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A. A. Qureshi | PL ANE SYMMETRIC SPACE-TIME
WITH WET DARK ENERGY IN
BIMETRIC RELATIVITY

Abstract: In this paper, plane symmetric space-time is studied with the
matter wet dark energy in the context of Rosen’s Bimetric Theory of
Relativity. Here it is shown that only vacuum model can be obtained.

Keywords: Plane Symmetric, Wet Dark Energy, Bimetric Relativity,
General Relativity.

Mathematical Subject Classification No.: 83C05.
1. Introduction

A new theory of gravitation called the Bimetric theory of gravitation, was
proposed by Rosen [12, 13, 9] to modify the Einstein’s general theory of relativity by
assuming two metric tensors, viz., a Riemannian metric tensor g; and a background

metric tensor ;; . The metric tensor g determines the Riemannian geometry of the
curved space time which plays the same role as given in the Einstein’s general
relativity and it interacts with matter. The background metric tensor };; refers to the
geometry of the empty (free from matter and radiation) universe and describes the
inertial forces. This metric tensor };; has no direct physical significance but appears
in the field equations. Therefore it interacts with gj; but not directly with matter. One
can regard 7;; as describing the geometry that would exist if there were no matter.

Moreover, the bimetric theory also satisfied the covariance and equivalence
principles: the formation of general relativity. The theory agrees with the present
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observational facts pertaining to general relativity. Thus at every point of space-time
there are two line elements:

ds® = g;;dx'dx’ (1.1)
and do? = y,dx'dx (1.2)

Where dsis the interval between two neighboring events as measured by

means of a clock and a measuring rod. The interval do is an abstract or geometrical
guantity not directly measurable. One can regard it as describing the geometry that
would exist if no matter were present.

Yilmaz (12-14), Israelit (6-7) have studied various aspects of bimetric theory
of relativity. In continuation of this study Deo, S. D. (3), Deo and Ronghe (4-5), Deo
and Qureshi (1-2 ), Deo and Suple (11) have studied several aspects of Bianchy Type
model, Plane Symmetric model and Plane gravitational waves respectively in the
context of bimetric theory of relativity with various source of matters like cosmic
string, wet dark fluid, massive meson etc.

In this paper, a study of plane symmetric space-time with wet dark energy
shall be undertaken and will observe the result in the context of Bimetric theory of
relativity.

2. Field Equations in Bimetric Relativity

Rosen N. has proposed the field equations of Bimetric Relativity from
variation principle as

K =N/ —% Ng) = 87T’ (2.1)
where N/ :ly“ﬂ[ghjg | ]| (2.2)
i 2 hi la |1p
N=N“,= |8 2.3)
Y

and g :‘gij‘17/:‘7/ij‘ (2.4)
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Where a vertical bar (|) denotes a covariant differentiation with respect to y,,

and Tij the energy momentum tensor for wet dark energy is given by

TiJ = Tijwdf = (pwdf * Puer )Uiuj ~ Puar 9/ (2.5)

together with g'uu’ =1, u,u®=1, where u; is the four-velocity vector of the
fluid having p and p as proper pressure and energy density respectively.

In co-moving coordinate system we have
T, :T22 :T33 =~ Puar T, = Pygr  and Tijwdf =0fori#]j
3. Plane Symmetric Space-Time with Wet Dark Energy
We consider here the plane symmetric line element of the form
ds? =dt? — A?(dx? + dy?) — B%dz? (3.1)
Where A and B are functions of t only.

Corresponding to equation (3.1), we consider the line element for
background metric y; as

do? = dt? — (dx* + dy? +dz?) (3.2)

Since i is the Lorentz metric i.e. (-1, -1, -1, 1), therefore y-covariant
derivative becomes the ordinary partial derivative.

Using equations (2.1) to (2.5) with (3.1) and (3.2), we get,

(&) = — 167K P,y (3.3)
B 4

B A
(E"l -2 (K“l =167k P4 (3.4)
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(&] +2[ij = 167K50,,4 (3.5)
B 4 A 4

And hereafter the suffix 4 after field variables stands for ordinary
differentiation with respect to coordinate t.

Using the field equations (3.3) — (3.5), we obtain

3Pt + Pust =0 (3.6)
In view of the reality conditionsi.e., p >0, p >0 must hold.
The above conditions (3.6) is satisfied only when

Puar =0 = Poer - (3.7)

This means that the physical parameters, viz. proper pressure ( P, ), €nergy

density ( o, ) are identically zero.

Thus, plane symmetric space-time with wet dark energy in bimetric relativity
does not survive and hence only vacuum model is obtained.

Using (3.7), the vacuum field equations are

AN _(Bi) _
(Al_(Bl_o 49

On solving (3.8), we get
A=exp(kt+k,) (3.9)
and B =exp(k;t+k,) (3.10)
where, ki ,K,,k, and Kk, are the constants of integration.

Thus, in view of equations (3.9) and (3.10) the metric (3.1) takes the form

ds® =dt® —exp(k,t+k,)(dx* +dy?) —exp(k,t+k,)dz’ (3.11)
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If kK, =k; =, Kk, =K, = /[ then(3.11) reduces to

ds® =dt® —exp(a t+ B)(dx* + dy?* + dz?) (3.12)
4. Conclusion

In the study of plane symmetric space-time, there is nil contribution of wet
dark energy in Bimetric theory of relativity. It is observed that the matter field like
wet dark energy cannot be a source of gravitational field in the Rosen’s bimetric
theory but only vacuum model exists.
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Abstract: We explore the Jacobsthal and Jacobsthal-Lucas versions of the
sums of gibonacci polynomialproducts of order 6 investigated in [8].

Keywords: Jacobsthal and Jacobsthal Polynomials, Gibonacci Polynomials,
Vieta Lucas Polynomioals.

Mathematical Subject Classification (2010) No.: Primary 05A19, 11B37,
11B39, 11Cxx.

1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
2o () = a(2)z,,,(z) + b(z)z,(x), where z is an arbitrary integer variable;a(x),

b(x), zy(z), and z (z) are arbitrary integer polynomials; andn > 0.

Suppose a(z)=2z and b(z)=1. When 2z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and z/(z) =z,

z,(x) = 1,(), the nth Lucas polynomial.

Clearly, f,(1)=F,, the nth Fibonacci number; and [,(1) = L, , the nth
Lucas number [1, 4, 5].
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Pell polynomials p,(z) and Pell-Lucas polynomials q,(x) are defined by
p,(z) = f,(2z) and ¢,(z)=1,(2), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers (), are given by P, =p,(1)=f(2) and

n

2Q, = q,(1) =1,(2), respectively [5].

Suppose a(z)=1 and b(z)=z. When 2z,(z)=0 and z(z)=1,
z,(z) = J,(x), the nth Jacobsthal polynomial, and when z,(z) =2 and z(z) =1,
z,(x) = j,(z), the nth Jacobsthal Lucas polynomial [2, 4]. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J, (1) = F, and j,(1) = L

n

1,
(z), the nth Vieta polynomial; and when z,(z)=2 and z(z)==z,

Let a(z)=z and b(z)=-1. When z,(z)=0 and z(z)
(@) =V,

n

z,(z) = v, (), the nth Vieta-Lucas polynomial 3, 4].

Finally, let a(z) =2z and b(z) =—-1. When z)(z) =1 and z(z)==z v,
z,(z) =T,(z), the nth Chebyshev polynomial of the first kind; and when

zo(z) =1 and z/(z) =2z, 2,(z)=U,(z), the nth Chebyshev polynomial of the
second kind [3, 4].

Table 1 shows the close relationships among the Jacobsthal, Vieta, and
Chebyshev subfamilies, where i = V-1 [3, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will meanz,(z). We also

letc, =J,(z) or j,(z); and

A" ZJS+2 B 2‘]75z+2‘]n C*:J§+2J72z
* 4 * 3 73 * 3 72

D" = ‘]n+2Jan—2 E" = ‘]n+2‘]n F = ‘]n+2Jan—2
* * 4 *

G = JS+2JnJ272 H = J72L+2Jn I = J72L+2J2Jn*2

J' = J72L+2J721J721—2 K" = J7’2L+2JTLJT?L)—2 L= ‘]n+2‘]75z
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M - 7L+2J4J N* = n+2f7?‘]272 O = n+2Jan 2
P =, Q" =J0J, R =JyJh
S =J3J3 T =JA,

Table 1: Links Among the Subfamilies

Jo (@) = 2" Vg (1) gnle) = "1, (1 N)
Vo(2) =", (~ix) v, (z) = ", (~iz)
V,(22) = U, (o) v, (22) = 2T, (@)

and a” through t* denote their numeric counterparts, respectively; and omit a lot of
basic algebra.

A Jacobsthal polynomial product of order m is a product of Jacobsthal

polynomials g,,,; of the form H giﬂk , where Z s;=m [6,9].

keZ ]21

1.1 Sums of Gibonacci Polynomial Products of Order 4: In [7], we studied
the following sums of Jacobsthal polynomial products of order 4:

Ty, =J2 0, =202 2 =22 o T o+ 22 +3), 0T
+ 2t o TR = 2at + )T 200 TR, ST TP (D)

ady, =y —Ax+ 1) T, + (62° + 132 +4)J2,,J>
— (42® +102% + Tz +1)J, o J> =222 + 2°)J, 0T T, o

+ (2 +22% + 322 + o)) + (22" +34% + 22 T3T, L, + P TRT L ()

Jipir = oy —4xJ3 0T +2(32% +22)J2 o J% — (42° + 62% + 2)J, o J>
- 2z3Jn+2Jan_2 + (2 + )T+ 22t + 28 TPT L, 3)

where ¢, = ¢, (z). They play a pivotal role in our explorations.
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With this background, we can explore the Jacobasthal companions of the
gibonacci sums studied in [8]. Although we can extract them using the gibonacci-

Jacobsthal relationships in Table 1, we will employ the Jacobsthal addition

formula ¢,y =J,.1¢, +xJ,c,_; to realize our goals. This technique will shorten
our work considerably.

2. Sums of Jacobsthal Polynomial Products of Order 6

Our objective is to express Jg, ,; as sums of Jacobsthal polynomial products
of order 6, where 0<k<5. Our discourse hinges on the identities

2 2 . . 2 .
J2n+1 = ‘]n+1 + l“]n d J?n = Jn-yn > Jn+1 + x‘]n—l =Jn> Jn+2 -z Jn—2 =JIn> and the

addition formula J,,, = J,

a+1Jb + ‘T‘]a‘]bfl .

We begin our explorations with J;,, .

2.1 A Jacobsthal Sum for J, : By the Jacobsthal addition formula, and
identities (1) and (2), we have
Jon = Jonc1dan + 820 J 401
= J4n (J7’2L+1 + :I:JTZL) + $J4n—1‘]njn
= J4n [(‘]n+2 - x‘]n )2 + "E‘]Z] + (l“]4n71 )Jn(‘]n+2 - l‘2‘]n72)
=V+W,
where

V= Ji[(Jo = 01,)" + 2}
= Tyl Th s =227, 00, + (2 + 2) T2 ]
= [JS+2Jn - 2$JZ+2J3 - $2J3+2Jn=]n72
+ 22 +2)d, oI+ 2t T S T
— 2zt + )BT,y + 200 TR T y — 2T TR
(T30 = 20T, 0], + (2 +2)J7]

= B* — 420" —2*D" + (72* + 3z)E" + 22° F*



JACOBSTHAL POLYNOMIAL PRODUCTS OF ORDER 6 11
+2'G" - 6(m3 +2?)H* - 3(m4 + )"
- 2°K* +2(:1:4 +20° + 1 )L* + 4(:1:5 + :1:4)M*

— (32° = 2°)N* +2270" = 2(2° + 22° + 2*)Q"

+2(z" + 2R - (a® +27)S™;

W= (mJ4nfl)(Jn+2‘] _$2J J - )
= [Tl —4(z + 1)J2 00, + (627 + 132+ 4)J2,,J?

— (42® +102% + Tx +1)J,, T2 = 2(22% + 22)J 0 T2 T,

+ (2t +20° + 327 + )} + (22" + 327 + 22T,

+ $5J2J2_2] (Jn+2Jn - xQJan—Z)

—2*D* + (6x2 +13z +4)E" + 4(x3 +1° VP

=B —4(z +1)C”
—( — (62" +172% + 62°)I*

42® +102° + Tz + 1)H"
+ (2 +22% + 327 + 2)L" +2(22° + 62" +52° + 27 )M
+ (52° + 22*)N* = (2% + 22° + 32" + 2%)Q*

—(22° +32° + 2" )R* - 275",
Consequently,

Jon =2B" —4(22 +1)C" = 22°D" + (132° + 162 + 4)E" +2(32° + 22°)F
+ G - (102 +162% + Tz + )H”
— (92" +202% + 62%)I" -
+ 2(4:1:5 + 8z + 523 + I‘Z)M* - (31‘6 — 62 -2 :1:4)N*

+ 2270 - (32% + 62 + 5ct + 2°)Q

+ (227 = 32° — 2" )R* — (2% +227)5".

Next we investigate Jg,, , ;.

2OK* + (32 + 62° + 527 + 2)I'

“)
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2.2 A Jacobsthal Sum for J;, ., : By the addition formula, and identities (1)
and (3), we have
Jon1 = Jons1dans1 + 220y
= J47L+1(J72L+1 + IJ?]) + xJnJ4n (Jn+2 - IQJan)

= J4n+1[(Jn+2 - ‘TJn)Q + JZJg] + ‘TJnJ4n(Jn+2 - x2Jn—2)
=X+Y,
where

X = J4n+1[J§+2 —2xJ, 9, + ($2 + 17)J721]

= [Tty — 42 oJ, +2(32% + 22)J2 0T — (42° + 62° + x)J

3
n n+2 ‘]n

— 2% o2 o + (2% + 2T+ (22" +2P)TT, ]

[J72L+2 - 2xJn+2Jn + (xz + SE)J?L]

= A" —62B" +5(32% + 2)C" - (202° +182% + z)E* - 22°F*
+ (152% +242% + 72 H* + (62 + 2°)I"
— (62° + 142" + 92° + 2*)L" —2(32° + 22 )M*

+ (2% + 1) P* + (22° + 32° + 2)Q;

Y = (I3 00y =207 o dy = 2T o g + 25 + 1), 0]

n

ot ST TR =2t +2) TR

5712 12
n—2 +22 Jn‘]n72

N x6JnJS—2]$Jn(Jn+2 - $2Jn—2)
= 2C* =202 E* =223 F* + 2(2® + 2®)H* + 221" + 24°T*
—4(2” + 2 )M + 22N - 2270

+ 2($7 + zG)R* —22%8* + 27T
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Thus,

Jgnsy = A" —62B" + 3(52% + 22)C* - (202° + 202* + 2)E* — 42> F*
+ (152 +262° + 92°)H™ + (82 + 2" + 22°J"
— (62° +142* + 92° + 2*)L" - 2(52° + 42 )M* + 22°N*
— 220" + (2% + )’ P* + (22° + 32° + 2*)Q"

+2(z" +2%)R* - 2258 + 27T, (5)
Next we express Jg,, o as a Jacobsthal sum using the Jacobsthal recurrence.

2.3 A Jacobsthal Sum for J;, ,: Using identities (4) and (5), and the
Jacobsthal recurrence, we get

Jonr2 = Jons1 + 26
= [A* = 62B" + 3(52% +22)C" - (202® + 202 + 2)E*

— 42°F" + (15x4 +262° + 927 )H" + (8x4 + )" +22° T
— (62° + 142" + 92° + 22)L" - 2(52° + 42*)M™ + 22°N*
— 220" + (2% + 2)3P" + (22° + 32° + 2*)Q"
+2(z" +2%)R* —2258" + ng*] + x[2B* —4(2z +1)C”
— 22°D" + (132° + 16z + 4)E* +2(32> + 22°)F* + 2*G*
— (102® +162° + Tz + 1)H" — (92" +202% + 62*)I*
—20K" + (3:1:4 +62° + 527 + z)L'
+ 2(4:165 + 8z + 527 + IQ)M* - (SxG —61° — 2x4)N*
+2270% — (32° + 62° + 52 + 2°)Q"
+ (22" = 32° —a"Rx— (2 + 21‘7)5*]

= A* —4aB* + (72 + 22)C" = 22° D" — (72° + 42” — 32)E* + 62*F*
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+ 220G + (5x4 +102° + 227 — z)H"

—(92° +122* +52°)* +22°T* —2'K

— (32° + 82" + 42" +2(42° + 32° + 2* + 2*)M*
- (3x7 - 8z°% - 2.%'5)]\]* + 2(:U8 - x7)0* + (x2 + x)?’P*
— (32" +42° +22°)Q" + (22° + 22" — 2% —2°)R"

— (2° +42%)S" + 27T*. (6)
Next we express Jg,,, 5 as a Jacobsthal sum.

2.4 A Jacobsthal Sum for J;, .: Using identities (5) and (6), and the
Jacobsthal recurrence, we have

Jon+3 = Jonsa + g1
= [A" —42B* + (72? +22)C" —22°D* — (72* + 42 — 32)E”
+ 62 F* +2°G" + (52 +102° + 22% — 2)H"
— (92" + 122 + 52° ) + 227" 2" K*
~ (32" + 8zt + 4z )L+ 2(42° + 327 + zt + )M
— (32" —82% —22°)N* +2(2% —2")O" + (4® + 2)* P*
(Bz7 +42° +22°)Q% +2(2® + 227 — 2% — 2°)R*
— (27 +42%)8" + 2" T* |+ 2[A* - 62B" + 3(52% + 22)C"
— (202% +202% + 2)E* — 42 F* + (152" + 262> + 92%)H
+ (82t + 2" +24°T" — (62 + 142 +92° + 2°) '
— 2(52° + 42 )M* + 22N —2270% + (2% + 2)* P*
+ (22% +32° + 2M)Q* + 2(2” +2%)R" - 248" + 2T
= (z+1)A* —2(32* + 22)B* + (152° +132% + 22)C* - 24°D*
— (202" +272°% + 527 — 32)E* + 22 F* + 2°G”
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+ (152° + 312* +192° + 22° — 2)H”

- ($5 +11z* + 5m3)l* + 2(356 + m5)J* —2'K*

— (62° +172° +172* +52°) L = 2(a® + 2° —2* —2®)M*
— (2" =825 —22°)N* —=2270" + (z +1)(2? + z)* P

— (2" + 2% +2°)Q" + (42® + 42" — 20 — 2”)R"

(327 +42%)S* + (!0 + 2°)T". (7
We now explore a Jacobsthal sum for J,, , .

2.5 A Jacobsthal Sum for J, ,: Using identities (6) and (7), and the
Jacobsthal recurrence, we get

Jon+a = Jon+z + T6n1a

=[(z +1)A" —2(32% + 22)B* + (152° +132” + 22)C"
— 2°D* — (202" +272% + 527 — 32)E* + 22 F*
+ 2°G* + (152° + 312 +192° + 227 — 2)H”
— (@® + 112t +52°) 1+ 2(a + )T - 2T K”
- (63E6 +172° +172% + 5x3)L*
—2(z% +2° - at - 2 )M* — (m7 - 812% —22°)N”*
— 2270 + (z+1)(2* + 2)° P = (z" +2° + 2°)Q"
+ (42% + 42" — 2% = 2°)R* — (32" + 42%)$*
+ (2" + xQ)T*] +x [A* —4zB* + (72* + 22)C* - 22° D"
— (72® + 42° - 32)E* + 62 F* + 2°G”
+ (52" +102° + 22% — 2)H" — (92 + 122" + 52°)I"

+22°0" — 2 K™ (32" + 8zt + 4z*)I*
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+ 2(42% + 32° + 2t + 23)M* — (327 - 82% —22°)N”

+ 2(2% —2")0" + (2% + 2)* P* — (32 + 42° + 22°)Q"

+2(z% + 22" — 2% —2°)R* — (¥ + 42°)8" + ng*]

= (22 +1)A" —2(52% +22)B"* + (224° + 152° + 22)C"*

—2(z* +2*)D* — (272" + 312° + 227 — 32)E"

+ 232" + o) F* + (2° + 2°)G”

+ (202° + 4zt +212% + 2? - z)H"

—(92° +132° + 162" +52°)I" +2(22° + 2°)J*
(:E8+:E) — (925 + 2527 + 212 +5:U)

+ 2(4:1: +22% + 227 4+ 2 )M*
— (32° - ~102°% = 22°)N* +2(2” - 2® —2")O"

+ 2z +1)(2% +2)* P* = (32° + 527 + 325 + 2°)Q"

+ (227 +62% + 32" — 220 — 2”)R" — (21 + 72” + 42%)S”

+ (22" + 21 (8)

Finally, we express J;,, .5 as a Jacobsthal sum.

2.6 A Jacobsthal Sum for J;, - : It follows by the identities (7) and (8),
and the Jacobsthal recurrence that

Jon+s = Jonta + TJ6n13
=2z +1)A" —2(52% + 22)B" + (222° +152% + 22)C"
—2((z* + 2*)D* - (272" + 312° + 22* - 32)E”
+2(32° + 2*)F* + (25 + 2°)G"
+(202° + 412 + 212° + 2® — 2)H*

— (92° +132° + 162" + 52°)[* +2(22° + 2°)J*
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— (2% +2")K* — (92° +252° + 21z + 52 )

+ 2(4x" +22° + 2t + )M

— (32° = 72" —102° = 22°)N* +2(2” - 2® - 2")O*

+ (22 +1) (2% +2)* P* — (32% + 527 +32° + 2°)Q"

+ (227 + 6% + 32" —22% — 2" )R* - (2'0 + 72" + 42%)$*
+ (220 + 2T+ x [(z +1)A" —2(32% + 22)B*

+ (152° +132% + 22)C" - 22° D"

— (202" +272% + 527 = 3z)E* + 22 F* + 2°G"

+ (152° + 31z* +192% + 227 — 2)H*

— (2" + 11z* + 5z N+ 2’ +2°)T" - ' K*

- (6 2% +172° +172* + 5z )

— a8 +2° — 2t =M — (27 - 8% — 22" )N —2270"
+ (z+1)(z* + 2 P* = (2" +2° + 2°)Q"

+ (42° + 427 - :1:6 —2°)R* — (32" + 42°)5”

+

= (2% + 3z + 1)A* —2(32° + 72” + 22)B*
+ (152" +352° + 1727 +22)C* - 2(22* + 2*)D*
— (202° + 54zt + 362° - 2? — 32)E" +2(4a” + zt VF*
+ (22° + 2°)G" + (152° + 512° + 602" +232° — 2)H”
— (102° +242° + 212" + 52°) " +2(z" + 32° + 2°)J*
— (2¢° + 2")K* = (627 +262° + 422° + 262" + 52°) [
+ 20327 + 2% +2° + 3% + 2 M*
— (42® —152" —122° = 22" )N* + 2(2° - 22° - 270"
+ (2% + 3z +1)(2% +2)° P* — (42® + 627 + 42° + 2°)Q"
+ (62" +102° + 22" — 32 — 2°)R*
— (42" +112° + 42%)S™ + (2" + 32" + )T )
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Next we explore the Jacobsthal-Lucas counterparts of identities (4)
through (9).

3. Sums of Jacobsthal-Lucas Polynomial Products of Order 6

For convenience, we begin with jg, ;.

3.1 A Jacobsthal Sum for j; . ,: Using the identity j, = J, , +xJ,_; , and
equations (4) and (6), we get

Jon+1 = Jon+a + T,
= [A* —42B" + (72° + 22)C" - 22°D* — (72* + 42° - 32)E"
+ 62 F* + 2°G* + (52" +102° + 22* — 2)H*
— (925 + 1224 + 523) " +22° " — 2K
— (32° +8z* + 42" +2(42° + 34° + 2t + 2®)M*
— (32" —82°% —22°)N* +2(2% —2")O" + (2* + 2)* P*
— (327 +42° +22°)Q" +2(«® + 227 — 2% — 2°)R"
— (2 +42%)8* + 2" T* |+ x [2B" - 4(22 +1)C* —22°D"
+ (1327 + 162 + 4)E* + 2(32” + 24°)F* + 2* "
— (102 +162% + Tz + DVH" — (92 + 202° + 627)I"
—2°K* + (32" +62° + 5% + 2)['
+ 2(4x5 + 8z + 547 + x2)M* - (3x6 —62° — 2$4)N*
+22°0" — (32° + 62° + 52" + 2°)Q"
+ (22" - 32" —2")R" — (z® + 227)S"]
= A" = 22B" — (2° +22)C" — 42° D" + (62° + 122" + T2)E"
+ 4(3m4 +2°)F* +22°G" - (5954 +62° + 527 + 20)H”
— (182° + 322" + 112" + 22°J* - 22" K*
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— (22 — 2 —2®)LF +2(82% +112° + 62 + 223)M*
— 232" = 72% = 22°)N* +2(22° — 270" + (2 + 2)* P
— (627 +1025 + 72" + 2")Q"

+2(20° + 2" —22° - 2P)R* - 2(a” + 32°)S* + 27T . (10)
Next we investigate j;,,, 5 -

3.2 A Jacobsthal Sum for j;,  ,: Using the same technique as above with
equations (5) and (7), we get

Jon+2 = Jon+s + Tgni1

= [(z +1)A" —2(32% + 22)B* + (152° + 132” + 22)C* - 22° D"
— (202" +272° +52° = 32)E* + 22 F* + 2°G”
+ (152° + 312" +192° +22° — 2)H”
— (@° + 112t +52°) 1+ 2(a + )T — 2T K”
— (62° +172° +172* + 52° )L = 2(a° + 2° — 2 —2®)M*
— (2" = 82°% = 22" )N* =220 + (z +1)(2* + z)* P*
— (2" + 2% + 2°)Q* + (42® + 42" — 2% — 2°)R*
— (32 +42%)8* + (2" + xg)T*] +x [A* - 62B"
+ 3(52% + 22)C" — (202° + 202° + 2)E* — 42 F*
+ (152" +262° + 922 )H* + (82 + )" + 27T
— (62° + 142" + 92° + 22)L" - 2(52° + 42*)M™ + 22°N*
— 270" + (2 + )P P* + (225 + 327 + 2)Q"
+ 2z +2%)R* - 224%™ + 29T

= (22 + 1)A" - 4(32” + 2)B* + (302® +192° + 22)C* — 22° D"

— (402" +472% + 62% - 32)E* — 22 F* + 2°G*
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+ (302° + 572" +282% + 22 — 2)H*
+ (72° =10z = 52°) " +2(22° + 2°)J" - 2K
— (1225 + 312° + 262" + 62°)'
— 2(62° + 52° — zt - 2 )M* + (x7 +82°% + 227 )N*
— (22° + 270" + (22 + 1) (2 + 2)* P* + (2" + 22°)Q"
+ (62° + 62" — 2% —2”)R" — (52 + 42°)S*
+ (22 + 2)7. (11)

Knowing the sums for both j;,,, and j,, .5, we can now find the remaining

sums in the family.
We begin with j;,, .

3.3 A Jacobsthal Sum for j;, : By the Jacobsthal recurrence, we have

Tn = Jon+2 = Jon+1
= [(22 +1)A" - 4(32° + 2)B" + (302” +192° + 22)C" - 22° D"
40z* + 472 + 62° - 32)E* — 22 F* + 2°G”

72° —10z* -5z N +2(22° +2°)JT" 2" K*

—(
+ (30z + 572" +282° + 2% —2)H”
+ (

—(

1225 + 312° + 262 + 62 N
—2(62° +52° — 2t —® )M +(z" + 82° + 22°)N*
— (2¢° + 270" + (2 +1) (2% + 2)* P* + (27 +22°)Q"
+ (6:1:8 +62" —2% —2°)R* - (52 + 42°)S*
+ (22" + 2°)T*| - [A" = 22B" - (2® + 22)C* - 42°D*

+ (62° +1224 + T2)E* + 4(32* + 2°)F* + 22°G”
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— (52 +62° + 52® + 22)H* — (182° + 322* + 112°)I"
+22°0" = 22" K" — (22 — 2 — )L

+ 2(82° + 112° + 62* +20°)M* —2(32" — 725 - 22°)N*
+2(22% = 210" + (2 + 2)° P*

— (627 +102° + 72° + 2*)Q" +2(22% + 27 — 22° —2°)R®

- 2(z” + 34%)8" + ZEQT*]

Jon = 24% =2(62 —1)B* + (302 + 4z — 4)C™ - 22°D"
— (402® +272% — 14z — 4)E* - 2(z* — 22*)F* + 2*G”
+ (302" +422° + 227 —Tx —1V)H* + (72* —182% - 62°)I*
+ 42°J" - 2K — (122 + 250t +122° — 327 - z)L'
— 2(62° = 52% — 2 )M* + (2° + 62° + 22 )N* —2270"
+ 2(2% + 1)’ P*+ (2 - 32t —27)Q"
+ (627 +42°% —32° —a")R* — (52° +227)S™ + 22T
(12)
3.4 A Jacobsthal Sum for j;,  .: Again, by the Jacobsthal recurrence,
we get
Jon+3 = Jon+2 T Wens1
= [(22 +1)A" - 4(32% + 2)B* + (302” + 192 + 22)C"
— 20°D* — (402" + 472 + 627 — 32)E* - 221 F* + 2°G”
+ (30m5 + 572 +284° + 247 - z)H"
+ (72° =10z* — 52 )1 +2(22° + 2°)J* — 2" K*
— (1225 + 312° + 262" + 62°)I'
- 2(6:1:6 +52° -zt - a:?’)M* + (:E7 + 825 + 2:1:5)N*

— (22° +27)0" + (22 +1) (2% + 2)* P * +(z7 +22°)Q"
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+ (62° + 62" — 2% —2”)R" — (52 + 42°)S*
+ (22" + zg)T*] +T [A* ~22B* — (2% +22)C" - 42° D"

+ (62° +122% + T2)E”™ + 4(3x4 + 2 )F"
+ 22°G" — (52" + 62° + 52% + 22)H*
— (182° + 322 + 112*)I" +24°J°
2 K* — (21:4 — 2 I
+2(82% +112° + 62" +22*)M* —2(32" —72° —24°)N*
+ 2(2;1“8 - :1:7)0* + (:1:2 + l‘)3P*
— (62" +102° + 72" + 21)Q" +2(22% + 27 - 22° —2°)R"
- 2(z” +34%)5" + ng*]
= 3z +1)A" —2(72* +2z)B"
+ (292° +174% + 22)C" - 2(2z* + 2*)D*
— (342" + 352° =2 - 32)E* +2(62° + z*)F*
+(22° + 2°)G" + (252° + 512t + 172 —2)H”
— (182° +252° + 212" + 52" +2(32% + 2°)J*
—(22% + 2")K* — (122° + 332" + 252" + 52°) L

*

+ 2(81‘7 +52° +2° + 3% + 23 M
— (62% —152" —=122% —22°)N* +2(22° + 2")0"
+ 3z +1) (2 + 2 P* = (62° + 927 +52° + 2°)Q"
+ (42° +82® + 227 — 32 — 2°)R*

— (22" + 112" + 42°%)8™ + (32" + 2”)T". (13)

3.5 A Jacobsthal Sum for js ., : Sincej, =
equations (12) and (13) that

Jonss T g, .o » 1t follows by
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Jomea = (227 + 4z +1)A" —2(62° + 92* +212)B*

+ (302 +482° +192% + 22)C" - 2(3z" + 2°)D*

— (402" + 812" + 412° — 42 — 32)E* +2(52° + 2t )F*

+ (325 +2°)G" + (3025 + 822° + 792" +192% — 2 —2)H"
— (112° + 352° + 262" + 521" +2(22" + 425 + 2°)J*

— (32 +2")K* — (122" + 432° +592° + 312" + 52°) [

+ 222" +22° + 42 + 2P )M* — (52° — 232" —142° — 22" )N*
+22° = 2% +27)0* + (227 + 4z + 1) (2 + 2)* P

— (52° + 72" +52° +2°)Q" + (102" +142% + 27 —42® —2°)R"

— (72" +152° +42%)S* + (22" + 42" + 2°)T*. (14)
Finally, we explore a sum for the final member of the family.

3.6 A Jacobsthal Sum for j;,  5: It follows by the recurrence

Jonss = Jonta T Tlenss » and equations (13) and (14) that

Jomes = (5a? + 5z +1)A" —2(132° + 112* + 22)B*
+ (592 + 652° + 2127 +22)C* —2(22° + 42* + 2*)D*
— (742" +1162* + 402° - 72° - 3z)E*
+2(62% +62° + 2*)F* + (227 + 425 + 2°)G"
+ (552° +1332° + 962" +192° — 227 — 2)H*
— (182" +362° + 562° + 212" + 52°)I*
+ 2(5x7 +52% +2°)J" — (227 + 42® + x7)K*
— (2427 +762° + 842° + 362" + 52°) '
+ 2(8:1:8 + 72" + 2% +52° + 52t + I‘S)M*

— (62" —102® - 352" —162° — 22°)N*
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+ 222" + 2% + 210" + (52% + 52 +1) (2 + 2)* P
— (62 +142% +122" +62° + 2°)Q"

+ (49510 +182” +162° — 227 —52° — m5)R*

— (22" +182" +192" + 42°)5”
+ (52" + 52" + )T,

15)
4. Numeric Byproducts

Since J, = J,(2) and j, = j,(2), equations (4) and (15) yield the following

identities, where a” through ¢* denote the numeric counterparts of A" through 7,
respectively.
Jon = 20" —20c" — 8d" +88¢” +64f" +16g" —159h" — 328i" — 64k™ + 118["

+ 600m” +32n" +2560" —472¢" + 144r" - 512s";

Joner =@ — 120" + 72" —242¢™ — 32" + 484h" +136i" + 645" — 492"
— 448m" +128n" — 2560 +216p" +240¢" + 384r" —512s" +512t";

Jgpao =0 —8b" +32¢" —16d" — 66e" + 96/ + 32g" +166h" —520i" + 645" —128k"

— 2560" + 752m" +192n" + 2560" + 216p" — 704¢" + 672r"
+1536s" +512t";

Jgpi3 =3a" —32b" +176¢" —16d" —550e” + 32f" + 329" +1134h" —248i"

+ 1925 —128k™ —12400" —144m™ + 448n" — 2560" + 648p" — 224¢"
— 1440r" —2560s" +1536t";

Jges = 5a" —48b" +240¢" — 48d" — 682¢” + 224 1" + 964" + 1466h" — 1288i"

+ 3205" — 384k™ — 17520 +1360m”™ + 832n" + 2560" +1080p"
— 1632¢" +2784r" — 5632s";
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Jones =11a" —1120" +592¢™ — 80d" —1782¢" + 288" +160g" + 3734h"
— 17844 +7045" — 640k™ — 42320" +1072m" +1728n" — 2560
+ 2376p" —2080q¢" + 5664r" —10752s" + 5632t";

Jon =2a" —22b" +124c" — 8d" —396¢” + 169" + 809h" —56i" +1285" — 64k”
— 866[" —296m" +288n" —2560" +432p" + 8¢" + 912r"
— 1536s" +1024t";

Jons1 =@ —4b" —8c" —32d" +110e" +224f" + 64g" — 152" —11764"
+ 645" —256k" — 200" +1952m™ +262n" + 75600" + 216p" —16484"
+ 960r" —2560s" + 512t";

Jonsa = Da” —56b" +320c" —16d" —1034e” — 321" + 32¢" +2102h" + 244"
+ 3205 — 128" — 22241 —1040m™ + 704n" — 7680" +1080p" + 2564"
+ 22087 — 3584s" +2560t" ;

Jonss = 7a" —64b" +304c" —80d" — 814e” +416f* +160g" + 1750h"
— 2328:" +4485" — 640k™ — 22641" — 2864m” +1216n" + 23040"
+ 1512p" — 3040¢" + 41287 —8704s™ + 3584t";

Jonsa = 17" —176b" + 944c™ —112d" — 2882¢" + 352" +224¢" + 5954h"
— 22807 +10885" — 896k — 67120" + 784m™ + 624n” + 7680
+ 3672p" —2528¢" + 8544r" —15872s" + 8704t";

Jonss = 3la” — 3040 +1552¢" — 272d" — 4510e” + 1184 f" + 544¢" + 9454h"
— 67763" +19845" —2176k™ —112400" + 6512m" + 5056n" — 53760"
+ 6696p" —8608¢" +16800r" — 332805 + 15872¢".

An interesting observation. Exactly one of the coefficients of the

expressions a” through t* is odd.

This implies that Cy,, ;. is odd, where C,, = J,, or j,,and 0<k <5.
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This is consistent with the fact that every C, is odd [5].

5. Pell, Vieta, and Chebyshev Implications

Using the gibonacci-Pell and gibonacci-Vieta relationships, we can find the
Pell and Vieta counterparts of identities (4) through (15). Likewise, using the Vieta-
Chebyshev relationships in Table 1, we can extract their Chebyshev counterparts.
Again in the interest of brevity, we omit them.
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1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
20 (T) = a(2)z,,,1(2) + b(z)z,(x), where z is an arbitrary integer variable;a(x),

b(x), zy(z), and z (z) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomials; and when z,(z) =2 and z(z) = =,
z,(z) =1,(x), the nth Lucas polynomials. Clearly, f,(1) = F,, the nth Fibonacci
number; and [, (1) = L, , the nth Lucas number [1, 6, 8].
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Pell polynomials p,(z) and Pell-Lucas polynomials g, (z) are defined by
p,(z)=f,(2z) and ¢,(z) =1,(2z), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers (), are given by P, =p, (1) =f(2) and

n

2Q, = q,(1) =1,(2), respectively [8].

Pell polynomials p,(x) and Pell-Lucas polynomials q,(z) are defined by
p,(z)=f,(2z) and ¢, (z) = 1,(2z), respectively. They also can be defined by Binet-

like formulas. In particular, the Pell numbers P, and Pell-Lucas numbers (), are

given by P, = p, (1) = £,(2) and 20, = 4,(1) = 1, (2), respectively [8].

Suppose a(z)=1 and b(z)=x. When zy(z)=0 and z(z)=1,
2 () =J

n

(z), the nth Jacobsthal polynomial ; and when z,(z) =2 and z(z) =1,
z,(z) = j,(z), the nth Jacobsthal-Lucas polynomial. They have their own Binet-
like formulas. Correspondingly, J, =J,(2) and j, = j,(2) are the nth Jacobsthal
and j,(1)=1L

n

and Jacobsthal-Lucas numbers, respectively. Clearly, J, (1) = F, ;
[4, 8].

Suppose a(z) =z and b(z)=-1. When z,(z)=0 and z(z)=1, then
2, (2) =V,

(), the nth Vieta polynomial; and when z)(z) =2 andz(z) = z, then

z,(x) = v, (x), the nth Vieta-Lucas polynomial [5, 8].

Finally, suppose a(z) =2z and b(z) = —1. When z,(z) =1 and z/(z) =z,
then z,(z) =T, (z), the nth Chebyshev polynomial of the first kind; and when
zo(xz) =1 and z/(z) =2z, then z,(x)=U,(z), the nth Chebyshev polynomial of
the first kind [5, 8].

1.1 Links among the Extended Gibonacci Family: Table 1 shows the
relationships among the subfamilies of the extended gibonacci family [5, 8].

(@) = 2" V2 f (W) Jule) = 2"%1, (1))

V() =i""f,(~iz) v, () = i"l, (~iz)

Vn(x) = Un—l(x/2) 'Un(ﬂ?) = 2Tn($/2) ’
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where 7 = \/—T

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let ¢, =f, or I, b, =p, or gq,, c¢,=J,(x) or j,(x).
Correspondingly, we denote their numeric counterparts with G, , B, , and C,,
respectively. We also omit a lot of basic algebra.

With this background, we now explore a recurrence for gi +1 Wwith three

predecessors.

2. A Recurrence for Gibonacci Squares
First, we find a simple recurrence for g2, .
Lemma 1: Let g, = f, or [, . Then
G = (% +1)gy + (@ +1)gi_y — g7
Gnoa = (@° +1)gy + (@ +1)g 3 — g5 (1
Proof: Using the gibonacci recurrence, we get

2 2 9 2
In+1 =T Gy + 9y (gn - gn—?) + l‘gn—l(l‘gn—l + gn—?) + In-1
= (@ +1)gs + (2" +Dgo_y — gp_5(9, — 29, 1)
=@ +1)g; + (=" + Dgo 1 — g5 5.

as desired. O

In particular, this yields
G =2G) +2G2_ -Gy,

the case G, = F;, appearsin [2, 7].

With this lemma at our disposal, we now explore the fourth-order recurrence.
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Theorem 1: Let g, = f, or |, and A* = 2* + 4. Then

2 2 2 2 2 2 2 2
In1 =2 g, t 2(.(17 + 1)gn71 +2 9,9~ Gn-3

2
Proof: Using Lemma 1, the Cassin-like identities f,,f, . — > = (—1)" "' f2

and [0, — 17 = (—1)"* A 2 [8], and the gibonacci recurrence, we have

2 2 2 2 2 2
In+1 = (ZB + 1)gn + (l‘ + 1)gn—l )

2 2 2
= [ZEQQZ + 2($2 + 1)9371 +rg, 9~ gn73] A >

where

A= gy — (@ +Dgpy —(@* +1)gp 5 + g3

= (g0 - 205 1) 0 0o — (270 5 — g2 _3)
= (9092 = 9o-1) *+ (90193 — Gos) =

D"+ ()" it g,=/
B {(—1)"‘%2 + (1" 'A% otherwise
=0.
Thus,

2 2 2 2 2 2 2 2
Ip1 =T gy + 2(.%’ + 1>gn71 +279, 2093 >
as expected.

In particular, we have

G2 =Gl +4G2  + G2, -G2 ;. 3)
The formula with G, = F, appears in [3].

Figure 1 gives a geometric interpretation of identity (3).
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T
Fn—Q
!
T i
EkQ
Fn—2 F”*3 !
Fn
1
- F;Hl -
Figure 1: F,\ = F; + 45, + Fyp — F;
3. Pell Implications

It follows from equations (1) and (2) that
b,y = (42 + 1)b2 + (42 +1)b2_; — b2 _y;
= 42°7 +2(42® + 1) b2, +42°b> , — b7 5;
B, =5B +5B;_ - B1 ,;
=4B2 +10B2_ | +4B> , - B2 ,.
4. Jacobsthal Versions

Using the gibonacci-Jacobsthal relationships in Table 1, we now explore the
Jacobsthal versions of identities (1) and (2).

4.1 Jacobsthal Version of Identity (1): Suppose g, = f,. Replacing = with
1/ Jz in (1) and multiplying the resulting equation with z" | we get
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(xn/anH)Q = (2 +1) [(:E(n—l)/an ]2 +a(z+1)) [(w(n—2)/2 fn—1]2 _ m3[(m("73)/2fn_2]2

J2+1 =(z+ 1)J72L +z(z + l)J?F1 - x?’JifQ ,
where f, = f,(1/Jz) andJ, = J (z).

On the other hand, let g, =/,. Replace z with 1/\/5 and multiply the

resulting equation with z"*!. This yields
2 2 2 3,2
Jn+1 = (l‘ + 1)]n + l‘(ZL‘ + 1)Jn—1 T Jp-2-

Combining the two cases, we get

chl = (:E + 1)62 + :E(:L‘ + 1)62_1 — z?’cg_Q ; 4
C%,, =3C% +602_ -8C%,. (5)
T
11
!
«— 21 —

Figure 2: J3 = 3J2 +6J; —8J3
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Figure 2 shows a geometric illustration of identity (5) with C, =J,
and n =5.

4.2 Jacobsthal Version of Identity (2): Let g, = f,. Replace z with 1/ Jz

in (2) and multiply the resulting equation with z, . We then get

(@2 f) = [(ZU("fl)/an]Q +22(z +1) [(13(n_2>/2ﬁz4]2 + xz[(z(n_g)ﬂfndf
B :1;4[(:15(71,74)/21(. _3]2

Jeg=Jp+2a(z+1)J) + 2T, — 2T,
where f, = f,(1/Vz) and J, = J, (z).

Now let g, =1, . Replacing = with 1/\/5 and multipling the resulting

1

equation with """ , similarly we get

) .2 .2 2 .2 4 .2
Jnel = I t 2.%’(17 + 1)371,71 T2 =T Jp-3>
where j, = j,(z).
Combining the two cases yields

0721,+1 = ci + 2x(w + 1)0,2,,71 + x20272 - 14072,,73 ; (6)

Cii = Cpin20;_ +4C;_, —8C ;. (7

5. Vieta and Chebyshev Implications
Using the Vieta-gibonacci and Vieta-Chebyshev relationships in Table 1, we
can extract the Vieta and Chebyshev versions of identities (1) and (2). In the interest

of brevity, we omit them.

Next we will confirm identities (1) and (2) using graph-theoretic techniques.
To this end, first we present the needed graph-theoretic tools.
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6. Graph-Theoretic Tools

Consider the Fibonacci digraph D, in Figure 1 with vertices v; and v,,

where a weight is assigned to each edge [8, 9]. It follows from its weighted

z 1
adjacency matrix @ = 10 that

fn+1 fn

Q, N fn fn—l

where n > 1 [8, 9].

Vi vz
1

Figure 1: Weighted Fibonacci Digraph D;
A walk from vertex v, to vertex v; Is a sequence

U =€ =V — " —Vj 1 —€

i —v; of vertices v; and edges ¢, where edge ¢ is

-1
incident with vertices v, and v ;. We will denote the edge v; = v; by the word ij
when there is no confusion. The walk is closed if v; = v;; otherwise, it is open. The

length of a walk is the number of edges in the walk. The weight of a walk is the
product of the weights of the edges along the walk.

The sum of the weights of closed walks of length n originating at v, in the
digraph is f, ,, and that of those originating at v, is f,_;. So, the sum of the weights

of all closed walks of length n in the digraphis f, ., + f,_; =1,.

To confirm the Jacobsthal identities, we employ the weighted Jacobsthal
digraph D, in Figure 2 with vertices v; and v, [8, 9].
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1 =z
Its weighted adjacency matric M = [1 0 implies that

1

Figure 2: Weighted Jacobsthal Digraph D,

‘]n-i-l zJ

M" =
J

where J, = J,(z) andn> 1.

The sum of the weights of closed walks of length n originating at v, is J,,,
and that of those originating at v, is x.J,_; . So the sum of the weights of all closed

walks of length n in the digraphis J,,; + 2J,_; = j,,.

In both cases, suppose A and B denote the sets of walks of varying lengths
originating at a vertex v. Then the sum of the weights of the elements (a,b) in the

product set Ax B is defined as the product of the sums of weights from each
component [9].

With these tools at our finger tips, we are now ready for the graph-theoretic
proofs.

7. Graph-Theoretic Confirmations

7.1 Confirmation of identity (1) with g, = f : Proof: Let A denote the set
of closed walks of length n originating at v; in digraph D, . The sum of the weights

all such walks is f, ;. So the sum S of the weights of all elements in the product set

Ax A is givenby S = f2, .
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We will now compute S in a different way. Let B be the set of closed walks
of length n» —1 in digraph D, originating at v, . Let w be an arbitrary walk in B. It

can land at v, or v, atthe (n —2)nd step: 4 = o

== ~,, where v = v,

| S —
subwalk of length n—2

oruv,. If v = v, the sum of the weights of such walks is f, ;- = = zf,_; . Otherwise,
the sum of the walks inis B f,_,-1 = f _,. So the sum of the weights of the walks in
Bis zf, | + f,_o = [, . Consequently, the sum S, of the weights of the elements in

Bx B isgivenby S, = f*.

Now, let C be the set of closed walks of length n —2 originating atv, , and

w' an arbitrary element in C. It can land at v, or wv, at step(n-—3):

W= g —.-v -, where v = v, or v,. As above, the sum of the weights in

1

| —
subwalk of length n—3

Cis zf, o + f,_3 = f,_;, and hence the sum S, of the weights of the elements in

CxC isgivenby S, = f* .

Finally, let D denote the set of closed walks of length n—3 originating atwv, .
The sum of the weights of the walks is zf, 5 + f,_4 = f,_o; so the sum S5 of the

weights of the elements in D x D is given by S5 = fn?72 .

We now let $* = (2% + 1S, + (z* + 1)S, . Since the elements in D appear in
both B and C as subwalks, they contribute S; to both S; and S, ; so we discount it

from S* to yield

S* = (a® +1)8, + (2* +1)S, — S,
= (@ + ) + (2 + D)y — fie
= (@ + )7+ (@ + D~ foo(f )
=2 fy + fi 4 (= fia) + (@ + £0)
= (af, + f,0)°
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as desired. O

Next, we present an algorithm for extracting the elements of B from those
of A.

Algorithm 1: Let w be an arbitrary walk (word) in A. Let w’ be the

subword obtained by deleting the rightmost 1 in w when it ends in 11. Then B
consists of all such subwords w’.

The same algorithm works for constructing C from B, and D from C.
Table 2 shows the walks in A, B, C, and D, weights of the elements in each, and their
cumulative sums, when n = 5. Notice that the elements in D are subwalks of the

walks in both B and C, as expected.

Table 2: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums

A B C D

walks | weights walks weights walks weights walks weights
111111 z° 11111 zt 1111 3 111 2
111121 23
111211 23 11121 2
112111 23 11211 2 1121 T
121111 23 12111 2 1211 T 121 1
112121 T
121121 z
121211 T 12121 1

sum fo Js h f
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7.2 Confirmation of identity (1) with ¢, =/, : Proof: Let A denote the
set of all closed walks of length n +1 in digraph D,. The sum of the weights all

such walks is [,,; . So the sum S of the weights of all elements in the product set

Ax A is givenby S =12, .

We will now compute S in a different way. Let B be the set of closed walks
of length n in digraph D,, and w an arbitrary element of B. The sum of the weights
walks originating at v; is f,,; and that of those originating at v, is f _;. So the sum

of the walks of all elements in B'is f, ; + f,_; =[,, and the sum S| of the elements

in Bx B is givenby S, = I2.

Suppose C denotes the set of all closed walks of length n —1. Clearly, the

sum of the walks of all elements in C'is f, + f,_5 ={,_;, and hence the sum S, of

those in B x B is given by S, = I,

Now let D be the set of all closed walks of length n —2. It follows from

above that the sum of the walks of all elements in D is [,_, and the sum S5 of those

. o 2
in CxC isgivenby S; =1 5.

We let S* = (z* +1)S, + (2° +1)S, . Since the walks in D occur as subwalks

of the elements in both B and C, we discount their contributions to S™:

S* = (2* +1)S, + (2> +1)S, — S,
=@+ D+ (@ + 0P -,
=@+ D)2+ (P +DE -1 (1, —al )
= x2l2 + I?H + 1, (L, —lyo) + 2,y (2l 4 +1,_5)

= (xln + ln—l )2

as expected. U
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We now present an algorithm for extracting the elements of B from those of

Aj; it is an extension of Algorithm 1.

Algorithm 2: Let w be an arbitrary walk (word) in A. If it ends in 11,

deleting the rightmost 1 yields a subword w’ of lengthn —1. Suppose w ends in 112;

deleting the rightmost 2 and replacing the rightmost 1 in the deleted word with 2

yield a subword w’ of length n —1. Then B consists of all such subwords w’ .

The same algorithm works for constructing C from B, and D from C.

Table 3: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums

A B C D

walks | weights walks weights walks weights walks weights
111111 z° 11111 2t 1111 23 111 2
111121 3
111211 3 11121 2
112111 23 11211 2 1121 z
121111 3 12111 2 1211 T 121 1
112121
121121 T
121211 T 12121 1
211112 3 21112 2 2112 T 212 1
211212
212112 T 21212 1

sum L5 ly Iy b

Table 3 shows the walks in A, B, C, and D, weights of the elements in each,

and their cumulative sums, when n = 4. Clearly, the elements in D are subwalks of

the walks in both B and C, as expected.
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Next we confirm identity (6) using digraph D, .

7.3 Confirmation of identity (6) with ¢, = J, : Proof: Let A be the set of
all closed walks of length n originating at v, in digraph D,. The sum of the weights

such walks is J,, ;. So the sum S of the weights of elements in the product set A x A

is givenby S =J2,,.

We will now compute it in a different way. Let w be an arbitrary element in
the set B of closed walks of length n —1 originating at v, . It can land at v, or v, at
step(n —2): o = Y -, where v =v; or v,. If v =19, the sum of

| S —
subwalk of length n—2

the weights of such walks is J,_; x1 =J,_, and that of those with v = v, is zJ,,_,.

Thus, the sum of the weights of the walks in B is J,_; + zJ,,_, = J,, . Consequently,

the sum S of the weights of the elements in B x B is given by S| = JEL .

Now let C be the set of closed walks of length n —2 originating at v, , and

!/

w’ an arbitrary element in C. It can land at v, or wv, at step n—3:

w= v -.-v -, where v =wv; or v,. Clearly, the sum of the weights of

—_——
subwalk of length n—3

walks in C'is J,_, +zJ =J,_;. So the sum S, of the weights of the elements in

. 2
CxC isgivenby S, =J,_;.

Finally, let D be the set of closed walks of length n —3 originating at v, .

The sum of the weights of walks in D is J,_,, and hence the sum S5 of the weights

of elements in D x D is given by Sy = J2 ,.

Now let
S* =(z+1)S, + 2(z +1)S,

= (x + 1)J2 + m(x + 1)J271 .
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Clearly, the walks in D are subwalks of the elements in both B and C. So

their contributions to S* must be discounted once to eliminate duplicate counting. To
n—

this end, notice that deg J,, = { 1} , where deg J, denotes the degree of J,(z),

L$J the floor of the real number z, ande + kJ = LxJ + k, k being an integer. We

will now find the correct multiple z* of Sy =J2 , that must be subtracted.

Since deg(z +1)J2 =1+ ZLnT_lJ ,deg z(z+1)J> | = Ln/2j = deg J2,,, and

deg (z+1)J2 -1 nisodd
deg (z+1)J; +1  otherwise,
we let £ be such that
k+degJ? , = deg(z +1)J2

PR Kkl DR Kt
9 9

This yields k£ = 3. Discounting x?’J,QLfQ from S* then yields

St = (x + l)JTQL + x(m + 1)(]271 - xSJi,Q
= (ZI; + 1)‘]721 + l‘(ZL‘ + 1)‘]721—1 - $2Jn—2 (Jn - Jn—l)
=T+ 22T v ad (T, —ad, o) v, (T, +al, )
= Jn + x‘]nfl)Q
=9 ,
as desired. O

Table 4 shows the walks in A, B, C, and D, the weights of the elements in
each, and their cumulative sums, where n =5. Using Algorithm 1, we can get
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extract the walks in B, C, and D, as before. The walks are the same as those in Table
2, but the weights are different. Again, notice that the elements in D are subwalks of

the walks in both B and C, as expected.

Table 4: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums

A B C D

walks | weights walks weights walks weights walks weights
111111 1 11111 1 1111 1 111 1
111121 T
111211 T 11121 T
112111 T 11211 T 1121 z
121111 T 12111 T 1211 T 121 T
112121 2
121121 2
121211 2 12121 2

sum Jg Js Jy Js

7.4 Confirmation of identity (6) with ¢, = j, : Proof: Let A be the set of
all closed walks of length n +1 in digraph D,. The sum of the weights of such
walks originating at v, is J,,, and that of those originating at v, is z.J,. So the

sum of the weights of all such closed walks in D, is J, 5 +2J, = j,,;, and hence

the sum S of the weights of elements in the product set A x A is given by § = jfl il-

To compute S in a different way, first consider the set B of closed walks of
length n in D, . The sum of the weights of such walks originating at v, is J,,; and
that of those originating at v, is x.J,_; . Thus, the sum of the weights of the walks in

Bis J, . +xJ,_; = j,. Consequently, the sum 5| of the weights of the elements in

B x B is given by S =j,2l.
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Now let C denote the set of closed walks of length n —1. The sum of the
weights of such walks originating at v, is J,, and that of those originating at v, is
xJ,_5. So the sum of the walks in C' is J, +xJ,_5 = j,_;, and hence the sum S,

of the weights of the elements in C' x C' is given by S, = j2_; .

Finally, let D be the set of closed walks of length n —2 in D,. Clearly, the
sum of the walks in Dis J,_; + zJ,_3 = j,_5, and hence the sum S; of the weights

of the elements in D x D is given by S5 = 7> ,.

We now let
S* =(z+1)S, +2(z +1)S,

=(z+1)72 +z(z+1)52 ;.

Since the walks in D can be subwalks of elements in B or C, their

contributions to S must be discounted to eliminate duplication. As before,
discounting z°52_; from S* yields

S* = (z+ l)ji +z(z + 1)j,2l,1 - $3J}2Lfg
=(z+ 1)],3 + a:(;r + 1)]}%_1 - «T2jn—3(j = Jn-1)

2 2 .2 .o . . . E
=p T T T2, (]n - xjn—?) + zjn—l(]n—l + xjn—?)
= (jn + .’L'jn,1 )2
=5,
as expected. U

Table 5 shows the walks in A, B, C, and D, the weights of the elements in
them, and their cumulative sums, where n = 5.

Using Algorithm 2, we can obtain all elements in B, C, and D from A.
Notice that the elements in D are subwalks of the walks in both B and C.
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Table 5: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums

A B C D

walks | weights walks weights walks weights walks weights
111111 1 11111 1 1111 1 111 1
111121 T
111211 T 11121 T
112111 T 11211 T 1121 z
121111 T 12111 T 1211 T 121 T
112121 2
121121 2
121211 2 12121 2
211112 T 21112 T 2112 T 212 T
211212 2
212112 2 21212 2

sum Js ) Ja ) Js ) J
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Keywords: Graph-Theoretic Techniques, Jacobsthal and Jacobsthal
Polynomials, Gibonacci Polynomials.

Mathematical Subject Classification (2010) No.: 05A19, 11B39, 11Cxx.

1. Introduction

Extended gibonacci polynomials z,(x) are defined by the recurrence
Zp1o(®) = a(2)2,.,1 () + b(2)z, (), where zis an integer variable; a(z), b(z), z(z),

and z(z) are arbitrary integer polynomials; and n > 0 [, 2, 5].

Suppose a(z)=1 and b(z)=2. When z,(z)=0 and 2(z)=1,
z,(z) = J,(x), the nth Jacobsthal polynomial, and when 2,(z) =2 and z(z) =1,
z,(x) = j,(z), the nth Jacobsthal Lucas polynomial [1, 2]. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J, (1) = F, and j,(1) = L

n

In the interest of brevity, clarity, and convenience, we omit the argument in
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the functional notation, when there is no ambiguity; so 2, will meanz,(z). We also

let ¢, (z) =J,(z) or j,(z);

A= JS+2 B = JT5L+2Jn C" = Jé+2<]72l

D" =Jyodydy BT =000 F* = T3 dd
G =il dhy  H =), I = T3l
J = J72L+2J721J721—2 K= J7’2L+2JTLJT?L)—2 L= ‘]n+2‘]75z

M = n+2‘]3‘]n72 N" = n+2f7?‘]272 0" = Jﬂ,+2J72LJ73Lf2
P*=1J, Q" =TT R* = JoJh

S =J3J3 T =J2T

and omit a lot of basic algebra.

It is well known that J,  +2J,_; = J,, Jo, =J, 7, Jops1 = JQL+1 +zJ?

T n?o

Jn+2 + :1:2‘]71—2 = (21‘ + 1)‘]n > Jn+2 - $2Jn—2 = ]n ’ ‘]2n+2 = J7’2L+2 - $2J72L , and the
Jacobsthal addition formula J,, ., =J,, 1/, +2J,J,_; [3]

1.1 Sums of Jacobsthal Polynomial Products of Order 4: Sums of

gibonacci polynomial products of order 4 are explored in [5]. Four of them form the
basis of our discourse:

Tin = Tnsady = 2005 007 =22 T0 0],y + 2(2” + )]

3
n+2Jn
4 2 4 3\ 73 572 72 6 3 .
+ Jn+2‘]n‘]n72 _2(I +z )Jn‘]an +22 Jn‘]an - Jn‘]an > (1)

Tiner = Insg — 42T o, +2(32” + 22)J7 o T — (42 +62” + 2)J,, o]
— 2230 I o+ (2P +x) T+ (22t + 2T, 2)
Jnso = Jé+2 - 3$2J721+2J72z + 2$4Jn+2‘]7’2l‘]n—2 + $4Jé - fEGJTQLJTQL—Q; 3)

Jineg = @+ 1)Jh o —422T3 T+ (62% + 2°)J2 2 — (42" +62° + 2?)J

2‘]3
n+ n
+ (2° + 32" +2°) Tt (220 + )BT, — 28T, 4)

n

where ¢, =c,(z).
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1.2 Sums of Jacobsthal Polynomial Products of Order 6: We investigated
several sums of Jacobsthal polynomial products of order 6 in [6]. Six of them are
the following:

Jg, =2B" —4(22 +1)C* —22°D" + (132* + 16z + 4)E*

+ 2(32% + 222 F* + 2°G* - (102 + 162 + Tz + 1)H"
— (92 +202% + 62° )" — 2°K* + (32" + 62° + 52% + 2) [
+2270" = (32° + 62° + 52" +2°)Q" + (227 - 32" — z*)R”

- (:1:8 + 2:1:7)5*. Q)

Jonso = A" —42B" + (2% +22)C* —22°D* — (72® + 42° — 32)E”
+ 62 F* + 2°G” + (52" +102° +22* —2)H*
— (92° +122* +52°)* +22°T* —2'K*
— (32" + 8zt + 4z L+ 2(42° + 32° + zt + )M
— (32" —82°% —22°)N* +2(2% —2")O" + (2* + 2)* P*
— (32" +42° +22°)Q" + (22° + 22" — 2% —2°)R"

— (2 +42%)S" + 277", (6)

Jneg = (x+1A* = 2(32% + 22)B" + (152> + 132 + 22)C* —22°D*
— (202 +274° + 527 - 32)E* + 22 F* + 2°G*
+ (152° + 312" +192° + 20% — 2)H* — (25 + 1124 + 52°)I*
+ 2(m6 + x5)J* 2 K" - (6x6 +172° + 172" + 5x3)L*
— 228 +2° — 2t — )M — (27 - 82° —22°)N* — 270"
+ (z+1)(2* + 2P = (2" +2° + 2°)Q"

+ (42® + 42" — 2% —2°)R* — (32" + 42%)8" + (2" + )", (7)
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Jones = (20 + 1A* = 2(52% + 22)B" + (222> + 1527 + 22)C"
- 2(z* +2*)D* — (272" + 312° + 227 - 32)E" +2(32° + 2 )F”
+ (2% + 2°)0" +(202° + 412 + 2123 + 2* — 2)H”

— (92° +132° + 162" + 52° ) +2(22° + 2°)J* - (2® + 27 )K*

— (92° +252° + 212" +52°) 0" + 2(427 + 22 + 22* + P )M

— (32® = 72" =102°% —22°)N* + 2(2” - 2% - 2")0*

2z +1)(2? + 2)* P* = (32® + 52" + 32% + 2°)Q*
+ (227 +62% + 32" — 220 — 2”)R" — (21 + 72” + 42%)S”

+ (22" + 2")7 .

Jome1 = A* = 22B* — (2* + 22)C" — 42° D" + (62° +122% + T2)E®
+ 4(3z* + 2®)F* +22°G* — (52" + 62° + 5% + 2z)H”

— (182° + 322 + 112" + 22°J* — 22" K* — (22" —2* -2

+2(82°% + 112° + 62* +20°)M* —2(32" — 725 - 22°)N*
+2(22% —2")0" + (2 + )P P* = (62" +102° + 72° + 2*)Q"

+2(22% + 27 —22° —2°)R* —2(2” + 32%)8" + 27T

Jomes = (5a? + 5z +1)A" —2(132° + 112* + 22)B*
+ (592 + 652° + 2127 +22)C* —2(24° + 42* + 2*)D*
- (74x5 +1162" +402° - 72? - 37)E”
+2(62° +62° + 2" )F* + (227 + 42° + 2°)G”
+ (552° +1332° + 962" +192° — 227 — 2)H*
— (182" + 3625 + 562° + 212t + 52" +2(527 + 525 + 2°)J*
— (22" +42% + 2")K* — (242" + 7625 + 842° + 362" + 52°) L'

(®)

)
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+ 2(8:1:8 + 72" + 2% +52° + 52t + I‘S)M*

— (62" —102® = 352" —162° — 22" )N* +2(22"° + 2° + 2")O"
+ (527 + 52 +1)(2% + 2)° P* — (62° + 142° + 1227 + 62° + 2°)Q"
+ (42" + 182" +162° — 227 - 52° — 2°)R*

— (22" +182™ +1927 +42°)8* + (52 + 52" + )T (10)

Our goal is to confirm the Jacobsthal identities (7) through (10) using graph-
theoretic techniques.

2. Graph-Theoretic Tools

To confirm these Jacobsthal results, consider the weighted Jacobsthal
digraph D in Figure 1 with vertices v; and v, [3, 4]. It follows from its weighted

X

that
0

adjacency matrix M = l

Vi V)

Figure 1: Weighted Digraph D

J xJ
Mn — n+1 n
J, oz,

where J, =J,(z) and n>1 .

The sum of the weights of closed walks of length n originating at v, is J,,,,,
and that of those originating at v, is x.J,_;. So the sum of the weights of all closed

walks of length n in the digraph is J,,, +2J,,_; = j,. These facts play a major role
in the graph-theoretic proofs.
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Let A, B, and C denote the sets of closed walks of varying lengths
originating at vertex v. Then the sum of the weights of the elements in the product set

Ax Bx (' is defined as the product the sums of the walks in each component [4].

With these tools at our convenience, we are now ready to explore the graph-
theoretic proofs.

3. Graph-Theoretic Confirmations

We begin our explorations with identity (7)

3.1 Confirmation of Identity (7): Proof: Let S denote the sum of the
weights of closed walks of length 6n + 2 originating at v, . Clearly, S = Jg,, 5.

We will now compute the sum S in a different way. To this end, let w be an

arbitrary closed walk of length 6n +2 originating at v, . It can land at v; or v, at
the (2n + 1)st and (4n + 2)nd steps:
w = VvV, —...— 0 V—...— 0 V—...— 0

1 1 ’

N N R
subwalk of length 2n+1 subwalk of length 2n+1 subwalk of length 2n

where v = v, or v,.

Table 1: Sums of the Weights of Closed Walks Originating at v;

w lands at v at fw lands at v, at the fw lands at v, at the |Sum of the weights
the (2n + 1)st step? | (4n + 2)nd step? (6n + 2)nd step? of walks w
yes yes yes J22n,+2‘]2n,+1
yes no yes o9 9n 1 2m
no yes yes JJJQSHH
no no yes 7] on+17: 22n

Table 1 shows the possible cases and the sums of weights of the
corresponding walks w, where J, = J (). Using equations (3) and (4), it follows

from the table that the sum S of the weights of such walks w is given by
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2 3 2 2
S =50 dona + ¥opiodon 1oy + T30 + 7T, 1005,
_ 2 2
= Joni1(Jansa + @5 01) + @l 1 Jo, (Jop o + 2J5,)

= Junsaons1 + 2 4n10Ja,
= Jynrs(Tnar +10) + g (@7,)dy
= Jinesliss =200 pody + (@ A DIE]+ T po(@7,) (00 = 27T, 5)
=[(z +1)J, .y — 42”3 o dn + (627 +27)J2 507
— (42" + 62° + 22)J, 0T
+ (m5 + 3zt + 1:3)(];L + (2:1:5 + :1:4)J2Jn,2
=2 LTy o[ Te = 207,00, + (2% + 1)
+ [Tnio =30° T T p 0t T a T
e @S =202 @) (e %)
= (z+1)A" —2(32” +22)B* + (152° +132* + 22)C* - 22°D*
— (202" + 272 + 527 — 32)E* + 22 F* + 2°G”
+ (152° + 312* +192° + 2% —2)H* — (2 + 112 +52°)I*
+ 2(2% + 2°) ="K — (625 +172° + 172 + 52°) '
— 28 +2° —at =M — (27 - 82° — 22" )N - 270"
+ (z+1)(z* + 2’ P" = (2" + 2% +2°)Q"
+ (42® + 427 — 2% 2P R* — (32" + %) + (2" + 2”)T",

where J, = J, ().
This value of 5, coupled with its earlier value, yields identity (7), as desired. [J

3.2 Confirmation of Identity (8): Proof: Let S’ denote the sum of the
weights of closed walks of length 6n + 3 originating at v; in the digraph.

Then S'=Jg,,4-
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To compute S’ in a different way, we first let w be an arbitrary closed walk

of length 6n + 3 originating at v;. It can land at v, or wv, at the (2n +1)stand
(4n + 2)nd steps:

w = V.

1—...—’1} V—...—V V—...— 0

1 )
— —_— —
subwalk of length 2n+1 subwalk of length 2n+1 subwalk of length 2n+1

where v = v; or v,.

Table 2: Sums of the Weights of Closed Walks Originating at v;

w lands at v, at |w lands at v atthe |w lands at v, at the | SU™ of the weights
the (2n + 1)st step? | (4n +2)nd step? (6n + 3)rd step? of walks w
yes yes yes J;'n 19
yes no yes xJ2n+2J22n+1
no yes yes $J27L+2J22n+1
no o yes x2J22n+1']2n

Table 2 summarizes the possible cases and the sums of the weights of the
respective walks w, where J, = J, (z) . It follows by the table, and equations (3) and
(4) that

8" = Tansn + 200y 0 501 + 0T 00 T,
= Jopso(Jansn + 85,00) + 21501 (Jogsn + 215,
= Jan3donre T 24400001
= Jins3(Josg —22J2) + $J4n+2[t]2+2 —22],,0], + (2% + 1)J3]
= (2¢ +1)A" = 2(52% +22)B* + (222° + 1527 + 22)C* - 2(z* + ) D"
— (272" + 312° + 227 — 32)E* +2(32° + 1) F* + (2% + 2°)G"
+ (202° + 41z +212° + 2® —2)H" — (925 +132° +162* + 52"

+2(22° +2°)J" = (2® + x7)K* — (925 +252° + 21z* + 52°)L *
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+ 2(42" + 225 + 22% + 2)M* — (32% — 72" —102° — 22°)N*
+ Q(xg —® -z )O +(2z + 1)(x2 + m)SP*

— (32% + 527 +32% + 2°)Q" + (22" + 62° + 327 — 2.5 —2°)R"
— (2" +72° +42®)8" + (22" + 2)T" .

By equating the two values of S’ , we get the desired result, as expected. [

3.3 Confirmation of Identity (9): Proof: Let S denote the sum of the
weights of all closed walks of length 6n + 1 in the digraph. Clearly, S™ = j;, . -

To compute S* in a different way, we let w be an arbitrary closed walk of
length 6n + 1.

Case 1: Suppose w originates at v, . It can land at v, or v, at the 2nth and

4nth steps:

w = Pl_"'_lf V—...—0 VoY ,

~ - ~~ 4 | ——
subwalk of length 2n  subwalk of length 2n  subwalk of length 2n+1

where v = v, or v,.

Table 4: Sums of the Weights of Closed Walks Originating at v;

w lands at v; at fw lands at v, atthe w lands at v, at the | SY™ of the weights
2nth step? 4nth step? (6n + 1)st step? of walks w
yes yes yes Iy +2J22n "
yes no yes xJQQn 7o
no yes yes J2n+2‘]2
no no yes Ty 1 on o1

It follows from Table 4 that the sum S| of the weights of all such walks w is
given by
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- 2 2 2 2

S = Joprodani + 8on 1oy + 80005, + 1oy 100 00
_ 2 2
= Jonso(Jonsr + @J3,) + 2oy 1 Toy (Jop ey + 25, 1)
= ‘]4n+1‘]2n+2 + ‘r‘]4n‘]2n+1

:J6n,+2 .

Case 2: Suppose w originates atv,. Then also w can land at v; or v, at the

2nth and 4nth steps:

W= Vy—.=0 V—..— V= =0, ,
—_— —_— —
subwalk of length 2n subwalk of length 2n  subwalk of length 2n+1

where v = v, or v,.

Table 5: Sums of the Weights of Closed Walks Originating at v,

w lands at v, at fw lands at v, atthe jw lands at v, at the | SU™ of the weights
2nth step? 4nth step? (6n + 1)st step? of walks w
yes yes yes xJQQn 7o
yes no yes 1‘2J23n
no yes yes x2J2n+1J2nJ2n—1
no no yes :c3J2nJ22n_1

It follows from Table 5 that the sum S; of the weights of all such walks w is
given by

* 2 273 2 3 2
52 - x‘]2n+1‘]2n +x JQn +x J27L+1J27LJ271,*1 +x J27LJ27L71
_ 2 2 2
- xJQn (J2n+1 + xJQn) +x J2n,J2nfl(J2n+1 + xJanl)
= 2(Jyps1don + 0T 45051
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Combining the two cases, and using identities (5) and (6), we get

* * *
= J6n+2 + ‘r‘]6n

=[A" —42B" + (72" + 22)C" - 24° D" — (72* + 42® - 32)E"
+ 62 F* +2°G" + (52" +102° + 227 — 2)H”
—(92° +122* +52°) " +22°T* — 2" K*
— (32° + 82" + 42*)L" +2(42° + 32° + 2* + 2 )M*
- (32" - 22" )N* +2(a® — 270" + (¢ + 2)* P
— (32" + 425 +22°)Q" + (22® + 227 — 25 — 2°)R*
— (2" +42%)S" + 2" T* | + 2 [2B* - 4(22 +1)C* — 22° D"

102 +162° + 72 + 1) H * (92" + 202> + 62°)[* — 26K

- (
+ (32 +62° + 52 + 2)L" +2(42” + 8z* +52° + 2 )M
(32% = 62° = 22" )N* +2270" — (32° + 62° + 52 + 2°)Q"
+ (22" —32° —2")R* — (z® + 227)S"]
= A" —2zB" — (2® +22)C"* — 42° D" + (62° +122° + Tz)E"*
+ 4(3z* + 2®)F* +22°G* — (52" + 62° + 52 + 22)H”
— (182° + 322" + 112" + 27T - 22" K™
(2x — 2 — )L +2(82° +112° + 62 + 22 M
— 232" —72% = 22°)N* +2(22° - 27)0 * + (2* + 2)* P
— (62" +102° + 72° + 2*)Q"
+ 222 + 27 —22° —2”)R* — 2(2” +32°)S" + 27T,
Equating this value of S* with its earlier value yields identity (9), as

0

Finally, we explore the confirmation of identity (10).

57
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3.4 Confirmation of Identity (10): Proof: Let S denote the sum of the
weights of all closed walks of length 6n + 5 in the digraph. Then S = j;,,, 5 .

We will now compute S in a different way. To this end, let w be an arbitrary
walk of length 6n + 5.

Case 1: Suppose w originates at v, . It can land at v, or v, at the (2n + 2)nd
and (4n + 4)th steps:

w = (AR V—..—V V= Yy ,
— — N
subwalk of length 2n+2 subwalk of length 2n+2 subwalk of length 2n+1

where v = v, or v,.

Table 6: Sums of the Weights of Closed Walks Originating at v;

w lands at v, at |w lands at v, at the|w lands at v, at the | SUM of the weights
the (2n +2)nd (4n + 4)th step? (6n + 5)th step? of walks w
step?
2
yes yes yes J2n,+3J27L+2
yes no yes 837204972041
3
no yes yes zJy
2 2
no no yes 10954

It follows from Table 6 that the sum S, of the weights of such walks w is
given by

2 3 2 2
51 = Jonesdonse + Ty 3oy 0000 F T 00 + T o005
2 2
= Jonio(Janis + 85 00) + 205y 0051 (opss + 2J5,01)

= JiprsSonse + T yniadonia

= J6n+6

= (2 +1) 644 + g3
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Case 2: Suppose w originates at v,. It also can land at v; or v, at the
(2n +2)nd and (4n + 4)th steps:

w = Vg —ee. — 0

5 V—...—0 V—...— 0

2 k)
N — N
subwalk of length 2n+2 subwalk of length 2n+2 subwalk of length 2n+1

where v = v; or v,.

Table 7: Sums of the Weights of Closed Walks Originating at v,

w lands at v, at |w lands at v, at the|w lands at v, at the sum of the weights
the (2n+2)nd | (4n +4)th step? | (6n + 5)th step? of walks w
step?
yes yes yes P S S
92 72
e no yes 1975,
92 9
ne yes yes g 075041
372
ne no yes 2" J5 1o

It follows from Table 7 that the sum S, of the weights of closed walks w

originating at v, is given by

_ 92 72 2 2 372
Sy = &y 3o 0001 + T 500000y + T oy 0don 1 + 275,000,

= 2(Jypiadons1 + 8 4ni3J0,)

= TG 4q -

Using equations (7) and (8), we then get

SZSl+S2

= (22 + )54 + 2513

2 2 2
8 onsodonit(Jonss + Topnir) + 2o, (Jo, 0 + 25, 11)

= (22 + D[(22 + 1)A" - 2(52® + 22)B" + (222° +152° +22)C"

- 2(x4 +2°)D* - (271‘4 +312° + 227 - 32)E" +2(32° + z? VE®
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+ (2% + 2°)G" +(202° + 412 + 212% + 2* — 2)H”

(9x6 +132° + 162" + 52 )I* + 2(2x6 + :[:5)J * — (mS + m7)K*
— (925 +252° + 212" + 52°)L" + 2(4z” + 22 + 22* + 23 M*
— (32% = 72" —102° = 22°)N* + 2(2” —2® —2")O *

(22 +1)(2* + 2)° P* — (32 + 527 + 32% + 2°)Q"
(21‘9 +62° + 327 —22° —2")R* — (20 + 72° + 42%)$*
(22" + 2 T*] + zp[ (z +1)A" —2(32% +2z)B"

+

+ (152° +132% +22)C" - 22°D* — (202* + 272 + 52% — 32)E”

+ 22 F* + 2°G* + (152° + 312 +192° + 227 — 2)H”

- (2 +11z* + 52 N+ 22 + 27" ~ 7' K"

(6$6 +172° +172* + 52 )L 2(1:6 +1° —x4—z3)M*

— (2" - ~22°)N* = 22°0" + (z + 1) (2* + 2)* P*

(x7+x +z )Q +(42° + 42" — 2% — 2" )R* — (32” + 42%)S”

+ (

= (527 + 5z + 1)A" —2(132° + 112% + 22) B

+ (592 +652° + 2127 +22)C"* —2(22° + 42 + 2*) D"
— (742" + 1162 + 402° — 727 - 32)E" +2(62° + 62° + z? VE®

+ (227 +42° + 2°)G”

+ (552° +1332° + 962" +192° —22° — 2)H”

— (182" +362° + 562° + 21z +52°)I" + 2(527 + 5ab + 2°)J*

— (22° +42° + 2")K* — (242" + 762° + 842° + 362" + 52°) L[

+ 2(8:1:8 + 7:1:7 + 2% +52° + 52 + I‘S)M*

~ (627 - ~ 352" —162° —22°)N* +2(22" + 27 + 2")O"
(53!:2 + 5z + 1) (z* + J:)3 P*— (62 +142® + 1227 +62° + :[:5)62*
+ (42" + 182" +162° —52°% — 2°)R*

— (22" +182" +192" + 44° )S + (52 + 5210 + )T
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This value of .S, coupled with the earlier value, yields the desired result, as

expected. O

In conclusion, we add that the graph-theoretic confirmations of the numeric
versions of the Jacobsthal identities (7) through (10) follow from the above
arguments.
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1. Introduction

The concept of fuzzy sets and fuzzy set operation was first introduced by
Zadeh [14] and subsequently several authors have discussed various aspects of the
theory and application of fuzzy sets such as fuzzy topological spaces, similarity
relations and fuzzy orderings, fuzzy measures of fuzzy events and fuzzy
mathematical programming. The basic arithmetic structure for fuzzy numbers was
later developed by Mizumoto and Tanaka [4], Diamond and Kloeden [3]. Matloka [5]
introduced bounded and convergent sequence of fuzzy numbers, studied some of
their properties and showed that every convergent sequence of fuzzy numbers is
bounded. For sequences of fuzzy numbers, Nanda [6] studied sequences of fuzzy
numbers and showed that the set of all convergent sequences of fuzy numbers forms
a complete matric space. In addition, sequences of fuzzy numbers have been
discussed by Nuray and Savas [7], Savas [10], Mursaleen and M. Basarir [2],
Y. Altin, M. Et and M. Basarir [1], B.C. Tripathy and B. Sarma [12], B. C. Tripathy,
A.J. Dutta [13], N. Subramanian [11].
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The main purpose of this paper is to introduce some double sequence spaces
of fuzzy numbers defined by a modulus function.

2. Definitions and Preliminaries

Let D denote the set of all closed bounded intervals A = [A, ;1] on the real
line R. For A, B € D we define,

A<Biff A<B and A< B,
d(A, B) = max(|A - B|,|A - B))

Then it can be easily seen that d defines a metric on D and (D,d) is a
complete metric space [3]. Also it is easy to see that < defined above is a partial order
relation in D.

A fuzzy number is a fuzzy subset of the real line R which is bounded, convex
and Normal. Let L(R) denote the set of all fuzzy numbers which are upper
semicontinuous and have compact support ie. if X e L(R) then for any

a €[0,1], X“ is compact set in R, where

o t: X(t)2a if ae(0,1]
t:X(t)>0 if a=0

For each0 < a <1, the a-level set X“ is a nonemtpy compact subset of R.
The linear structure of L(R) induces addition X +Y and scalar multiplication
AX,A € R, in terms of a-level sets by

(X +Y]" = [X]" +[Y] and [AX] = A[X]"

foreach 0 < a <1.

The absolute value | X | of X € L(R) is defined by

- [0 1 1



SOME DOUBLE SEQUENCE SPACES OF FUZZY NUMBERS 65
Define amap d : L(R) x L(R) = R by

d(X,Y) = sup d(X“,Y").

0<a<l
For X,Y € L(R), define X <Y iff X* <Y*“ forany «a € [0,1].

It is known that (L(R),d), is a complete metric space [6].

A metric d on L(R) is said to be translation invariant metric if
AX+2Y+Z)=dX,Y) forX,Y,Z e L(R):

A subset F of L(R) is said to be bounded above if there exists a fuzzy
number C, called an upper bound of F, such that X < for every X e . C'is

called the least upper bound or sup of Fif C'is an upper bound and is the smallest of

all upper bounds. A lower bound and the greatest lower bound or infimum are
defined similarly.

F is said to bounded if it is both bounded above and bounded below.

A sequence X =(X,) of fuzzy numbers is a function from X into the set N

of all positive integers into L(R"). Thus, a sequence of fuzzy numbers X is a
correspondence from the set of positive integers to a set of fuzzy numbers i.e. to each
positive integer k there correspondence a fuzzy number X (k) . It is more common to

write X, rather than X(k) and to denote the sequence of (X, ) rather than X. The
fuzzy number X (k)is called the Ath term of the sequence.

By the convergence of a double sequence we mean the convergence on the
Pringsheim sense that is, a double sequence z =(z,) has Pringsheim limit L
(denoted by P — limx = L) provided that given e > 0 there exists N € N such that
|z, — L|< € whenever k,l >N [9].

A fuzzy real valued double sequence is a double infinite array of fuzzy real
numbers.



66 MUSHIR A. KHAN

We denote a fuzzy real valued double sequence by (X,,,), where X, are
fuzzy real numbers for each m,n € N .

We now give the following definitions of double sequences of fuzzy
numbers which will be needed in the sequel ([10], [11]).

Definition 2.1: A double sequence X =(X,,) of fuzzy numbers X from
N xN (N is the set of all positive integers) into L(R). The fuzzy number X,

mn

denotes the value of the function at a point (m,n)e N x N and is called the
(m,n) th term of the sequence.

Definition 2.2: A double sequence X = (X, ) of fuzzy numbers is said to
be convergent in Pringsheim’s sense if there exists a fuzzy number X, such that
X

mn

lim X

m,n

converges to X, as both m and n tend to o, independently of one another;

= X,.

mn

It is almost trivial that X = (X,,,) converges in Pringsheim’s sense if and
only if for every e > 0 there exists an integer N = N(e) such that d (X, X)) S €

whenever min (j, k, m,n) >N.

The crucial difference between the convergent of single sequence of fuzzy
numbers and the convergence in Pringsheim’s sense of double sequences of fuzzy
numbers is that latter does not imply the boundedness of the terms of the double
sequence of fuzzy numbers.

Let F* denote the set of all double convergent sequence of fuzzy numbers.
In [ ], it was shown that F” is a complete metric space.

Definition 2.3: A double sequence X =(X,,,) of fuzzy numbers is said to

be Cauchy sequence if for every € > 0 there exists 4, € N such that

d (X:/IWI, Y X?"{LH

) < eif min (4, 5) > 4.

Definition 2.4: A double sequence X = (X)) of fuzzy numbers is bounded
if there exists a positive integer M such that d (Xns Xy) < M for all m and n,
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||$|| (0,2)= sup J(an,XO) < oo.

m,n

we will denote the set of all bounded double sequences by F2.

Definition 2.5:[10] Let X = (X,,) be a double sequence of fuzzy numbers.

The space of strongly double cesaro summable sequences [C, 1, 1] (F) defined as
follows:

m n

P—hmizzaxm,xo)zo.

momn o o
Definition 2.6: A function f:[0,00) — [0,0) is called a modulus if
(i) f(z)=0ifandonlyif 2 =0,
(i)  flz+y) < flx)+ f(y), forall z >0,y >0,
(iii)  f is increasing, and

(iv) fis continuous from the right at 0. Since | f(z) — f(y)| < f(Jz —y]), it

follows from here that f is continuous on [0, ).

By a paranorm we mean a function g: E — R (where E is a real or
complex linear space) which satisfies the following conditions;

(i) g(6) =0, where 8 =(0,0,--)

(i) g(z)=0,forall zeE,

(iii)  g(x) = g(~ ).

(iv) gz +y)<g(z)+g(y) forall z,y e E,

(v) If (4,) is a sequence of scalars with 4, - A(n — ) and (z,) is a

sequence of the elements of E with g¢(z, —z) > 0(n —> o), then

9(A,xz, — Ax) > 0(n —> ).
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Then the pair (E, g) is called a paranormed space and g is a paranorm for F.

Let A= (af") denote a four dimensional summability method that maps the
complex double sequences z into the double sequence Az where the &, Ith term to

Az is as follows:

mn g,
Al‘ M - zza’ Ly

m=1 n=1
such transformation is said to be non negative if a/;" is non negative.

The notion of regularity for two dimensional matrix transformations was
presented by Silverman and Toeplitz. Following Silverman and Toeplitz, Robison
and Hamilton presented the following four dimensional analog of regularity for
double sequences in which they both added an additional assumption of
boundedness. This assumption was made because a double sequence which is
P-convergent is not necessarily bounded.

3. Some new sequence spaces

Recently, Mursaleen and M. Basarir [2] have defined the following spaces of
sequences of fuzzy numbers as follows:

Let A =(a,,)(n,k =1,2,---) be a non negative regular matrix. We define

FA p]={X =(X,) Zank (X, 0" = 0(n — o)},

F[A p] = Zank (X4, X)) = 0(n — o)},
A p]= {X = (X, sgp[za,m Xk,o>1p’fj<oo},

and call them respectively the spaces of strongly A-convergent to zero, strongly
Aconvergent to X, and strognly A-bounded sequences of fuzzy numbers X = (X).

In the present paper, we extend above spaces for double sequences with
respect to a modulus f.
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Let A=(ay")(m,n=123,---) be a non negative regular matrix and

(p,.,) 1s the double sequence of strictly positive real numbrs p,, for all

p =

m,n € N. We define

A fp)={X = (X,) : P=1im > " [d (f( X0, 0))]™ — 0(m,n — o0)},
k=1 =1

FZ[Aa f7 p] = {X = (an . - 1,1”1};12201””1 ernX ))]pm" - O(man - OO)}a

k=1 I=1

m n
)7"71
(Zzanm mn, ))]1 j< OO}
=1

k=1

F[A, f,p] = {X = (X, ) : sup

m,n

and call them respectively the spaces of strongly A-double convergent to zero,
strongly A-double convergent to X, and strongly A-double bounded sequences of

fuzzy numbers X = (X,,,) with respect to the modulus f.

If A=[C,1,1)(F) then we have the following new sequence spaces:

m n

l%?[A?f7p]=l;(')2[f7 ] {X ( rrm (P - 1}:}}%22 nm? P,,m —>O(m,n—>00)},

k=1 [=1

m n

FAfpl=Ff,p]={X=(X,,): —hm—ZZ X, X )P = 0(myn — o)},

k=1 I=1

n

Fog [A7 f7 p] N [ ] {X mn S,}IJ? m_ Z Z mn? )m” < OO} .

k=1 I=1

If we take p,,, =1 for all m, n, these spaces are reduced to the following
new sequence spaces:

m n

EJ2 [Aa f7 p] = EJ2 [Aa f] {X rrm S hmzzamn rrm? )] - 0(m7 n— OO)}a

a1 =1

FIALp) = FIAf) = (X =(X,,): P—lim> 3 a2 [A(f(X,, X,))] = O(m, . — )},

m,n k=1 I=1
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FYAf.p) = F2A, f]= {X = (X,):s0p Y Y a2 @(F(X,,.0))] < ).

NL/Lk]I]

If we take f(z) =2 and p,, =1 for all m, n we have

m n

F A f,p]=F[A={X=(X,,): —11m22a2’[" X 0))] = 0(myn — o)},

m,n k=1 I=1

FALp)= FIA)= (X =(X,): P~ 13> i (X0, )] Omn 0.
F2IA f,p) = F2JA) = (X = (X,,.):5p Y. ol [@(7(X,,,,0))] < o}

m”Alzl

Now we have

Proposition 3.1: If d is a translation invariant metric of L(R) then
() d(X+Y,0)<d(X,0)+d(Y,0),

(i) d(1X,0)<|A|d(X,0),|A|>1.

where X =(X,,,) and Y =(Y,,,) are double sequences of fuzzy numbers.

mn

Proof: This can be proved by using the same technique in [ ] and hence we

omit the proof.

If d is a translation invariant, we have the following straight forward results.

Proposition 3.2: Let p =(p,,) be a bounded sequence of strictly positive
real numbers. Then F[A, f,p], F*[A, f,p] and F:[A, f,p] are linear spaces of all

double sequences of fuzzy numbers over the complex field.

Proposition 3.3: F'[A, f,p], F’[A f,p] and F-[A, f,p] are absolutely
convex subsets of the space of all double sequences of fuzzy numbers, where

0 S p”)ﬂ S 1'
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4. Main Results

Theorem 4.1: Let p =(p,,,) be a bounded sequence of strictly positive real
numbers. Then Fy[A, f,p] and F?[A, f, p] are complete paranormed spaces with the
paranorm ¢ defined by

1

9(X) = sup [i > i [A(F(X,0,.0))]" j

mo\ k=1 1=1

where M = max(1,sup p,,,) and d is a translation invariant.

mn

Proof: We consider the case F;[A4,f,p]. Other can be treated similarly.
Clearly ¢(0) =0 and g(X)=g(—-X). Also we have g(X +Y) < g(X)+ ¢(Y) for

X =(X,,),Y =(Y,,),in F[A, f,p]. Now for any scalar 4, we have
[P < max (1,]4]"),
where
H = Suppmn < w’
)

9(2X) < (up)([A")".g(X) on F2[A, f,p]

mn

Hence 4 —> 0, X — @ implies 1X — @ and also X — 6, 1 fixed implies
AX = 6.Nowlet 4 > 0, X fixed. For |[1| <1 we have

0

> @i [d(f(AX,,,,0))" < € for m,n > N = N(e).

k=1 I=1

Also for 1<m,n <N, Since ZZa;}"”[d(f(X 0))]'™ < oo, there exist

mn 9
k=1 I=1

m, n such that Z Za;’;”[g (F(AX,.., 0N < €

k=m l=n
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Taking A small enough, since f is continuous we have

Z Z ap"[d(f(AX 0, 0))]" < 2¢ forall m, n
1

k=1 I=1

Hence, g(AX)— 0 as A — 0. Therefore g is a paranorm on F’[A, f, p].
Completeness can be proved by using the technique in [13] for ,/,.

Similarly we can prove the following:

Theorem 4.2: If 0<infp,, <supp,, <oo then F2[A f,p] is a

mn

paranormed space with the above paranorm.

Theorem 4.3: Let 0 < p,,, <q,,, and (q,., / P,..) be bounded. Then
F[A, f,q) < F*[A, f,p).

Proof: Let X =(X,,) e F*[A f,q].Put t,, =[d(f(X,.,X,))]" and
Ay = —. Ofcourse 0 < 4, <1 .Take 0< A< 4,, . Define

‘mn —

_ tnm? mn 2 1
umn -

07 mn <1
and
u _ 07 mn 21
mn
tmn) < 1
Then we have ¢, =u,, +v,, and t =u/ + v/ and it follows that
A
U < U < mn and ,Umn < vmn Therefore
0 0 o0 0 o0 o0
mn P mn g A,, _ mn (A
ZZG’ er”XO))] - Zzakl tmn - Zzald ( mn + vmn )
k=1 I=1 k=1 I=1 k=l =1
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o0
Since X € F?[A, f,q], ZZ@Z.}”‘tmn is convergent and since v, <1, A is
k=1 1=1
o0 o0
mn A

regular, Z ay v, 1s also convergent.
k=1 1=1

Hence, X € F?[A, f,p] ie F*[A f,q] < F’[A, f,p].
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1. Introduction

Let o be a mapping of the set of positive integers into itself. A continuous
linear functional ¢ and /_ the space of bounded sequences, is said to be an invariant

mean or a g-mean, if and only if

(i) ¢(z) > 0 when the sequence z = (z,,) has (z, > 0) for all n,

(i) ¢(e) =1 where, e = (1,1,-+),

(iif) ¢,o(n)) = #x) forall z € £,

In case, o is the translating mapping n — n +1, a o-mean is often called a

Banach limit [1], and v, the set of bounded sequences all of whose invariant means
are equal, is the set f of almost convergent sequences [5].
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Let f, denote the space of almost convergent null sequences. If z =(z,),

we write T = (Tx,,) = (24(,)) - It is known that [13],

Vo={xel,: lim t,,(z) = Le,uniformlyin n,and L = o — lim z}
m—>o0

where
| U
j=0
Let V,, denote the set of all bounded sequences which are o-convergent to
zero.

Recently, in [10] and [12] the spaces V., V., f and f, were extended to
V.(p), Voo (p), f(p) and f,(p) in the following manner:

If p=(p,) is a sequence of real numbers such that p, >0 and
sup p,, <, we define
m

Voo (p) = {z: lim ‘tmn(x)‘pm = 0, uniformlyin n},

m—>o0

Voo (p) = {o: lim | t,,, (e~ Le)|"" = 0, uniformlyin n, & ~lim z = L},

m—>00
I
folp) = {x : Wllgnoo — E)xﬂn = 0, uniformlyin n},
1 .
= : 1 y = 0’ f 1 1 ,
fo(p) {$ mlgloo — ;)%m uniformly in n}
1 "
f(p)= {x : lim z (z;,, — L) = 0, forsome L, uniformly in n},
m—o| m+1 20

In particular, if p, =p>0 for all m, we have V,,(p)=V,, and
Vo(p) =V, If o(n)=n+1,weget V,(p) = f(p) and Vi, (p) = fy(p).
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2. Preliminaries

By N and (' we shall denote the set of positive integers and the fields of
complex numbers, respectively. Let A =(a, ) be an infinite matrix of complex
numbers a,,(n,k =12---) and X, Y be any two subsets of the space of complex
sequences. By (X,Y)we mean the class of matrices A such that for each
z e X, Aw,(ﬂf)z a,,z, converges for each n,and Az =(A4,(z))eY .

k

Schaefer [13] has defined the concept of o-conservative, o-regular and
o-coercive matrices and characterized the classes of these matrices ie(c, V),

(c,V_)reg and (/;V ). Recently, the several authors such as Metin Basarir and
Ekrem Savas [6], Mursaleen [8, 9, 10] Sirajudeen [14], Mushir A. Khan [11] and
Husamettin Coskun [2] have characterized some matrix classes concerning V.. The
main purpose of this paper is to determine necessary and sufficient conditions to
characterize the classes (cs,V,(p)) and (cs,V,,(p)) which will fill up a gap in the

existing literature. Where cs is the space of convergent series.

If X is a subset of the space of complex sequences, then we write X for the

generalized Kothe-Toeplitz dual of X, i.e.

X =Aa: Zakxk converges for everyz € X}:

k

X" denotes the dual space of the continuous functional of X.

It is well known cs* = bv and cs* = bv (linearly isomorphic) (see [4], p. 55
and [3]) where bv is the space of bounded variation sequences.

Throughout this paper the sums without limits rum from £ =1 tok = 0. We
write for all integers m,n > 1

tmn = tm (Al‘) = Za(n’ k’ m)xk 5

where
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Now we quote some known results which will be useful in the proof of our
results.

Lemma A[6]: Let X be a complete paranormed space with Schander basis

(b,),and (A,) asequence of elements of X" with A4, (z) = z a,, forall ze X
k

and n € N.

Furthermore, let ¢ = (¢,) be a bounded sequence. Then
A € (X7 I/DO'(Q)) < (1) (tmn(bk')) € ‘/00' (q) for all k’

t

mn

: . qm
) }}g}o lim s%p( M) =0.

Lemma B[6]: Let X be a complete paranormed space with Schander basis

(b.), and (A ) a sequence of elements of X* with A, (z) = Za",{xk forall ze X
k

and n € N . Furthermore, let ¢ = (¢,) be a bounded sequence. Then

Ae(X,V, (q))< (1) there exists anL € X* with (¢,,(b,)— L(b,)) € Vi, (q)
for all %,

t

M)qm =0.

mn

() jl\}rﬁn1 lim sgp(

Lemma C[3]: ¢s* = bv (linearly isomorphic).
3. Main Results

Theorem 1: Let p € /. Then A € (cs,V,(p)) if and only if

m,n

(1) sup, Z ‘Aa(nﬂ k’ m)‘ <®©; Where Aa(”? k? m) = an,kr,m - a717k+1,m s
k

pm

(ii) there exist «,a,---e€C with ‘a(n, k,m)—a, —0, as m—1,

uniformly in n, for each £,
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P =0

(i) lim limsup [M*I(Zk: |A(a(n, k,m) - )| + lim la(n,k,m) - )

Proof: Let (i), (i1) and (iii) hold. Then, from (i) and (ii), for n, m we have

;‘Aak‘ < ;‘A(a(n, k,m) — ak‘)‘ + Zk:‘Aa(n, k, m)‘ < o0,

Hence, a(n, k,m) € bv . Therefore, by Lemma C, there is an L € ¢s* with

L(z) = Zaka:k for allx € c¢s. By (i), since a(n,k,m) e bv and t¢,, € cs* for all
k

m, n so that ¢, — L € cs* with

t, — L” = Zk: ‘A(a(n, k,m)— ak)‘ + liin ‘a(n, k,m) — ak‘.

for all m, n. By (ii), (¢,,(e" — L(e")) € V;,(p) for all k, and by (iii)

hﬂr[n lim sup (‘ Lo — LH M) = 0.

Thus, since (e*)) is a fundamental set in cs, it follows by Lemma B that
A (cs,V,(p))-

Conversely, suppose that A € (cs,V,(p)). Then ¢,,(Azx) = Za(n, k,m)z, is

k
defined for all = € ¢s, m and n. Clearly (i) must be satisfied or else those series
Za(n, k,m)z, diverges for at least one m € N ,i.e. A ¢ 2(cs,V,(p)).

k

Then t,,, € cs* for all m, n. By Lemma B there is an L € ¢s* such that (1)

and (2) hold. Since L may be written as L(z) = Zakxk on cs, by Lemma C, and
k
(e(k)) is a fundamental set in cs, (1) and (2) give us (ii) and (iii) respectively.

Hence, the proof is completed.



80 MUSHIR A. KHAN

Theorem 2: Let p € /. Then A € (cs,V,,(p)) if and only if

6) ‘a(n, k, m)‘pm — 0 as m — oo, uniformly in n, for each £,
11 3 3 -1 3 pm.
(if) hﬁl}l lim s171np[M (Zk:‘Aa(n, k, m)‘ + h{n ‘a(n, k, m)‘)]f =0.
Proof: LetA e (cs,V,,(p)). Then, sinceV,,(p)<V,(p), we have

Ae(es,V,(p)). Hence, (i) and (ii) follow from the conditions (ii) and (iii) of
Theorem 1 with ¢, =0 (k =1,2,---).

Now, let (i) and (ii) hold. Then from (ii), we have a(n,k,m) e bv for all
= Z‘Aa(n, k, m)‘ + liin‘a(n, k, m)‘ for
k

m, n and by Lemma C, t,, € cs* with

tWLTL

all m, n. By our choice of fundamental set in cs, (i) and (ii) are respectively

equivalent to (1) and (2) of Lemma A. Hence, by Lemma A, A € (cs,V,,(p)) and
this completes the proof.

4. Corollaries

Corollary 1[14]: A € (cs,V,) if and only if

(1) sup(Z‘Aa(n, k, m)‘) < o0 ; for all n,
k

(i)  ag) =(an), €V, foreach & ie. lima(n,k,m)= w, uniformly in n.
In this case, the o-limit of Az is Zukxk for each x € cs.

Proof: Take p,, =1 for all m in Theorem 1.
Corollary 2: A € (cs,V,,) if and only if

(i) a(n,k,m) —> 0 as m — oo, uniformly in n, for each £,

(i1) hﬂr[n 117£n sup[M’l(;‘Aa(n, k, m)‘ + liin‘a(n, k, m)‘)] =0.
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Proof: Take p,, =1 for all m in Theorem 2.
Corollary 3: Let p € /. Then A € (cs, f(p)) if and only if
(i) sup Z\Ab(n, k, m)‘ < oo; where Ab(n,k,m) = b, = by o
[

(ii)  there exist ay,a,, - € C with ‘b(n, k, m)—ak‘pm —0,as m—> o

uniformly in n, for each £,
(iif)  lim lim sup[ /" X|Aw(n, k,m) - )| + 1i1£n‘b(n, k,m) - ahf)l" = 0.
—>0 m k

where

1 ia(n+j,k).

m+155

b(n, k,m) =

Proof: Taking the mapping o(n)=n+1 instead of mapping o as the

translation mapping, the space V,(p) of Theorem 1 reduces to f(p). Hence it is
proved.

Corollary 4: Let p e (. Then A € (cs, fy(p)) if and only if

pn

6) ‘b(n, k,m) " 50 asm > o, uniformly in n, for each £,

(if) lim lim s?np[M’l(Zk: |Ab(n, k)| + tim|b(n, k, m) )} = 0.

Proof: Taking the mapping o(n) = n +1 in Theorem 2.
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