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1. Introduction 
 
 A new theory of gravitation called the Bimetric theory of gravitation, was 
proposed by Rosen [12, 13, 9] to modify the Einstein’s general theory of relativity by 
assuming two metric tensors, viz., a Riemannian metric tensor gij and a background 
metric tensor ijγ . The metric tensor gij determines the Riemannian geometry of the 
curved space time which plays the same role as given in the Einstein’s general 
relativity and it interacts with matter. The background metric tensor ijγ refers to the 
geometry of the empty (free from matter and radiation) universe and describes the 
inertial forces. This metric tensor ijγ has no direct physical significance but appears 
in the field equations. Therefore it interacts with gij but not directly with matter. One 
can regard ijγ as describing the geometry that would exist if there were no matter. 
Moreover, the bimetric theory also satisfied the covariance and equivalence 
principles: the formation of general relativity. The theory agrees with the present 
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observational facts pertaining to general relativity. Thus at every point of space-time 
there are two line elements:  
               

    2 i j
ijds g dx dx=                                             (1.1) 

and                    2 i j
ijd dx dxσ γ=                                             (1.2)  

 
     Where ds is the interval between two neighboring events as measured by 
means of a clock and a measuring rod. The interval dσ  is an abstract or geometrical 
quantity not directly measurable.  One can regard it as describing the geometry that 
would exist if no matter were present. 
 
 Yilmaz (12-14), Israelit (6-7) have studied various aspects of bimetric theory 
of relativity. In continuation of this study Deo, S. D. (3), Deo and Ronghe (4-5), Deo 
and Qureshi (1-2 ), Deo and Suple (11) have studied several aspects of Bianchy Type 
model, Plane Symmetric model and Plane gravitational waves respectively in the 
context of bimetric theory of relativity with various source of matters like cosmic 
string, wet dark fluid, massive meson etc. 
 
 In this paper, a study of plane symmetric space-time with wet dark energy 
shall be undertaken and will observe the result in the context of Bimetric theory of 
relativity. 
 
2. Field Equations in Bimetric Relativity 
 
 Rosen N. has proposed the field equations of Bimetric Relativity from 
variation principle as 

 

               
1 8
2

πκ= − = −j j j j
i i i iK N Ng T                                     (2.1)   

                                                           

where    
1
2

αβ
α βγ  =  | |j hj

i hiN g g                                                (2.2)                                                                                        

                                                       

             N Nα
α= ,κ

γ
=

g
                                                       (2.3) 

                                                                      

and                         , γ γ= =ij ijg g                                                 (2.4)  
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 Where a vertical bar (|) denotes a covariant differentiation with respect to ijγ  

and j
iT  the energy momentum tensor for wet dark energy is given by  

 
        j

iT = 
j

i wdfT = ( )ρ + −j j
wdf wdf i wdf ip u u p g                                (2.5) 

 
together  with 1=j j

i ig u u , 4
4 1=u u , where  iu  is the four-velocity vector of the 

fluid having  p and ρ as proper pressure and energy density respectively. 
 
      In co-moving coordinate system we have  
 

1 2 3
1 2 3 wdfT T T p= = = − ,   

4
4 wdfT ρ=   and 

j
i wdfT = 0 for i≠ j 

 
3. Plane Symmetric Space-Time with Wet Dark Energy 
 
      We consider here the plane symmetric line element of the form 
 
       2 2 2 2 2 2 2( )ds dt A dx dy B dz= − + −                     (3.1) 

      
      Where A and B are functions of t only. 
 
     Corresponding to equation (3.1), we consider the line element for 
background metric ijγ  as 
 

                
2 2 2 2 2( )σ = − + +d dt dx dy dz                                         (3.2) 

 
     Since ijγ  is the Lorentz metric i.e. (-1, -1, -1, 1), therefore γ-covariant 
derivative becomes the ordinary partial derivative. 
 
       Using equations (2.1) to (2.5) with (3.1) and (3.2), we get, 
 

                        4

4

16πκ  = − 
 

wdf
B p
B

 
                                          

(3.3) 

 

                4 4

4 4

2 16πκ   − =   
   

wdf
B A p
B A

                                                (3.4) 
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               4 4

4 4

2 16πκρ   + =   
   

wdf
B A
B A

                      (3.5) 

 
     And hereafter the suffix 4 after field variables stands for ordinary 
differentiation with respect to coordinate t. 
 
   Using the field equations (3.3) – (3.5), we obtain  
 
                    3 0wdf wdfp ρ+ =                                                      (3.6) 

 
   In view of the reality conditions i.e., 0, 0ρ> >p must hold. 
 
  The above conditions (3.6) is satisfied only when  
 

                   0 ρ= =wdf wdfp .                                                         (3.7) 
 

  This means that the physical parameters, viz. proper pressure ( wdfp ), energy 

density ( wdfρ ) are identically zero.  
 
  Thus, plane symmetric space-time with wet dark energy in bimetric relativity 
does not survive and hence only vacuum model is obtained. 
 
   Using (3.7), the vacuum field equations are  
 

                 4 4

4 4

0   = =   
   

A B
A B

                                             (3.8)                            

              
  On solving (3.8), we get 
 

          ( )1 2exp= +A k t k                                                         (3.9)  
   

and   ( )3 4exp= +B k t k                                                       (3.10) 
 

where, 1 2 3 4and , ,k k k k  are the constants of integration. 
 
        Thus, in view of equations (3.9) and (3.10) the metric (3.1) takes the form 
 

  2 2 2 2 2
1 2 3 4exp(k t k )( ) exp(k t k )= − + + − +ds dt dx dy dz          (3.11)             
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 If   1 3 2 4,α β= = = =k k k k then (3.11) reduces to 
                 
 2 2 2 2 2exp( t )( )ds dt dx dy dzα β= − + + +                 (3.12) 

 
4. Conclusion 
 
 In the study of plane symmetric space-time, there is nil contribution of wet 
dark energy in Bimetric theory of relativity. It is observed that the matter field like 
wet dark energy cannot be a source of gravitational field in the Rosen’s bimetric 
theory but only vacuum model exists. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x f x , the nth Fibonacci polynomial; and when 0 2( )z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. 

 

 Clearly, 1( )n nf F , the nth Fibonacci number; and 1( )n nl L , the nth 

Lucas number [1, 4, 5]. 
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 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

( )( 2)n np fx x  and ( )( 2)n nq lx x , respectively. In particular, the Pell numbers 

nP  and Pell-Lucas numbers nQ  are given by 1 2( ) ( )n n nP p f   and

2 1 2( ) ( )n n nQ q l  , respectively [5]. 

 

 Suppose 1( )a x   and ( )b x x . When 0 0( )z x   and 1 1( )z x  , 

)( ) (n nz Jx x , the nth Jacobsthal polynomial; and when 0 2( )z x   and 1 1( )z x  , 

)( ) (n nz jx x , the nth Jacobsthal Lucas polynomial [2, 4]. Correspondingly, 

2( )n nJ J  and  2( )n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively. Clearly, 1( )n nJ F  and 1( )n nj L . 

 

 Let ( )a x x  and 1( )b x   . When 0 0( )z x   and 1 1( )z x  , 

)( ) (n nz Vx x , the nth Vieta polynomial; and when 0 2( )z x   and 1( )z x x , 

( ) ( )n nz vx x , the nth Vieta-Lucas polynomial [3, 4]. 

 

 Finally, let 2( )a x x  and 1( )b x   . When 0 1( )z x   and 1( )z x x  v, 

)( ) (n nz Tx x , the nth Chebyshev polynomial of the first kind; and when 

0 1( )z x   and 1 2( )z x x , ( ) ( )n nz Ux x , the nth Chebyshev polynomial of the 

second kind [3, 4]. 

 
 Table 1 shows the close relationships among the Jacobsthal, Vieta, and 

Chebyshev subfamilies, where 1i    [3, 4]. 
 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We also 

let  ( )n nc J x  or ( )nj x ; and  

 

 6
2  nA J

    
 5
2n nB J J    4 2

2n nC J J     

4
2 2n n nD J J J
    3 3

2n nE J J
    3 2

2 2n n nF J J J
    

 3 2
2 2n n nG J J J
    2 4

2n nH J J
    2 3

2 2n n nI J J J
   

 2 2 2
2 2n n nJ J J J

   2 3
2 2n n nK J J J
   5

2n nL J J
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 4
2 2n n nM J J J
    3 2

2 2n n nN J f J
    2 3

2 2n n nO J J J
    

 6
nP J     5

2n nQ J J
    4 2

2n nR J J
   


 3 3
2n nS J J   2 4

2n nT J J
 ; 

 
Table 1: Links Among the Subfamilies 

 

( 1)/2 1 /( )( ) n
n nJ fx x x   /2 1/( ) ( )n

n nj x x l x   

1( ) ( )n
n nV x i f ix    ( ) ( )n

n nv x i l ix    

1(2 ) ( )n nV x U x   2(2 ) ( )n nv x T x . 

 

and a  through t  denote their numeric counterparts, respectively; and omit a lot of 
basic algebra. 
 

 A Jacobsthal polynomial product of order m is a product of Jacobsthal 

polynomials n kg   of the form  
sj
n k

k Z

g 

 , where 

1

  j
sj

s m


 [6, 9]. 

 

 1.1 Sums of Gibonacci Polynomial Products of Order 4: In [7], we studied 
the following sums of Jacobsthal polynomial products of order 4: 

 
3 2 2 2 2 2 3

4 2 2 2 2 22 2( )n n n n n n n n n nJ J J xJ J x J J J x x J J           

          4 2 4 3 3 5 2 2 6 3
2 2 2 2 2 2 2( )n n n n n n n n nx J J J x x J J x J J x J J         ;       (1) 

 

4 3 2 2 2
4 1 2 2 24 1 6 13 4( ) ( )n n n n n nxJ J x J J x x J J           

          3 2 3 3 2 2
2 2 2 4 10 7 1 2 2( ) ( )n n n n nx x x J J x x J J J          

          4 3 2 4 4 3 2 3 5 2 2
2 2 2 3 2 3( ) ( )n n n n nx x x x J x x x J J x J J         ;   (2) 

 

4 3 2 2 2 3 2 3
4 1 2 2 2 24 2 3 2 4 6( ) ( )n n n n n n n nJ J xJ J x x J J x x x J J             

          3 2 2 2 4 4 3 3
2 2 2 2 2( ) ( )n n n n n nx J J J x x J x x J J       ,                       (3) 

 

where ( )n nc c x . They play a pivotal role in our explorations. 
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 With this background, we can explore the Jacobasthal companions of the 
gibonacci sums studied in [8]. Although we can extract them using the gibonacci-

Jacobsthal relationships in Table 1, we will employ the Jacobsthal addition 

formula 1 1a b a b a bc J c xJ c     to realize our goals. This technique will shorten 

our work considerably. 
 
2. Sums of Jacobsthal Polynomial Products of Order 6 
 

 Our objective is to express 6n kJ   as sums of Jacobsthal polynomial products 

of order 6, where 0 5k  . Our discourse hinges on the identities
2 2

2 1 1n n nJ J xJ   , 2n n nJ J j , 1 1n n nJ xJ j   , 2
2 2n n nJ x J j   , and the 

addition formula 1 1a b a b a bJ J J xJ J    . 

 

 We begin our explorations with 6nJ . 

 

 2.1 A Jacobsthal Sum for 6nJ : By the Jacobsthal addition formula, and 

identities (1) and (2), we have 
 

 6 2 1 4 2 4 1n n n n nJ J J xJ J     

        2 2
4 1 4 1( )n n n n n nJ J xJ xJ J j      

        2 2 2
4 2 4 1 2 2( ) ( ) ( )[ ]n n n n n n n nJ J xJ xJ xJ J J x J          

        V W  , 

where 
 

 2 2
4 2( )[ ]n n n nV J J xJ xJ     

     2 2 2
4 2 22 ( )[ ]n n n n nJ J xJ J x x J       

                 3 2 2 2 2
2 2 2 22[ n n n n n n nJ J xJ J x J J J       

    2 3 4 2
2 2 22( ) n n n n nx x J J x J J J      

   4 3 3 5 2 2 6 3
2 2 2 2 2( ) ]n n n n n nx x J J x J J x J J         

          2 2 2
2 22 ( )[ ]n n n nJ xJ J x x J     

     2 2 34 7 3 2( )B xC x D x x E x F            
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   4 3 2 4 36 3( ) ( )x G x x H x x I        

   6 4 3 2 5 4 2 2 4( ) ( )x K x x x L x x M          

   6 5 7 6 5 43 2 2 2( ) ( )x x N x O x x x Q         

   7 6 8 72( ) ( )x x R x x S     ; 

 

 2
4 1 2 2)( )(n n n n nW xJ J J x J J      

      4 3 2 2 2
2 2 2 4 1 6 13 4( ) ( )[ n n n n nJ x J J x x J J          

          3 2 3 3 2 2
2 2 24 10 7 1 2 2( ) ( )n n n n nx x x J J x x J J J   

   4 3 2 4 4 3 2 3
22 3 2 3( ) ( )n n nx x x x J x x x J J         

   5 2 2 2
2 2 2 ( )]n n n n n nx J J J J x J J     

  

       2 2 3 24 1 6 13 4 4( ) ( ) ( )B x C x D x x E x x F               

   3 2 4 3 24 10 7 1 6 17 6( ) ( )x x x H x x x I          

   4 3 2 5 4 3 2 2 3 2 2 6 5( ) ( )x x x x L x x x x M           

   5 4 6 5 4 3 5 2 2 3( ) ( )x x N x x x x Q        

   6 5 4 72 3( )x x x R x S     . 

 Consequently, 
 

 2 2 3 2
6 2 4 2 1 2 13 16 4 2 3 2( ) ( ) ( )nJ B x C x D x x E x x F               

   4 3 2 10 16 7 1( )x G x x x H          

   4 3 2 6 4 3 29 20 6 3 6 5( ) ( )x x x I x K x x x x L            

          5 4 3 2 6 5 2 4 2 4 8 5 3 6( ) ( )x x x x M x x x N   

   7 6 5 4 3 2 3 6 5( )x O x x x x Q        

  7 5 4 8 7 2 3 2( ) ( )x x x R x x S      .                              (4) 

 Next we investigate 6 1nJ  . 
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 2.2 A Jacobsthal Sum for 6 1nJ  : By the addition formula, and identities (1) 

and (3), we have 
 

 6 1 2 1 4 1 2 4n n n n nJ J J xJ J      

           2 2 2
4 1 1 4 2 2( ) ( )n n n n n n nJ J xJ xJ J J x J         

           2 2 2
4 1 2 4 2 2( ) ( )[ ]n n n n n n n nJ J xJ xJ xJ J J x J          

           X Y  , 

where 

 2 2 2
4 1 2 22 ( )[ ]n n n n nX J J xJ J x x J        

      4 3 2 2 2 3 2 3
2 2 2 24 2 3 2 4 6( ) ( )[ n n n n n n nJ xJ J x x J J x x x J J            

   3 2 2 2 4 4 3 3
2 2 2 2 2( ) ( ) ]n n n n n nx J J J x x J x x J J         

   2 2 2
2 22 ( )[ ]n n n nJ xJ J x x J      

 

      2 3 2 36 5 3 20 18 2( ) ( )A xB x x C x x x E x F              

   4 3 2 4 315 24 7 6( ) ( )x x x H x x I        

   5 4 3 2 5 46 14 9 2 3 2( ) ( )x x x x L x x M        

   2 3 6 5 42 3( ) ( )x x P x x x Q      ; 

 

 3 2 2 2 2 2 3
2 2 2 2 22 2( )[ n n n n n n n n nY J J xJ J x J J J x x J J           

   4 2 4 3 3 5 2 2
2 2 2 22 2( )n n n n n n nx J J J x x J J x J J         

   6 3 2
2 2 2  ( )]n n n n nx J J xJ J x J      

 

     2 3 3 2 4 52 2 2 2 2( )xC x E x F x x H x I x J              

   5 4 6 74 2 2( )x x M x N x O        

   7 6 8 92 2( )x x R x S x T      . 
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Thus, 
 

 2 3 2 3
6 1 6 3 5 2 20 20 4( ) ( )nJ A xB x x C x x x E x F    
           

   4 3 2 4 3 515 26 9 8 2( ) ( )x x x H x x I x J          

   5 4 3 2 5 4 6 6 14 9 2 5 4 2( ) ( )x x x x L x x M x N           

   7 2 3 6 5 4 2 2 3( ) ( )x O x x P x x x Q          

   7 6 8 92 2( )x x R x S x T      .                                       (5) 

 

 Next we express 6 2nJ   as a Jacobsthal sum using the Jacobsthal recurrence. 

 

 2.3 A Jacobsthal Sum for 6 2nJ  : Using identities (4) and (5), and the 

Jacobsthal recurrence, we get 
 

 6 2 6 1 6n n nJ J xJ     

           2 3 26 3 5 2 20 20( ) ( )[A xB x x C x x x E            

    3 4 3 2 4 3 5 4 15 26 9 8 2( ) ( )x F x x x H x x I x J            

   5 4 3 2 5 4 6 6 14 9 2 5 4 2( ) ( )x x x x L x x M x N           

   7 2 6 5 4 2 3 2 3( ) ( )x O x x P x x x Q          

             7 6 8 92 2 2 4 2 1( ) ( )] [x x R x S x T x B x C   

            2 2 3 2 4 2 13 16 4 2 3 2( ) ( )x D x x E x x F x G    

   3 2 4 3 2 10 16 7 1 9 20 6( ) ( )x x x H x x x I          

   6 4 3 23 6 5( )x K x x x x L        

   5 4 3 2 6 5 42 4 8 5 3 6 2( ) ( )x x x x M x x x N          

      7 6 5 4 3 2 3 6 5( )x O x x x x Q        

        7 5 4 8 7(2 3 )  2( ) ]x x x R x x S   

            2 3 3 2 44 7 2 2 7 4 3 6( ) ( )A xB x x C x D x x x E x F               
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   5 4 3 25 10 2( )x G x x x x H       

   5 4 3 5 79 12 5 2( )x x x I x J x K        

   5 4 3 6 5 4 33 8 4 2 4 3( ) ( )x x x L x x x x M          

   7 6 5 8 7 2 3 3 8 2 2( ) ( ) ( )x x x N x x O x x P           

   7 6 5 8 7 6 5 3 4 2 2 2( ) ( )x x x Q x x x x R          

              9 8 9 4( )x x S x T    .                                                      (6) 

 

Next we express 6 3nJ   as a Jacobsthal sum. 

 

 2.4 A Jacobsthal Sum for 6 3nJ  : Using identities (5) and (6), and the 

Jacobsthal recurrence, we have 
 

 6 3 6 2 6 1n n nJ J xJ      

            2 3 3 2 4 7 2 2 7 4 3( ) ( )[A xB x x C x D x x x E              

   4 5 4 3 2 6 5 10 2( )x F x G x x x x H          

   5 4 3 5 7 9 12 5 2( )x x x I x J x K         

   5 4 3 6 5 4 3 3 8 4 2 4 3( ) ( )x x x L x x x x M          

   7 6 5 8 7 2 3 3 8 2 2( ) ( ) ( )x x x N x x O x x P           

   7 6 5 8 7 6 5  3 4 2 2 2( ) ( )x x x Q x x x x R          

   9 8 9 2 4 6 3 5 2( ) ( )] [x x S x T A xB x x Cx            

   3 2 3 4 3 2  20 20 4 15 26 9( ) ( )x x x E x F x x x H           

   4 3 5 5 4 3 2 8 2 6 14 9( ) ( )x x I x J x x x x L           

   5 4 6 7 2 3 2 5 4 2 2( ) ( )x x M x N x O x x P           

   6 5 4 7 6 8 9 2 3  2 2( ) ( ) ]x x x Q x x R x S x T            

           2 3 2 31 2 3 2 15 13 2 2( ) ( ) ( )x A x x B x x x C x D             

   4 3 2 4 5 20 27 5 3 2( )x x x x E x F x G          
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   5 4 3 2 15 31 19 2( )x x x x x H        

   5 4 3 6 5 711 5 2( ) ( )x x x I x x J x K          

   6 5 4 3 6 5 4 36 17 17 5 2( ) ( )x x x x L x x x x M           

   7 6 5 7 2 38 2 2 1( ) ( )( )x x x N x O x x x P           

   7 6 5 8 7 6 5 4 4( ) ( )x x x Q x x x x R          

             9 8 10 9 3 4( ) ( )x x S x x T     .                                      (7) 

 

 We now explore a Jacobsthal sum for 6 4nJ   . 

 

 2.5 A Jacobsthal Sum for 6 4nJ  : Using identities (6) and (7), and the 

Jacobsthal recurrence, we get 
 

 6 4 6 3 6 2n n nJ J xJ      

            2 3 21 2 3 2 15 13 2( ( () ) )[ x A x x B x x x C           

   3 4 3 2 4 2 20 27 5 3 2( )x D x x x x E x F          

   5 5 4 3 2 15 31 19 2( )x G x x x x x H         

   5 4 3 6 5 7 11 5 2( ) ( )x x x I x x J x K          

   6 5 4 3 6 17 17 5( )x x x x L      

   6 5 4 3 7 6 5 2 8 2( ) ( )x x x x M x x x N          

   7 2 3 7 6 5 2 1( )( ) ( )x O x x x P x x x Q           

   8 7 6 5 9 8 4 4 3 4( ) ( )x x x x R x x S         

   10 9 2 34 7 2 2( ) ( )] [x x T x A xB x x C x D            

   3 2 4 5 7 4 3 6( )x x x E x F x G         

   4 3 2 5 4 35 10 2 9 12 5( ) ( )x x x x H x x x I          

   5 7 5 4 3 2 3 8 4( )x J x K x x x L         
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   6 5 4 3 7 6 5 2 4 3 3 8 2( ) ( )x x x x M x x x N          

   8 7 2 3 7 6 5 2 3 4 2( ) ( ) ( )x x O x x P x x x Q           

   8 7 6 5 9 8 9  2 2 4( ) ( ) ]x x x x R x x S x T           

  2 3 22 1 2 5 2 22 15 2( ) ( ) ( )x A x x B x x x C           

   4 3 4 3 2 2 27 31 2 3( ) ( )x x D x x x x E         

   5 4 6 5 2 3( ) ( )x x F x x G       

   5 4 3 2 20 41 21( )x x x x x H        

   6 5 4 3 6 59 13 16 5 2 2( ) ( )x x x x I x x J        

   8 7 6 5 4 3  9 25 21 5( ) ( )x x K x x x x L         

   7 6 4 3 2 4 2 2( )x x x x M       

   8 7 6 5 9 8 73 7 10 2 2( ) ( )x x x x N x x x O         

   2 3 8 7 6 5 2 1 3 5 3( ) ( )( )x x x P x x x x Q          

   9 8 7 6 5 10 9 8 2 6 3 2 7 4( ) ( )x x x x x R x x x S           

             10 9 2( )x x T   .                                                                (8) 

 

 Finally, we express 6 5nJ   as a Jacobsthal sum. 

 

 2.6 A Jacobsthal Sum for 6 5nJ  : It follows by the identities (7) and (8), 

and the Jacobsthal recurrence that 
 

 6 5 6 4 6 3n n nJ J xJ      

            2 3 22 1 2 5 2 22 15 2( )) ( )([ x A x x B x x x C           

   4 3 4 3 22 27 31 2 3(( ) ( )x x D x x x x E         

   5 4 6 52 3( ) ( )x x F x x G        

   5 4 3 220 41 21( )x x x x x H       

    6 5 4 3 6 5 9 13 16 5 2 2( ) ( )x x x x I x x J         
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   8 7 6 5 4 3 9 25 21 5( ) ( )x x K x x x x L         

   7 6 4 3 2 4 2 2( )x x x x M       

   8 7 6 5 9 8 73 7 10 2 2( ) ( )x x x x N x x x O         

   2 3 8 7 6 5 2 1 3 5 3( )( ) ( )x x x P x x x x Q          

   9 8 7 6 5 10 9 8 2 6 3 2 7 4( ) ( )x x x x x R x x x S           

   10 9 2 2 1 2 3 2( ) ( ) ( )] [x x T x A x x Bx         

   3 2 3 15 13 2 2( )x x x C x D       

   4 3 2 4 520 27 5 3 2( )x x x x E x F x G          

   5 4 3 2 15 31 19 2( )x x x x x H        

   5 4 3 6 5 7 11 5 2( ) ( )x x x I x x J x K          

   6 5 4 3 6 17 17 5( )x x x x L      

   6 5 4 3 7 6 5 7 2 8 2 2( ) ( )x x x x M x x x N x O            

   2 3 7 6 5  1( ) (( ))x x x P x x x Q         

   8 7 6 5 9 8 4 4 3 4( ) ( )x x x x R x x S         

   10 9( ) ]x x T     

2 3 23 1 2 3 7 2( ) ( )x x A x x x B        

  4 3 2 4 3 15 35 17 2 2 2( ) ( )x x x x C x x D         

   5 4 3 2 5 4 20 54 36 3 2 4( ) ( )x x x x x E x x F          

   6 5 6 5 4 3 2 15 51 60 23( ) ( )x x G x x x x x H          

   6 5 4 3 7 6 5 10 24 21 5 2 3( ) ( )x x x x I x x x J          

   8 7 7 6 5 4 3 2 6 26 42 26 5( ) ( )x x K x x x x x L          

   7 6 5 4 3 2 3 3( )x x x x x M        

   8 7 6 5 9 8 7 4 15 12 2 2 2( ) ( )x x x x N x x x O          

   2 2 3 8 7 6 5 3 1 4 6 4( )( ) ( )x x x x P x x x x Q        

   9 8 7 6 5 6 10 2 3( )x x x x x R       

              10 9 8 11 10 9 4 11 4 3( ) ( )x x x S x x x T       .              (9) 
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 Next we explore the Jacobsthal-Lucas counterparts of identities (4)  
through (9). 
 
3. Sums of Jacobsthal-Lucas Polynomial Products of Order 6 
 

 For convenience, we begin with 6 1nj  . 

 

 3.1 A Jacobsthal Sum for 6 1nj  : Using the identity 1 1n n nj J xJ    , and 

equations (4) and (6), we get 
 

 6 1 6 2 6n n nj J xJ     

                       2 3 3 24 7 2 2 7 4 3( ) ( )[A xB x x C x D x x x E              

   4 5 4 3 2 6 5 10 2( )x F x G x x x x H          

   5 7 9 5 12 4 5 3 2( )x x x I x J x K         

   5 4 3 6 5 4 3 3 8 4 2 4 3( ) ( )x x x L x x x x M          

   7 6 5 8 7 2 3 3 8 2 2( ) ( ) ( )x x x N x x O x x P           

   7 6 5 8 7 6 5 3 4 2 2 2( ) ( )x x x Q x x x x R          

   9 8 9 2 4 2 4 2 1 2( ) ( )] [x x S x T B x C x Dx            

   2 3 2 4 13 16 4 2 3 2( ) ( )x x E x x F x G          

   3 2 4 3 2 10 16 7 1 9 20 6( ) ( )x x x H x x x I          

   6 4 3 2 3 6 5( )x K x x x x L        

   5 4 3 2 6 5 42 4 8 5  3 6 2( ) ( )x x x x M x x x N          

    7 6 5 4 32 3 6 5( )x O x x x x Q        

   7 5 4 8 7 2 3 2( ) ( ) ]x x x R x x S        

          2 3 3 22 2 4 6 12 7( ) ( )A xB x x C x D x x x E              

   4 3 5 4 3 2 4 3 2 5 6 5 2( ) ( )x x F x G x x x x H           

   5 4 3 5 7 18 32 11 2 2( )x x x I x J x K         
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   4 3 2 6 5 4 3 2 2 8 11 6 2( ) ( )x x x L x x x x M          

   7 6 5 8 7 2 3 2 3 7 2 2 2( ) ( ) ( )x x x N x x O x x P           

   7 6 5 4 6 10 7( )x x x x Q      

   8 7 6 5 9 8 9 2 2 2 2 3( ) ( )x x x x R x x S x T         .   (10) 

 

 Next we investigate 6 2nj  . 

 

 3.2 A Jacobsthal Sum for 6 2nj  : Using the same technique as above with 

equations (5) and (7), we get 
 

 6 2 6 3 6 1n n nj J xJ      

           2 3 2 31 2 3 2 15 13 2 2( ) ( ) ( )[ x A x x B x x x C x D             

   4 3 2 4 5 20 27 5 3 2( )x x x x E x F x G          

   5 4 3 2 15 31 19 2( )x x x x x H        

   5 4 3 6 5 7 11 5 2( ) ( )x x x I x x J x K          

   6 5 4 3 6 5 4 36 17 17 5 2( ) ( )x x x x L x x x x M           

   7 6 5 7 2 3 8 2 2 1 )( ) (( )x x x N x O x x x P           

   7 6 5 8 7 6 5 4 4( ) ( )x x x Q x x x x R          

   9 8 10 9 3 4 6( ) ( ) ] [x x S x x T A xBx          

   2 3 2 3 3 5 2 20 20 4( ) ( )x x C x x x E x F          

   4 3 2 4 3 5 15 26 9 8 2( ) ( )x x x H x x I x J          

   5 4 3 2 5 4 6 6 14 9 2 5 4 2( ) ( )x x x x L x x M x N           

   7 2 3 6 5 4 2 2 3( ) ( )x O x x P x x x Q          

   7 6 8 9 2 2( ) ]x x R x S x T        

2 3 2 32 1 4 3 30 19 2 2( ) ( ) ( )x A x x B x x x C x D            

  4 3 2 4 5 40 47 6 3 2( )x x x x E x F x G          
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   5 4 3 2 30 57 28 2( )x x x x x H        

   5 4 3 6 5 7 7 10 5 2 2( ) ( )x x x I x x J x K          

   6 5 4 3 12 31 26 6( )x x x x L      

   6 5 4 3 7 6 5 2 6 5 8 2( ) ( )x x x x M x x x N          

   8 7 2 3 7 6 2 2 1 2( )( ) ( ) ( )x x O x x x P x x Q           

   8 7 6 5 9 8 6 6 5 4( ) ( )x x x x R x x S        

   10 92 .( )x x T                                                                  (11) 

 

 Knowing the sums for both 6 1nj   and 6 2nj  , we can now find the remaining 

sums in the family. 
 

 We begin with 6nj . 

 

 3.3 A Jacobsthal Sum for 6nj : By the Jacobsthal recurrence, we have 

 

 6 6 2 6 1n n nxj j j     

         2 3 2 3 2 1 4 3 30 19 2 2( )) (( )[ x A x x B x x x C x D             

   4 3 2 4 5 40 47 6 3 2( )x x x x E x F x G          

   5 4 3 2 30 57 28 2( )x x x x x H        

   5 4 3 6 5 7 7 10 5 2 2( ) ( )x x x I x x J x K          

   6 5 4 3 12 31 26 6( )x x x x L      

   6 5 4 3 7 6 52 6 5  8 2( ) ( )x x x x M x x x N          

   8 7 2 3 7 6 2 2 1 2( ) ( )( ) ( )x x O x x x P x x Q           

   8 7 6 5 9 8 6 6 5 4( ) ( )x x x x R x x S        

   10 9 2 32 2 2 4( ) ( )] [x x T A xB x x C x D              

   3 2 4 3 5 6 12 7 4 3 2( ) ( )x x x E x x F x G          
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   4 3 2 5 4 3 5 6 5 2 18 32 11( ) ( )x x x x H x x x I          

   5 7 4 3 2 2 2 2( )x J x K x x x L         

   6 5 4 3 7 6 5 2 8 11 6 2 2 3 7 2( ) ( )x x x x M x x x N          

   8 7 2 3 2 2( ) ( )x x O x x P       

   7 6 5 4 8 7 6 56 10 7 2 2 2( ) ( )x x x x Q x x x x R          

   9 8 9 2 3( ) ]x x S x T      

 

 2 2
6 2 2 6 1 30 4 4 2( ) ( )nj A x B x x C x D             

   3 2 3 2 4 40 27 14 4 2 2( ) ( )x x x E x x F x G           

   4 3 2 4 3 2 30 42 2 7 1 7 18 6( ) ( )x x x x H x x x I           

   5 6 5 4 3 2 4 12 25 12 3( )x J x K x x x x x L           

   5 3 2 6 5 4 7 2 6 5 6 2 2( ) ( )x x x M x x x N x O           

   2 3 6 4 3 2 3( ) ( )x x P x x x Q       

7 6 5 4 8 7 96 4 3 5 2 2( ) ( )x x x x R x x S x T         . 

(12) 
 

 3.4 A Jacobsthal Sum for 6 3nj  : Again, by the Jacobsthal recurrence,  

we get 

 6 3 6 2 6 1n n nj j xj      

           2 3 2 2 1 4 3 30 19 2( ) ( )( )[ x A x x B x x x C           

   3 4 3 2 4 5 2 40 47 6 3 2( )x D x x x x E x F x G            

   5 4 3 2 30 57 28 2( )x x x x x H        

   5 4 3 6 5 77 10 5 2 2( ) ( )x x x I x x J x K          

   6 5 4 3 12 31 26 6( )x x x x L      

   6 5 4 3 7 6 5 2 6 5 8 2( ) ( )x x x x M x x x N          

   8 7 2 3 7 6 2 2 1 2( )( ) ( ) ( )x x O x x x P x x Q           



22 THOMAS KOSHY   

   8 7 6 5 9 8 6 6 5 4( ) ( )x x x x R x x S         

   10 9 2 3 2 2 2 4( ) ( )] [x x T A xB x x C x Dx            

   3 2 4 3 6 12 7 4 3( ) ( )x x x E x x F        

   5 4 3 2 2 5 6 5 2( )x G x x x x H        

   5 4 3 518 32 11 2( )x x x I x J      

   7 4 3 2 2 2( )x K x x x L       

   6 5 4 3 7 6 52 8 11 6 2 2 3 7 2( ) ( )x x x x M x x x N         

   8 7 2 3 2 2( ) ( )x x O x x P       

   7 6 5 4 8 7 6 56 10 7 2 2 2( ) ( )x x x x Q x x x x R          

   9 8 9 2 3( ) ]x x S x T      

23 1 2 7 2( ) ( )x A x x B      

   3 2 4 3 29 17 2 2 2( ) ( )x x x C x x D        

   4 3 5 4 34 35 2 3 2 6( ) ( )x x x E x x F         

   6 5 5 4 32 25 51 17( ) ( )x x G x x x x H         

   6 5 4 3 6 5 18 25 21 5 2 3( ) ( )x x x x I x x J         

    8 7 6 5 4 32 12 33 25 5( ) ( )x x K x x x x L        

    7 6 5 4 3 2 8 5 3( )x x x x x M        

   8 7 6 5 9 7 6 15 12 2 2 2( ) ( )x x x x N x x O         

   2 3 8 7 6 5 3 1 6 9 5( ) ( )( )x x x P x x x x Q          

   9 8 7 6 5 4 8 2 3( )x x x x x R       

  10 9 8 10 92 11 4 3( ) ( )x x x S x x T      .                      (13) 

 

 3.5 A Jacobsthal Sum for 6 4nj  : Since
6 4 6 3 6 2n n n
j j xj

  
  , it follows by 

equations (12) and (13) that 
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 2 3 2
6 4 2 4 1 2 6 9 2( ) ( )nj x x A x x x B 

         

   4 3 2 4 330 48 19 2 2 3( ) ( )x x x x C x x D        

    5 4 3 2 5 4 40 81 41 4 3 2 5( ) ( )x x x x x E x x F          

   6 5 6 5 4 3 2 3 30 82 79 19( ) ( )x x G x x x x x x H           

   6 5 4 3 7 6 5 11 35 26 5 2 2 4( ) ( )x x x x I x x x J          

   8 7 7 6 5 4 3 3 12 43 59 31 5( ) ( )x x K x x x x x L          

   7 5 4 3 8 7 6 5 2 2 2 4 5 23 14 2( ) ( )x x x x M x x x x N           

   9 8 7 2 2 3 2 2 4 1( ) ( )( )x x x O x x x x P          

   8 7 6 5 9 8 7 6 5 5 7 5 10 14 4( ) ( )x x x x Q x x x x x R            

   10 9 8 11 10 9 7 15 4 2 4( ) ( )x x x S x x x T       .         (14) 

 
 Finally, we explore a sum for the final member of the family. 
 

 3.6 A Jacobsthal Sum for 6 5nj  : It follows by the recurrence

6 5 6 4 6 3n n nj j xj    , and equations (13) and (14) that 

 

 2 3 2
6 5 5 5 1 2 13 11 2( ) ( )nj x x A x x x B 
        

   4 3 2 5 4 359 65 21 2 2 2 4( ) ( )x x x x C x x x D          

   5 4 3 2 74 116 40 7 3( )x x x x x E       

   6 5 4 7 6 52 6 6 2 4( ) ( )x x x F x x x G        

   6 5 4 3 2 55 133 96 19 2( )x x x x x x H         

   7 6 5 4 3 18 36 56 21 5( )x x x x x I        

   7 6 5 9 8 7 2 5 5 2 4( ) ( )x x x J x x x K         

   7 6 5 4 3 24 76 84 36 5( )x x x x x L       

   8 7 6 5 4 3 2 8 7 5 5( )x x x x x x M         

   9 8 7 6 5 6 10 35 16 2( )x x x x x N        
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   10 9 7 2 2 3 2 2 5 5 1( ) ( )( )x x x O x x x x P          

   9 8 7 6 5 6 14 12 6( )x x x x x Q       

   10 9 8 7 6 5 4 18 16 2 5 –( )x x x x x x R       

   11 10 9 8 2 18 19 4( )x x x x S       

   11 10 9 5 5( )x x x T    .                                                   (15) 

 
4. Numeric Byproducts 
 

 Since (2)n nJ J  and (2)n nj j , equations (4) and (15) yield the following 

identities, where a  through t  denote the numeric counterparts of A  through T  , 

respectively. 

 

6 2 20 8 88 64 16 159 328 64 118nJ b c d e f g h i k l                     

  600 32 256 472 144 512m n o q r s           ; 

 

6 1 12 72 242 32 484 136 64 492nJ a b c e f h i j l        
            

  448 128 256 216 240 384 512 512m n o p q r s t               ; 

 

6 2 8 32 16 66 96 32 166 520 64 128nJ a b c d e f g h i j k          
              

  256 752 192 256 216 704 672l m n o p q r              

 1536 512s t   ; 
 

6 3 3 32 176 16 550 32 32 1134 248nJ a b c d e f g h i        
            

  192 128 1240 144 448 256 648 224j k l m n o p q                 

   1440 2560 1536r s t     ; 
 

6 4 5 48 240 48 682 224 96 1466 1288nJ a b c d e f g h i        
            

  320 384 1752 1360 832 256 1080j k l m n o p               

  1632 2784 5632q r s     ; 
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6 5 11 112 592 80 1782 288 160 3734nJ a b c d e f g h       
           

  1784 704 640 4232 1072 1728 256i j k l m n o                

  2376 2080 5664 10752 5632p q r s t         ; 
 

6 2 22 124 8 396 16 809 56 128 64nj a b c d e g h i j k                     

  866 296 288 256 432 8 912l m n o p q r                

  1536 1024s t   ; 
 

6 1 4 8 32 110 224 64 152 1176nj a b c d e f g h i        
            

  64 256 20 1952 262 7560 216 1648j k l m n o p q                  

  960 2560 512r s t     ; 
 

6 2 5 56 320 16 1034 32 32 2102 24nj a b c d e f g h i        
            

  320 128 2224 1040 704 768 1080 256j k l m n o p q                

  2208 3584 2560r s t     ; 
 

6 3 7 64 304 80 814 416 160 1750nj a b c d e f g h       
           

  2328 448 640 2264 2864 1216 2304i j k l m n o                

  1512 3040 4128 8704 3584p q r s t         ; 
 

6 4 17 176 944 112 2882 352 224 5954nj a b c d e f g h       
           

  2280 1088 896 6712 784 624 768i j k l m n o                

  3672 2528 8544 15872 8704p q r s t         ; 
 

6 5 31 304 1552 272 4510 1184 544 9454nj a b c d e f g h       
           

  6776 1984 2176 11240 6512 5056 5376i j k l m n o                

  6696 8608 16800 33280 15872p q r s t         . 
 

 An interesting observation. Exactly one of the coefficients of the 

expressions a  through t  is odd. 
 

 This implies that 6n kC   is odd, where n nC J  or nj , and 0 5k  .  
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This is consistent with the fact that every nC  is odd [5]. 

 

5. Pell, Vieta, and Chebyshev Implications 
 

 Using the gibonacci-Pell and gibonacci-Vieta relationships, we can find the 

Pell and Vieta counterparts of identities (4) through (15). Likewise, using the Vieta-

Chebyshev relationships in Table 1, we can extract their Chebyshev counterparts. 

Again in the interest of brevity, we omit them. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a z b zx x x x x   , where x is an arbitrary integer variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary integer polynomials; and 0n  . 

 

 Suppose ( )a x x  and 1( )b x  . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz fx x , the nth Fibonacci polynomials ; and when 0 2( )z x   and 1( )z x x , 

( ) ( )n nz lx x , the nth Lucas polynomials. Clearly, 1( )n nf F , the nth Fibonacci 

number; and 1( )n nl L , the nth Lucas number [1, 6, 8]. 
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 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by  

 2( ) ( )n np fx x  and 2( ) ( )n nq lx x , respectively. In particular, the Pell numbers 

nP  and Pell-Lucas numbers nQ  are given by 1 2 ( ) ( )n n nP p f   and

2 1 2( ) ( )n n nQ q l  , respectively [8]. 
 

 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by  

 2) ( )(n np fx x  and 2( ) ( )n nq x l x , respectively. They also can be defined by Binet-

like formulas. In particular, the Pell numbers nP  and Pell-Lucas numbers nQ  are 

given by 1 2( ) ( )n n nP p f   and 2 1 2( ) ( )n n nQ q l  , respectively [8]. 
 

 Suppose 1( )a x   and ( )b x x . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz Jx x , the nth  Jacobsthal polynomial ; and when 0 2( )z x   and 1 1( )z x  , 

( ) ( )n nz jx x , the nth Jacobsthal-Lucas polynomial. They have their own Binet-

like formulas. Correspondingly, 2( )n nJ J  and 2( )n nj j  are the nth Jacobsthal 

and Jacobsthal-Lucas numbers, respectively. Clearly, 1( )n nJ F ;  and 1 ( )n nj L  

[4, 8]. 
 

 Suppose ( )a x x  and ( ) 1b x   . When 0( ) 0z x   and 1( ) 1z x  , then

( ) ( )n nz x V x , the nth Vieta polynomial; and when 0( ) 2z x   and 1( )z x x , then

( ) ( )n nz x v x , the nth Vieta-Lucas polynomial [5, 8]. 

 

 Finally, suppose ( ) 2a x x  and ( ) 1b x   . When 0( ) 1z x   and 1( )z x x , 

then ( ) ( )n nz x T x , the nth Chebyshev polynomial of the first kind; and when 

0( ) 1z x   and 1( ) 2z x x , then ( ) ( )n nz x U x , the nth Chebyshev polynomial of 

the first kind [5, 8]. 

 

 1.1 Links among the Extended Gibonacci Family: Table 1 shows the 
relationships among the subfamilies of the extended gibonacci family [5, 8]. 
 

1( /2)( ) ( )1/n
n n

J x x f x   /2( ) ( )1/n
n nj x x l x   

 1( ) ( )n
n nV x i f ix   ( ) ( )n

n nv x i l ix    

1( ) 2)/(n nV x U x   (2 /2( ) )n nv x T x , 
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where 1i   . 
 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . In 

addition, we let n ng f  or nl , n nb p  or nq , ( )n nc J x  or ( )nj x . 

Correspondingly, we denote their numeric counterparts with nG , nB , and nC , 

respectively. We also omit a lot of basic algebra. 
 

 With this background, we now explore a recurrence for 2
1ng   with three 

predecessors. 
 
2. A Recurrence for Gibonacci Squares 
 

 First, we find a simple recurrence for 2
1ng  . 

 

 Lemma 1: Let n ng f  or nl . Then 

 

   2 2 2 2 2 2
1 1 2( ) ( )1 1n n n ng x g x g g         

  2 2 2 2 2 2
1 1 2( ) ( )1 1n n n ng x g x g g       .                                        (1) 

 
 Proof: Using the gibonacci recurrence, we get 
 

                 2 2 2 2
1 2 1 1 2 1( ) ( )n n n n n n n n ng x g g g g xg xg g g   

            2 2 2 2
1 2 1( ) ( ) ( )1 1n n n n nx g x g g g xg          

   2 2 2 2 2
1 21  ( ( )1) n n nx g x g g      , 

 as desired.                                                                                     

 
 In particular, this yields 
 

   2 2 2 2
1 1 22 2n n n nG G G G     ; 

 

the case n nG F  appears in [2, 7]. 

 
 With this lemma at our disposal, we now explore the fourth-order recurrence. 
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 Theorem 1: Let n ng f  or  nl , and   2 2 4x . Then 

 

         2 2 2 2 2 2 2 2
1 1 2 32 1( )n n n n ng x g x g x g g .                              (2) 

 

 Proof: Using Lemma 1, the Cassin-like identities 2 1 21( )n k
n k n k n kf f f f 
      

and 2 2 21( )n k
n k n k n kl l l f
       [8], and the gibonacci recurrence, we have 

 

       2 2 2 2 2 2
1 1 2( ) ( )1 1n n n ng x g x g g         

          2 2 2 2 2 2 2
1 2 32( 1)[ ]n n n nx g x g x g g A , 

where 

              2 2 2 2 2 2
1 2 31( ) ( )1n n n nA g x g x g g          

  2 2 2 2 1 2 2 2 2
1 2 2 3( ) ( )n n n n n ng x g g g x g g
           

  2 2
2 1 1 3 2( ) ( )n n n n n ng g g g g g         = 

  
if

otherwise

1

1 2 1 2

( ) ( )

( (

1  1

1  ) )1

n n
n n

n n

g f

 







   

  






  

  0 . 

 
 Thus, 

2 2 2 2 2 2 2 2
1 1 2 32 1( )n n n n ng x g x g x g g         , 

as expected.             

 
 In particular, we have 
 

   2 2 2 2 2
1 1 2 34n n n n nG G G G G       .                                  (3) 

 

 The formula with n nG F  appears in [3]. 

 
 Figure 1 gives a geometric interpretation of identity (3). 
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     ↑ 

2nF    

↓ 
 

↑  
 
 
 

nF  

 
 
 

      ↓ 

  
 

2nF   

 
 

3nF    

↑ 

2nF    

↓ 
 

                   ←                          1nF                              → 

 

Figure 1: 2 2 2 2 2
1 1 2 34n n n n nF F F F F         

 

3. Pell Implications 
 
 It follows from equations (1) and (2) that 
 

             2 2 2 2 2 2
1 1 2( ) (1 4 1)4n n n nb x b x b b ; 

         2 2 2 2 2 2 2
1 2 34 2 4 1 4( )n n n nx b x b x b b ; 

 

      2 2 2 2
1 1 25 5n n n nB B B B     ; 

   2 2 2 2
1 2 34 10 4n n n nB B B B      . 

 
4. Jacobsthal Versions 
 
 Using the gibonacci-Jacobsthal relationships in Table 1, we now explore the 
Jacobsthal versions of identities (1) and (2). 
 

 4.1 Jacobsthal Version of Identity (1): Suppose n ng f . Replacing x with 

1/ x  in (1) and multiplying the resulting equation with nx , we get 
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/2 /2 ( 3)/22 ( 1)/2 2 ( 2) 2 3 2
1 1

(
21 1 (( ) ( ( )( ) )[ ] [ ] [ ]n nn x n

n n n nx f x x f x x f x x f
 

         

           2 2 2 3 2
1 1 21 1( ) ( )n n n nJ x J x x J x J       , 

 

where 1/( )n nf f x  and ( )n nJ J x . 

 

 On the other hand, let n ng l . Replace x with 1/ x  and multiply the 

resulting equation with 1nx . This yields 
 

2 2 2 3 2
1 1 21 1( ) ( )n n n nj x j x x j x j       . 

 
 Combining the two cases, we get 
 

   2 2 2 3 2
1 1 21 1( ) ( )n n n nc x c x x c x c       ;                          (4) 

 

           2 2 2 2
1 1 23 6 8n n n nC C C C     .                                            (5) 

 
 

 

     

    

↑  
 
 
 

11  
 
 
 

      ↓ 

 

 
 
 
 
 

 

         ←                               21                            → 
 

Figure 2: 2 2 2 2
6 5 4 33 6 8J J J J     
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 Figure 2 shows a geometric illustration of identity (5) with n nC J   

and 5n  . 
 

 4.2 Jacobsthal Version of Identity (2): Let n ng f . Replace x with 1/ x  

in (2) and multiply the resulting equation with nx . We then get 

 
 

     
22 2( 2)/2 ( 3)/2/2 2 ( 1)/2 2

1 1 22 1( ( (( ( )) [ ] [ ] [ ]n nn n
n n n nx f x f x x x f x x f   

  



( 4)/2 24

3 ([ ]n
nx x f   

           2 2 2 2 2 4 2
1 1 2 32 1( )n n n n nJ J x x J x J x J        , 

 

where  1/( )n nf f x  and ( )n nJ J x . 

 

 Now let n ng l . Replacing x with 1/ x  and multipling the resulting 

equation with 1nx  , similarly we get 
 

2 2 2 2 2 4 2
1 1 2 32 1( )n n n n nj j x x j x j x j        , 

 

where ( )n nj j x . 

 
 Combining the two cases yields 
 

   2 2 2 2 2 4 2
1 1 2 32 1( )n n n n nc c x x c x c x c        ;                   (6) 

 

              2 2 2 2 2
1 1 1 2 32 4 8n n n n nC C C C C       .                                (7) 

 
5. Vieta and Chebyshev Implications 
 
 Using the Vieta-gibonacci and Vieta-Chebyshev relationships in Table 1, we 
can extract the Vieta and Chebyshev versions of identities (1) and (2). In the interest 
of brevity, we omit them. 
 
 Next we will confirm identities (1) and (2) using graph-theoretic techniques. 
To this end, first we present the needed graph-theoretic tools. 
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6. Graph-Theoretic Tools 
 

 Consider the Fibonacci digraph 1D  in Figure 1 with vertices 1v  and 2v , 

where a weight is assigned to each edge [8, 9]. It follows from its weighted 

adjacency matrix 
1

1 0

x
Q

 
   
    

that 

 

1

1

n nn

n n

f f
Q

f f




 
   
  

, 

 
where 1n   [8, 9]. 
 

 
Figure 1: Weighted Fibonacci Digraph 1D   

 

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . We will denote the edge i jv v by the word ij 

when there is no confusion. The walk is closed if i jv v ; otherwise, it is open. The 

length of a walk is the number of edges in the walk. The weight of a walk is the 

product of the weights of the edges along the walk. 
 

 The sum of the weights of closed walks of length n originating at 1v  in the 

digraph is 1nf   and that of those originating at 2v  is 1nf  . So, the sum of the weights 

of all closed walks of length n in the digraph is 1 1n n nf f l   . 

 

 To confirm the Jacobsthal identities, we employ the weighted Jacobsthal 

digraph 2D  in Figure 2 with vertices 1v  and 2v  [8, 9].  
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Its weighted adjacency matrix 
1

1 0

x
M

 
   
  

 implies that 

 

 
Figure 2: Weighted Jacobsthal Digraph 2D   

 

1

1

,
n nn

n n

J xJ
M

J xJ




 
   
  

 

 

where ( )n nJ J x  and n ≥ 1. 

 

 The sum of the weights of closed walks of length n originating at 1v  is 1nJ  , 

and that of those originating at 2v  is 1nxJ  . So the sum of the weights of all closed 

walks of length n in the digraph is 1 1n n nJ xJ j   . 

 

 In both cases, suppose A and B denote the sets of walks of varying lengths 

originating at a vertex v. Then the sum of the weights of the elements ,( )a b  in the 

product set A B  is defined as the product of the sums of weights from each 

component [9]. 
 
 With these tools at our finger tips, we are now ready for the graph-theoretic 
proofs. 
 
7. Graph-Theoretic Confirmations  
 

 7.1 Confirmation of identity (1) with n ng f : Proof: Let A denote the set 

of closed walks of length n originating at 1v  in digraph 1D . The sum of the weights 

all such walks is 1nf  . So the sum S of the weights of all elements in the product set 

A A  is given by 2
1nS f  . 
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 We will now compute S in a different way. Let B be the set of closed walks 

of length – 1n  in digraph 1D  originating at 1v . Let w be an arbitrary walk in B. It 

can land at 1v  or 2v  at the nd2( )n   step: 



   
1 1

subwalk of length 2

... ,

n

w v v v


 where 1v v  

or 2v . If 1 v v , the sum of the weights of such walks is 1 1· n nf x xf  . Otherwise, 

the sum of the walks in is 2 2 ·1n nB f f  . So the sum of the weights of the walks in 

B is 1 2n n nxf f f   . Consequently, the sum 1S  of the weights of the elements in 

B B  is given by 2
1 nS f . 

 

 Now, let C be the set of closed walks of length 2n   originating at 1v , and 

w   an arbitrary element in C. It can land at 1v  or 2v  at step 3( )n  :



   
1 1

subwalk of length 3

... ,

n

w v v v


  where 1v v  or 2v . As above, the sum of the weights in 

C is 2 3 1n n nxf f f    , and hence the sum 2S  of the weights of the elements in 

C C  is given by 2
2 1nS f  . 

 

 Finally, let D denote the set of closed walks of length 3n   originating at 1v . 

The sum of the weights of the walks is 3 4 2n n nxf f f    ; so the sum 3S  of the 

weights of the elements in D D  is given by 2
3 2nS f  . 

 

 We now let 2 2
1 21 1( ) ( )S x S x S     . Since the elements in D appear in 

both B and C as subwalks, they contribute 3S  to both 1S  and 2S ; so we discount it 

from S   to yield 
 

         2 2
1 2 31 1( ) ( )S x S x S S        

  2 2 2 2 2
1 21 1( ) ( )n n nx f x f f        

  2 2 2 2
1 2 11 1( ) ( ) ( )n n n n nx f x f f f xf          

  2 2 2
1 2 1 1 2( ) ( )n n n n n n n nx f f f f f xf xf f            

  
2

1( )n nxf f     
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2

1nf    

  S , 

as desired.                                                 

  
 Next, we present an algorithm for extracting the elements of B from those  

of A. 

  

Algorithm 1: Let w be an arbitrary walk (word) in A. Let w   be the 

subword obtained by deleting the rightmost 1 in w when it ends in 11. Then B 

consists of all such subwords w  . 
 

 The same algorithm works for constructing C from B, and D from C. 

Table 2 shows the walks in A, B, C, and D, weights of the elements in each, and their 

cumulative sums, when 5n  . Notice that the elements in D are subwalks of the 

walks in both B and C, as expected. 

 

Table 2: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums 

 

A B C D 

walks weights walks weights walks weights walks weights 

111111 5x   11111 4x   1111 3x   111 2x   

111121 3x   
. . . . . . 

111211 3x  11121 2x   
. . . . 

112111 3x  11211 2x   1121 x  . . 

121111 3x  12111 2x   1211 x  121 1 

112121 x   . . . . . . 

121121 x  . . . . . . 

121211 x  12121 1 . . . . 

sum 6f   . 
5f   . 

4f   . 
3f   
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 7.2 Confirmation of identity (1) with n ng l : Proof: Let A denote the 

set of all closed walks of length 1n   in digraph 1D . The sum of the weights all 

such walks is 1nl   . So the sum S of the weights of all elements in the product set 

A A  is given by 2
1nS l  . 

 

 We will now compute S in a different way. Let B be the set of closed walks 

of length n in digraph 1D , and w an arbitrary element of B. The sum of the weights 

walks originating at 1v  is 1nf   and that of those originating at 2v  is 1nf  . So the sum 

of the walks of all elements in B is 1 1n n nf f l   , and the sum 1S  of the elements 

in B B  is given by 2
1 nS l . 

 

 Suppose C denotes the set of all closed walks of length 1n  . Clearly, the 

sum of the walks of all elements in C is 2 1n n nf f l   , and hence the sum 2S  of 

those in B B  is given by 2
2 1nS l  . 

 

 Now let D be the set of all closed walks of length 2n  . It follows from 

above that the sum of the walks of all elements in D  is 2nl   and the sum 3S  of those 

in C C  is given by 2
3 2nS l  . 

  

 We let 2 2
1 2( ( )1) 1S x S x S     . Since the walks in D occur as subwalks 

of the elements in both B and C, we discount their contributions to S  : 

 

            
2 2

1 2 3( 1)1) (S x S x S S        

  
2 2 2 2 2

1 2( ) ( )1 1n n nx l x l l        

  2 2 2 2
1 2 1( ) ( ) ( )1 1n n n n nx l x l l l xl          

  2 2 2
1 2 1 1 2( ) ( )n n n n n n n nx l l l l l xl xl l            

  
2

1( )n nxl l           

  
2

1nl    

   S , 

as expected.              
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 We now present an algorithm for extracting the elements of B from those of 

A; it is an extension of Algorithm 1. 

 

 Algorithm 2: Let w be an arbitrary walk (word) in A. If it ends in 11, 

deleting the rightmost 1 yields a subword w   of length 1n  . Suppose w ends in 112; 

deleting the rightmost 2 and replacing the rightmost 1 in the deleted word with 2 

yield a subword w   of length 1n  . Then B consists of all such subwordsw  . 

 

 The same algorithm works for constructing C from B, and D from C. 

 

 Table 3: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums 

 

A B C D 

walks weights walks weights walks weights walks weights 

111111 5x   11111 4x   1111 3x   111 2x   

111121 3x   
. . . . . . 

111211 3x  11121 2x   
. . . . 

112111 3x  11211 2x   1121 x  .  

121111 3x  12111 2x   1211 x  121 1 

112121 x   . . . . . . 

121121 x  . . . . . . 

121211 x  12121 1 . . . . 

211112 3x  21112 2x  2112 x  212 1 

211212 x  . . . . . . 

212112 x  21212 1 . . . . 

sum 5l   . 
4l   . 

3l   . 
2l   

 

 Table 3 shows the walks in A, B, C, and D, weights of the elements in each, 

and their cumulative sums, when 4n  . Clearly, the elements in D are subwalks of 

the walks in both B and C, as expected. 
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 Next we confirm identity (6) using digraph 2D . 

 

 7.3 Confirmation of identity (6) with n nc J : Proof:  Let A be the set of 

all closed walks of length n originating at 1v  in digraph 2D . The sum of the weights 

such walks is 1nJ  . So the sum S of the weights of elements in the product set A A  

is given by 2
1nS J  . 

 

 We will now compute it in a different way. Let w be an arbitrary element in 

the set B of closed walks of length 1n   originating at 1v . It can land at 1v  or 2v  at 

step 2( )n  : 
1 1

subwalk of length 2

... ,

n

w v v v



   


 where 1v v  or 2v .  If 1v v , the sum of 

the weights of such walks is 1 11n nJ J    and that of those with 2v v  is 2nxJ  . 

Thus, the sum of the weights of the walks in B  is 1 2n n nJ xJ J   . Consequently, 

the sum 1S  of the weights of the elements in B B  is given by 2
1 nS J . 

 

 Now let C be the set of closed walks of length 2n   originating at 1v , and 

w  an arbitrary element in C. It can land at 1v  or 2v  at step 3n  : 

1 1

subwalk of length 3

... ,

n

w v v v



   


 where 1v v  or 2v . Clearly, the sum of the weights of 

walks in C is 2 1n nJ xJ J   . So the sum 2S  of the weights of the elements in 

C C  is given by 2
2 1nS J  . 

 

 Finally, let D be the set of closed walks of length 3n   originating at 1v . 

The sum of the weights of walks in D  is 2nJ  , and hence the sum 3S  of the weights 

of elements in D D  is given by 2
3 2nS J  . 

 
 Now let 

             1 21 1( ) ( )S x S x x S       

 

   2 2
11 1( ) ( )n nx J x x J     . 
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 Clearly, the walks in D are subwalks of the elements in both B and C. So 

their contributions to S   must be discounted once to eliminate duplicate counting. To 

this end, notice that  deg 
1

2
n

n
J

 
  
 

, where deg nJ  denotes the degree of ( )nJ x , 

x    the floor of the real number x, and x k x k         , k being an integer. We 

will now find the correct multiple kx  of 2
3 2nS J   that must be subtracted.  

Since deg 2 1
1 1 2

2
( ) n

n
x J

 
    

 
, deg deg2 2

1 1 1 2 /2  ( ) n nx x J n J 
   
 

, and  

 

deg is odd
deg

deg otherwise,


 






 
 


2
2

1 2

 1 1  
 

1 1

( )

( )

n
n

n

x J n
J

x J
  

 

we let k be such that  

 

   deg deg2 2
2 1( )n nk J x J     

 

   
3 1

2 1 2
2 2

n n
k

    
     

   
. 

 

 This yields 3k  . Discounting 3 2
2nx J   from S   then yields 

 

           
2 2 3 2

1 21 1( ) ( )n n nS x J x x J x J
        

  2 2 2
1 2 11 1 ( )( ) ( )n n n n nx J x x J x J J J          

  2 2 2
1 2 1 1 2( ) ( )n n n n n n n nJ x J xJ J xJ xJ J xJ            

  2
1( )n nJ xJ     

   S , 
 

as desired.             

 

 Table 4 shows the walks in A, B, C, and D, the weights of the elements in 

each, and their cumulative sums, where 5n  . Using Algorithm 1, we can get 
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extract the walks in B, C, and D, as before. The walks are the same as those in Table 

2, but the weights are different. Again, notice that the elements in D are subwalks of 

the walks in both B and C, as expected. 

 

Table 4: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums 

 

A B C D 

walks weights walks weights walks weights walks weights 

111111 1 11111 1 1111 1 111 1 

111121 x   . . . . . . 

111211 x  11121 x   . . . . 

112111 x  11211 x   1121 x  .  

121111 x  12111 x   1211 x  121 x  

112121 2x   
. . . . . . 

121121 2x  
. . . . . . 

121211 2x  12121 2x  . . . . 

sum 6J    
5J    

4J    
3J   

 

 7.4 Confirmation of identity (6) with n nc j : Proof: Let A be the set of 

all closed walks of length 1n   in digraph 2D . The sum of the weights of such 

walks originating at 1v  is 2nJ   and that of those originating at 2v  is nxJ . So the 

sum of the weights of all such closed walks in 2D  is 2 1n n nJ xJ j   , and hence 

the sum S of the weights of elements in the product set A A  is given by 2
1nS j  . 

 

 To compute S in a different way, first consider the set B of closed walks of 

length n in 2D . The sum of the weights of such walks originating at 1v  is 1nJ   and 

that of those originating at 2v  is 1nxJ  . Thus, the sum of the weights of the walks in 

B is 1 1n n nJ xJ j   . Consequently, the sum 1S  of the weights of the elements in 

B × B is given by 2
1 nS j . 
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 Now let C denote the set of closed walks of length 1n  . The sum of the 

weights of such walks  originating at 1v  is nJ  and that of those originating at 2v  is

2nxJ  . So the sum of the walks in C  is 2 1n n nJ xJ j   , and hence the sum 2S  

of the weights of the elements in C C  is given by 2
2 1nS j  . 

 

 Finally, let D be the set of closed walks of length 2n   in 2D . Clearly, the 

sum of the walks in D is 1 3 2n n nJ xJ j    , and hence the sum 3S  of the weights 

of the elements in D D  is given by 2
3 2nS j  . 

 
 We now let 

         1 21 1( ) ( )S x S x x S       

   2 2
11 1( ) ( )n nx j x x j     . 

 

 Since the walks in D can be subwalks of elements in B or C, their 

contributions to S   must be discounted to eliminate duplication. As before, 

discounting 3 2
3nx j   from S   yields 

 

             
2 2 3 2

1 31 1( ) ( )n n nS x j x x j x j
        

   2 2 2
1 3 11 1 ( )( ) ( )n n n n nx j x x j x j j j          

   2 2 2
1 2 1 1 2( ) ( )n n n n n n n nj x j xj j xj xj j xj            

   
2

1( )n nj xj     

   S , 

as expected.                                     

 Table 5 shows the walks in A, B, C, and D, the weights of the elements in 

them, and their cumulative sums, where 5n  .  
 

 Using Algorithm 2, we can obtain all elements in B, C, and D from A. 

Notice that the elements in D are subwalks of the walks in both B and C. 
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 Table 5: Walks in Sets A, B, C, and D, Weights, and Cumulative Sums 

 

A B C D 

walks weights walks weights walks weights walks weights 

111111 1 11111 1 1111 1 111 1 

111121 x   . . . . . . 

111211 x  11121 x   . . . . 

112111 x  11211 x   1121 x  .  

121111 x  12111 x   1211 x  121 x  

112121 2x   
. . . . . . 

121121 2x  
. . . . . . 

121211 2x  12121 2x  . . . . 

211112 x  21112 x  2112 x  212 x  

211212 2x  . . . . . . 

212112 2x  21212 2x  . . . . 

sum 5j   . 
4j   . 

3j   . 
2j   
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( )( ) ( ) ) (n n nz xa x z x b zx x   , where x is an integer variable; ( )a x , ( )b x , 0( )z x , 

and 1( )z x  are arbitrary integer polynomials; and 0n   [1, 2, 5]. 

 

 Suppose 1( )a x   and ( )b x x . When 0 0( )z x   and 1 1( )z x  , 

( ) ( )n nz x J x , the nth Jacobsthal polynomial; and when 0 2( )z x   and 1 1( )z x  , 

( ) ( )n nz x j x , the nth Jacobsthal Lucas polynomial [1, 2]. Correspondingly, 

2( )n nJ J  and 2( )n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively. Clearly, 1( )n nJ F  and 1( )n nj L . 

 
 In the interest of brevity, clarity, and convenience, we omit the argument in 
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the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We also 

let ( ) ( )n nc x J x  or ( )nj x ; 
 

 6
2nA J

    5
2n nB J J
    4 2

2n nC J J
   

 4
2 2n n nD J J J
    3 3

2n nE J J
    3 2

2 2n n nF J J J
     

 3 2
2 2n n nG J J J
    2 4

2n nH J J
    2 3

2 2n n nI J J J
     

 2 2 2
2 2n n nJ J J J

    2 3
2 2n n nK J J J
    5

2n nL J J
   

 4
2 2n n nM J J J
    3 2

2 2n n nN J f J
    2 3

2 2n n nO J J J
     

 6  nP J     5
2n nQ J J
    4 2

2  n nR J J
    

 3 3
2n nS J J
    2 4

2n nT J J
  ; 

 
and omit a lot of basic algebra. 
 

 It is well known that 1 1n n nJ xJ j   , 2n n nJ J j , 2 2
2 1 1n n nJ J xJ   , 

2
2 2 1(2 )n n nJ x J x J    , 2

2 2n n nJ x J j   , 2 2 2
2 2 2n n nJ J x J   , and the 

Jacobsthal addition formula 1 1m n m n m nJ J J xJ J     [3]. 

 
 1.1 Sums of Jacobsthal Polynomial Products of Order 4: Sums of 
gibonacci polynomial products of order 4 are explored in [5]. Four of them form the 
basis of our discourse: 
 

   3 2 2 2 2 2 3
4 2 2 2 2 22 2( )n n n n n n n n n nJ J J xJ J x J J J x x J J          

  4 2 4 3 3 5 2 2 6 3
2 2 2 2 2 2 2( )n n n n n n n n nx J J J x x J J x J J x J J         ;   (1) 

 

   4 3 2 2 2 3 2 3
4 1 2 2 2 24 2 2 6(3 ) (4 )n n n n n n n nJ J xJ J x x J J x x x JJ             

          3 2 2 2 4 4 3 3
2 2 2 2 2( ) ( )n n n n n nx J J J x x J x x J J       ;                   (2) 

 

   4 2 2 2 4 2 4 4 6 2 2
4 2 2 2 2 2 23 2n n n n n n n n n nJ J x J J x J J J x J x J J          ;                      (3) 

 

  4 2 3 3 2 2 2 4 3 2 3
4 3 2 2 2 21 4 6 4 6( ) ( ) ( )n n n n n n n nJ x J x J J x x J J x x x J J             

  5 4 3 4 5 4 3 6 2 2
2 2 3 2( ) ( )n n n n nx x x J x x J J x J J       ,                 (4) 

where ( )n nc c x . 
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 1.2 Sums of Jacobsthal Polynomial Products of Order 6: We investigated 
several sums of Jacobsthal polynomial products of order 6 in [6]. Six of them are 
the following: 
 

 2 2
6 2 4 2 1 2 13 16 4( ) ( )nJ B x C x D x x E             

  3 2 4 3 2 2 3 2 10 16 7 1( ) ( )x x F x G x x x H            

  4 3 2 6 4 3 2 9 20 6 3 6 5( ) ( )x x x I x K x x x x L             

  7 6 5 4 3 7 5 4 2 3 6 5 2 3( ) ( )x O x x x x Q x x x R             

           8 7 2( )x x S   .                                                                               (5) 

 

 2 3  3 2
6 2 4 7 2 2 7 4 3( ) ( )nJ A xB x x C x D x x x E    
            

  4 5 4 3 2 6 5 10 2( )x F x G x x x x H           

  5 4 3 5 7 9 12 5 2( )x x x I x J x K         

  5 4 3 6 5 4 3 3 8 4  2 4 3( ) ( )x x x L x x x x M           

  7 6 5 8 7 2 3 3 8 2 2( ) ( ) ( )x x x N x x O x x P             

  7 6 5 8 7 6 5 3 4 2 2 2( ) ( )x x x Q x x x x R         

            9 8 9 4( )x x S x T    .                                                                   (6) 

 

 2 3 2 3
6 3 1 2 3 2 15 13 2 2( ) ( ) ( )nJ x A x x B x x x C x D   
           

  4 3 2 4 5 20 27 5 3 2( )x x x x E x F x G           

  5 4 3 2 3 15 31 19 2 5 11 4 5( ) ( )x x x x x H x x x I            

  6 5 7 6 5 4 3 2 6 17 17 5( ) ( )x x J x K x x x x L           

  6 5 4 3 7 6 5 7 2 8 2 2( ) ( )x x x x M x x x N x O             

  2 3 7 6 5 1( ) ( )( )x x x P x x x Q         

           8 7 6 5 9 8 10 94 4 3 4( ) ( ) ( )x x x x R x x S x x T          .       (7) 
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 2 3 2
6 4 2 1 2 5 2 22 15 2( ) ( ) ( )nJ x A x x B x x x C  
           

  4 3 4 3 2 5 4 2 27 31 2 3 2 3( ) ( ) ( )x x D x x x x E x x F             

  6 5 5 4 3 2 20 41 21( ) ( )x x G x x x x x H           

  6 5 4 3 6 5 8 7 9 13 16 5 2 2( ) ( ) ( )x x x x I x x J x x K             

  6 5 4 3 7 6 4 3 9 25 21 5 2 4 2 2( ) ( )x x x x L x x x x M            

  8 7 6 5 9 8 7 3 7 10 2 2( ) ( )x x x x N x x x O          

  2 3 8 7 6 5 2 1 3 5 3( ) ( )( )x x x P x x x x Q          

  9 8 7 6 5 10 9 8 2 6 3 2 7 4( ) ( )x x x x x R x x x S            

         10 9 2( )x x T   .                                                                              (8) 

 

  2 3 3 2
6 1 2 2 4 6 12 7( ) ( )nj A xB x x C x D x x x E    
          

  4 3 5 4 3 2 4 3 2 5 6 5 2( ) ( )x x F x G x x x x H            

  5 4 3 5 7 4 3 2 18 32 11 2 2 2( ) ( )x x x I x J x K x x x L             

  6 5 4 3 7 6 5 2 8 11 6 2 2 3 7 2( ) ( )x x x x M x x x N          

  8 7 2 3 7 6 5 4 2 2 6 10 7( ) ( ) ( )x x O x x P x x x x Q            

  8 7 6 5 9 8 9 2 2 2 2 3( ) ( )x x x x R x x S x T         .                  (9) 

 

 2 3 2
6 5 5 5 1 2 13 11 2( ) ( )nj x x A x x x B 
          

  4 3 2 5 4 359 65 21 2 2 2 4( ) ( )x x x x C x x x D          

  5 4 3 2  74 116 40 7 3( )x x x x x E       

  6 5 4 7 6 52 6 6 2 4( ) ( )x x x F x x x G        

   6 5 4 3 255 133 96 19 2( )x x x x x x H        

  7 6 5 4 3 7 6 5 18 36 56 21 5 2 5 5( ) ( )x x x x x I x x x J            

  9 8 7 7 6 5 4 3 2 4 24 76 84 36 5( ) ( )x x x K x x x x x L            
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  8 7 6 5 4 3 2 8 7 5 5( )x x x x x x M         

  9 8 7 6 5 10 9 7 6 10 35 16 2 2 2( ) ( )x x x x x N x x x O           

  2 2 3 9 8 7 6 5 5 5 1 6 14 12 6)( ) ( )(x x x x P x x x x x Q            

  10 9 8 7 6 5 4 18 16 2 5( )x x x x x x R         

           11 10 9 8 11 10 9 2 18 19 4 5 5( ) ( )x x x x S x x x T        .          (10) 

 
 Our goal is to confirm the Jacobsthal identities (7) through (10) using graph-
theoretic techniques. 
 
2. Graph-Theoretic Tools 
 

 To confirm these Jacobsthal results, consider the weighted Jacobsthal 

digraph D in Figure 1 with vertices 1v  and 2v  [3, 4]. It follows from its weighted 

adjacency matrix   
1

1 0

x
M

 
   
  

 that 

 

 
Figure 1: Weighted Digraph D 

 

1

1

,
n nn

n n

J xJ
M

J xJ




 
   
  

 

where ( )n nJ J x  and 1n   . 

 

 The sum of the weights of closed walks of length n originating at 1v  is 1nJ  , 

and that of those originating at 2v  is 1nxJ  . So the sum of the weights of all closed 

walks of length n in the digraph is 1 1n n nJ xJ j   . These facts play a major role 

in the graph-theoretic proofs. 
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 Let A, B, and C denote the sets of closed walks of varying lengths 

originating at vertex v. Then the sum of the weights of the elements in the product set 

A B C   is defined  as the product the sums of the walks in each component [4]. 

 

 With these tools at our convenience, we are now ready to explore the graph-
theoretic proofs. 
 

3. Graph-Theoretic Confirmations 
 

 We begin our explorations with identity (7)  
 

 3.1 Confirmation of Identity (7): Proof: Let S denote the sum of the 

weights of closed walks of length 6 2n   originating at 1v . Clearly, 6 3nS J  . 
 

 We will now compute the sum S in a different way. To this end, let w be an 

arbitrary closed walk of length 6 2n    originating at 1v . It can land at 1v  or 2v  at 

the 2 1 st( )n   and 4 2 nd( )n   steps:  
 

1 1

subwalk of length 2 1 subwalk of length 2 1 subwalk of length 2

... ... ... ,

n n n

w v v v v v v

 

      
  

 

where 1v v  or 2v . 
 

Table 1: Sums of the Weights of Closed Walks Originating at 1v  
 

w  lands at 1
v  at 

the st(2 1)n   step? 

w  lands at 1
v  at the 

nd(4 2)n   step? 

w  lands at 1
v  at the 

nd(6 2)n  step? 

sum of the weights 

of walks w 

yes yes yes 2
2 2 2 1n n

J J
   

yes no yes 2 2 2 1 2n n n
xJ J J

 
  

no yes yes 3
2 1n

xJ
  

no no yes 2 2
2 1 2n nx J J  

 
 Table 1 shows the possible cases and the sums of weights of the 

corresponding walks w, where ( )n nJ J x . Using equations (3) and (4), it follows 

from the table that the sum S of the weights of such walks w  is given by 



 GRAPH-THEORETIC CONFIRMATIONS 53 

 2 3 2 2
2 2 2 1 2 2 2 1 2 2 1 2 1 2n n n n n n n nS J J xJ J J xJ x J J           

     2 2
2 1 2 2 2 1 2 1 2 2 2 2( ) ( )n n n n n n nJ J xJ xJ J J xJ          

     4 3 2 1 4 2 2n n n nJ J xJ J      

     2 2
4 3 1 4 2( ) ( )n n n n n nJ J xJ J xJ j       

     2 2 2 2
4 3 2 2 4 2 2 22 1( ) ( )( )[ ]n n n n n n n n nJ J xJ J x J J xJ J x J             

     4 2 3 3 2 2 2
2 2 21 4 6(( ) )[ n n n nx J x J Jn x x J J         

     4 3 2 3
24 6( ) n nx x x J J    

  5 4 3 4 5 4 3
23 2( ) ( )n n nx x x J x x J J        

  6 2 2 2 2 2
2 2 22 1( )][n n n n n nx J J J xJ J x J       

  4 2 2 2 4 2
2 2 2 2 2 3[ n n n n n nJ x J J x J J J        

  4 4 6 2 2 2
2 2 2 ( )( )]n n n n n nx J x J J xJ J x J       

     2 3 2 31 2 3 2 15 13 2 2( ) ( ) ( )x A x x B x x x C x D             

  4 3 2 4 5 20 27 5 3 2( )x x x x E x F x G           

  5 4 3 2 5 4 3 15 31 19 2 11 5( ) ( )x x x x x H x x x I            

  6 5 7 6 5 4 3 2 6 17 17 5( ) ( )x x J x K x x x x L           

  6 5 4 3 7 6 5 7 2 8 2 2( ) ( )x x x x M x x x N x O             

  2 3 7 6 5 1( ) ( )( )x x x P x x x Q           

  8 7 6 5 9 8 10 94 4 3( ) ( ) ( )x x x x R x x S x x T          , 

where ( )n nJ J x . 

 

         This value of S, coupled with its earlier value, yields identity (7), as desired.   

 
 3.2 Confirmation of Identity (8): Proof: Let S   denote the sum of the 

weights of closed walks of length 6 3n   originating at 1v  in the digraph. 

  

 Then 6 4nS J  . 
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 To compute S   in a different way, we first let w be an arbitrary closed walk 

of length 6 3n   originating at 1v . It can land at 1v  or 2v  at the st(2 1)n  and 

nd(4 2)n   steps: 

 

1 1

subwalk of length 2 1 subwalk of length 2 1 subwalk of length 2 1

... ... ... ,

n n n

w v v v v v v

  

      
  

 

where 1v v  or 2v . 

 

Table 2: Sums of the Weights of Closed Walks Originating at 1v   

 

w  lands at 1v  at 

the st(2 1)n   step? 

w  lands at 1v  at the 

nd(4 2)n   step? 

w  lands at 1v  at the 

rd(6 3)n  step? 

sum of the weights 

of walks w 

yes yes yes 3
2 2n

J
  

yes no yes 2
2 2 2 1n n

xJ J
    

no yes yes 2
2 2 2 1n n

xJ J
   

no no yes 2 2
2 1 2n n

x J J
  

 
 Table 2 summarizes the possible cases and the sums of the weights of the 

respective walks w, where ( )n nJ J x . It follows by the table, and equations (3) and 

(4) that 
 

 3 2 2 2
2 2 2 2 2 1 2 1 22n n n n nS J xJ J x J J        

      2 2 2
2 2 2 2 2 1 2 1 2 2 2( ) ( )n n n n n nJ J xJ xJ J xJ          

      4 3 2 2 4 2 2 1n n n nJ J xJ J       

      2 2 2 2 2 2
4 3 2 4 2 2 22 1( ) ( )[ ]n n n n n n n nJ J x J xJ J xJ J x J            

      2 3 2 4 32 1 2 5 2 22 15 2 2( ) ( ) ( ) ( )x A x x B x x x C x x D              

  4 3 2 5 4 6 5 27 31 2 3 2 3( ) ( ) ( )x x x x E x x F x x G            

  5 4 3 2 6 5 4 3 20 41 21 9 13 16 5( ) ( )x x x x x H x x x x I            

  6 5 8 7 6 5 4 3 2 2 9 25 21 5( ) ( ) ( )x x J x x K x x x x L            
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  7 6 4 3 8 7 6 5 2 4 2 2 3 7 10 2( ) ( )x x x x M x x x x N            

  9 8 7 2 3 2 2 1( ) ( )( )x x x O x x x P          

  8 7 6 5 9 8 7 6 5 3 5 3 2 6 3 2( ) ( )x x x x Q x x x x x R             

  10 9 8 10 9 7 4 2( ) ( )x x x S x x T      . 

 

          By equating the two values of S  , we get the desired result, as expected.     

 

 3.3 Confirmation of Identity (9): Proof: Let S   denote the sum of the 

weights of all closed walks of length 6 1n   in the digraph. Clearly, 6 1nS j
 . 

 

 To compute S   in a different way, we let w be an arbitrary closed walk of 

length 6 1n  . 
 

 Case 1: Suppose w originates at 1v . It can land at 1v  or 2v  at the 2nth and 

4nth steps: 

1 1

subwalk of length 2 subwalk of length 2 subwalk of length 2 1

... ... ... ,

n n n

w v v v v v v



      
  

 

where 1v v  or 2v . 

 

Table 4: Sums of the Weights of Closed Walks Originating at 1v   

 

w  lands at 1
v  at 

2nth step? 

w  lands at 1
v  at the  

4nth step? 

w  lands at 1
v  at the 

st(6 1)n  step? 

sum of the weights 

of walks w 

yes yes yes 2
2 2 2 1n n

J J
   

yes no yes 2
2 1 2n n

xJ J
   

no yes yes 2
2 2 2n n

xJ J
  

no no yes 2
2 1 2 2 1n n n

x J J J
   

 

 It follows from Table 4 that the sum 1S   of the weights of all such walks w is 

given by 
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 2 2 2 2
1 2 2 2 1 2 1 2 2 2 2 2 1 2 2 1n n n n n n n n nS J J xJ J xJ J x J J J

           

      2 2
2 2 2 1 2 2 1 2 2 1 2 1( ) ( )n n n n n n nJ J xJ xJ J J xJ          

      4 1 2 2 4 2 1n n n nJ J xJ J      

      = 6 2nJ  . 

 

 Case 2: Suppose w originates at 2v . Then also w can land at 1v  or 2v  at the 

2nth and 4nth steps: 

2 2

subwalk of length 2 subwalk of length 2 subwalk of length 2 1

... ... ... ,

n n n

w v v v v v v



      
  

 

where 1v v  or 2v . 

 

Table 5: Sums of the Weights of Closed Walks Originating at 2v  

 

w  lands at 1
v  at 

2nth step? 

w  lands at 1
v  at the  

4nth step? 

w  lands at 1
v  at the 

st(6 1)n  step? 

sum of the weights 

of walks w 

yes yes yes 2
2 1 2n n

xJ J
  

yes no yes 2 3
2n

x J   

no yes yes 2
2 1 2 2 1n n nx J J J   

no no yes 3 2
2 2 1n nx J J   

 

 It follows from Table 5 that the sum 2S   of the weights of all such walks w is 

given by 
 

             2 2 3 2 3 2
2 2 1 2 2 2 1 2 2 1 2 2 1n n n n n n n nS xJ J x J x J J J x J J

         

      2 2 2
2 2 1 2 2 2 1 2 1 2 1( ) ( )n n n n n n nxJ J xJ x J J J xJ         

      4 1 2 4 2 1( )n n n nx J J xJ J     

      6nxJ . 
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 Combining the two cases, and using identities (5) and (6), we get 
 

 1 2S S S      

       6 2 6n nJ xJ    

       2 3 3 24 7 2 2 7 4 3( ) ( )[A xB x x C x D x x x E             

  4 5 4 3 26 5 10 2( )x F x G x x x x H           

  5 4 3 5 79 12 5 2( )x x x I x J x K         

  5 4 3 6 5 4 33 8 4 2 4 3( )( )x x x L x x x x M         

  7 6 5 8 7 2 3 3 8 2 2( ) ( ) ( )x x x N x x O x x P            

  7 6 5 8 7 6 5  3 4 2 2 2( ) ( )x x x Q x x x x R         

  9 8 9 24 2 4 2 1 2( ) ( )] [x x S x T B x C Dx x           

  3 2 4 3 2 10 16 7 1 9 20 6 6( ) ( )x x x H x x x I x K            

  4 3 2 5 4 3 2 3 6 5 2 4 8 5( ) ( )x x x x L x x x x M            

  6 5 4 7 6 5 4 3 3 6 2 2 3 6 5( ) ( )x x x N x O x x x x Q             

  7 5 4 8 7 2 3 2( ) ( ) ]x x x R x x S        

       2 3 3 22 2 4 6 12 7( ) ( )A xB x x C x D x x x E              

  4 3 5 4 3 2 4 3 2 5 6 5 2( ) ( )x x F x G x x x x H            

  5 4 3 5 7 18 32 11 2 2( )x x x I x J x K         

  4 3 2 6 5 4 3 2 2 8 11 6 2( ) ( )x x x L x x x x M           

  7 6 5 8 7 2 3 2 3 7 2 2 2( ) ( ) ( )x x x N x x O x x P            

  7 6 5 4 6 10 7( )x x x x Q      

  8 7 6 5 9 8 9 2 2 2  2 3( ) ( )x x x x R x x S x T         . 

 Equating this value of S   with its earlier value yields identity (9), as  

desired.               

 
 Finally, we explore the confirmation of identity (10). 
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 3.4 Confirmation of Identity (10): Proof: Let S denote the sum of the 

weights of all closed walks of length 6 5n   in the digraph. Then 6 5nS j  . 

 

 We will now compute S in a different way. To this end, let w be an arbitrary 

walk of length6 5n  . 
 

 Case 1: Suppose w originates at 1v . It can land at 1v  or 2v  at the nd2 2( )n   

and th4 4( )n   steps: 

 

1 1

subwalk of length 2 2 subwalk of length 2 2 subwalk of length 2 1

... ... ... ,

n n n

w v v v v v v

  

      
  

 

where 1v v  or 2v . 

 

Table 6: Sums of the Weights of Closed Walks Originating at 1v  

 

w  lands at 1
v  at 

the nd(2 2)n   

step? 

w  lands at 1
v  at the 

th(4 4)n   step? 

w  lands at 1
v  at the 

th(6 5)n  step? 

sum of the weights  

of walks w 

yes yes yes 2
2 3 2 2n n

J J
   

yes no yes 2 3 2 2 2 1n n n
xJ J J

  
  

no yes yes 3
2 1n

xJ
  

no no yes 2 2
2 2 2 1nx J J   

 

 It follows from Table 6 that the sum 1S  of the weights of such walks w is 

given by 
 

 2 3 2 2
1 2 3 2 2 2 3 2 2 2 1 2 2 2 2 2 1n n n n n n n nS J J xJ J J xJ x J J             

      2 2
2 2 2 3 2 2 2 2 2 1 2 3 2 1( ) ( )n n n n n n nJ J xJ xJ J J xJ            

      4 5 2 2 4 4 2 1n n n nJ J xJ J       

      6 6nJ    

      6 4 6 31( ) n nx J xJ    . 
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 Case 2: Suppose w originates at 2v . It also can land at 1v  or 2v  at the 

nd(2 2)n   and th(4 4)n  steps: 

 

2 2

subwalk of length 2 2 subwalk of length 2 2 subwalk of length 2 1

... ... ... ,

n n n

w v v v v v v

  

      
  

 

where 1v v  or 2v . 

 

Table 7: Sums of the Weights of Closed Walks Originating at 2v  

 

w  lands at 1v  at 

the nd(2 2)n   

step? 

w  lands at 1v  at the 

th(4 4)n   step? 

w  lands at 1v  at the 

th(6 5)n  step? 

sum of the weights  

of walks w 

yes yes yes 2 3 2 2 2 1n n n
xJ J J

  
 

yes no yes 2 2
2 2 2n n

x J J
   

no yes yes 2 2
2 2 2 1n n

x J J
   

no no yes 3 2
2 1 2n n

x J J
  

 

 It follows from Table 7 that the sum 2S  of the weights of closed walks w 

originating at 2v  is given by 

 2 2 2 2 3 2
2 2 3 2 2 2 1 2 2 2 2 2 2 1 2 1 2n n n n n n n n nS xJ J J x J J x J J x J J            

      2 2 2
2 2 2 1 2 3 2 1 2 2 2 2 1( ) ( )n n n n n n nxJ J J xJ x J J xJ          

      4 4 2 1 4 3 2( )n n n nx J J xJ J      

      6 4nxJ  . 

 
 Using equations (7) and (8), we then get 

 1 2S S S    

    6 4 6 32 1( ) n nx J xJ      

    2 3 22 1 2 1 2 5 2 22 15 2(( ) ( ) ( ))[x x A x x B x x x C            

  4 3 4 3 2 5 4 2 27 31 2 3 2 3( ) ( ) ( )x x D x x x x E x x F            
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  6 5 5 4 3 2 20 41 21( ) ( )x x G x x x x x H          

  6 5 4 3 6 5 8 7 9 13 16 5 2 2( ) ( ) ( )x x x x I x x J x x K            

  6 5 4 3 7 6 4 3 9 25 21 5  2 4 2 2( ) ( )x x x x L x x x x M           

  8 7 6 5 9 8 7 3 7 10 2 2( ) ( )x x x x N x x x O          

  2 3 8 7 6 5 2 1 3 5 3( ) ( )( )x x x P x x x x Q          

  9 8 7 6 5 10 9 8 2 6 3 2 7 4( ) ( )x x x x x R x x x S           

  10 9 2 2 1 2 3 2( ) ( ) ( )] [x x T x x A x x B           

  3 2 3 4 3 2 15 13 2 2 20 27 5 3( ) ( )x x x C x D x x x x E            

  4 5 5 4 3 2 2 15 31 19 2( )x F x G x x x x x H           

  5 4 3 6 5 7 11 5 2( ) ( )x x x I x x J x K          

  6 5 4 3 6 5 4 3 6 17 17 5 2( ) ( )x x x x L x x x x M           

  7 6 5 7 2 3 8 2 2 1( ) ( )( )x x x N x O x x x P           

  7 6 5 8 7 6 5 9 8 4 4 3 4( ) ( ) ( )x x x Q x x x x R x x S             

  10 9 ( ) ]x x T      

2 3 25 5 1 2 13 11 2( ) ( )x x A x x x B        

  4 3 2 5 4 3 59 65 21 2 2 2 4( ) ( )x x x x C x x x D           

  5 4 3 2 6 5 4 74 116 40 7 3 2 6 6( ) ( )x x x x x E x x x F           

  7 6 5 2 4( )x x x G     

  6 5 4 3 255 133 96 19 2( )x x x x x x H        

  7 6 5 4 3 7 6 5 18 36 56 21 5 2 5 5( ) ( )x x x x x I x x x J            

  9 8 7 7 6 5 4 3 2 4 24 76 84 36 5( ) ( )x x x K x x x x x L            

  8 7 6 5 4 3 2 8 7 5 5( )x x x x x x M        

  9 8 7 6 5 10 9 7 6 10 35 16 2 2 2  ( ) ( )x x x x x N x x x O           

  2 2 3 9 8 7 6 5 5 5 1 6 14 12 6( ) ) ( )(x x x x P x x x x x Q            

  10 9 8 7 6 5 4 18 16 2 5( )x x x x x x R         

  11 10 9 8 11 10 9 2 18 19 4 5 5( ) ( )x x x x S x x x T        . 
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 This value of S, coupled with the earlier value, yields the desired result, as 

expected.            □ 
 
 In conclusion, we add that the graph-theoretic confirmations of the numeric 
versions of the Jacobsthal identities (7) through (10) follow from the above 
arguments. 
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1. Introduction 
 
 The concept of fuzzy sets and fuzzy set operation was first introduced by 
Zadeh [14] and subsequently several authors have discussed various aspects of the 
theory and application of fuzzy sets such as fuzzy topological spaces, similarity 
relations and fuzzy orderings, fuzzy measures of fuzzy events and fuzzy 
mathematical programming. The basic arithmetic structure for fuzzy numbers was 
later developed by Mizumoto and Tanaka [4], Diamond and Kloeden [3]. Matloka [5] 
introduced bounded and convergent sequence of fuzzy numbers, studied some of 
their properties and showed that every convergent sequence of fuzzy numbers is 
bounded. For sequences of fuzzy numbers, Nanda [6] studied sequences of fuzzy 
numbers and showed that the set of all convergent sequences of fuzy numbers forms 
a complete matric space. In addition, sequences of fuzzy numbers have been 
discussed by Nuray and Savas [7], Savas [10], Mursaleen and M. Basarir [2],  
Y. Altin, M. Et and M. Basarir [1], B.C. Tripathy and B. Sarma [12], B. C. Tripathy, 
A. J. Dutta [13], N. Subramanian [11]. 
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 The main purpose of this paper is to introduce some double sequence spaces 
of fuzzy numbers defined by a modulus function. 
 
2. Definitions and Preliminaries 
 

 Let D denote the set of all closed bounded intervals ,[ ]A A A  on the real 

line R. For ,A B D  we define, 
 

iff and  A B A B A B   , 

 

    
max( , ) ( )d A B A B A B        

 

 Then it can be easily seen that d defines a metric on D and ,( )D d  is a 

complete metric space [3]. Also it is easy to see that ≤ defined above is a partial order 

relation in D. 

 

 A fuzzy number is a fuzzy subset of the real line R which is bounded, convex 

and Normal. Let ( )L R  denote the set of all fuzzy numbers which are upper 

semicontinuous and have compact support i.e. if  ( )X L R  then for any 

[0,1],X   is compact set in R, where 

 

if

if

: 0,1]
   

: 0 0

( ) (

( )

t X t
X

t X t


 



 
 

 
 

 

 For each0 1  , the α-level set X  is a nonemtpy compact subset of R. 

The linear structure of ( )L R  induces addition X Y  and scalar multiplication

,X R   , in terms of α-level sets by 

 

and[ ] [ ]  [ ] [[ ] ]X Y X Y X X          

for each 0 1  . 
 
 The absolute value of ( )X X L R   is defined by 

 

max if

if

{ 0
 

0, 0.

( ), ( )
( )

X t
X t

t

t X t 
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 Define a map : ( ) ( )d L R L R R   by 

 

sup
0 1

, ,( ) ( )d X Y d X Y 

 
 . 

 

 For , ( )X Y L R , define iffX Y X Y    for any [0,1]  . 

 

 It is known that ,( ( ), )L R d  is a complete metric space [6]. 

 

 A metric d  on ( )L R  is said to be translation invariant metric if 

 
, ,( ) ( )d X Z Y Z d X Y    for , , ( )X Y Z L R : 

 

 A subset E of L(R) is said to be bounded above if there exists a fuzzy 

number C, called an upper bound of E, such that X C  for everyX E . C is 

called the least upper bound or sup of E if C is an upper bound and is the smallest of 

all upper bounds. A lower bound and the greatest lower bound or infimum are 
defined similarly. 
 

 E is said to bounded if it is both bounded above and bounded below. 

 

 A sequence  ( )kX X of fuzzy numbers is a function from X into the set N 

of all positive integers into ( )nL R . Thus, a sequence of fuzzy numbers X is a 

correspondence from the set of positive integers to a set of fuzzy numbers i.e. to each 

positive integer k there correspondence a fuzzy number ( )X k . It is more common to 

write kX  rather than ( )X k  and to denote the sequence of ( )kX  rather than X. The 

fuzzy number ( )X k is called the kth term of the sequence. 

 
 By the convergence of a double sequence we mean the convergence on the 

Pringsheim sense that is, a double sequence ( )klx x  has Pringsheim limit L 

(denoted by limP x L  ) provided that given 0  there exists NN   such that 

,k lx L     whenever ,k l N  [9]. 

 
 A fuzzy real valued double sequence is a double infinite array of fuzzy real 
numbers. 
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 We denote a fuzzy real valued double sequence by ( )mnX , where mnX  are 

fuzzy real numbers for each ,m n N . 

 
 We now give the following definitions of double sequences of fuzzy 
numbers which will be needed in the sequel ([10], [11]). 
 

 Definition 2.1: A double sequence ( )mnX X  of fuzzy numbers X from  

N N  (N is the set of all positive integers) into ( )L R . The fuzzy number mnX  

denotes the value of the function at a point ( ),m n N N   and is called the 

( ),m n th term of the sequence. 

 

 Definition 2.2: A double sequence ( )mnX X  of fuzzy numbers is said to 

be convergent in Pringsheim’s sense if there exists a fuzzy number 0X  such that 

mnX  converges to 0X  as both m and n tend to  , independently of one another;

lim 0
,

mn
m n

X X . 

 It is almost trivial that ( )mnX X  converges in Pringsheim’s sense if and 

only if for every 0  there exists an integer ( )N N   such that ( , )jk mnd X X    

whenever  min , , ,j k m n N . 

 
 The crucial difference between the convergent of single sequence of fuzzy 
numbers and the convergence in Pringsheim’s sense of double sequences of fuzzy 
numbers is that latter does not imply the boundedness of the terms of the double 
sequence of fuzzy numbers. 
 

 Let 2F  denote the set of all double convergent sequence of fuzzy numbers. 

In [ ], it was shown that 2F  is a complete metric space. 
 

 Definition 2.3: A double sequence ( )mnX X  of fuzzy numbers is said to 

be Cauchy sequence if for every  0   there exists 0i N  such that 

 

if  min 0( ,  )   ( , )i j
mn mnd X X i j i  . 

 

 Definition 2.4: A double sequence ( )mnX X ) of fuzzy numbers is bounded 

if there exists a positive integer M such that 0( , )mnd X X M for all m and n, 
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sup( ,2) 0
,

( , ) .mn
m n

x d X X      

 

we will denote the set of all bounded double sequences by 2F . 

 

 Definition 2.5:[10] Let ( )klX X  be a double sequence of fuzzy numbers. 

The space of strongly double cesaro summable sequences [C, 1, 1] (F) defined as 
follows: 

lim 0

1 1

1
( , ) 0

m n

kl
mn

k l

P d X X
mn  

  . 

 
 Definition 2.6: A function   : [0, ) [0, )f     is called a modulus if 

 
 (i)      ( ) 0f x   if and only if 0x  , 

 
 (ii)       ( ) ( ) ( )f x y f x f y   , for all 0, 0x y  , 

 

 (iii)     f  is increasing, and 

 

 (iv)   f is continuous from the right at 0. Since ( ) ( ) ( )f x f y f x y      , it  

           follows from here that  f  is continuous on [0, ) . 

 

 By a paranorm we mean a function :g E R  (where E is a real or 

complex linear space) which satisfies the following conditions; 
 
 (i)      ( ) 0g   , where (0, 0, )     

 
 (ii)     ( ) 0g x  , for all x E , 

 
 (iii)    ( ) ( )g x g x  , 

 
 (iv)    ( ) ( ) ( )g x y g x g y    for all ,x y E , 

 

 (v)    If ( )n  is a sequence of scalars with ( )n n     and ( )nx  is a 

sequence of the elements of E with ( ) 0( )ng x x n    , then

( ) 0( )n ng x x n     . 
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 Then the pair ( ),E g is called a paranormed space and g is a paranorm for E. 

 

 Let ,( ) mn
k lA a denote a four dimensional summability method that maps the 

complex double sequences x into the double sequence Ax where the k, l-th term to 

Ax  is as follows: 
 

1 1

( ) mn
kl kl mn

m n

Ax a x
 

 

   

 

such transformation is said to be non negative if  mn
kla  is non negative. 

 
 The notion of regularity for two dimensional matrix transformations was 
presented by Silverman and Toeplitz. Following Silverman and Toeplitz, Robison 
and Hamilton presented the following four dimensional analog of regularity for 
double sequences in which they both added an additional assumption of 
boundedness. This assumption was made because a double sequence which is  
P-convergent is not necessarily bounded. 
 
3. Some new sequence spaces 
 
 Recently, Mursaleen and M. Basarir [2] have defined the following spaces of 
sequences of fuzzy numbers as follows: 
 

 Let ( )( , 1,2, )nkA a n k    be a non negative regular matrix. We define 

 

  0[ , ] { ( ) : [ ( , 0) 0( )] }pk
k nk k

k

F A p X X a d X n     , 

 

  0[ , ] { ( ) : [ ( , )] 0( )}pk
k nk k

k

F A p X X a d X X n     , 

  sup[ , ] { ( ) : [ ( , 0)] },pk
k nk k

n k

F A p X X a d X

 
    

 
   

 
and call them respectively the spaces of strongly A-convergent to zero, strongly 

Aconvergent to 0X  and strognly A-bounded sequences of fuzzy numbers ( )kX X . 

 
 In the present paper, we extend above spaces for double sequences with 

respect to a modulus  f. 
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 Let ( )( , 1,2, 3, )mn
klA a m n    be a non negative regular matrix and 

( )mnp p  is the double sequence of strictly positive real numbrs mnp  for all

, .m n N  We define 

lim2
0 ,

1 1

[ , , ] { ( ) : [ ( ( , 0))] 0( , )}mn

m n
pmn

mn kl mnm n
k l

F A f p X X P a d f X m n
 

      , 

 

lim
2

0,
1 1

[ , , ] { ( ) : [ ( ( , ))] 0( , )}mn

m n
pmn

mn kl mnm n
k l

F A f p X X P a d f X X m n
 

      , 

 

  sup2

, 1 1

[ , , ] { : [ ( ( , 0))] }.mn

m n
pmn

mn kl mn
m n k l

F A f p X X a d f X

 

 
    

 
  

 
and call them respectively the spaces of strongly A-double convergent to zero, 

strongly A-double convergent to 0X  and strongly A-double bounded sequences of 

fuzzy numbers ( )mnX X  with respect to the modulus f. 

 
 If [ ,1, ( )1]A C F  then we have the following new sequence spaces: 

 

lim2 2
0 0

,
1 1

1
[ , , ] [ , ] { ( ) : [ ( ( ,0))] 0( , )}mn

m n
p

mn mn
m n

k l

F A f p F f p X X P d f X m n
mn

 

      ,  

 

lim
2 2

0
,

1 1

1
[ , , ] [ , ] { ( ) : [ ( ( , ))] 0( , )},mn

m n
p

mn mn
m n

k l

F A f p F f p X X P d f X X m n
mn

 

       

 

sup2 2

, 1 1

1
[ , , ] [ , ] { ( ): [ ( ( , 0))] }.mn

m n
p

mn mn
m n k l

F A f p F f p X X d f X
mn 

 

       

 

 If we take 1mnp   for all m, n, these spaces are reduced to the following 

new sequence spaces: 
 

lim2 2
0 0

,
1 1

[ , , ] [ , ] { ( ) : [ ( ( , 0))] 0( , )},
m n

mn
mn kl mn

m n
k l

F A f p F A f X X P a d f X m n
 

       

 

lim
2 2

0
,

1 1

[ , , ] [ , ] { ( ) : [ ( ( , ))] 0( , )},
m n

mn
mn kl mn

m n
k l

F A f p F A f X X P a d f X X m n
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sup2 2

, 1 1

[ , , ] [ , ] { ( ): [ ( ( ,0))] }.
m n

mn
mn kl mn

m n k l

F A f p F A f X X a d f X 

 

      

 

 If we take ( )f x x  and 1mnp   for all m, n we have 

 

lim2 2
0 0

,
1 1

[ , , ] [ ] { ( ) : [ ( ( ,0))] 0( , )},
m n

mn
mn kl mn

m n
k l

F A f p F A X X P a d f X m n
 

      ,  

 

lim
2 2

0
,

1 1

[ , , ] [ ] { ( ) : [ ( ( , ))] 0( , )},
m n

mn
mn kl mn

m n
k l

F A f p F A X X P a d f X X m n
 

       

 

sup2 2

, 1 1

[ , , ] [ ] { ( ): [ ( ( , 0))] }.
m n

mn
mn kl mn

m n k l

F A f p F A X X a d f X 

 

      

 
 Now we have 
 

 Proposition 3.1: If d  is a translation invariant metric of ( )L R  then 

 

 (i)     ( , 0) ( , 0) ( , 0)d X Y d X d Y   , 

 

 (ii)    ( , 0) ( , 0), 1.d X d X         

 

where ( )mnX X  and ( )mnY Y  are double sequences of fuzzy numbers. 

 
 Proof: This can be proved by using the same technique in [ ] and hence we 
omit the proof. 
 

 If d is a translation invariant, we have the following straight forward results. 
 

 Proposition 3.2: Let ( )mnp p  be a bounded sequence of strictly positive 

real numbers. Then 2 2
0 [ , , ],  [ , , ]F A f p F A f p  and 2[ , , ]F A f p  are linear spaces of all 

double sequences of fuzzy numbers over the complex field. 
 

 Proposition 3.3: 2 2
0 [ , , ],  [ , , ]F A f p F A f p  and 2[ , , ]F A f p  are absolutely 

convex subsets of the space of all double sequences of fuzzy numbers, where  

0 1mnp  . 
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4. Main Results 
 

 Theorem 4.1: Let ( )mnp p  be a bounded sequence of strictly positive real 

numbers. Then 2
0 [ , , ]F A f p  and 2  [ , , ]F A f p  are complete paranormed spaces with the 

paranorm g defined by 

 

sup

1

1 1

( ) [ ( ( ,0))]
M

mnmn p
kl mn

mn k l

g X a d f X
 

 

 
  

 
  

 

where max sup(1, )mn
mn

M p  and d is a translation invariant. 

 

 Proof: We consider the case 2
0 [ , , ]F A f p . Other can be treated similarly. 

Clearly ( ) 0g    and ( ) ( )g X g X  . Also we have ( ) ( ) ( )g X Y g X g Y    for

,( ) ( )mn mnX X Y Y  , in 2
0 [ , , ]F A f p . Now for any scalar λ, we have 

 

max (1, )mnp H     , 

where 

sup mn
mn

H p   ,  

so 
 

sup
1

( ) ( )( ) . ( )mn Mp

mn
g X g X     on 2

0 [ , , ]F A f p  

 
 Hence 0,  X    implies X   and also ,X    fixed implies 

X  . Now let  0  , X  fixed. For 1    we have 

 

1 1

[ ( ( , 0))]  mnmn p
kl mn

k l

a d f X
 

 

   for , ( )m n N N   . 

 

 Also for 1 ,m n N  , Since 
1 1

[ ( ( , 0))]  mnmn p
kl mn

k l

a d f X
 

 

  , there exist  

m, n  such that  [ ( ( , 0))]  mnmn p
kl mn

k m l n

a d f X
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 Taking  λ small enough, since f  is continuous we have 

 

1 1

[ ( ( , 0))]  2mnmn p
kl mn

k l

a d f X
 

 

   for all m, n 

 

 Hence, ( ) 0g X   as 0  . Therefore g is a paranorm on 2
0 [ , , ]F A f p . 

Completeness can be proved by using the technique in [13] for 2

p

Fl . 

 
 Similarly we can prove the following: 
 

 Theorem 4.2: If inf sup0 mn mnmn mn
p p     then 2[ , , ]F A f p  is a 

paranormed space with the above paranorm. 
 

 Theorem 4.3: Let 0 mn mnp q   and ( / )mn mnq p  be bounded. Then 

 
2 2[ , , ] [ , , ].F A f q F A f p  

 

 Proof: Let  2( ) [ , , ]mnX X F A f q  . Put  0[ ( ( , ))] mnq
mn mnt d f X X  and

mn

mn

q

mn p  .  Of course 0 1mn   . Take  0 mn    . Define 

 

, 1
 

0, 1

mn mn

mn
mn

t t
u

t


 


  

and 

0, 1
. 

, 1

mn

mn
mn mn

t
u

t t


 


 

 

 Then we have mn mn mnt u v   and    mn mn mn
mn mn mnt u v    and it follows that 

mn
mn mn mnu u t    and . mn

mn mnv v   Therefore 
 

0

1 1 1 1 1

[ ( ( , ))] ( )mn mn mn mnmn p mn mn
kl mn kl mn kl mn mn

k l k l k l l

a d f X X a t a u v  
     

     

      

 

1 1 1

0(m,n ).mn mn
kl mn kl mn

k l k l l

a t a v
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 Since 2[ , , ],X F A f q  
1 1

mn
kl mn

k l

a t
 

 

  is convergent and since 1,mnv   A is 

regular, 
1 1

mn
kl mn

k l

a v
 

 


 
is also convergent.  

 

 Hence, 2[ , , ]X F A f p   i.e. 2 2[ , , ] [ , , ].F A f q F A f p   
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1. Introduction 
 
 Let σ be a mapping of the set of positive integers into itself. A continuous 

linear functional   and   the space of bounded sequences, is said to be an invariant 

mean or a σ-mean, if and only if 
 

 (i) ( ) 0x   when the sequence ( )nx x  has 0( )nx  for all n, 

 (ii) ( ) 1e   where, (1,1, )e   ,  

 (iii) ( )( ) ( )x n x   for all x   . 

 
 In case, σ is the translating mapping 1n n  , a σ-mean is often called a 

Banach limit [1], and v , the set of bounded sequences all of whose invariant means 

are equal, is the set  f  of almost convergent sequences [5]. 
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 Let 0f  denote the space of almost convergent null sequences. If ( )nx x , 

we write ( )( ) ( )n nTx Tx x  . It is known that [13], 

 

lim uniformly in and lim :  , },{ ( )mn
m

V x t x Le n L x 


      

 
where 

1

1
( )

m
j

mn n
j o

x T x
m 

   

 

 Let 0V  denote the set of all bounded sequences which are σ-convergent to 

zero.  
 

Recently, in [10] and [12] the spaces V , 0V  , f  and 0f  were extended to

0,( ) ( )V Vp p  , ( )f p  and 0( )f p  in the following manner: 

 

 If ( )mp p  is a sequence of real numbers such that 0mp   and 
sup m
m
p   , we define  

 

 lim uniformly in0 :    0, ,( ) ( )
pm

mn
m

V x t x np


   

 lim uniformly in lim0 :    0, , ,( ) ( )
pm

mn
m

V x t x Le n x Lp 


      

 lim uniformly in
0

0 :    0, ,
1

1
( )

m

i
i

pm

n
m

x nx
m

f p 



 


  

 lim uniformly in
0

0 :    0, ,
1

1
( )

m

i
i

pm

n
m

x nx
m

f p 



 




 lim for some uniformly in
0

:    0, ,
1

1
,( )( )

p

i

m
m

n
m

i

xx L nL
m

f p 



 


  

  

 In particular, if 0mp p   for all m, we have 0 0( )V Vp   and

( )V Vp  . If  1( ) nn   , we get ( ) ( )V fp p   and 0 0( ) ( )V fp p  . 
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2. Preliminaries 
 

 By N and C we shall denote the set of positive integers and the fields of 

complex numbers, respectively. Let ( )nkA a  be an infinite matrix of complex 

numbers , 1,2( )nka n k    and X, Y be any two subsets of the space of complex 

sequences. By ( ),X Y we mean the class of matrices A such that for each 

( ), n nk k

k

x X A x a x   converges for each n, and ( ( ))nAx A x Y  . 

 
 Schaefer [13] has defined the concept of σ-conservative, σ-regular and  

σ-coercive matrices and characterized the classes of these matrices ie( ),c V


, 

( ),c V


reg and ( );V


 . Recently, the several authors such as Metin Basarir and 

Ekrem Savas [6], Mursaleen [8, 9, 10] Sirajudeen [14], Mushir A. Khan [11] and 

Husamettin Coskun [2] have characterized some matrix classes concerning V . The 

main purpose of this paper is to determine necessary and sufficient conditions to 

characterize the classes ( ( ), )cs V p   and 0( (, ))cs V p   which will fill up a gap in the 

existing literature. Where cs is the space of convergent series. 

 

 If X is a subset of the space of complex sequences, then we write X   for the 

generalized Köthe-Toeplitz dual of X, i.e. 
 

{ : k k

k

X a a x    converges for every }x X : 

 

 X  denotes the dual space of the continuous functional of X. 
 

 It is well known cs b   and cs bv   (linearly isomorphic) (see [4], p. 55 
and [3]) where bv  is the space of bounded variation sequences. 
 
 Throughout this paper the sums without limits rum from 1k   tok   . We 
write for all integers , 1m n    
 

 , ,( ) ( )mn m k

k

t t Ax a n k m x   , 

where 

0

( ) ( ( ), )
1

, ,
1

m
j

j

a n k m a n k
m






 .  
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 Now we quote some known results which will be useful in the proof of our 
results. 
 

 Lemma A[6]: Let X be a complete paranormed space with Schander basis 

( )
k
b , and ( )nA   a sequence of elements of X   with ( )n nk k

k

A x a x   for all x X  

and .n N   
 

 Furthermore, let ( )
k

q q  be a bounded sequence. Then 

 

 0( ( ), )A X V q    (1) 0( ( )) ( )mn kt b V q for all k, 

 

            (2)  lim lim sup ) 0( qm
mn

MM m
t


 . 

 

 Lemma B[6]: Let X be a complete paranormed space with Schander basis 

( )kb , and ( )
n
A  a sequence of elements of X   with ( )n nk k

k

A x a x   for all x X  

and n N . Furthermore, let ( )kq q  be a bounded sequence. Then 

 

,( ( ))A X V q    (1) there exists anL X   with 0( ( ) ( )) ( )mn k kt b L b V q    

       for all k, 
 

             (2) 
1

lim lim sup 0) .( qm
mn M

M m
t


   

 

 Lemma C[3]: cs b   (linearly isomorphic). 
 
3. Main Results 
 

 Theorem 1: Let p   . Then ( ( ), )A cs V p  if and only if 

 

(i) 
,

sup, ( , , )
m n

k

a n k m   ;    where    , , , 1,,( , ) n k m n k ma n k m a a    , 

 

(ii)  there exist 1 2, C    with  ( ), , 0,
pm

ka n k m    as  1m  , 

 uniformly in n, for each k, 
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(iii) 1

1
( ( (lim lim sup , , ) ) ( )lim , , 0.)[ ]pmk k

M km
k

M a n k m a n k m 


      

 

 Proof: Let (i), (ii) and (iii) hold. Then, from (i) and (ii), for n, m we have 

 

( ( ) ) ( ), , , ,
k k k

k a n k m k a n k m           . 

 

 Hence, , ,( )a n k m b . Therefore, by Lemma C, there is an L cs  with 

( ) k k

k

L x x   for allx cs . By (i), since , ,( )a n k m b  and mnt cs  for all  

m, n  so that mnt L cs   with 

 

( ( ) ) (, ), lim , , .mn k
k

k

t L a n k m k a n k m        

 

for all  m, n. By (ii), 0( ( ( )) ( )k k
mnt e L e V p   for all k, and by (iii) 

 

lim lim sup 0( ) .pm
mn

M m
t L M   

 

 Thus, since ( )( )ke  is a fundamental set in cs , it follows by Lemma B that

( ( ), )A cs V p . 

 

 Conversely, suppose that ( ( ), )A cs V p . Then , ,( ) ( )mn k

k

t Ax a n k m x   is 

defined for all x cs , m and n. Clearly (i) must be satisfied or else those series 

,( ), k

k

a n k m x  diverges for at least one m N , i.e. 2 ,( ( ))A cs V p . 

 

 Then mnt cs  for all m, n. By Lemma B  there is an L cs  such that (1) 

and (2) hold. Since L may be written as ( ) k k

k

L x x   on cs, by Lemma C, and 

( ( ))e k is a fundamental set in cs, (1) and (2) give us (ii) and (iii) respectively.  

 
 Hence, the proof is completed. 
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 Theorem 2: Let p   . Then 0( ( )),A cs V p  if and only if 
 

 (i)  , , 0( )
pm

a n k m   as m   , uniformly in n, for each k, 

 

 (ii) 1[ ( (lim lim sup , , lim ,) ( )), ] 0pm

M km
k

M a n k m a n k m    . 

 

 Proof: Let 0( ( )),A cs V p . Then, since 0 ( ) ( )V p V p  , we have

( ( ), )A cs V p . Hence, (i) and (ii) follow from the conditions (ii) and (iii) of 

Theorem 1 with 0 1, ,( )2k k    . 

 
 Now, let (i) and (ii) hold. Then from (ii), we have , ,( )a n k m b  for all  

m, n and by Lemma C, mnt cs  with ( , , lim , ,) ( )mn
k

k

t a n k m a n k m    for 

all m, n. By our choice of fundamental set in cs, (i) and (ii) are respectively 

equivalent to (1) and (2) of Lemma A. Hence, by Lemma A, 0( ( )),A cs V p  and 

this completes the proof. 
 
4. Corollaries 
 

 Corollary 1[14]: ,( )A cs V  if and only if 

 

 (i)     sup , ,( ( ))
m k

a n k m   ; for all n, 

 

 (ii)     ( ) ( )k nk na a V   for each k,  i.e.  lim , ,( ) km
a n k m u  uniformly in n. 

 

 In this case, the σ-limit of Ax  is k ku x  for each x cs . 

 

 Proof: Take 1mp   for all m in Theorem 1. 
 

 Corollary 2: 0,( )A cs V   if and only if 
 

 (i)     , , 0( )a n k m   as m   , uniformly in n, for each k, 

 

 (ii)    lim lim sup lim1 , , , , 0[ ( ( ) ( ))]
M m k

k

M a n k m a n k m    . 
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 Proof: Take 1mp   for all m in Theorem 2. 

 

 Corollary 3: Let p   . Then ,( ( ))A cs f p  if and only if 

 

 (i)      sup
,

, , ;( )
m n k

b n k m    where , , , 1,,( , ) n k m n k mb n k m b b    , 

 

 (ii)    there exist 1 2, , C    with  ( ), , 0
pm

kb n k m   , as m    

            uniformly in n, for each k, 

 

 (iii)    lim lim sup lim1 , , , , 0[ ( ( ( ) ) ( ) )]pmk
M km k

M b n k m b n k m k 


     . 

 
where  

0

1
, , ( )

1
) ,(

m

j

b n k m a n j k
m 

 

 . 

 
 Proof: Taking the mapping 1( )n n    instead of mapping σ as the 

translation mapping, the space ( )V p  of Theorem 1 reduces to ( )f p . Hence it is 

proved. 
 

 Corollary 4: Let  p   . Then 0( ( )),A cs f p  if and only if 

 

 (i)    , , 0( )
pm

b n k m    as m   , uniformly in n, for each k, 

 

 (ii) lim sup lim1[ ( ( ) ( ))lim , , , , 0]
M km k

pmM b n k m b n k m    . 

 
 Proof: Taking the mapping 1( )n n    in Theorem 2. 
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