = max(1L, H = sup p;).
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Proof: Clearly ¢g(z)=g(—x), ¢(0)=0 and by Minkowski’s inequality,

g9(z +y) < g(z) + g(y) . Wenow show that the scalar multiplication is continuous.

Whence 4 —> 0, z > 0 imply ¢g(Az) >0 and also + —> 0, A fixed
imply g(Az) — 0. Wenow show that 4 — 0, z fixed imply g(1z) —> 0.

Let z e W[A,A, F,p,s],thenas n — o,

by.i Zank “[f:(|Az, —L])] = 0 uniformly in 4

for |/1| <1, we have

{Z ank ﬁ{‘ M’Al‘k | }

EF

1
{Zank “[f.(|AAzy, — AL + AL|)]P* }M

1

< {Z @i (k[ (| Az, — AL[)]* }M

k

1
{Z apng, (DE [ ( |,1L|)]pk} , By Minkowski’s

inequality

1
{Zank I (|Azy, = L) } {Z g, (DK [ fi, (| AADy, — AL ) }M

kx=n
1
{Z (7 fk MLD]pk}

Let ¢ >0 and choose N such that for each n, ¢ and D > N implies
b,, < €/2. Foreach N, by continuity of f; forallk,as 4 — 0,

1
{Zank() *[fi(|AAzy — L)} } {Zank k7 [f(JAL])] }M—>0

k<N

then choose & <1 such that |/1| < o0 implies
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{z e (DK [fi (| A(Azy, — } {Zank A }M<€/2

k<N
1
Hence we have {Z s (DK [, (| AATy|)]P* }M <€2=c¢

and g(A,z) = 0. Thus, W[A,A, F,p,s] is a paranormed linear topological space

paranormed by g. O

Theorem 2.4: Let A=(a,.(i)) be a nonnegative regular matrix and

F= (f,) be sequence of moduli then

@) s >0 implies 1,(A) c Wy[A, A F,p,s],
(i1) x, — L implies xp. — LW (AAF,p,s)|,
(iii) s < 8o implies WolA A, F, p,s] € Wo[A, A F, p,so].

Proof: (i) Let z el,(A) and s>0 . For regularity of A and (Az;) is

bounded we have f,(Az;) is bounded so that Y a,;(0)k~*[f, (Azy )] — (n — o)
k

uniformly in i so that = € Wy[A, A, F, p,s].
(i) Suppose that z; — L. Then

lim [/, Az, — L) = fi[lim (Az,~L[])" = 0
k—o b—soo

Since, (k) is bounded, we write klim E=[f, (|Azy —L|)]P =
;—>0

From regularity of A, we have lim Zank 1 (Ax, = L)JPR= 0

n—>0 k

uniformly in 7. So that z € W[A, A, F, p,s].
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(iii) Let s; <sy.Then k™2 <k forall k e N. Since,

E2 fl(AzkD < k7 fi[( Az )]

Hence, we have
2 k(DR 2 [f(Aay —LDI* < D ane (k" [fi((Azy ~L])J*
k k

Since, z € Wy[A, A F,p,s1], we get © € Wy[A, A F, p,ss].

The next theorem shows that the relation between WI[A, A, F,p,s] and
W[A,A,G, p,s] for sequence of moduli F'and G. O

Theorem 2.5: Suppose that F=(f;,) and G = (g;.) be sequence of moduli
and g2 f., forall k. Then

Je(x)

lim -~ < o
z—w gy (z)

implies W[A,A,G, p,s] c W[AA,F,p,s].

Proof: It is trivial. O
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Abstract: Arranging into a specific form under a certain condition, a
general system of nonlinear algebraic or tran-scendental equations is solved
by the use of an iterative method which is proved mathematically.
Geometrical interpretation has also been given. The method has been
enlightened by some examples and its disadvantages are also noted.
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1. Introduction

Linear or nonlinear systems of equations arise in practical problems in
various branches of science, e.g. physics, chemistry, engineering, mechanics and so
on. Application of the analytic mathematical method for solving those problems
becomes sometimes complicated or even impossible. Numerical process serves as an
important tool to overcome the difficulties to a greater extent.

Numerical solutions for system of equations was initiated by Jacobi [7], who
devised an iterative process to solve linear simultaneous equations. Gauss and Seidel
modified this method (Gauss-Seidel iteration) [7], when the iteration converges
rapidly. In 1949, Reich [12] described the necessary and sufficient condition for the
convergence of the Jacobi’s method for a particular model having symmetric real
coefficient matrix with positive diagonal elements. Later, a sufficient condition for
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convergence of both Jacobi and Gauss-Seidel iterative method, the absolute value of
each diagonal element of the coefficient matrix of which being greater
than the sum of the absolute values of other elements in a particular row was
considered by Collatz [4].

Now, to solve nonlinear equations with a single variable bisection, secant,
false position, Newton-Raphson etc. methods are generally used. Ridders [13]
modified the false position method using a quadric curve (formed by two given
points and their midpoint) instead of a straight line. Also many researchers studied
the same to improve these methods.

The solution of nonlinear system of equations is much difficult in
comparison to single variable and numerical processes are generally used to solve it.
A very important tool is Newton’s method [3, 11] which is also an iterative process.
In the method, the author used Taylor’s expansion theorem to obtain the new point at
each step. In addition quasi-Newton, secant, Broyden’s methods are also found in
literature [11]. Using quasi-Newton technique, Broyden [2] attempted to find a new
method, each step of which needed a matrix (similar to Jacobian matrix in
Newton’s method) obtained by Sherman-Morrison formula. Moreover many other
methods e.g. fixed point (for functions of several variables), steepest descent,
homotopy and continuation etc. methods for solving system of nonlinear equations
are also in use [3].

Bader [1] pointed out the disadvantages of Newton’s method for
multivariable problems in computation. To solve the problems, the author used tensor
technique and Krylov subspace method. Effati and Nazemi [5] proposed a very
effective process for solving nonlinear system of equations. Introducing a norm
function the authors transformed the system into a minimization problem.
Transforming the system of equations into a constraint optimization problem, a new
technique was developed by Nie [10]. At each step, the author considered some
equations satisfing the current point as constraints and other as objective function.
Grosan et al. [6] studied nonlinear system of equations and proposed a method by
transforming the system into a multiobjective optimization problem. Here the authors
used Pareto dominance relationship between actual solutions and some random
solutions evolved by iterative strategy searching for optimal solutions. Khirallah
et al. [9] prepared a paper for solving a system of nonlinear equations using fourth
order Jarratt method of iteration. Izadian et al. [8] proposed another method to solve
the nonlinear system of equations. Here the authors used Newton method and
homotopy analysis method to solve the problem.

In the present paper we study a fixed point iterative method for solving
nonlinear simultaneous equations. The theory is described with a sufficient condition
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for convergence and it is also pointed out that, under certain condition, the
convergence of the iteration depends on the arrangement of the explicit variables or
equations of the system on the iteration table. The worthnoting of this method is that
it covers many other iterative processes for solving linear and nonlinear system of
equations and its computation is rather easy. The method has been interpreted
geometrically and also illustrated by some examples. Disadvantages of this tool are
also pointed out.

2. Theorem

Consider a system of nonlinear equations

A(X)=0
S g
fm(X) =0,

where X = (zy,9,...,2,,) and suppose that a solution of the system (1) is

a =(a,a,...,a,,) which is contained in or a limit point of a given region o,,

(neither containing any other solution of (1) nor as a limit point), and each equation
of (1) possesses its first order bounded partial derivative with respect to the
arguments.

In the region o, , for any j(1 < j < m), suppose

fij

Vi

i

}: |Vf]

max {
(3

, (say), )

for a unique (1 <[ < m)depending on j where |V fl-| = \/ ffl + fl-?g +..+ fl-?m and

O

fij =

We now select fi(X) = Fj(X) . If F;(X)=0 is possible to express in the

explicit form as z; = ¢;(zy, 7o, .. 7,4, Tjiq, .. Tp), V], then using (2) the system
of equations (1) is transformed into
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T = ¢ (29,73, T, ),
Ty =¢2($1,$3,"'$m), (3)

Ly = ¢m($171'27"'$m—1)a

with
¢7:, j
-V,

< |1—V¢j|’Vj and 4,7 # j. @)

Now the system of equations (3) can be solved sufficiently with solution
X = o by iterative method taking any initial approximation in o, .

3. Method

First of all, the given system of equations is to be arranged into the

form as mentioned above. Choose the initial approximation in o,, as z;= xio),

Ty = xéo), ey Ly = xg,?) . Next putting this set of values in the first equation
x; = ¢ (29, z3,... x,) of (3) we obtain the value of z; as xgl) . Now to get xgl) , We
use the set (1:51),, ,z§°>,---,z£2>) of other variables in the 2nd equation of (3) and
continue the process till we obtain the set (zil), zél), ,x&,?) This set is to be used

as a starting value to get a new valued set and repeat the process.

To obtain the value of a variable from an equation, we use the set of all other
immediate past valued variables. One such process of calculation is said to be a step.

Any successive m steps using all m equations of the system form a cycle.

4. Proof

First we prove the theorem for two variables and then using this rule we shall
consider the general case. For two-variable problem, the system is

{771 :¢l($2)7 (5)

Ty = (1),
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with the conditions

|0(22) y 1
\/1+¢12,2(ZU2) \/1+¢22,1(171)

and

|¢2,1(l‘1)|

1
< (6)
\/1+¢22.,1($1) \/1+¢12,2(332)

in the region oy, which contains only a solution & = (&, @), (@ may be a limit

point of o ) so that

a = pi(a),
{OCQ = (), @)
Now conditions (6) give us
|¢1,2($2)|-|¢2,1($1)| <1, Y(z1,27) € 09 (8)

If at the nth cycle iteration, the approximate solution and the corresponding

error are (:p§"),x£")) and (51("),52(")) respectively, then by the above described

l{n)
xén)

Subtracting (9) from (7) and applying the mean-value theorem we obtain,

process we get,

Az,
d(z" V). )

B - £l ) "
" = &V (1),
where xg) lies in o, and z}"),xg{_l) lies in ay and xé”_l) and so that

n n—1
($£2)> 5”51 )) € 0y.
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Now using the imposed conditions (8), we get from (10),

&
)|

= Aot el < 1. an

Similarly, in view of the first equation of nth cycle and the last equation of

(n —1) th cycle we have

<1. (12)

The conditions (11) and (12) show that x§"),x§"> converges to the exact

solution (e, ).

The general case: Suppose that the approximate solution of the system of

equations (3) at the nth cycle of the iterative method is (:zYL),xén),...,x%‘)) and the

corresponding error is (51("), 52("), e ,(n”)) . For this system, if at any cycle, we
proceed from one step to the next, (m —1) variables remain unaltered and only one
variable is changed and the change occurs for only two equations amongst all.

As only one variable varies and all others remain unchanged, so, for our
convenience, we may consider for that particular step of the cycle, the problem is of
two-variable of which one is changed and the other is chosen arbitrarily from the rest
and remaining all other variables unaltered.

If we are interested in obtaining the value of z;, say, after obtaining the
value of z;,(j # 4) at nth cycle, then we may assume for this particular step that the

ith and jth equations of (3) are of x; and z; variables only. Using the concept of (11)

and (12) we see that, :EZ(") is more closer to the component ¢; of the solution « than

z(n—l)

: , 1.e., we obtain a better result corresponding to the variable z; .

Since ¢ and j are arbitrary, so the rule is satisfied for all variables and the

result obtained in a cycle is obviously closer to « than the previous cycle and if we
continue the process, then the result must converge to the exact solution.
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5. Geometrical Interpretation

We discuss the method geometrically for three variables and take the
system as

FI(X) = 07 FQ(X) = 07 FS(X) =0,

with the conditions |l//ij| <|l//jj1

_ By
X = (21,79, 23) and y;; = —=.

v

, Vi, j(i#j), in the region o3, where

We know that y;; represents the component of the unit normal to the

surface Fj(X)=0 along ux;
decrease of the absolute value of this component indicates respectively the approach

or departure in angular distance of the normal from any side of the corresponding

at the point under consideration. The increase or

axis (the angle is supposed to lie between 0°and 90°). When the normal approaches
more towards the axis, the corresponding tangent plane at that point departs more

Wil > |l//k.j , then the surface F;(X) =0 departs more

from z; -axis than the surface F},(X)=0.

from the axis, that means if

Consider, for instant the z;-axis. @ We choose an arbitrary point
P(xgm,a:go),xéo)) in o3 and draw a plane Pox; through the point P and z; -axis.
The intersection of this plane and the surface of the equations F;(X)=0,
(j =1,2,3) are the curves lying on the plane. Sketch a straight line PK through P and

parallel to xz; -axis on the plane.

Since |y,

curve of Fj(X) = 0. Suppose the solution point is S. Now take a projection of the

< |1//11|, w11 1.e. [; unalters its sign and PK must intersect the

curves lying on PKS, on the plane Poz; and let S’ be the projected point of S. As
|1//11| > |z//j1|, (j =2,3), in o3, so, in the given region, the surface corresponding to
the function F; is angularly furthest from z;-axis compared to any other surfaces;
consequently, the projected curve of F1 is angularly furthest from x; -axis compared

to other projected curves on Pox; .
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Thus, the value of z; obtained by the intersection of PK and curve of F is

nearest to ¢ , the component of the solution « along z; -axis, compared to other.

Similar results can also be found for any choice of zy or z3-axis and after

completion of a cycle it can be found that we come toward the solution than previous
cycle. This concept helps to think the general case.

Fi 2
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k"‘"—-._
4 /ﬂ Fg
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1 Lo T N \\ %y
(& nearest
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(b
Figure 1

6. Discussions

Fixed point iterative method is well known. In this paper the described
condition of convergence extends the field of application in various branches of
science. The technique is very much easy and effective for solving linear and
nonlinear simultaneous equations. Some examples are analyzed to show the
importance of the method.

Example 1: Let us take the system of equations as

e +y=1

x+e¥ =1.
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It is clear that both the curves corresponding to the equations do not exist in
the region z,y >0 and =z,y <0. Now in the region x <0, >0 or x>0,

y < 0 we see that

‘ e’ 1
<
1 1
‘(1 +e¥)2 | |(1+e?)?
and
'
‘ Ll (13)
‘(1 +e)2 | |1+e)2
so we need to transform the system into
_1_,T
y=1-e (14)

z=1-¢".

Taking the initial value x =2, y = -2 iterative calculation is shown in
Table 1.

Table 1
n y X
-6.3891 .9983
2 -1.7137 .8198
-9175 .6005
10 -.6142 4589
20 -4199 .3429
50 -.2581 2275

Clear that the result convergesto z =0,y =0.

Example 2: Choose a system of linear simultaneous equations as
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10z +4y + z =15,
z+8y+2z=11
5z +4y + 3z =12.

For this problem, the condition asserted above is satisfied in R® and we need
to transform the system into
z=(15-4y—-2)/10
y=(011-2-22)/8
z=(12-5x—-4y) /3.
Taking the initial approximation as =z =2, y =2, z = 2, the calculation of

iteration is shown in Table 2 and we see that the result converges to the exact
solutionz =y=2=1.

Table 2
n X y z
1 5 8125 2.0833
2 96667 73333 14111
3 1.0656 .88903 1.0387
4 1.0405 .98526 95212
5 1.0107 1.0106 96801

There are many problems, where we can’t apply this technique directly but
after a suitable substitution we can apply it (example 3).

Example 3: Consider a system as
3e(z? —y?) + In(zy) cos(zy) + 22 = 4,
sin (2% — y?) + In(22°y°2) = 0,

sin(zy(2? —y%)) + cos(z® —y?) + 82 = 5.
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All the equations of this system can’t be expressed in explicit form. Now

putting 2> —4>=u, In(zy) =v and 2z = w we see that, that can be done and the

system satisfies the asserted condition in —1<u <1, -1<v<1 and .5<w<2
which contains a solution and transforming the system in explicit form we have

3
sin(u) + In(w)
v = - )
5 —cos(u) —sin(ue”)
w =

4

Choosing the initial approximation v =1, v=1 and w =.5, the table of
iteration is shown bellow.

Table 3
No. U v w
1 23742 9.1591x10 2 94270
2 1.4345x10 2 | 8.9333x10 3 99641
3 6.6849x10 4 | 5.8609x10 4 99983
4 2.0577x10 > | 2.9326x10 3 199999
5 -5.177x10 8 1.0356x10 © 1

After fifth cycle, the approximate result is w =-5.177x107%,

v=1.0356x107%, w = 1. Therefore the approximate solution of the given problem
is £z =1.0000, y=1.0000, z=.5,which is exact.

The rate of convergence of this method would be much speedy if for some 7,
vl < v
slowly, because the relation |1//m-| < |1,//]-7]-| holds very lightly as it towards the

, Vi, i# 7. In example 1, we see that the result converges very

solution whereas an opposition occur in example 3 and the result converges rapidly.



158 ANANDA BISWAS

The most advantage of the present iterative method is that, its algorithm and
computation are easier than others. The number of computations for m variables to

complete a cycle is only m.

7. Disadvantages

It is to be pointed out that, for a given j, if max {ly;;|} occurs for some or
: .

all 7 in the region o,, of a system, then the result obtained by the iterative method

= |‘//.7:7'

V7 and . If this case occurs for two variables problem, then the obtained values of

does not necessarily converge. For example, consider a system where |y;;

b

the variables repeat after finite cycles (example 4), since the curve of any equation is
a reflection of the other with respect to a line through the solution point and parallel
to any axis. This may not arise for three or more variables problems, in such cases the
value of the variables either repeat or diverge (example 5).

Again, if for any j(1< j <m), max{y,|} occurs for many 7 but not for all,

then sometime the result may converge (example 6). If we can arrange the equations
Vii
otherwise it diverges. Also using same logic some arrangement gives undesired
result. In that case it jumps the solution point and tends to diverge.

<

in a sequence satisfying |1//(H)7; Vi, there is a chance for convergence

Example 4: Let the system is 2rx+y=3,2z—-y=1. Arranging

z=(3-y)2 and y =2z —1, we see from Table 4 that the values of x and y repeat

and its cause is discussed above.

Table 4
n X y
0 2
1 2.5 4
2 -5 2
3 2.5 4

Example 5: Choose the system as 4z -2y+z=3, 4dox+2y—2=5,
drx+2y+2="7.
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Table 5
n X y z
1 1.25 1 0
2 1.25 0 2
3 25 3 0
4 2.25 -2 2
5 =75 5 0

Table 6
n X z y
0 2 2 2
1 0.75 0 0
2 1.25 2 2
3 0.75 0 0

Arranging z=(3+2y—-2)/4, y=0b-4x+2)/2 and z=7-4z-2y,
the Table 5 shows that the result diverges.

Again setting z =(5—-2y+2)/4, 2=T7T—-42x -2y and y=(4z+2-3)/2,

we see from the Table 6 that the value of all variables repeat.
Both cases of the problem are already discussed above in detail.
Example 6: Consider the system as

4z +3y+22=9,
4x -2y —3z=-1,

z+y+z=3.

We choose z=2, y=2, z=2 as initial guess. Arranging in given

' |V/32 |= max{| l//j2|} and

sequence we see that |l//11|=| Vo1 |= max{|l//ﬂ

|l//33 |= max{| l//j3|} .
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Now if zis implicated from 3rd equation, then y have to implicate from rest.
As ‘%2‘ > ‘l//22
iterative calculation is shown in Table 7.

, so implicating y from first equation and z from remain the

Table 7
n X y V4
1 2.2500 -1.3333 2.0833
2 0.6458 0.7500 1.6042
4 0.9640 0.7066 1.3294
6 1.0134 0.8138 1.1731
10 1.0084 0.9455 1.0461
20 1.0003 0.9980 1.0016

Also implicating y from 3", z from 2™ and z from rest the calculation is
shown in Table 8.

Table 8

n X z y

1 -0.2500 -1.3333 4.5833
2 -0.5208 -3.4167 6.9375
3 -1.2448 -5.9514 10.1962
4 -2.4214 -9.6927 15.1141
5 -4.2393 -15.3951 22.6344
6 -7.0282 -24.1272 34.1554

We see that for the first arrangement of equations the result converges but it
diverges for second arrangement.
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END NOTE

1. This condition does not differ by condition (4) as Fj (X) = 0 and xj = ¢; represent
a single surface.



Journal of Indian Acad. Math. ISSN: 0970-5120
Vol. 43, No. 2 (2021) pp. 163-169

Kamlesh Bhandari | EXPANSION OF GENERATING
FUNCTIONS INVOLVING VARIOUS
POLYNOMIALS

Abstract: In this paper, we discuss the generating functions involving the
product of wvarious polynomials like modified Laguerre polynomials
L™ (x), modified Jacobi polynomials P,,(la’ B=m) (1), modified Bessel
polynomials Yp(a+n) (u) , and the confluent hypergeometric functions ,F;[. ]
and then obtain generating functions by group-theoretic method. Also
discuss their applications. Earlier Chandel, Kumar and Senger [1] introduce
the generating functions involving the product of modified Bessel
polynomials Yp(a+")(u) and the confluent hypergeometric functions | F;[.].
In the present paper, we have introduced three linear partial differential
operators Ry, R, and R; to obtained the generating relation.

Keywords: Modified Laguerre Polynomials, Modified Bessel Polynomials,
Modified Jacobi Polynomials, Confluent Hypergeometric
Functions, Group-Theoretic Method, Generating function.

Mathematical Subject Classification (2020) No.: 33C25, 33C45, 33C99,
22E30.

1. Introduction

Generating functions play an important role in the study of special functions.
Group theoretic method have been mostly used by researchers in the derivation of
generating functions of special functions comparison to other methods. Therefore in
the present paper, group-theoretic method has been adopted to obtain the results of
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generating functions involving modified Laguerre polynomials LS{’“") (x) , modified

Jacobi polynomials Prgla’ p-m) (r), and modified Bessel polynomials Yp(a+n) (u) are
defined by Srivastava and Manocha [7] as:

r(1+o)

(a-n) = ute : ;
Ly (0 = F(1+n)F(1+a—n) 1Al nl+a nx (1.1)
p ﬁ)(r)=(1;—"")"2F1 [—n,1+a+,8+n;1+a;% (1.2)
and

In fact, while constructing the partial differential operators for the
polynomials Lﬁf“”) (%), P,gx’ p-m) (r) and Yp(aJ’n) (u) , we have adopted the group-
theoretic method as introduced by Weisner [6].

The confluent hypergeometric functions ;F;[.] can be replaced by many
special functions. Srivastava and Manocha [7] defined and studied various bilinear,

bilateral and multilinear generating functions.

In this paper, we introduce the following new general class of generating
functions:

Gx,m,u,qw) = Tocg an L) B P )Y (), Fy [-nym + gl wh (1.4)
Where a,, is any arbitrary sequence independent of x, u, g and w.

Again in (1.4) setting various values of a, , we may find several results on

generating functions involving different special functions, hence (1.4) is a general

class of generating functions.

In this paper, we evaluate some more general class of generating functions
and finally discuss their applications.

2. Group-Theoretic Operators
In our investigations, we use the following group-theoretic operators:

The operators R, due to Majumdar [4] is given by
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3 d
Ry =xyz - y?z P (x a)yz (2.1)
Such that
Ry [Lﬁf“") (x)y"z“] =n+1) Lgl“;ln_l)(x)ynﬂz"‘“ (2.2)

The operators R, due to Chongdar [2] is given by

R,=(1 rz)saa—r 252% [(A+a+pB+p)(A+71) 2B]s (2.3)
Such that
Ry [P Py sm = 2(m+ DR, @) s (2.4)

The operators R; due to Chongdar [3] is given by

— 21y 2 5 -1,20 -1
Ry = ut™ v —+uv ——+ut™ v+t v(B u) (2.5)
Such that
R [Yp(“Jrn)(u) t"vp] =p Yp(ﬂn_l)(u) tn-lyptl (2.6)

The operator R, due to Miller Jr. [5] is given by

. 0 ., -1 0 . -
Ry =j e +jak™ 5. jak=* (2.7)

Such that
Ry4Fi[ mm+1;qlj"k™ =m (Fi[-n  Lm; g™t k™1 (2.8)

The actions of Ry, R,, R3 and R, on function f are obtained as follows:

eWRif(x,y,z) = (1 + wyz)® exp( wxyz) f [x(l + wyz), Y ,Z] 2.9

1+wyz

(cf. Majumdar [4])

r+ws(1+r) s
1+ws(1+7)’ 14+2ws ] (2.10)
(cf. Chongdar [2])

eWReF(r,s) = (1 +ws(Q + 1)} 1% B+ 2ws)P F [
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eWRsF(u,t,v) = (1  wut ) exp(Bwt™v) F [ 1—th—1v ,1_W£t_1v, 1—th—1v]
2.11)
(cf. Chongdar [3])
and
e f(j,k,q) = exp(=2*) f[ .k + wj, q(1+3)] (2.12)
(cf. Miller Jr. [5])
3. Main Result

Theorem: If there exists a generating functions involving the triple product
of modified Laguerre polynomials LE{’“") (x), modified Jacobi polynomials

P,f{’" k _m)(r), modified Bessel polynomials Y,ﬁ{”m)(u) and the confluent
hypergeometric functions ;F;[ n; m + 1; q] given by

o0

G(x,r,u,q,w) = Z a Lgf“")(x) P,ﬁ[’" B_m)(r) Yp(a+m) W) 1F[-n;m+ 1;q] wh

n=0
(3.1
Then the following more general class of generating functions holds:

1 +wy) ™1 +ws(1+7r)} 17951+ 2ws)P(1  wut™w)'P exp[ w(x
pt v+ q)]. G [x(l + Wy),M “ q(1+w), Wyv]

1+ws(1+7)’ 1-wu 1+w

0 an (—2)c(n+1)p (m+1), —n—b (@, B—m—c) tn—d
= Zn,b,c,d,ezo bl cl dfe! .Lgla_‘_bn )(X) Pm‘icﬁ m-e (T) Yp(fdn )(u)

Fil-n em e+ 15 q] (wy)? (Wt w) (mw)e (wyj)" (3.2)

The importance of the above theorem lies in the fact that whenever one
knows a generating relation of type (3.1), the corresponding general class
of generating relation can at once be written down from (3.2). Thus a large number
of bilateral generating relations can be obtained by attributing different values to

a, in (3.1).

Proof of the theorem: In the general class of generating functions (3.1),
replacing w by wytj and then multiplying by z% s™vP k™ on both sides, we get

G(x,7,u,qwytj) z¥ s"vP k™ = Y¥_, ay Lﬁf“") (x) P,ﬁf" p-m) (r) Yp(am)(u).

1Fi [— nm+1; q] ytehjn z% s™pP kMmwh (3.3)
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Now, operating both the sides of (3.3) with eWRieWR2eWRs e obtain

o0

. a—m
eWRieWR2eWRs G (x, 7,1, q, wyt)) z% sTvP k™ = eWRigWR2gWRs Z an L% )(x)

n=0
y" z® P,ﬁf" ﬁ_m)(r)sm Yp(a+n)(u) t"vP  F[-m;m+ 1;q]. j" k™w™ (3.4)
The left hand side of (3.4) becomes

v p
2% (1 4+ wyz)® {1 + ws(1 + )} 1%L + 2ws)P (1 wut1v) (m)

(k +wp)™ exp( wxyz+pwt v U¥)

r+ws(1+r) u
1+ws(1+r)’ 1—wut~1v

wyv

,q(1+ WTJ'),—] (3.5)

1+wyz

G [x(l +wyz),

And the right hand side of (3.4) becomes

d i+j+k
- an (=2)c(+1)p (M+1)c BE mewn+iti+ (a—n—b)(x)yn+b Z““’P(a' B-m—c) (r)sm+c
Zn,b,c,d.e=0 p! cldlel n+b m+c

Yp(f;"_d)(u)t"_dv“d Fil-n em e+ 1; q] jirekme (3.6)

Now equating (3.5) and (3.6), and setting j = k and z = 1, we obtain

1 +wy)™ {14+ ws(1+7r)}179F<c(1+2ws)P(1  wut lp)l-P

exp( w(x Pt™lv+ q) G[x(1+w )+; (1+w) wyv]
P v- YT warp 4 "1+w
© an (=2)(n+1)p (m+1), —-n—b , f—m— —-d
= Zn,b,c,d,e=0 bl cl di)e! -Lgﬁbn )(x) Pygﬁ-cﬁ m=c) ) Yp(i[;n )(u)
1F1[—n eem e+ 1; CI] (wy)? (Wt~ v)% (mw)€ (wyj)" (3.7)

which is the required result.
4. Special Cases

Taking r = 0, u = 0, q = 0 in given theorem and proceeding as the proof
of the main theorem, we get
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wyv]_
1+w.

(1 +wy)*™Mexp( wx).G [x(l + wy),

an (n + 1)b (Wy)b L(a—n—b)

b! n+b (x) (WY)n
n,b=0 )
o a n b+1),w"
Z Z n—-b b' b Lgla—n)(x) yn
n=0 b=0 '
= z o, (%, y).wh (4.1)
n=0
Where 0, (x,y) = S 200 {7 (x) (42)

Which is given by Majumdar [4].
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