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1. Introduction

FEztended gibonacci polynomials z,(x) are defined by the recurrence
Zy0(2) = a(x)z, 1 (x) + b(x)z,(z), where z is an arbitrary complex variable;

a(x), b(z), z,(z) and z,(x) are arbitrary complex polynomials; and n > 0.

Suppose a(z)=z and b(x)=1. When z,(z)=0 and z(z)=1,
z,(x) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 andz(z) =z,

z,(x) =1,(z), the nth Lucas polynomial.

They can also be defined by the Binet-like formulas
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0= TP @)@
where a(x)zm and ﬂ(x):#.

Clearly, f,(1)=F,, the nth Fibonacci number; and [ (1) =L,, the nth
Lucas number [1, 5, 6].

Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
p,(x)=f,(2z) and q,(z) =1,(2z), respectively. They also can be defined by the

Binet-like formulas

p(@) =L@ g @)= (@) 4 6 (@),

where y(z) = z + vz +1 and §(z) = z —~/z* + 1. In particular, the Pell numbers
P, and Pell-Lucas numbers (@, are given by P, =p (1)=f(2) and

n

2Q, = q,(1) =1,(2), respectively [6].

On the other hand, let a(z)=1 and b(z)==z. When z,(z)=0 and
z(x) =1, z,(x)=J,(z), the nth Jacobsthal polynomial; and when z,(z) =2 and
z(x) =1, 2,(z) = j,(x), the nth Jacobsthal-Lucas polynomial. They can also be
defined by the Binet-like formulas

J,(x) = and  j,(z) =u"(x)+0"(z),
u(z) - v(z)
where u(z) = # and v(z) = # Correspondingly, J, = J,(2)

and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively.
Clearly, J,(1)=F,;and j,(1) = L

n *

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas
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polynomials are closely related by the relationships J, (z) = x<"*1>/2fn(1/ﬁ) and
j,(x) = "% (1/3z) [4,5,6,7].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, =f, or I,, a=a(l), B=p1), yr=yQ1), §=61),
A =+z®+4, D =+/4z +1, and omit a lot of basic algebra.

2. Products of Fibonacci Polynomial Expressions

Our discourse hinges on the Cassini-like identity [6, 8]

TnikInr — 90 = (1" £, @

-1 if gn=pn
= :

where

A% otherwise

With this background, we begin our explorations.

Theorem 1:
m 2 2
I I In—29n-19n+19n+2 — 9192 X Im+19m+2 ] (2)
4 2 2
n=3 9n 9394 Im-19m

Proof: We will establish the formula using recursion [2, 6]. Let A, = LHS
and B,, = RHS. Then

2 2
Bm — Im+19m+2 . Im—29m-1

2 2
B””*l Im-19m Im9m+1

— In—29n-19m+19m+2

4
Im

_ A

Ay
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Thus, Ay Ana 2 =1. Consequently, 4, =

m m—1 3

as desired. O

TII !

In particular, we have

H f;L 2In-1/n+1in+2 _ $2 . fT?Hl m+2 . (3)
fn ($2 + 1)2 (.’E3 + 21’) fm—lfr?l
ﬁ ln—an—lln+1ln+2 — ‘T(‘/EQ + 2)2 . lm+llm+2 . (4)
n=3 I (2 +3z)(a* +42* +2) 1, 2

n=3 F4 12 F 1F2

m-—

2
ﬁ Q‘F;L 1 n+1Fn+2 _ i F Fm+2

2
l_m[ Ln—QLn—an+1Ln+2 — i Lm+1L7n,+2 )
n=3 L4 112 L 1L?n

By equation (4), we have
(fn+2 71—2)(fn+1 n—l) = [an - (_1)/",‘%2] [an + (_1)”]
= S =)@ =08+ a?).

Using Theorem 1, this yields

i (_1)n($2 — 1)f712 + $2] 5 fn—2 n—1/n+1/n+2
1— =
Hi £ H?, £

2 2
— x . fm+1 m+2 . (5)

@@+ 2) ff

M {1 @

n=3

— 1)fn2 + ‘/EQ ’ 5
Iz } EmTEeel ©
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where lim Jmsk a"(z).

m—>o0
m

Consequently,

2
ﬁ T B S
s\ By )12 B E)

s
—_
|
I
S|
[\

3
Il
w
eS
~

asin[3, 9], where 2 =1++/5.

Next we extract the Pell consequences of equations (5) and (6).

2.1 Pell Implications: Since p, (x) = f,(2z), it follows from equations (5)
and (6) that

2
z X Pm+1Pm+2 .

(2372 + 1) (4x2 + 1)2 pm_lpgn

s p . p2

m—-1-m

z 5

where y(z)=z+z? +1 and y =1++2.

Next we explore the Lucas counterparts of formulas (5) and (6).
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3. Products of Lucas Polynomial Expressions

Using equation (1), we have
(l’rb+2ln—2)(l’n,+ll’n,—1) = [lr21 + (_1)” A2$2] [lIQL - (_1)7LA2]

= I} + (<1)"(2® —1D)A%E - A'2.

By Theorem 1, we then have

ﬁ 1+ (_1)71 (xz — 1)A2l72z — A4$2 — ﬁ ln—2ln—1[n+lln+2

n=3 lﬁ n=3 lﬁ

_ x(xQ + 2)2 1731+1lm+2 (7)
(x3 + 3x)2 (:E4 +42° + 2) l,,b_ll,zL
Since lim 2tk = o* (z), this implies
m—>0 m

« 1) (2% = 1A% — A*2? o(2? +2)?

H 1+( ) ( ?1 n — - (2 y ) 5 0[5((17). (8)

n=3 L, (z° + 32)"(z" + 42" +2)

It follows by equations (7) and (8) that

2
ﬁ{l_ZSJ_ 9 . Lm+1Lm+2 :

n=3 L;l; 112 mengn
ﬁ 25|92
ws o) 12

respectively, where 2o =1 ++/5.

Next we find the Pell-Lucas consequences of formulas (7) and (8).
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3.1 Pell-Lucas Implications: Since ¢, (z)=1,(2z) andy(z) = a(2z), it
follows from equations (7) and (8) that

i { | 4D @+ ) (40”12 - 6400 + 1)2]
4
n=3 a,

2 2 2
(2‘/1: +1> . m+19m+2 .

B $(4x2 + 3)2(8$4 +82% + 1) qm_qun

i A(-1)"(a* + 1) (42” —1)g; — 642°(a” +1)*
n=3 qﬁ
(222 +1)? 5

 a(d2? + 32(8at + 822 + 1)

where y(z) =z +Vaz* +1.

Since ¢, (1) = 2Q, , we then get

2 i 2
1+6(_1)71Qn_16 _ 9 . Qm+1 m+2;

Q: 833 Q.

s

3
Il
w

e T
L 8CED"@ —16 1 9 s
Q! 833

n

s

3
1
w

where y =1++/2.

4. Products of Jacobsthal Polynomial Expressions

Next we find the Jacobsthal counterparts of formulas (4) and (5) using the
relationship J, (z) = 2" ™/2f (1 /Jx).

41 Jacobsthal Versions: Consider the rational expression
e NG

numerator and denominator of the resulting expression with z

A

. Replacing = with 1/\/5, and then multiplying the

2n-3 , we get
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(o2

n

]4 +(=1)"(z - 1)95n_2[33(n_1)/2fn ]2 o3
[x(n_l)/an ]4

A=

It (z=1) (=) 2 g% = g3

J4
n—2 72 2n-3
I\ i e
o
m _ _\n-2 72 _  2n-3
LHS = [T| 1+ &= ””)4‘]” S
n=3 Jn

where f, = f,(1/Nz) and J, = J,(z).

2 2
T . JmsrSme2 . Replacing z with 1/\/5, and
(2® +1%(z® +22) £, f>

then multiplying the numerator and denominator of the resulting expression with

Now let B =

x(3m+1)/2 , we get
B = xQ\/;friH m+2
(I + 1)2 (2$ + 1)fm—1 72
) (2" 2 f P[220
(¢ +172 @z +1)[2m 22, J[alm 02y P
1 J2 T
RHS = LSm+1Ym+2
(z+1?*(2z+1) J, J>

where f, = f,(1/~/z) and J,, = J,,(z).

Equating the two sides, we get

ne3 J4 (z+12Q2z+1) J, J>

n

m _ 2\ =2 72 2n-3 2
H 1+(I 1)( 1}) Jn z 1 ']m+1‘]m+2 (9)
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where J, = J,(x).

It then follows that

sl B E, o F,
)=
ne3 E; 12

as found earlier. In addition,

ﬁ{“ Sl } C L B

n=3 T BTy
) _ =272 2n-3 5
1—[ 1+ (z-1)(-z)"2J; —x _u (:1:), (10)
s J 45
f[ 1 . (_2)7L—2 J72L _22’7L—3 B g
o3 Ji 45 °
m+k
where lim L— - u*(z) , and u(x) = 1+ D
m—o Jm 2
Since

oot aniidnie = Jf; + (CE - 1) (—x)"_zJ?l — gt )

n

by the Cassini-like identity J,,.J, . —J> = —(-z)" " J? [6], formulas (9) and
(10) can be rewritten as

2
l_m[ ‘]71—2‘]71—1Jn+1‘]n+2 — 1 . ‘]m+1']m+2 .
72
-19m

n=3 Jh (z+1?2Q2z+1) J

m
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ﬁ ‘]n—2‘]n—1‘]n+1‘]n+2 — U5(.’17)
n=3 J,% 45

respectively.

Next we explore the Jacobsthal-Lucas versions of formulas (7) and (8) using
the relationship j, (z) = 21, (1/3z).

4.2 Jacobsthal-Lucas  Versions: Consider  the expression
I+ (=1)"(2® —1DA%? - A*2?

b

A= . Replacing z with 1/\/5, then multiplying the

numerator and denominator of the resulting expression with 22"~ | we get

21 = (-1)"z(z —1)D*? - D*

3,4
z°l,

A:

(""1,)" = (1" a(e - )D%" P ("1, - DY
(")

= () (=)D D
in
m 1\ _ 2 n-2 .2 4 2n-3
LHS=H 1_( )"(z-1)D x.4 Jn+Dx

n=3 In

where [, =1 (1/\x), j, = j,(z) ,and D? =4z +1.
Now let

I(mQ + 2)2 . l72n+1lm+2

(2 +32)* (2" +42* +2) 1, 2

B=
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Replacing x with 1/\/5 , then multiplying the numerator and denominator of

the resulting expression with z°™ /%  we get

B (22 +1)? [x(ml)/zl

m+1

]2 [x(m+2)/2
P@Br 417227 + 4w 1) [P

m+2]

lm—l ] (w7n/2lm )2

RHS = (2.’,C + 1)2 . j737,+1jm+2 ’
2?3z +1)2(22% + 4z +1) g, 72
where [ =1 (1/Jz) and j, =j, (z).
Combining the two sides yields
{1 - Ve = DD%" )+ DY (22 +1)° - Imitime2
n=3 In Bz +1%(22% +42+1)  jyuiiim
(11)
where j, = j, (z) and D* =4z +1.
Since
lim Jmk — b (z) and u(z) = 152 this yields
m—w g 2
0 N\ (e 2 n-2 .2 4 _2n-3 2
H 1_( )"(z-1)Dz""j + D'z _ (2z+1) u5(x), (12)
n=3 o (3z +1)%(22% + 4z +1)

Since, j,(1)=1L,, j,(2)=j,,and u(2)=2 , it follows from equations
(11) and (12) that

H(l_ﬁjzi.M-
i ’

ke 112 g, _ngn

m
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® 25] 9 5
[1-2]- 2
i) 112

n=3

n-2 2 m-3 | PO
9(_2) Jn +81-2 25 . ]7271+1]m+2 .

4 . -2
In 833 Im-1Im

s

3
Il
w

9(—2)n_2 ]Z +81 .23 R00
i 833"

s

B~
I
w

Since

L 4 n-2 N2 2 4 2n-3
In—2In-1In+1In+2 = In — (I - 1) (_I)n D In — Dz )

by the Cassini-like identity j 5., — j> = (- )" * D%J?, we can rewrite formulas
(11) and (12) as

l_m[ j7z—2jn—1j71+1jn+2 — (23? + 1)2 . j72n+1jm+2 .
a3 i 3z +1)°(22% + 4z +1) 5, 52

= jn—2j7z—1jn+1jn+2 _ (2I + 1)2 5

H 4 a 25, 2 (@),

n=3 In (3z+1)"(22° + 4z +1)

respectively.
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1. Introduction

FEztended Gibonacci polynomials z,(z) are defined by the recurrence,
Zpo(2) = a(x)z, 1 (z) + b(x)z, () where z is an arbitrary complex variable; a(z),
b(z), zy(x),and z (z) are arbitrary complex polynominals; and n > 0.

Suppose a(z) =z and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f (z), the nth Fibonacci polynomial, and when z,(z) =2 and 2 (z) =z,

z,(z) =1 (), the nth Lucas polynomial

Clearly, f (1) = F ,the nth Fibonacci number; and / (1) = L, , the nth Lucas
number [1, 5, 6].
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Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
p,(z) = f,(2z) and g,(z) =1,(2z), respectively. In particular, the Pell numbers
Pn and Pell-Lucas numbers (), are given by P, =p (1)=f(2) and

2Q, = q,(1) =1,(2), respectively [6].

On the other hand, let a(x)=1 and b(z)==z. When z(z)=0 and
z(r)=1, 2z, (z)=J (z), the nth Jacobsthal polynomial, and when z,(z) = 2 and
z(r)=1, 2, (z) = j, (z), the nth Jacobsthal-Lucas polynomial. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J,,(1) = £, ; and j,(1) = L, [4, 6].

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas

polynomials are closely related by the relationships J, (z) = (n-1)/2 (1/\/_) and
i (x)=2""1, (1) [4,5,6,7].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In
addition, we omit a lot of basic algebra.

1.1 Products of gibonacci and Jacobsthal Polynomial Expressions: In [8],
we studied the following products of gibonacci and Jacobsthal polynomial
expressions:

ﬁ Joofn1foi1fuso _ 7’ . f1721+1 m+2 . (1)
fn (IQ + 1)2 (xg + 21') fm—lfr?t
ﬁ ln—QZn—lanrlanrQ — x('rQ + 2)2 . l7271+1lm+2 . (2)
n=3 1,3 (x3 + 3:1:)2 (334 +42% + 2) 1, 1l72n
l_m[ J7L—2J71,—1']n+1‘]n+2 — 1 . ']7271+1Jm+2 . (3)

=3 J! (z+1P2Q2z+1) J, J%
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l_m[ jn—an—ljn+1jn+2 — (2$ + 1)2 . jgz+1jm+2 (4)
-4 2 2 : 2
n=3 In (3117 + 1) (2ZE +dr + 1) Im—-1Im

Our goal is to confirm these formulas using graph-theoretic techniques. To
this end, we first present the needed graph-theoretic tools.

2. Graph-Theoretic Tools

Consider the Fibonacci digraph D, in Figure 1 with vertices v, and v,,
where a weight is assigned to each edge [6, 7]. It follows by induction from its

weighted adjacency matriz @ =

1
‘ , that
0

Figure 1: Weighted Fibonacci Digraph D,

fn+1 fn

Q N fn fnfl

Y

where n >1 [6, 7].

A walk from vertex v, to vertex v, is a sequence
v — € — v — v,y —e;_ —v; of vertices v, and edges ¢, , where edge e, is
incident with vertices v, and v ;. The walk is closed if v; = v;; otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a walk
is the product of the weights of the edges along the walk.

We can employ the matrix Q" to compute the weight of a walk of length n

from any vertex v; to any vertex v;, as the following theorem shows [6, 7].
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Theorem 1: Let M be the weighted adjacency matrix of a weighted,
connected digraph with vertices w,v,,...,vk. Then the ijth entry of
the matrix M™ gives the sum of the weights of all walks of length n from v, to v,

where n > 1. O

The next result follows from this theorem.

Corollary 1: The ijth entry of Q" gives the sum of the weights of

all walks of length n from v; to v,

1<i, j<n. O

in the weighted digraph D,, where

It follows by this corollary that the sum of the weights of closed walks of
length n originating at v, in the digraph is f,,, and that of those originating at v, is

f,—1- Consequently, the sum of the weights of all closed walks of length » in the

digraph is f, ., + f,_;, =1,. These facts play a major role in the graph-theoretic
proofs of the gibonacci formulas (1) and (2).

Let A and B denote sets of walks of varying lengths originating at a vertex v.
Then the sum of the weights of the elements (a, b) in the product set Ax B is

defined as the product of the sums of weights from each component. This definition
can be extended to any finite number of components [7].

With these tools at our disposal, we are now ready for the graph-theoretic
proofs.

3. Graph-Theoretic Confirmations

3.1 Confirmation of Formula (1): Proof: Let W, denote the sum of the
weights of the elements in the set C, of closed walks of length n originating atv, .

By Corollary 1, W, = f,,,. Then W, gives the sum of the weights of the elements
in the product setC, xC,, xC, xC, , and W, _,W, ,W, Wn +1 that of those in the
set C,_3xC,_oxC, xC, ., Where n>3.
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Let
Am = ﬁ Wn—SWn—jWan+1
n=3 Wn—l
— ﬁ fn—2 n—1Jn+1/n+2 (5)
1 .
n=3 fn

Suppose w denotes the weight of the loop at »; in the digraph and

’LU2 . Wn%Wm+l
(w2 + 1)2(1113 + 2711) Wm72VV7?1,71

Bm =

. $2' fn21+1 m+2 6
@1 P +20) LS ©
m-—1Jm

Using recursion [2, 8], we will now establish that A, = B,,, where m > 3.
We have

Bm _ .732 73L+1 m+2 . (1‘2 + 1)2(:[3 + 2-'13)]2,7,,2 7121,71

B (932 + 1)2 (953 + Qx)fm—lfri x2f731fm+1

— fm—? m—1Jm+1/m+2

f4
T
A
Ap _Awa o A hBA _
So B, _Bm—l =..= B, = FLEL 1. Consequently, A, = B,, .

It then follows by equations (5) and (6) that

2 2
l_m[ fn—2 n—=1/n+1/n+2 _ & . fm+1 m+2
4 H

n=3 fn (1‘2 + 1)2(:173 + 2$) fm& 73

as desired. O
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fn—2 n-1Jn+1Jn+2 =

it then follows that

f4

=[(0)" (@ -+ a7,

ﬁ 1- (-)"(@* - 1)f7 +2* | 7’ - Jmirfues
ne3 ff | (x2 + 1)2 (xg +27) fm_lfWQL
R ) 2’ ;

1—
7:!;!:1) ff (x2 + 1)2 (x3 +21) @)

n= 2

ﬁ [1 _ LJ l 1- Fm-%—lEn-*—Z .
4 2

m Fn 2 melﬁ;n

as in [3, 8, 10], where lim Jmsi a*(2), 2a(z) =z +Va® +4 ,and 20 =1++/5 .

m—>0
m

Next we explore the graph-theoretic proof of formula (2).

3.2 Confirmation of Formula (2): Proof: Let ¥, denote the sum of the
weights of elements in the set C, of all closed walks of length n in the digraph. By

Corollary 1, W, = f,,, + f,_, =1,. Then W' gives the sum of the weights of the
elements in the product set C, xC, xC, xC,,and W, _ W _ W, W, ., the sum
of the weights of the elements inthe set C,_, xC,_, xC, ., xC,, .o, Where n >3 .

Let
Am — lm_[ Wn—QWn—lTn+1Wn+2
n=3 Wn

dLuy/

:HM
1t '

(7)

n=3
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Suppose w denotes the weight of the loop at »; and

B = w(w2 + 2)2 . W73L+1Wm+2
" (w® + 3w)*(w* + 4w® +2) W, W2

$($2 + 2)2 . l72n+1lm+2 )

- (:1:3 + 3x)2(z4 + 427 + 2) lm_ll,?n

As before, we will now confirmthat A, = B,, using recursion [2, 8].

We have
B, w(z® + 272 1 . (23 + 32) (z* + 42 +2)1, 12 |
B, (2®+3z)(a? +42” + 2)lm71151 z(z? + 2)2172,le+1
— lnL72lmfllm,+llm+2l
A
= Ayrll .
A,
This implies, Ap _ Anr = Ay _ bbb
B, B,, By Lbll
So A’UL = BTTL b
This yields
ﬁ ln—2ln,—lln+lln+2 — I(l‘2 + 2)2 17271,+1lm+2
n=3 l:f (x?’ + 3x)2($4 +42% + 2) lm_ll?n
as desired.

Since (.90, o) (1,1l 1) = 12 + (=1)"(z® = 1)A%2 — A*z? [8], this yields

"o - DAE - AT | z(z? +2)? . Bl
(2 + 32)*(z* +42* +2) I, 2

m -1
I+ (=) i =
n=3 n
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© SN2 VA22 A4 2] 2 2
H 1+( D" (2° =)A= Az _ z(2” +2) a5(m);

n=3 I (2 + 32)* (2" + 42” +2)

2
ﬁ 1 25 i Lm+1Lm+2 .
3 It 12 2

n m

as in [8], where lim bnst _ a*(z).

m—>0 m
Since b,(x) = g, (2x), the graph-theoretic confirmations of the Pell versions
[8] of the gibonacci formulas (1) and (2) follow from these two proofs, where
g’ﬂ = ﬁb Or l’!L and bTL = pTI/ Or q’!L'

4. Graph-Theoretic Tools Revisited

To confirm the Jacobsthal results (3) and (4), consider the weighted
Jacobsthal digraph D, in Figure 2 with vertices v, and v, [6, 7]. It follows from its
xJ

JnJrl n

z
, that, M" =
0 zJ

weighted adjacency matric M = )

n n—1

Figure 2: Weighted Jacobsthal Digraph D,

where J, = J, (z) and n >1.
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It then follows that the sum of the weights of closed walks of length n
originating at v, is J, ., and that of those originating at v, is z.J,_; . So the sum of

the weights of all closed walks of length » in the digraph is J,,, +2J,_; = j,.
These facts play a major role in the graph-theoretic proofs.

As before, let A and B denote sets of walks of varying lengths originating at
a vertex v. Then the sum of the weights of the elements (a, b) in the product set

Ax B is defined as the product of the sums of weights from each component. This
definition can be extended to any finite number of components [7].

With these tools, we now explore the graph-theoretic proofs of (3) and (4).

4.1 Confirmation of Formula (3): Proof: Let ¥, denote the sum of the
weights of elements in the set C,, of closed walks of length » originating at v, in the

digraph D,. Then W, =J,,,. Clearly, W' denotes the sum of the weights of all

elements in the product set C, xC, xC, xC,,, and W, _,W, ,W, W, the sum of

n'

those intheset C,_3 xC,_, xC, xC, ., where n > 3.
Let
Am = ﬁ an?;vvnfjwnm”l
n=3 Woa
— ﬁ Jn—?']n—l‘]n+1‘]n+2 (8)
n :
n=3 ']n

Let w denote the weight of the edge vv, and

2
B = 1 . Wme+1

" (w1 Qu+l) W, WP,

1
Y Tt 2T (©)
(z+1)°(2z +1)
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We will now establish that A, = B,, using recursion [2, 8]. We have

B _ J72n+1‘]m+2 . Jm—2J72n—1

m

Bm_l Jm—l‘]?n J?%L‘]m+1

- Jm—QJm—1Jm+1Jm+2

T
_ A
Arn—l
This yields, A _An A Ty A, =B,.
B, B, By JyJydy s ’
Consequently,
l_m[ J7L—2Jn—1‘]71,+1‘]n+2 — 1 . J72n+1‘]m+2
=3 Ji (z+12Q2c+1) J, J>

as in formula (3) [8].

Since J, o, Jpi1 s = o+ (x—1)(=2)"2J2 —2®7 [8], we can
rewrite this formula as

(z+172Q2z+1) J

m

lm[ Ly (I — 1) (—x)”_zjz — g3 _ 1 . ']¢2n,+1‘]m+2
I St

n=3 n

where J, = J,(z)[8].

o0 5
We then have H ‘]71—2Jn—1‘]n+1‘]n+2 — u (113)
n=3 g} (z+1)%(2z +1)
ﬁ Ly (z-1)(~z)"2J% = g*"73 _ u’(z) ,
n=3 Jh (z+12(2z +1)
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where Tim Jmsk — u*(z), and 2"(z) =1+4z +1 [8]. O

0
m—> m

Finally, pursue the confirmation of formula (4).

4.2 Confirmation of Formula (4): Proof: Let ¥, denote the sum of the
weights of elements in the set C, of all closed walks of length n originating in the

digraph D,. Then W, =J, ., +aJ, | = j, . Clearly, W = j! gives the sum of the
weights of all elements in the product set C, xC,xC,xC,, and

Wn—QmL—IM/;HlmHQ that of those in the set Cn—2 x Cn,—l x Cn+1 x Cn+2 '
where n > 3 .

Let
= Wn—QWn—IWn+1Wn+2

A =11

4
n=3 W,

n—1

— ﬁ jn—an—ljn+1jn+2 ] (10)
n=3 ];IL

We will now compute 4, in a different way. To this end, we let w be the

weight of the edge vv, and

— (2w + 1)2 . W731+1Wm+2
" Bu+1)PQu +dw+1) W, WP

(22 +1)? metdmes (11)
(3z+1%(22 + 4z +1)  j,, 7>

Next we establishthat 4, = B, using recursion [2, 8]. We have

2 . . .2
Bm — Im+1Im+2 . Im—2Jm—1

Bt Gpoada dmdmn
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— Im=2Im-1Im+1Im+2

I
= Am .
Ay
This implies, = Aw=t _  _ A _Jbiids _ g g4 _p
o B By Gi1J2aJs
Consequently, we have
m - . . . 9 1 2 .2 .
H In—-2Jn-1Jn+1In+2 — ( z+ ) . Im+1Im+2 ,
n=3 ji (3$ + 1)2 (21"2 +4z + 1) jm—lj?n
as in formula (4) [8].
Since
In-2dntdns1dnss = Jn — (@ = 1) (=2)" 2 D%j; - D™,
we can rewrite this equation as [8]
ﬁ 1— (_1)” (‘T — 1)D2$7l—2j2 + D4$2n_3 _ (21; + 1)2 j72rL+1jm+2
ned i Bz +1P%(22* + 4z +1) . 7
Since lim 22k = (), we then get
m—>00 ]m
ﬁ jn72jn71jn+1jn+2 — (2% + 1)2 U5(.’E) .
4 20,2 '
n=3 In (3z +1)°(22° + 4z +1)
) _1\n _ 2 n-2 2 4 2n-3 2
H 1_( )"(z-1)Dz" 7 j, + D'z _ (2z +1) u5(x),
n=3 o (3z +1)%(22% + 4z +1)

as in [8].
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GENERALIZED MELLIN-BARNES
CONTOUR INTEGRALS

Abstract: This paper deal with a new approach to evaluate three theorems
which are associated with the product of two hypergeometric functions,

generalized Bessel function of first kind and the H -function. These
theorems are in most general nature which give many interesting particular
cases. We give some new and known special cases of our main theorems.

Keywords: H -Function, Generalized Bessel function of first kind and
Hypergeometric functions.

Mathematical Subject Classification (2010) No.: 26A33, 33C05, 33C10,
33C60.

1. Introduction

In recent years, a large number of integral formulae involving different types
of special functions have been developed by many authors i.e. Srivastava [20]. Garg
and Mittal [9], Saxena et al. [17, 18] and others several researchers, obtained an
interesting unified integral involving Fox H-function. Inayat Hussain [12] has
pointed the usefulness of Feynman integrals in the statistical mechanics. The
H -function which is a new generalization of the familiar Fox's function [6]. Using

This H -function and the following formulae, we establish our main theorems.

We have the three integrals ([10], also see [13], p. 77 Egs. (3.1), (3.2) and
(3.3)]:
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- o ETeH)
. B\2 2
N e L e e o) -

o>0,3=20,4apP+y> 0, Re(p)++ > 0).
(a> 0, B >0, 4ap+y> 0, Re(p)+3 > 0)

) » 1 JET(p+})
(ii) L 7[(ax+ 2Y+y]  dx- ZB(4aB+v)"*%2F(p+1) (1.2)

(a2 0,B >0, 4op+y> 0, Re(p)+3> 0).

JET(e+)

“@oapryiTery Y

) -p-1
(i) IO (o +2)[(oax+5)° +v]
(a>0,B >0, 4ap+y> 0, Re(p)+5 > 0).

(iv) Inayat Hussian [12, 13] defined and introduced the H function and represented
by Bushman and Srivastava [5] in the following form:

_MN MmN @AY N @) Ny p
H [z] = H z
P.Q P.Q (bj ’Bj)l,M’(bj ’Bj;Bj) M+1,Q
1 o _
-7 et (14)
2ni —O®
where
M N Aj
i I1r0; B9 [Tra-a; +o @)
<I>(&) ) Bj 5 (1.5)
j=1|:[/l+1{r(1_ bj + Bji)} j:%ﬂr(aj - Oﬂjé)

and o= \/—_1 Here a; j = 1,...,P) and b; (j = 1,...,Q) are complex parameters,
a;20(j = 1,...,P)and B;20(j = 1,..,Q) and the exponents A; (j = 1,...,N) and
B;(j=N+1,...,Q)can take any non-integer values.
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The contour in (1.4) is imaginary axis Re(§) = 0. It is suitably indented in
order to avoid the singularities of the gamma functions and to keep those singularities
on appropriate sides. The poles of the gamma functions of numerator in (1.5) are
converted to branch points. However, as long as there is no coincidence of poles from

anyF(bj —Bjé) (j=1,...,M)and F(l—aj +ocj§) (j=1,...,N) pair.

Buschman and Srivastava [5] has proved that the integral represented by Eq.
(1.4) is absolutely convergent when

M N Q P
Q=) B+ A= B -2 a >0 (1.6)
j=1 j=1 j=M+1 j=N+1
and
largz <127 Q .7

When all the exponents A; and B; takes the value unity, the H -function
reduces to the well-known Fox’s H -function [8] (see also [21]).

The following two particular cases of the H -function which are not special
cases of the H -function.

(a) The function connected with certain class of Feynman integrals

Kd_lr(s+1)r(1+rj

.
9ly.mz.sz]= 5
T
22 o)
2
13 -y 1), il—y+§,1; 1 111
g0, (1.8)
3,3 ©,1), '—121 1 ;1] L p+1\J

where

N

1-d ~ d
Kg=2 m 2 IT| — [13, eq. p. 4121].
2
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(b) The polylogarithm function of order s introduced by Erdelyi et al. [7] is

f[es]-F-° {

(1.10)

2,2 (1,1), (0,1;59)

LLY), @1 s)}

(v) The function , F, [z] was defined and introduced by Gauss and known as
Gauss hypergeometric function.

Rlapiriz = & et (1)

Where a, B, y and z may be real or complex. The series is convergent for all
values of z, real or complex such that |z| < 1 and divergent for all values of z real or
complex, such that |z| > 1 (see also [19, eq.(1.1.1.4), p. 3 ].

We also use the following results related with hypergeometric function
, F[2] ([19],p. 75, Th. 1)

o0
@-y""7 R 2a, 2B 2y 2] = Tayr (112)
r=1
Then
F . . . . o (Y)r r
SR o By +1/2; 2] ,FRly—o,y-B;y+1/2; 21 =X z (1.13)
r=o (Y+§)

(vi) Generalized Bessel function is defined by the following series (see, e.g.,
[2, eq. (1.15), pp. 10]); for a recent work, see also [1, 3 and 4], [15, eq.
(2.2), pp. 182], and [14, eq. (8), pp. 2]:

@ (_1)kck (2/2)v+2k
W, (2)= X (1.14)
K=0 KID(v+k+(1+b)/2)

(ze C/{0}and b, c, v € C with Re(v) > - 1.)
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Where C denotes the set of complex numbers and T'(z) is the familiar
Gamma function (see [22, sec. 1.1]).

2. Main Results

In this section, we obtain three theorems in the form of integrals will be
evaluated. The integrals are associated with the product of two Gauss hypergeometric

function, generalized Bessel function and the H -function.
Theorem 1: Suppose that

(i) a>0,8>0, , 4ap+y> 0, Re(p)+%>0 -—%<0L -B-v <%,

(i) ze C/{0} and b, c,ve C withRe(v)>-1, n>0, u>0

bi .

(iii) i J for (=1, ..., M)and
Re(p+nv)+ulgnj12M Re(Bj )>0

(iv) The H -function occurring in the theorem (2.1) satisfying the conditions
corresponding appropriately to those given by (1.5) and (1.6).

Then the following integral formula holds:

o0

(j)R—P—l ,Filo,B; v +1/2; uR] ,F [y — oLy —B; v +1/ 2; UR]

e —MN @ A g (850 N p
W,[zR )] H AR M dx
P.Q 05, B1)1,m: (05:B1:Bj) Mz 0
Jr z ()" (rar (2/2)" 2’

2a.(4aB+7)" 2 K, r=0 kI (y+1/2); T(v+k-+(L+b)/2) (4ap +y) NV H2K) =T

(r_p_n(v+2k)+1/21 l’l';l)l(ajlaj;Aj)l'Nl(aj!aj)N«}»l’P

(bJ"Bj)l,M«(bjiBj;Bj) M+1,Q7(V—P—ﬂ(\’+2k), H; l)

2.1)

HM, N+1 7
P11.011| (dap+y)

Where R= {(ax+§<)2 +v} (2.2
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Theorem 2: Suppose that
@ >0 1 1 1
az20,B>0,4aB+y>0, Re(p)+5>0, -5<a - B-y <3,

(b) ze C/{0} and b,c,veC withRe(v)>-1,n=>0,u >0
: bj
() Re(p+nv)+u1£nj121M Re(m)>0 for =1, ...,M)and

(d) The H -function occurring in the theorem (2.1) satisfying the conditions
corresponding appropriately to those given by (1.5) and (1.6). Then the
following formula holds:

—p-1
& R Rlopiy+1/ 2 uR] Ry — o,y —B;y +1/ 2; uR]

e —MN @ Ay (@50 N p
W,[zR )] H AR M dx =
PQ ;B 1 m: 03B B Mg g

g (DX K (rar (2/2)" 2"
2B(4aB+7)"2 K, r=0 k1(y+1/2); T(v +k+(L+h)/2) (4ap +y)NVF2K)-T

M N+ , (r—p—n(v+2k)+i|/2,p;l),(alj,ocj;AJ.)l’N,(aj,ocj),\HLP

H _
P+1,Q+1 (4(XB+Y)“ (bJ’BJ)lyM!(bJIijBJ)M+]_'Q!(r_p_n(v+2k)’ L, 1)

(2.3)
Where R is defined by (2.2)

Theorem 3: Suppose that

@ oa>0,>0,40B+y>0, Re(p)+%>0, —%<0€ - B-y <%
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(b) zeC/{0}andb,c,veC withRe(v)>-1, >0, u>0
b.
) i .
c Re(p+nv)+ min Re(+—)>0 for (=1, ...,M)and
(c) (p+mv) “1sjg|v| (Bj) @ )

(d) The H -function occurring in the theorem (2.1) satisfying the conditions
corresponding appropriately to those given by (1.5) and (1.6).

0
Byp—PL : . : :
(f)((H;Z)R 2F1[0L,B, y+1/2; uR] 2F1[y—a,y—[3, vy+1/2;uR]

. —MN @ A g N (850 N p
W, [zR )] H AR dx
P.Q (05,81 m 03B B)) a0
IR - ()" (rar (2/2)" 2’

i Wk, r=0k!(y+1/2) T(v+k+(1+b)/2) (4ap+y)NV+2K)-T

MN# Az (I’—p—n(v+2k)+i|]2,;,t;l),(aj,OLj;AJ.)LN,(aj,OLJ-),\,Jrl’P

H _
P+1,Q+1| (4ap+y)H (0;,81) 1,m: (05, B3 Bj) myn,0 (F—p—n(v+2K), p; 1)
(2.4)

Proof: To establish theorem (2.1), initially, using the property given by the
equations (1.12) and (1.13), we obtain the following form

r . B M,N 3 (aJ,aJ,AJ)l,N’(aj’aJ)N'i‘l,P
(Y)rl“ R w, (2R A AR dx
r=0 (Y+§)r P,Q (bj’Bj)l,M’(bj’Bj’Bj)M+l,Q

Again, using the series representation (1.14) for W,, (z')and Mellin Barnes

_MN
contour integral (1.4) for H [z] in (2.5), and collecting the powers of R defined
P’ Q

by (2.2), we can obtain the following form
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)
kr—o K !1“(v+k+(l+b)/2)(y+%)r

:T{ 5 (_1)k Ck (Z\/Z)V+2k(}’)r u"
0
(l.ﬁzooo 5(§)A'& 5 dg)Rr_P—Hi—n(ka)—l}dx

2mi

In the above resulting expression, the order of integration and summation is
interchanged (which is permissible under the conditions stated with (2.1)), we
evaluate the intermost integral with the help of the result given by (1.1) and the

interpreting the resulting Mellin-Barnes contour integral as an H -function, we
arrive at the right hand side of (2.1) after a little simplification.

Two theorems (2.3) and (2.4) can also be evaluated similarly by using the
results given by (1.2) and (1.3) respectively. However, we omit the details here of
these results.

3. Special Cases

Each of our integral formulae (2.1), (2.3) and (2.4) are unified in nature and
possesses manifold generality. On suitably specializing the parameters of the

H -function, the generalized Bessel function of first kind in our main theorems, a
large number of new integrals can be obtained as their special cases. one of them are
discussed below.

In our main theorems, if we take A" =1, M =1, N =P = Q = 2 and reduce

the H -function to F(-z, s) function to the free energy model as given by Eq(1.10)
following result are obtained.

Corollary 3.1: If a>0,B >0, 4ap+y>0, Re(p)+3 >0, p >0 ,
R>0, —5<a-B-y<3,zeC/{0}andb,c,veC withRe(v)>-1, n> 0 and

R= {(ax+§()2 +v } then there holds

o0

_p_l . - - -
(I)R oFloBiv+1/2;uR] , K [y —a,y =By +1/ 2, UR]

W, [z R W]F[-zR "] dx
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S > (-0 X (rar (z12) 2K
20(4aB+7)P 2 K, r=0 k1(y+1/2) T(v + k+(1+b)/2) (4ap+y)N(V+H2K)-T

(r—p—m(v+2k)+12, u;1),(1,12), 1/2,1; d)}
(3.1)

1,3 _7
H s
3,3 |:(4oc[3+y)}’l 4, 1), (0,1; 1+d), (r—-p—m(v+2k), u; 1)

Corollary 3.2: If &> 0,a> 0, 20, 40p+y> 0, Re(p)+5 > 0, >0,

u>0,

—v]Z'<oc—[3—y <ij',ZEC/{O} and b, ¢, ve C with Re(v) > -1,

Nn=0 and R= {(ocXJrE()2 + 7 } then there holds
T 1 ppl
(I);ZR 2F1[0c,[3;y+1/2; uR]zFl[y—oc,y—B;erl/Z; uR]
W, [z2R M]F[-zR M1 dx

_ 3t < (D M (rar (z12)F "
2B(4aB+7)"2 K, r=0 k1(y+1/2); T(v+Kk+(L+h)/2) (4ap +y)N(V+2K)-T

(l! 1)1 (0111 l+d)1 (r—P—n(V"‘Zk), W, 1)

13 _7 (r-p—m(v+2k)+V2, u;1),(1,1;2), (12,1, d)
H | ———— (3.2)
23| (4apry)¥
Corollary 3.3: If >0, >0, p>0, >0,
4af+v> 0, Re(p)+% >0,
~J<a-B-y<3,zeC/{0} and b,c,veC withRe(v) > -1,

n=>0 and R= {(ocx+g()2 +v } then there holds
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T BygPl
(f)(a+;z)R o FloBi v +1/2,uR] 5 Ry [y — o,y =By +1/2; UR]

W, [2R ]F[-zR "] dx

3 (DK ek (1) ay (272)"+ K"
(4a+7)" 2 K, r=0 kI(y+1/2) T (v+k+(1+b)/2) (4ap+y)N(VF2K) =T
_1.3 -7 (r—p-m(v+2k)+12, p;1),(1,12), (V2,1 d)

ol o (3.3)

33 (dop+nP [@ D), (0.3 1+d), (r—p-n(v+2Kk), u; 1)

The importance of our main theorems of present work lies in the many fold
generality. Several other interesting special cases of the theorems involving
numerous simpler special functions for example defined by (1.8) and a many variety
of generalized Bessel function as a special functions can also be worked out We give

only two of such cases. Thus, if we reduce the H -function occurring on the left-hand

side of our main findings to the Fox's H -function and generalized Bessel function
occurring therein to unity, we get a known integrals [6, pp. 1463, Remark (2.7)] and

if we reduce the H -function and generalized Bessel function occurring on the left-
hand side of our main findings, to unity, we arrive at a known basic formula [16,
eqns.(3.1), (3.2and (3.3) , pp. 75-76 ].

4, Conclusion

In this paper, we investigate the generalized fractional integration involving

the definite integrals Gradshteyn-Ryzhik of the H -function and generalized Bessel
function of first kind. Therefore, we conclude this paper with remark that, the main
findings obtained above are significant and can lead to yield numerous other
fractional integrals involving various functions which are not special cases of
H-function, Bessel functions and trigonometric functions by the suitable
specializations of arbitrary parameters in the theorems.
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1. Introduction

Eztended gibonacci polynomials z,(x) are defined by the recurrence
Zy0(2) = a(x)z, 1 (x) + b(x)z,(z), where z is an positive integer variable;

a(z), b(z), z,(z) and z(z) are arbitrary integer polynomials; and n > 0.

Suppose a(z)=z and b(xz)=1. When z,(z)=0 and z(z)=1,
z,(x) = f,(x), the nth Fibonacci polynomial; and when z,(z) =2 and z,(z) =z,
z,(x) =1,(z), the nth Lucas polynomial.

They can also be defined by Binet-like formulas. Clearly, f,(1) = F,

", the
nth Fibonacci number; and 1,(1) = L, , the nth Lucas number[1, 3, 4].
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Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
p,(z) = f,(2z) and g,(z) =1,(2z), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers @, are given by P, =p,(1)=/f(2) and

n

20, =q,(1) =1,(2), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). In

addition, we let g, = f, or [ . It follows by their Binet-like formulas [4] that

k
lim 22k = o*(z),  lim Jmek _ & (x), lim lm—+k:ak(x)A , where 2 >0,

m—o g m—o lm A m—>00

m

A=~z*+4 and 2a(z)=2z+A.We also let a = a(1), and omit a lot of basic
algebra.

1.1 Fundamental Identities: Gibonacci polynomials satisfy the following
fundamental properties [4]:

(a) f2n = fnlrw (e) fn+kfn—k - an = (_1)71—/€+1ka :
(0) I, = f1 + Jya () bgls =l = (1) A S
(C) lnln+1 = l2n+1 + (_1)nx : (g) fm—n = (_1)71 (fmfn+1 - fm+1fn);

(d) lg - A2 7? = 4(_1)”; (h) lmfn = (_1)77 (fm,Jrlln - f;nanrl) :

Properties (e) and (f) are the well known Cassini-like identities, and

properties (g) and (h) are the addition formulas. They play a major role in our
discourse.

2. Fibonacci Sums

With this background, we begin our explorations with a sum involving the
reciprocals of odd numbered Fibonacci polynomials.

Theorem 1: Let m > 2. Then
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m

Z < — f2m—2 (1)

n=2 f22n71 -1 fo’”

Proof: We will establish this formula using a recursive technique [2, 4]. To
this end, let A4, denote the LHS of equation (1) and B, its RHS. Using the addition
formula and the Cassini-like identity, we have

B —-B _ f2m—2 _ f2m—4
m m-1 —
xf?m $f2m—2

2
— f2m—2 — f2mf2m—4

"I“meme—Z
___r
Foma —1

= Am - Am—l :

Thus -B = _ O A
’AT’Z m_Am—l Bm—l_"'_AQ BQ_— 22—,
f32 -1

This implies, A, = B, , as desired. -

Using identity (e), we can rewrite formula (1) in a different form:

m

z z — me—Z

n=2 f2nf2n72 -1 CEme .

It follows from equation (1) that

3

1 — F’2m72
2 }722”,1 -1 FQm

n
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21 3-+5
>———= . 0
n=2 FQn—l 1 2
Theorem 1 has an interesting byproduct. Using identity (d), it yields
i AQZE — me—2 .
o AP AP Thy
uz A%y _
Z — f2m 2 ) (3)

2
n=2 127, 1~ T fom

This implies that

Next we establish a corresponding result for even-numbered Fibonacci
polynomials.

Theorem 2: Let m > 2 and «(z) = oy 2 then

s =l
S "E + 2 — _ -ﬁLerQ ] 4
; f2” a:) me+2me ( )

Proof: Again, we will confirm this formula using recursion. We let
A, =LHS and B, = RHS.
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Using identities (a), (e), and (g), we get

B —-B = f;lm—Q _ .ﬁlm+2
m m—
fQWLfQ’HL—Q f2m+2f2m

_ f;1m+2f2m72 — f;lm72f2m+2

f2m+2£mém—2

[(xQ + 1)f4m + xf;lm—l] (f2m B xf2m—l)

f2m+2f2mf2m—2

n (f4m B xf4m—1) [(IQ + 1)f2m + "I’:]L:Zm—l]

f2m+2f2mf2m—2

(x?) + 2:13) (f4m—1f2m — f;Imem—l)

me+2f2mem—2

_ (x?) + 2x)f4m—2m

f2m+2f2mem—2

5+ 2z

me+2f2m—2

_ 23 + 21

2 2
f2m_$

=Ap = Ay
Consequently, A -B =A | —-B ,=..=A>-B= /S
afzly  fs

Thus, A, = B,, , as expected. O

With identity (e), we can rewrite formula (4) as

i $3 +22 Ii',(.'E) _ f4m+2

2 =
n=2 f2n+2f2n—2 -

f2m+2f2m
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It follows from equation (4) that

i 3 _ § _ F4m+2
n=2 F122n -1 3 f?2m+2F’2m

© 23 42
Z 2 2:K_A;
n=2f2n_$

i 5 2 5. )
n=2

B, -1 3
An interesting byproduct: Using equations (2) and (5), we get

i 1 _3-\5 8-35
7L:3Fnz_1 2 9

43 55

18 6

asin [5, 6].

A Lucas implication: Using identity (d), equation (5) yields

i (1'3 +21")A2 =k — f4m+2

n=2 A2f22n - A2$2 f2m+2me

3 2
S (.’E + 2$)A =k — f;1m+2 ] (6)
n=2 2, - A2x2 -4 f2m+2me
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Next we explore sums involving reciprocals of Lucas polynomials.

3. Lucas Sums

We begin our exploration with sums involving odd-numbered Lucas
polynomials.

The next sum involves squares of odd-numbered Lucas polynomials. It is a
delightful application of the identity 1> — A%f> =4(-1)" and the Cassini-like
identity (e).

Theorem 3: Letm > 1. Then

i 1 — 1 . me ) (7)

n=1 1227”1 - $2 AQIQ me+2

Proof: Let A, = LHS and B,, = RHS. Then

Bm _Bm—l — 1 ( me _ me—?J

A2$2 f2m+2 f2m

- (f2m+2f2m72 - f22m)

2 2
Az me+2me

B 1
2.2 2
A meJrl_A

1
l22m+1 - 4<_1)2m+1 - ("1:2 + 4)

1

2 2
b —

:Am_Am—l :
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This implies
A, =B, =4, =B, =...= A4 -DB = 2]022 - 2f22 =
Az f, Az7f)
Thus, A, = B,,, as desired. O
It follows from formula (7) that
i 1L _ By
n=1 L%n+1 -1 5F2m+2 '
2 1 1
b -7t )
=01 3-5
: (8)

The next sum also involves squares of odd-numbered Lucas polynomials.

Theorem 4: Let m > 0. Then

& 9)

i l?m+3 _ 4

02 1+A bz 2

Proof: Let A, =LHS and B, =RHS, as usual. By the gibonacci

recurrence and identity (f), we then have

_bmes _bma

Bm - Bmfl
12m+2 l2m

— l2m+3l2m — 12m+212m+1

12m+2l2m

_ (x12m+2 + l2m+1)(l2m+2 — xl2m+1) — Z2m+212m+1

12m+212m
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_ T2 (b2 = o) ~ 3752277”1
122m+1 + A2
— ‘T(l2m+2l2m — l22m+1)
l22m+1 + A2
A?
) xl22m+1 + A2
= Am - Am—l :
Consequently,
A7 B = AT B . _ AO B. = AQZE (13 ZL‘J -0
n~ Pm T Am-17 Pm-1 T e T — Dy = - - |=VY.
z? + A2 b 2
Thus, A, = B,,, as desired. O
It follows from formula (9) that
i 5 _ L2m+3 _l.

5 =
n=0 Lo, 1 +5 Lypin 2

Finally, we explore a sum involving squares of even-numbered Lucas
polynomials.

Theorem 5: Let m > 1. Then

) LA (10)
n=1
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Proof: As usual, we let A, = LHS and B,, = RHS. Then, by the gibonacci
recurrence and identity (h), we have

Bm _Bmfl — me _ 12m72
12m+1 me—l
— ‘Tf2ml2mfl — fom7212m+1
Ty 1bm—1
_ (me-%—l — me—l)ZQm—l — iL'(me — If?m—l)(‘TZZm + xl?m—l)
$l2m+1l2m—1
— (f2m+1 — fom)lQm—l + (‘T2 — 1)f2m—112m—1 — ‘TQ (me — fom—l)ZZm
$12m+1l2m71
— ‘TQ (me—112m—1 — f2m—212m)
xl?m+112m—1
- le_l
Tl 1l -1
B —A®
= Am - Am—l :
This implies
1 T
Am—-Bm=A4, =B, ;=..=4 -B = - =0.

22+3 2% +3x

Consequently, A =B

m !

as desired. O

Formula (10) yields
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& 1 _ B,
n=1 L%n -5 L2m+1
i 2 _ 1
n=1 l22n - A2 a(x)A ,
gL 1%
n=1 L%n -5 10
Using the identity /> — A%f? = 4(-1)", formula (10) yields
m 2
Z o — me : (11)
n=1 A2f22n - x2 12m+1
i 2 _ 1
n=1 A2 22” 1'2 a(x)A
$_ 11\ w
o1 2w
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Theorem 6: Let m > 0. Then

m _ 1\ A2
Z ( 1) A — l7n+2 _2_ (13)
n=0 l2n+1 + (_1)n$ lm+1 2

Proof: Again, we let A, = LHS and B,, = RHS. Using identities (c) and
(), we then have

l l

B _—-B — m+2 _ ‘m+l
" e lm+1 lm
_ lmaolm = oy
lm+1lm
__(ymat
l2m+1 + (_1)nx
= Am - Am—l :
This yields
A* A?
AW”L_Bm :A’m—l_Bm—l :...:A,O—BO :2___:0
r 2z

So, 4, = B,,, as expected.

Formula (13) implies

i 5(_1)” — Lm+2 _ l

1=0 Loy +(=1)"  Ima 2

5 (-1)"A* A,

n=0 lQnJrl + (_1)n$ 2

i 50" 5
e g

n=0 Ly, o1 +(=1)"
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4. Pell and Pell-Lucas Implications

Since b,(z) = g,(2), equations (1), (3), (4), (6), (7), (9), (10), (11), and
(13), yield the following Pell versions, respectively:

N 28 _ Pom-2

n=2 Pop_1 — 1 2$p2m

< P
Z —2 — /<L(2£L') _ M,
n=2 Po, — 4z Pom+2Pom

= k(2z) - Pym2 :

i 162(2* +1)(22% +1)

n=2 qgn—16$2 ($2 + 1) -4 DPom+2Pom
i 1 - 1 . DPom .
n=1 q§n+1 —42% 1627 (x2 +1) Poms2
2
N 8l‘($ + 1) — 92m+3 —r

n=0 q§n+1 + 4(1'2 + 1) Gom+2

U 4.7:2 Dom

n=1 q;n - 4(«T2 + 1) Qom+1

S T Pom .
22 :2m,

+ 1)])%7, - 5172 om+1

$ A-D"(@" +1) ey
n=0 @1 +2(-1)"z  Gnnt

Their numeric versions follow by letting = = 1. For brevity, we omit them.
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1. Introduction

Eztended Gibonacci polynomials z,(z) are defined by the recurrence,
Zpo(2) = a(x)z, 1 (z) + b(x)z, (z) where z is an arbitrary complex variable; a(z),
b(z), zy(x),and z (z) are arbitrary complex polynominals; and n > 0.

Suppose a(z) =z and b(z)=1. When z,(z)=0 and z(z)=1,

z,(z) = f (z), the nth Fibonacci polynomial, and when z,(z) =2 and 2 (z) =z,
z,(z) =1 (), the nth Lucas polynomial

Clearly, f (1) = F , the nth Fibonacci number; and / (1) = L_, the nth Lucas
number [1, 4, 5].
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On the other hand, let a(xr)=1 and b(z)==z. When z(z)=0 and
z(x) =1, z,(x) = J, (), the nth Jacobsthal polynomial, and when z,(z) = 2 and
z(x) =1, z,(x) = j,(x), the nth Jacobsthal-Lucas polynomial. Correspondingly,
J, =J,(2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J,,(1) = F,;and j,(1) = L

n "

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas
polynomials are closely related by the relationships J, (z) = 2" 9/2f (1/\/z) and

ju() = "L, (V) 12,31,

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). We let

A=A~z +4, D=z +1, 2a(z) =z + A, 2u(x) =1+ D, 2v(z) =1- D and

a = a(1). Using the Binet-like formulas [5], it follows that lim Stk - u* (z),

m—>0 C’UL
lim J”?*’“ _2'@) , lim J”?’*’“ = a"(x)A . We also omit a lot of basic algebra.
m—o g A m—w g
2. Sums Involving Reciprocals of Gibonacci Polynomials
We investigated the following gibonacci sums in [6]:
S fom=s .
Z — J2m-2 : (1)
n=2 271,71 -1 xfzm
2ot 4+ 2z £
Z . 5 — Ii(l') _ 4m+2 : (2)
n=2 Jo, — T me+2f2m
> S @)

n=1 122n+1 - 332 AQIEQ f2m+2
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m 2
A"z :Z2m+3 _2- (4)

2 2
n=0 12”_,_1 +A l2m+2 2

i xQ — me . (5)
n=1 lg2n - A2 12m+1

m 1\ A2
( 1) A :lm+2 _g, (6)

2
w0l + ()" o

Ny
s o

where ()

Our objective is to explore their Jacobsthal counterparts. The investigations
hinge on the gibonacci-Jacobsthal relationships cited above and the Jacobsthal

identity 52 — D%J2 = 4(-z)" [5].
3. Sums Involving Reciprocals of Jacobsthal Polynomials

We begin our explorations with the first gibonacci sum.

3.1 Jacobsthal Version of Identity (1): Let A = % and B = f2m_—2,

f?n—l -1 Thom
Replacing = with 1/\/5 in A, and then multiplying the numerator and

2n—2

denominator of the resulting expression with z , We get

m (4n-5)/2

LHS =

- [$(2n—2)/2f2n_1]2 _ 22

$(4n—5)/2

m
- Z 2 22 '

where f, = f,(1/~/z) and J, = J,(z).
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Now replace x with 1/\/5 in B, and then multiply the numerator and

denominator of the resulting expression with a:(Qm*l)/Q . This yields
RHS = N
fom

2m-3)/2

where f, = f,(1/Jz) and J, = J (z).

Equating the two sides, we get

m x2n—4 Jo
z — 2m—2 ) (7)

2 2n-2
n=2 ‘]2n—1 - J2m

It follows from equation (7) that

i 1 — F2m—2 .
n=2 }72277 1~ 1 FQ

0 2n—4 1

T
o J22n—1 _ $2n72 'LL2 (.T)

see [6, 7, 8].
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Using the identity j2 — D72 = 4(-z)" , it also implies

This yields

Next we turn to identity (2)

3
3.2 Jacobsthal Version of Identity (2): Let A=x2+2:§, and
on — L

poto i S Replacing = with with 1/Jz in A, and then
f4f(l3 IJ% me+2f2m
2

multiplying the numerator and denominator of the resulting expression with z°"~2,
we get

m
LHS = Zﬂ

n=2 \/E(xf;n—l )

m (21} + 1)I2n—2

= \/;{ [x(%*l)/?én]Q _ xZn—Q}

where f, = f,(1/~/z) and J, = J,(z).
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Now replace z with with 1/\/5 in B, and then multiply each numerator and

(4m+1)/

each denominator of the resulting expression with z ? . We then get

9/2 3/2 (4m+1)/2
RHS = v flO + ‘7"3\/;(‘7“ f4) _ z f4m+2

Voo EP ) 26 Vel P )2 )

__Juo +$\/;J4_ Simo
NEa R tly  NuTyiada,

where f, = f,(1/Jz) and J, = J (z).

Equating the two sides then yields

mo(2y +1)z2" 2 . J
Z ( . )27%2 =k (ZL’) _ 4m+2 , (8)
n=2 J3, =T Jomr2Tom
2
where x”(1) = o Ty
Jods  Js
This implies
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Using the identity ;2 — D72 = 4(-z)" , it also yields

i (e +1)D%™ . (2) - msz_.
n=2 j22" — (2.7} + 1)2 xQn_Q J2m+2‘]2m
Z 2 2 -2 (z)=D;
n=2 Jop (2$ + 1)
> -5
o L2n 9 3
i 45 . 2272 6
o2 _95.9m2 5

Next we explore the Jacobsthal counterpart of identity (3).

3.3 Jacobsthal Version of Identity (3): Let Azﬁ, and

n+l — L

B S fom . Replacing z with with 1/\/5 in A, and then multiplying the
A2$2 f2m+2

numerator and denominator of the resulting expression with z"!

, yields

LHS = Z

n=2 I12n+1 1

- Z ,

n= 2Jzn+1 "

where I, =1 (1//z) andj, = j, (7).
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Now replace z with with 1/\/5 in B, and then multiply the numerator and

denominator of the resulting expression with a;(QmH)/Q . This yields
RHS = & . fm_ :
D2 f2m+2
2m—-1)/2
_ P o™
2 (2m+1)/2 ’
D z f2m+2
— x3 . J2m
D? Jomso
where f, = f,(1/Jz) and J, = J (7).
Equating the two sides, we then get
m 2n 3
T x J.
D )
n=1Jop4y1 — T D2 J2m+2

It follows from equation (9) that

n=1 L2n+1 -1 5FQm+2
i $2n ~ $3

2 2n-1 2 2 ’
n=1Jops+1 =T D*u*(z)
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Using the identity ;2 — D%J2 = 4(-z)" , it also follows that

i 2" B 3 Jom

2 2 2 m-1 2 ’
n=1 D z]2"+1 - (4$ + l)x " D J2WI,+2
0 $2n x3

S0, — (42 + 1) DRE(z)

i 1 3-5,
ot By =1 10

i 221 2

n=1 9J227L+1 17 22n_1 9

Next we investigate the Jacobsthal counterpart of identity (4)

2
3.4 Jacobsthal Version of Identity (4): Let A:L and

2 2’
l2n+1 +A

B = l2m—+3—£. Replacing z with 1/\/5 in A, and then multiplying the numerator

l2m+2

and denominator of the resulting expression with z*", yields

m .D2
LHS= )" NG 5
n=0 x($l2n+1 +D )

m D2x2n
- Z @2n+1)/2.2 12 2 2n
N A VY P

m DQJ)Qn

AN (e + D)

where f, = f,(1/x) and j, = j, ().
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Now replace x with 1/\/5 in B, and then multiplying the numerator and

denominator of the resulting expression with x(2m+3)/2 . This gives

(2m+3)/2

(2m+3)/2
X

l2m+3 _
\/;[x(2m+2)/2l2m+2] 2\/; ) x(2m+3)/2

RHS =

j2m+3 1

Vi 2o

where [, =1 (1//z) and j, = j, ().

Equating the two sides yields

2 92 .
S D™ _ Jom+3 _l 10
2 2 2 ' (10)
n=0 Jop41 + DT Jomiz 2
This yields
i ) Loy 1.
n=0 L%n+1 +5  Lomiy 2
o j22n+1+ D2$2n 2
¢ 5 b
n=0 L%TL+1 +5 2
2 g2 9

Using the identity 52 — D*J2 = 4(—z)" , it also implies that

< D2‘r2n — j2m+3 _l-
2 )

Z 272 2 i
D J27’L+1 + T n 327n+2

n=0
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o0 D2x2n

3 ~u(z) -1

272 2
n=0D J27L+1 +a™" 2

Next we investigate the Jacobsthal counterpart of identity (5)

2
3.5 Jacobsthal Version of Identity (5): Let A = 5 L 5 ,and B = o

oIn m+1

Replacing z with 1/\/5 in A4, and then multiplying the numerator and denominator

of the resulting expression with z>" ™, we get

LHS = Z

2
n=1 .'I:l2n D

2n—1

[ 271/21277]2 D2p2n-1

m x?n—l

2 2 op-1"'
n=1 Jo, — Dz

where I =1 (1//z) andj, = j, ().

Replacing z with 1/\/5 in B, and then multiplying the numerator and

(2m+1)/2

denominator of the resulting expression with z , yields
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(2m-1)/2
RHS = [2m+1 ]me
l2m+1
_ :I:‘]Zm
j2m+1 ,

where I, =1 (1/Vz) and j, = j,(z)
Equating the two sides, we then get

2n—1 mJQm

i = Tom (11)

D2 2n—1 Jomal

It then follows that

gL 1 i
L -5 10’
el ]22n _9 . 2271,*1 9

Using the identity 52 — D*J2 = 4(—z)", italso implies that

2n—1
zJy,,

m
',1: .
Z 2 1 . '

2
n=1D JQ,,,, - Joma+1
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gL 1 4
n15F -1 2 10 ’
1 9J2n 2271 -1 9

Finally, we explore the Jacobsthal counterpart of identity (6)

3.6 Jacobsthal Version of Identity (6): The desired counterpart of identity
(6) is

m 20 _.\n .
z D ( ‘T) — ]-m+2 _l. (12)
=0 Jogi1 + (=2)"  Jmer 2

Consequently,
0 20 . \n
> L ue)-1

n=0 Jop1 + (-2)"

In the interest of brevity, we omit the basic algebra and the consequences of
formula (12).
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1. Introduction

Sessa [11], initiated the tradition of improving commutativity conditions in
metrical common fixed point theorems. While doing so Sessa [11] introduced the
notion of weak commutativity. Motivated by Sessa [11], Jungck [6] defined the
concept of compatibility of two mappings, which includes weakly commuting
mappings as a proper subclass. After this definition there is a multitude of
compatibility like conditions. Jungck and Rhoades [7] introduced the notion of
weakly compatible (coincidentally commuting) mappings and showed that
compatible mappings are weakly compatible but not conversely. Many interesting
fixed point theorems for weakly compatible maps satisfying contractive type
conditions have been obtained by various authors. Recently, Jungck and Rhoades [8]
introduced occasionally weakly compatible mappings, which is more general among
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the commutativity concepts. Several authors have obtained several common fixed
point theorems by using the idea of occasionally weakly compatible mappings.

Fixed point theory in symmetric (semi-metric) space is one of the emerging
areas of interdisciplinary mathematical research. Menger [9] introduced symmetric
(semi-metric) space as a generalization of metric space. Cicchese [2] introduced the
notion of a contractive mapping in symmetric (semi-metric) space and proved the
first fixed point theorem for this class of spaces. Hicks and Rhoades [4] generalized
Banach contraction principle in symmetric (semi-metric) space. Jha et al. [5] proved
a common fixed point theorem for three pairs of self-mappings using occasionally
weakly compatible mappings.

Branciari [1] introduced the notion of contraction of integral type and proved
first fixed point theorem for this class of mapping. Goyal and Jaiswal [3] proved
some common fixed point theorems for compatible mappings in symmetric space
satisfying a general contractive condition of integral type. In this paper, we
prove a fixed point common theorem using the idea of occasionally weakly
compatible mappings in symmetric space satisfying a general contractive condition
of integral type.

2. Basic Definition

We recall that a symmetric on a set X is a non negative real valued function d
on X x X such that

() dx,y)=0ifandonly ifx=y, forx,y € X
(i) d(x, y) = d(y, x) forall x,y € X

Let d be a symmetric on a set X and for r > 0 and any x € X, let
B(x, r) ={y € X: d(x, y) <r}. Atopology t(d) on X is given by U € t(d) if and only if
for each x € U, B(x, r) < U for some r > 0. A symmetric d is a symmetric if for each
X € X and each r > 0, B(x, r) is a neighbourhood of x in the topology t(d). Note that
lim,_,.. d (x,, X) = 0 if and only if x,— x in the topology t(d).

The following two axioms were given by Wilson [12]. Let (X, d) be a
symmetric space.

(W3) Given {x,}, xand y in X, lim,_., d (X,, X) = 0 and lim,_,,, d (X,, ¥) = O implies
X =Y.
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(W4) Given {x,}, {yn} and x in X, lim,_,,, d(X,, X) =0 and lim;_,., d(Xn, ¥n) = 0
implies that lim,_,,, d (y,, X) = 0.

It is easy to see that for a symmetric d, if t(d) is a Hausdorff, then (W3)
holds.

In the sequel, we need a function F* = {¢: R, — R.} such that ¢ is a
Lebesgue integrable mapping which is summable, non-negative and satisfy

&
[@(t)dt >0 for all £ >0 and 4 will be a function defined by, ¢: R. — R. such that
0

O<g(t)<tforallt>0.

Definition 2.1: Let S and T be two self mappings of a symmetric space
(X, d). Sand T are said to be compatible if lim,_,., d (STX,, TSx,) = 0 whenever {x,} is
a sequence in X such that lim,_,., d (Sx,, t) = lim,_,., d (Tx,, t) = 0 for some t € X.

Definition 2.2: Let X be a non-empty set and S,T: X — X be an arbitrary
mapping. If w = Sx = Tx for some x in X, then x is called a coincidence point of S
and T and w is called a point of coincidence of Sand T.

Definition 2.3: Two self mappings S and T of a symmetric space (X, d) are
said to be weakly compatible if they commute at their coincidence points.

Definition 2.4: Let S and T be two self mappings of a symmetric space
(X,d).Then S and T are said to be occasionally weakly compatible (owc) if there is a
point x € X which is coincidence point of S and T at which S and T commute. It is
important to note that weakly compatible mappings are occasionally weakly
compatible mappings but not the converse.

Example 2.5: Let X = [0, ) with the usual metric. Define S,T: X — X by
S(x) =2and T(x) = x? forall x € X.

Then,
C(S,T)={x€eX:S5(x) =Tx)}={0,2},

S(T(0) = T(S(0)) and S(T(2) # T(S(2)).

Thus, (S,T) is a occasionally weakly compatible pair but not weakly
compatible.
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Example 2.6: Consider x = [2,20] with the symmetric space (X, d) defined
by d(x,y) = (x = ¥)*.

Let S, T: X — X be maps defined by
S2)=2atx=2andS(x) =6forx > 2

T2Q)=2atx=2and T(x) =12 for 2<x <5 and T(x) =x — 3 for
x > 5.

Again, S(9) = T(9) = 6, therefore, x = 9 is another coincidence point of S
and T except x = 2.

ST(2) = TS(2) but ST(9) = 6, TS(9) = 3, ST(9) # TS(9)

Hence, S and T are occasionally weakly compatible but not weakly
compatible. Therefore, weakly compatible mappings are occasionally weakly
compatible but converse is not true.

Lemma 2.7: Let (X,d) be a symmetric space. If the self mappings Sand T
on X have a unique point of coincidence w = Sx = Tx, then w is the uniqgue common
fixed point of Sand T.

Definition 2.8: A point x € X is called a commuting pair of S and T if

STx = TSx.
3. Main Result

Theorem 3.1: Let (X, d) be a symmetric space. Let A, B, S, T, I and J be self
mappings of X such that

(i) (AB,I) and (ST,]) are occasionally weakly compatible (OWC) Q)

(ii) fod(ABx,STy) O(t)dt < F(max{foml(x’y) Q)(t)dt,meZ(x'y) o(t)dt,
[T9Y o(0ydey) 2

for all (x,y) € X x X, where

my(x,y) = d(Ix,]y),
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m, (x,y) = 5 [d(ABx, Ix) + d(STy, Jy)],

ms(x,y) = 5 [d(ABx, Jy) + d(STy, 1x)]

@:R™ - R* is a Lebesgue integrable mapping which is summable, non-negative and
such that foe @(t)dt > 0 forall € > 0.

F:R* — R* be afunction such that

(@) Fisnon-decreasing on R*

(b) 0<F(t)<tforallt e (0,)

(c) F(0)=0

Then AB, ST, I and J have a unique common fixed point.

Furthermore, if the pairs (A, B) and (S, T) are commuting pair of mappings
then A, B, S, T, I and J have a unique common fixed point in X.

Proof: By (1), (AB,I) and (ST, J) are occasionally weakly compatible, then
there exists x,y € X which is a coincidence point of (AB, I) and (ST, J) at which
(AB, 1) and (ST, J) commute i.e. ABx = Ix and Sty = Jy.

We show that ABx = STy.

Using condition (2), we get

fod(ABx,STy) O(O)dt < F(max{ foml(x.y) o (t)dt, fomz(x.y) O(t)dt, fom3(x'y)¢(t) dt})

where,
my(x,y) = d(Ix,]y)

my(x,y) = 5 [d(ABx, Ix) + d(STy,Jy)]
m3(x,y) = [d(4Bx, Jy) + d(STy, Ix)]

Since, ABx = Ix and STy = ]y, therefore,

my(x,y) = d(ABx,STy)
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m,(x,y) = % [d(ABx, ABx) + d(STy,STy)] = 0

ms(x,y) = % [d(ABx,STy) + d(ABx, STy)]

. fd(ABx,STy)

N @(t)dt <F (max { [HABESTY) ¢y (1yag 0, [AAPFSTY) Q)(t)dt})

0 0

—F (J-Od(ABx,STy) (D(t) dt)

or, fod(ABx’STy )o(6) dt < fod(ABx’STy ) @(t) dt, which is a contradiction.

Hence,  [I“™p(t)de=0 [by def. of 9]
or, d(ABx,STy) =0
or, ABx = STy
Therefore, ABx =Ix =STy =]y 3

Again, if there is another point of coincidence z such that ABz = Iz, then on
using condition (2), we get,

ABz=1z=STy =]y (4)
Now, from (3) and (4), it follows that ABz = ABx. This implies that z = x.

Therefore, u = ABx = Ix, for u € X is the unique point of coincidence of
AB and I.

By using Lemma (2.7), u is a unique common fixed point of AB and I.
Hence, ABu = Iu = u.

Similarly, there is a uniqgue common fixed point w € X such that
w=STw = Jw.

Suppose that u # w then on using condition (2), we get

<F (max { s W) g0y dt, i 20W) 5 1) dt fo’"3(u’w)¢(t)dt})
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where
my(u,w) = d(u,Jw) = d(u,w)

m,(u,w) = %[d(ABu, Iu) + d(STw,Jw)]

[d(u,u) +dw,w)] =0

N =

ms(u,w) = %[d(ABu,]w) + d(STw, Iu)] = d(u,w)

a0 = B (max (52 00,052 00ut)

d(u,w)

=F(/, @(t)dt)

0 @(t)dt, which is a contradiction.

d(u,w)

Hence, we get | @(t)dt =0 [by def. of ‘@]
or, dlu,w) =0
or, u=w.
Therefore, u is the unique common fixed point of AB, ST, | and J.

It remains only to show that u is only the common fixed point of mappings
A, B, S, T, land J. If the pairs (A, B) and (S, T) are commuting pairs then, we get

Au = A(ABu) = A(BAu) = AB(Au)
This gives Au = u.
Again, Bu = B(ABu) = BA(Bu) = AB(Bu).
This gives Bu = u.
Similarly, we get Su = u and Tu = u.

Consequently, Au = Bu =Iu=Ju=Su=Tu=u. Hence, A, B, S, T, |
and J have a unique common fixed point.
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It should be noted that our theorem (3.1) generalized the result of Jha et al.
[5], Jungck and Rhoades [8] and Pant and Chauhan [10].

On the basis of theorem (3.1), we get the following result.

Corollary 3.2: Let (X,d) be a symmetric space. Let A, B, S, T, I and J be
self mappings of X such that

(i) {AB,I} and {ST, ]} are occasionally weakly compatible (OWC).

) LU o0de < F (max {[E o@dr, [ oyt
[ gyde, [T B(t)dt})
where my(x,y) =d(x,]y)
ma(x,y) = d(ABx,]y)
ms(x,y) = d(STy, Ix)
and my(x,y) = 5 [d(ABx, Ix) + d(STy,Jy)]

for all (x,y) € X x X, then AB,ST, | and J have a unique common fixed point.

Furthermore, if the pairs (4, B) and (S,T) are commuting pair of mappings
then A, B, S, T, I and J have a unigue common fixed point in X.

The proof of the above corollary (3.2) is same as that of theorem (3.1).
In the above theorem (3.1), if we take AB = A and ST = S, then we have the
following corollary which generalizes the results of Jungck and Rhoades [8] to

integral type inequality.

Corollary 3.3: Let (X,d) be a symmetric space. Let A, S, | and J be self
mappings of X such that

(i) {A, I} and {S,]} are occasionally weakly compatible (OWC).
(i) [ o@)dt < Fmax([[* o@)dt, [ o@)dt, [ 90)de})

for all (x,y) € X x X where
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my (x,y) = d(Ix,]y)
my (x,y) = 3 [d(Ax, Ix) + d(Sy,]y)]
m3(x,y) = 5 [d(Ax,]y) + d(Sy, Ix)]
then A, S, I and J have a unique common fixed point in X.

Our next corollary is obtained by putting AB=J=Aand ST=1=3S in
theorem (3.1).

Corollary 3.4: Let (X,d) be a symmetric space. Let A and S be self
mappings of X such that

(i) Aand S are occasionally weakly compatible (OWC).
iy [ o@de < Fmax{[""” o@©adt, [ o(t)dt,

[0 g (ydey)

0
(iii) where,

my(x,y) = d(Sy, Ay)
my(x,y) = 5 [d(Ax, Sx) + d(Sy, Ay)]
ms(x,) = 5 [d(Ax, Ay) + d(Sy, S%)]
forall (x,y) e X x X.
then A and S have a unique common fixed point in X.

Now we give an example to demonstrate the validity of our theorem (3.1)
and corollary (3.2).

Example 3.5: Let X =[0,1] with symmetric space (X,d) defined by
d(x,y) = (x — y)?. Define self mappings A, B, S, T, 1 and J by

x+1 2+3x 2x+1 x+3 3x+1 2x+3
Ax—T,B = ,S = ,TX—T,IX— ,]x— s
Then the mappings satisfy all the conditions of corollary (3.2) and theorem

(3.1) and hence have a unique common fixed point at x = 1.
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Abstract: Many authors have extended Banach fixed point theorem by
introducing more general contractive conditions, which implies the
existence of a fixed point. Almost all of the conditions imply the asymptotic
regularity of the mappings under consideration. So, the investigation of
asymptotically regular maps plays an important role in fixed point theory.
In this paper, we obtain a common fixed point theorem in complete 2-metric
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improve several results.

Keywords: Fixed Point, Complete 2-Metric Spaces, Weakly Commuting
Mappings, Relative Asymptotic Regularity.

Mathematical Subject Classification (2010) No.: 54H25, 47H10.

1. Introduction

The concept of 2-metric spaces has been investigated initially by Gahler [4].
This concept was subsequently enhanced by Gahler ([5], [6]), White [20] and several
others. On the other hand Guay and Singh [10], Sharma and Yuel [16], Ciric [3] and
a number of other authors have studied the aspects of fixed point theory in the setting
of 2-metric space.

Rhoades et al. [14] introduced the concept of relative asymptotic regularity
for a pair of mapping on a metric space and Jungck [11] proposed the concept of
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compatible mappings and weakly commuting mappings. Sessa [15] and others used
both cited concepts and gave many interesting results.

Singh and Virendra [19] have proved a common fixed point theorem for
three weakly commuting mappings by using the concept of relative asymptotic
regularity of a sequence in 2-metric spaces. Nesic [12] gave a general result about
fixed points for asymptotic regular mappings on complete metric spaces. Gosain and
Goyal [7], Singh et al. [17], Baskaran and Rajesh [1] and Rajesh and Baskaran [13]
proved some results of fixed point theorems for asymptotically regular mappings on
complete 2-metric spaces with some Nesic [12] type contractive condition. Goyal
([81, [9]), obtained some common fixed point theorems in complete 2-metric spaces
by using the concept of relative asymptotically regularity at a point for weakly
commuting and compatible mappings. They have been motivated by various
concepts already known for metric spaces and have thus introduced analogous of
various concepts in the frame-work of the 2-metric space.

In this paper, we establish a common fixed point theorem in complete
2-metric spaces using the concept of relative asymptotical regularity at a point for
weakly commuting mappings.

2. Basic Definitions

Following Gahler ([4], [5]) and White [20], we have the following
definitions:

Definition 2.1: Let X be a set consisting of atleast three points. A 2-metric

on X is a real valued function d : X x X x X — R™, which satisfies the following
conditions:

(i) To each pair of distinct points x, y in X, there exists a point z in X such that d
(x,y,2)#0,

(i) d(x,y, z) =0, when at least two of x, y, z are equal,
(i) d(x,y,2)=d(y,z,x)=d (x,z,y) forall x,y, zin X,
(iv) d(x,y,2) <d(xy,w)+d(Xxwz)+d(w,y,z),forall x,y, z, win X.

The pair (X, d) is called a 2-metric space.

Definition 2.2: A sequence {x,} in a 2-metric space (X, d) is said to be
convergent with limitx in X if Lim,, ,_ d (X, X, @) =0 for all ain X.
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Definition 2.3: A sequence {X,} in a 2-metric space (X, d) is said to be a
Cauchy sequence if

Lim,, , 0 d (X, Xo, @) =0 for all ain X.

Definition 2.4: A 2-metric space (X, d) is said to be complete if every
Cauchy sequence in X is convergent.

Remark 2.5: In a complete 2-metric space a convergent sequence need not
be a Cauchy sequence. It has been illustrated by the following example:

Example 2.6: Let X = {0,1,% % }

Define d: X x X x X —[0,00) as

d(x,y,z) =
1
1, if x,y, z are distinct and {E’ n—-l-l} c {x,y, z}for some positie integer n
0, otherwise

Then it can be shown that (X, d) is a complete 2-metric space, the sequence
1 1) .
{;} converges to zero. But {;} is not Cauchy sequence.

Motivated from Browder and Petryshyn [2], we have

Definition 2.7: Let (X, d) be a 2 metric space and T be a self mapping on X.
Then T is said to be asymptotically regular at a point X € X if

len—)oo

d(T”x,T”+lx,a):0 forall ae X .

Sessa [15] introduced the notion of weakly commuting mapping as follows:

Definition 2.8: Let (X, d) be a 2-metric space, and S, T be self mappings of
X. Then (S, T) is said to be weakly commuting pair if d(STx,TSx,a)< d(Sx,Tx,a)
forall x, ain X.

Remark 2.9: A commuting pair of self maps on a 2-metric space is weakly
commutative. The following example shows that the converse need not be true.
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Example 2.10: Let X ={1,2,3,4} be aset. Define d : X x X x X - R" as

0, ifx=yory=zorz=xor{xyz}={123}
d(x,y,z)={

%, otherwise
Define S,T: X > X as 51=52=583=54=2 andT1=T2=T3=T4=3

Thus, (X, d) is a 2-metric space and S, T commute weakly on X but they do
not commute on X.

Rhoades et al. [14] introduced the concept of asymptotic regularity for pair
of mapping as follows:

Definition 2.11: Let S and T be self mappings of a 2-metric space (X, d). Let
{x.} be a sequence in X. Then {x,} is called asymptotically regular with respect to
pair (S, T) if

len%oo

d(Sz,,Tx,,a) = 0forallain X.

Definition 2.12: Let B and T be two self mappings of a 2-metric space (X, d)
then the sequence {x,}of X is said to be asymptotic T-regular with respect to B if

Lim, ,.d(Bz,,Tz,,a)=0

n—>00
Example 2.13: Let X = [0, 2] define d (x, y, 2) = Min {x - y}|y - z}}z - x|}

forall x,y,z e X . Define self maps B and T on X.

1, ifx € [0,1) 2, ifx € 0,1]
Bx = {2 5 ifx=1 and Tx =4,
= ifxe (1,2] = if x € (1,2]

Take x,, = 2 — % then we have
B(1)=T(1)=2

BQ)=T(@2)=1
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Hence, TX, —1 and Bx,—1

len—)oo

d(an, Tz, a) =d(1,1,2)=0.

Therefore, the sequence {x,} is T-regular with respect to B.
3. Main Results

Let Rt be the set of non-negative reals and let F;: R* - R* be functions
such that F;(0) = 0 and F; is continuous at 0(i = 1, 2).

Now, we prove our main result which is motivated by the contractive
condition studied by Ciric [3].

Theorem 3.1: Let A, B, S, T be self mappings of a complete 2-metric space
(X, d) satisfying

(i) d(ABx,ABy,a) < a;d(Sx,ABx,a) + a,d(Tx,ABx,a) + a3;d(Sy, ABy, a)
+a,d(Ty, ABy,a)

+F; [min{d(Sx, ABx,a).d(Sy, ABy, a),
d(Tx,ABx,a).d(Ty,ABy,a)}]

+F,[d(Sx,ABx,a).d(Sy,ABy, a)
+d(Tx,ABx,a).d(Ty, ABy,a)] 1)

For all x,y,ain X, where a,; is bounded and a,,as, a, are non-negative
numbers suchthat a, + az < 1,a3 + a4 < 1.

(i) (AB,S) and (AB, T) are weakly commuting pairs 2
(ili)  There exists a sequence {x,} which is asymptotically regular with

respect to (AB,S), (AB,T) and (S, T); 3)
(iv) S and T are continuous. 4)

If d is continuous the AB, S and T have a uniqgue common fixed point.

Furthermore, if the pairs (4,B), (4,5), (B,S), (A,T) and (B,T) are
commuting mappings then A, B, S and T have a uniqgue common fixed point.
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Proof: Let {x,} be a sequence in X which satisfy conditions (3) then on
using (1), we have

d(ABxy, ABxp,a) < a;d(Sx,, ABx,,a) + a,d(Tx,, ABx,,a)
+a3d(Sx;,, ABxpy,, a) + a,d(Txy,, ABxy, @)
+F; [min{d(Sx,,, ABx,,a).d(Sxy,, ABxy,, a),
d(Tx,, ABxy,, a). d(Txy,, ABxy,, a)}]
+F,[d(Sx,, ABx,, a). d(Sx,,, ABx,y,, a)
+d(Txy,, ABxy,a).d(Txy,, ABxy,, a)]

Letting m, n — oo and using condition (3), we get

lim d(ABx,,ABx,,a) =0 forall ain x.

m,n—oo

Therefore {ABx,} is a Cauchy sequence and converges to some point z in X
(as X is complete 2-metric space.

Again,

d(Sx,,z,a) < d(Sx,, ABx,,a) + d(ABx,,z,a) + d(Sx,, ABx,, z)
[using def. of 2-metric space]

Letting n — o and using (3), we have
Tlll_r)rgo d(Sx,,z,a) > 0
which shows that Sx,, — z. Similarly, we can show that Tx,, = z
Since, S and T are continuous, we get
SABx, — Sz, S*x,, = SSx,, - Sz, STx,, - Sz,
TABx, — Tz, T?x, = TTx,, > Tz, TABx, - Tz
Again, the pair (AB,S) are weakly commuting and the sequence {x,} is

asymptotically regular with respect to (4B, S), then on using definition of 2-metric
space, we have
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d(ABSx,,Sz,a) < d(ABSx,,SABx,,a) + d(SABx,, Sz, a)
+d(ABSx,,SABx,,Sz)
< d(Sx,,ABx,,a) + d(SABx,,Sz,a)
+d(Sx,, ABx,,Sz)
—>0asn - o
which shows that ABSx,, — Sz.
Similarly, ABTx,, —» Tz.

On using (1), we have

d(ABSx,,ABTx,,a) < a;d(S5%x,, ABSx,,a) + a,d(TSx,, ABSx,,a)
+a3d(STx,, ABTx,,a) + a,d(T?x,, ABTx,,a)
+F,[min{d(S?x,, ABSx,,a).d(STx,, ABTx,,a),
d(TSx,, ABSx,,a).d(T?x,, ABTx,,a)}]
+F,[d(S%x,, ABSx,,a).d(STx,, ABTx,, a)

+d(TSxy,, ABSx,,,a).d(T?x,, ABTx,,a)] (5)
Again,

d(STxy, TSx,,a) < d(STx,, ABSx,,a) + d(STx,, TSx,, ABSx,)

+d(ABSx,, TSx,, a)
< d(STx,,ABSx,,a) + d(STx,, TSx,, ABSx,)

+d(ABSxy, ABTxy,a) + d(ABTx,, TSx,,a)
+d(ABSxy, TSx,, ABTx,) (6)

On using (5) in (6), we get

d(STxy, TSx,,a) < d(STx,, ABSx,,a) + d(STx,, TSx,, ABSx,)

+a,d(S%xy,, ABSx,,a) + a,d(TSx,, ABSx,, a)

+a3d(STx,, ABTx,,a) + a,d(T?x,, ABTx,,a)
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+F, [min{d(5*x,, ABSx,,a).d(STx,, ABTx,, a),
d(TSx,, ABSx,,a).d(T?x,, ABTx,,a)}]

+F,[d(S?xy,, ABSxy,,a).d(STx,, ABTx,,a),
d(TSx,, ABSx,,a).d(T?x,, ABTx,,a)]

+d(ABTx,, TSxy,a) + d(ABSx,, TSx,, ABTx,)

Letting n — oo, we get

d(8z,Tz,a) < d(Sz,5z,a) + d(5z,Tz,5z) + a,d(S5z,5z,a)
+a,d(Tz,Sz,a) + a;d(Sz,Tz,a) + a,d(Tz,Tz,a)
+F;[min{d(Sz,5z,a).d(Sz,Tz, a),
d(Tz,5z,a).d(Tz,Tz,a)}]
+F,[d(5z,5z,a).d(5z,Tz,a)
+d(Tz,5z,a).d(Tz, Tz, a)]
+d(Tz,Tz,a) +d(Sz, Tz, Tz)
or, d(5z,Tz,a) < (a, + a3 + as)d(Sz,Tz,a)

which is a contradiction.

As (a, + az) < 1, it follows that d(Sz, Tz, a) = 0, this means that Sz = Tz
(a being arbitrary).

Again from (1), we get
d(ABTx,,ABz,a) < a;d(STx,,ABTx,,a) + a,d(T?x,, ABTx,,a)
+asd(Sz,ABz,a) + a,d(Tz,ABz, a)
+F, [min{d(STx,, ABTx,,a).d(Sz, ABz, a),
d(T?x,,ABTx,,a).d(Tz, ABz, a)}]

+F,|d(STx,, ABTx,,a).d(Sz,ABz, a)

+d(T?x,,ABTx,,a).d(Tz, ABz,a)]
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Letting n — o, we get
d(Tz,ABz,a) < a1d(Sz,Tz,a) + a,d(Tz,Tz,a) + a;d(Sz,ABz, a)
+a,d(Tz,ABz,a) + asd(Sz, Tz, a)
+F;[min{d(Sz,Tz,a).d(Sz,ABz, a),
d(Tz,Tz,a).d(Tz, ABz, a)}]
+F,|d(Sz,Tz,a).d(Sz,ABz, a)

+d(Tz,Tz,a).d(Tz,ABz,a)]
which gives,

d(Tz,ABz,a) < (az + a4)d(Tz,ABz,a) [+ Sz = TZ]
which is a contradiction as (az + a,) < 1, yielding thereby ABz = Tz.
This gives Sz = Tz = ABz.
Again, from (1), we have

d(ABABz,ABz,a) < a,d(SABz,ABABz,a) + a,d(TABz, ABABz, a)
+a3d(Sz,ABz,a) + a,d(Tz,ABz, a)
+F;[min{d(SABz,ABABz,a).d(Sz, ABz, a),

d(TABz,ABABz,a).d(Tz,ABz,a)}]
+F,[d(SABz,ABABz,a).d(Sz,ABz, a)
+d(TABz,ABABz,a).d(Tz,ABz,a)]

= a,d(SABz,ABABz,a) + a,d(TABz,ABABz, a)

< a,d(Sz,ABz,a) + a,d(Tz, ABz, a)
[The pairs (AB,S) and (AB,T) are weakly commuting]

=0 [From(2)]

Hence, ABABz = ABz i.e. ABz is a fixed point of AB.
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Put ABz = t, then
ABSz = ABABz = ABz =t and
d(St,t,a) = d(SABz,t,a)
< d(SABz,ABSz,a) + d(SABz,ABSz,t) + d(ABSz,t,a)
[By def. of 2-metric space]
=0 [From (2)]
Hence, St = t. Similarly, Tt = t.

So, St = ABt =Tt =t i.e, t isacommon fixed point of S, AB and T.

To prove the uniqueness of t, let u be another common fixed point of AB, S
and T then from (1), we get

d(ABt,ABu,a) < a,d(St,ABt,a) + a,d(Tt, ABt, a)
+asd(Su, ABu,a) + a,d(Tu, ABu, a)

+F; (min{d(St, ABt,a).d(Su, ABu, a),
d(Tt,ABt,a).d(Tu, ABu,a)})

+F,[d(St,ABt,a).d(Su, ABu, a)
+d(Tt,ABt,a).d(Tu,ABu, a)]

=0
Hence, t = u.

Finally, we have to prove that t is also a common fixed point of A, B, Sand T.
Now,
At = A(ABt) = A(BAt) = AB(At) [+ AB = BA]
At = A(St) = S(At) [+ AS = SA]
Bt = B(ABt) = B(A(Bt)) = BA(Bt) = AB(Bt) [+ AB = BA]

Bt = B(St) = S(Bt) [+ BS = SB]
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which shows that (AB,S) has a common fixed points which are At and Bt giving
thereby At = t = Bt = St = ABt, in the view of uniqueness of common fixed point
of the pair (4B, S).

Similarly, using the commutativity of (4, B), (4, T) and (B, T), we get
At = A(ABt) = A(BAt) = AB(At)
At = A(Tt) = T(At)
Bt = B(ABt) = B(A(Bt)) = BA(Bt) = AB(Bt)
Bt = B(Tt) = T(Bt)
which shows that (AB,T) has a common fixed points which are At and Bt giving
thereby At = t = Bt = Tt = ABt in view of uniqueness of common fixed point of

the pair (4B, T).

Consequently, At = Bt = St = Tt = t and t is a unigue common fixed point
of A,B,SandT.

Our theorem (3.1) generalize the result of Goyal [8]

Corollary 3.2: Let A, B, S, T be self mappings of a complete 2-metric space
(X, d) satisfying

Q) d(ABx, ABy, a)
< a,d(Sx,ABx,a) + a,d(Tx,ABx,a) + a3;d(Sy, ABy, a)
+a,d(Ty, ABy, a)

+F; [min{d(Sx, ABx,a).d(Sy, ABy, a),
d(Tx,ABx,a).d(Ty,ABy,a)}]

+F,[d(Sx,ABx,a).d(Sy, ABy, a)
+d(Tx,ABx,a).d(Ty, ABy,a)]

For all x,y,ainX, where a, is bounded and a,,as, a, are non-negative
numbers suchthat a, + a; < 1,a3 + a4 < 1.

(i) (AB,S) and (AB, T) are weakly commuting pairs
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(ili)  There exists a sequence {x,} which is asymptotically regular with
respect to (4B, S), (AB,T) and (S, T);

(iv) S and T are continuous
If d is continuous the AB, S and T have a uniqgue common fixed point.

Furthermore, if the pairs (4,B),(4,5),(B,S),(A,T) and (B,T) are
commuting mappings then, A, B, S and T have a unique common fixed point.

If we take AB =A,S =B,F;, =F and F,(t) =0 for t € R* in corollary
(3.2), then we get the following result of Goyal [8].

Corollary 3.3: Let A, B and T be self mappings of a complete 2-metric
space (X, d) satisfying

(i) d(Ax,Ay,a) < a;d(Bx,Ax,a) + a,d(Tx, Ax,a) + azd(By, Ay, a)
+a,d(Ty, Ay, a)
+F(min{d(Bx, Ax,a).d(By, Ay, a),d(Tx, Ax,a).d(Ty, Ay,a)})

for all x,y,a in X, where a,,a,,a; and a, are non-negative numbers such
thata, + a3 <1, az +a, <1,

(if)  the pairs (4, B) and (4, T) are weakly commuting pairs;

(iii) there exists a sequence {x,} which is asymptotically regular with respect to
(A,B)and (4, T);

(iv) BandT are continuous.
If d is continuous then, A, B and T have a uniqgue common fixed point.

Our next corollary is obtained by putting AB = A, S =B and F;(t) = 0 for
all t € R* in corollary (3.5), which is a result of Singh and Virendra [18]

Corollary 3.7: Let A, B and T be self mappings of a complete 2-metric
space (X, d) satisfying

(i) d(Ax,Ay,a) < a;d(Bx,Ax,a) + a,d(Tx, Ax,a) + azd(By,Ty,a) +
a,d(Ty, Ay, a)
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forall x,y,a in X, where a,, a,, a; and a, are non-negative numbers such
thata, + a3 <1, az +a, <1,

(if)  the pairs (4, B) and (4, T) are weakly commuting pairs;

(iif) there exists a sequence {x,} which is asymptotically regular with respect to
(A,B) and (4,T) both;

(iv) BandT are continuous.
If d is continuous then, A, B and T have a uniqgue common fixed point.
REFERENCES

[1] Baskaran, B. and Rajesh, C. (2014): Some Results on Fixed points of Asymptotically
Regular Mappings, Int. J. of Math. Anal., VVol. 8(50), pp. 2469-2474.

[2] Browder, F. E. and Petryshyn, W. V. (1966): The Solution by iteration non-linear
functional equations in Banach Spaces, Bull. Amer. Math. Soc., Vol. 72,
pp. 571-575.

[3] Ciric, Lj. B. (1963): Generalized contractions and fixed point theorems, Publ. Inst. Math.,
Vol. 26, pp. 115-148.

[4] Gahler, S. (1963): 2-metrische Raume and lhre topologische strukture, Math. Machr.,
Vol. 26, pp. 115-148.

[5] Gahler, S. (1963): Uber die uniformisierbarkeit 2-metrischer raume, Math. Nachr.,
Vol. 26, pp. 115-148.

[6] Gahler, S. (1966): Zur Geometric 2-metrischer raume, Rev. Roumaine Math. Pures. Appl.,
Vol. 11, pp. 665-667.

[7] Gosain, P. and Goyal, A. K. (2006): Compatible mappings and fixed point under
asymptotic regularity for pair of mappings, Jnanab...., Vol. 36.

[8] Goyal, A. K. (2010): Relative asymptotic regularity and common fixed points, J. Ind.
Acad. Math., Vol. 32(1), pp. 89-95.

[9] Goyal, A. K. (2010): Compatible mappings and common fixed point, The Mathematics
Student, Vol. 79(1-4), pp. 143-151.

[10] Guay, M. D. and Singh, K. L. (1984): Convergence of Sequence of iterates for a pair of
mappings, J. Math. Phys. Sci., VVol. 18, pp. 461-472.



164 A. K. GOYAL

[11] Jungck, G. (1986): Compatible mappings and common fixed point, Internet. J. Math and
Math. Sci., Vol. 9(4), pp. 771-779.

[12] Nesic, S. C. (1999): Result on fixed point of asymptotically regular mappings, Ind.
Journal Pure. Appl. Math., Vol. 30(5), pp. 491-494.

[13] Rajesh, C. and Baskaran, B. (2018): Fixed points of asymptotically regular mappings in
2-metric spaces, Int. J. Pure and Appl. Math., VVol. 119(13), pp. 347-355.

[14] Rhoades, B. E., Sessa, S., Khan, M. S. and Khan, M. D. (1984): Some fixed points in
2-metric Space, Math. Japonica., Vol. 29(4), pp. 519-525.

[15] Sessa, S. (1982): On a weak commutativity condition of mappings in fixed point
considerations, Publ. Inst. Math. (Beograd), Vol. 32, pp. 149-153.

[16] Sharma, P. L. and Yuel, A. K. (1984): Fixed point theorems under asymptotic regularity
at a point, Math. Sem. Note., Vol. 10, pp. 183-190.

[17] Singh, A., Chauhan, M. S. and Sharma, R. K. (1997): Relative asymptotic regularity and
common fixed points, Bull. Cal. Math. Soc., Vol. 89, pp. 323-326.

[18] Singh, S. L. and Virendra (1982): Coincidence theorems on 2—-metric spaces, Indian
Journal Phy. Nat. Sci., Vol. 2, pp. 32-35.

[19] Singh, S. L. and Virendra (1989) Relative asymptotic regularity and fixed points, Ind.
Journal of Math., Vol. 31, pp. 99-104.

[20] White, A. G. (1969): 2-Banach spaces, Math. Nachr., Vol. 42, pp. 43-60.

Department of Mathematics, (Received, February 3, 2021)
M.S.J. Govt. P.G. College,

Bharatpur (Raj.)-321001

E-mail: akgbpr67@gmail.com



Journal of Indian Acad. Math. ISSN: 0970-5120
Vol. 42, No. 2 (2020) pp. 167-183

Thomas Koshy | A FAMILY OF SUMS OF GIBONACCI
POLYNOMIAL PRODUCTS OF ORDER 6

Abstract: We explore twelve sums of gibonacci polynomial products of

order 6, involving gén+k, where gn denotes the nth gibonacci polynomial
and0<k<5.

Keywords: Extended Gibonacci Polynomials, Fibonacci Number, Lucas
Number.

Mathematical Subject Classification (2020) No.: Primary 05C20, 05C22,
11B39, 11B83, 11C08.

1. Introduction

FEztended Gibonacci polynomials z,(z) are defined by the recurrence,
Zpo(2) = a(x)z, 1 (z) + b(x)z, (z) where z is an arbitrary complex variable; a(z), b(z),

zo(x), and z,(x) are arbitrary complex polynominals; and n > 0.

Suppose a(z)=x and b(z)=1. When z,(z)=0 and z(z)=1,
z,(z) = f (z), the nth Fibonacci polynomial, and when z,(z) =2 and 2 (z) =z,

z,(r) =1 (x), the nth Lucas polynomial

Clearly, f (1) = F , the nth Fibonacci number; and (1) = L_, the nth Lucas
number [1, 2, 3].
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In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will meanz, (). In

addition, we let g, = f or [ , and omit a lot of basic algebra.

A gibonacci polynomial product of order m is a product of gibonacci

polynomials g, of the form [ g7,  where s; =m [4,6].

n+k !
keZ 3]21

Again, in the interest of clarity, conciseness, and convenience, we let

A = fn(,i+2 B = fn5+2 n C = ﬁ7%+2fn?

D = f';?+2f;Lfnf2 E = fn:,))+2fn:,)) F = f7?+2fn2fn—2
G = frhfis I= [l fis J = fralifis
K = f712+2fnfn3—2 L= ﬁz+2fr? M = fn+2f7§1fn—2
N = -]";L+2f7?f;L272 0 = fn+2fn2f';L372 P = fr?
Q=11 R=ff, S = fys
T=ffy;

and athrough ¢ denote their numeric Fibonacci counterparts, respectively.

1.1 Sums of Fibonacci Polynomial Products of Order 4: Our discourse
hinges on gibonacci recurrence, identities f .+ f,_,=10,, £, =5l

fn-%—? - fn—? = ZEZ,”, f;HQ + fn72 = (I2 + 2)fn' f2n+1 = fn2+1 + f;LQ' and the addition
formula f . =/f .f +f.,f,_i [3] and the following sums of Fibonacci
polynomial products of order 4 [5]:
2 finy = o — A& + 1) of, + (42 +132% +6) 7,5 f;

= (2 + 7" +102” + 4)f, o f) — 2" +22°)f 0 f s

+ (2% + 32" + 227 + 1) + (2% + 32t + 222 f, 5, + 2727, (D)
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3 3 2 2 2 2 3 2
z f4n = fn+2 n 2fn+2fn - fn+2fnfn—2 + 2(.’1} + 1)ﬁl+2fn + fn+2fnfn—2

=22 + D)2ty 2y — fu S @)

4 4 3 2 2 2 4 2 3
Z f;anrl = fn+2 - 4fn+2fn + 2(21‘ + 3)fn+2 n (l‘ +62° + 4)fn+2 n

- 2$2fn+2fn2fn72 + (1‘2 + 1)2fn4 + (I4 + 2I2)fn3fn72' (3)

2. Sums of Fibonacci Polynomial Products of Order 6
With this background, we begin our explorations of sums of Fibonacci

polynomial products of order 6 with z°f; .

2.1 A Fibonacci Sum for z°f; : By the Fibonacci addition formula, and
identities (1) and (2), we have

f6n = f?n,+1f4n + anf4n—1
$5fé3n = .’1,’3f4"[($f;[,+1)2 + $2-ﬁb2] + x4f;1n—1f;1, ($ln)

=2 f[(Fva = £, + £+ 2 fr i f (frio = o)
=V+W,
where
V =[fhof, =220 fi = Frahifys + 22" +1)f, o f}
+ 7L+2fnj;L2—2 - 2(a” + 1)f;?fn—2

21212y — L2 fs = 2Fyaak, + (27 + 1)f7]

=B-4C - D+ (32> + 7)E +2F + G - 6(2* + )H
~3(z® + )T = K +2(2® +1)°L + 4(z* + 1)M

+(2® =3)N +20 - 2(2* +1)*Q +2(z> + )R - (2* +1)S;
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W= [fnz,1+2 - 4(1‘ + 1)f;z+2 n + (42? + 13$ + 6)fn+2 712

- (a: + 72 +102% + 4),ﬁ,+2f - 2(1" + 2"1:2)fn+2f2fer

+(2% + 32 + 227 + 1) + (2% + 32" +22H) P f,

+ 2 [ o) (e = o)

= B—4(z* +1)C - D + (42" +132% + 6)E + 4(z® + 1)F
— (2% + 72" +102% + O)H — (62" + 172 +6)]
+(2% + 32* + 227 + 1)L+ 2(2% + 52 + 627 + 2)M
+(22* + 527N — (2% + 32" + 227 +1)Q
— (2% + 32* + 24*)R - 2°S .
Thus,
2°f, = 2B —4(z* +2)C —2D + (42 + 162 +13)E
+2(22% + 3)F + G — (2% + 72* +162% +10)H
— (62" +202% +9)I — K + (2° + 52" + 627 + 3)L
+2(z% + 52t + 82 + )M + (22 + 62 - 3)N
+20 — (2% + 52* + 62% + 3)Q
— (2% +32* —2)R - (227 +1)S . (4)

Next we investigate a sum forz°f; ..

2.2 A Fibonacci Sum for z°f; . : Using the addition formula, and
identities (2) and (3), we get

f6n+1 = on+1f4n+1 + anféln

foén+1 = $4f;LTL+1[($ 71,+1>2 + $2-ﬁL2] + x3f4n($2 ’n,)(a:ln)
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=2 f[(fsa = £ + L2+ 2 £, (1) (Fuin — foa)
=X+Y,

where
X = [f7;1+2 - 4fr?+2fn + 2(2‘772 + ?’)fng+2fn2 - (z4 + 6%2 + 4)fn+2 7?
=22° [ ol fy + (2 + 11 )
(a® +20) [0, o [fha = 2f00f, + (27 + DY
= A-6B+5(z* +3)C - (z* +182° + 20)E
207 F + (72" + 242° + 15)H + (2" + 62%)I
— (2% + 92" + 142 + 6)L — 2(22" + 32*)M

+(2? +1)2P + (2% + 32 + 227)Q;

Y = [flafy = 2800l = f 4 2y + 20” A D)fy o) + Frai i
=2 + D fus + 200 h s — fufi ) (@2 ,) (fria = fia)
= 2°C - 22°E — 22°F + 2(w4 + 22 VH + 2221
+22% — 4(:134 +a? M + 2¢°N — 2220
+2(:1:4 + xz)R 2225 + 2°T .
Consequently,
2Sf, . = A=6B +3(22% +5)C — (z* +202® + 20)F — 42°F
+(92* +262% +15)H + (z* + 82%)I + 227
— (2% + 92" + 142” + 6)L — 2(42" + 52°)M + 22°N
~2270 + (2* +1)* P +(2° + 32" +22%)Q
+2(z* + 2°)R - 2228 + 2°T . (5)

Next we explore a sum for z°f; .
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2.3 A Fibonacci Sum for z°f, ,: Using the gibonacci recurrence, and
equations (2) and (3), we get

2 finva = T finan + 7 s

=[A-6B+3(22° + 5)C - (¢* + 2027 +20)E - 42*F
+(92" +262% +15)H + (z* + 82°)I +22°]
— (2% + 92 +142” + 6)L — 2(42* + 52°)M +22°N
—2020 + (22 +1)* P + (2° + 32" +24°)Q
+2(z* + 2)R - 2428 + 2°T| +[2B - 4(a* + 2)C
—2D + (4z* +162° +13)E +2(22° + 3)F + G
— (2% + 72" +162% + 10)H — (62" +202° +9)I
~K + (2% + 52" + 627 + 3)L +2(z° + 52" + 82 + 4)M
+(22* +62% = 3)N +20 —(2° + 52 + 62° + 3)Q
—(2% + 32" =2)R — (227 +1)S]

= A—4B+(22° +7)C - 2D + (32" —42® = 7)E + 6F + G
—(2% = 22" —102% - 5)H — (52" +122* + 9)I
+22%] — K — (42 + 822 + 3)L +2(z® + 2* + 32° + 4)M
+(22' + 827 —=3)N - 2(2* =10 + (¢* +1)°P
— (2" + 427 +3)Q — (2% + 2" =227 —2)R

— (427 +1)S + 2°T . (6)
Next we find a sum for 2°£, ...

2.4 A Fibonacci Sum for z°f; ,,: Using the gibonacci recurrence, and
identities (5) and (6), we get
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956f6n+3 = 22(2° fis0) + 7 finia

= 2’ [A—4B + (227 + 7)C = 2D + (32* —42® —~7)E + 6F + G
—(2% = 22" —102* - 5)H — (52" +122* + 9)I
+22%] — K — (42 + 82 + 3)L +2(2% + 2* + 32% + 4)M
+(2z* + 82% =3)N —2(2® =1)0 + (2* +1)°P
—(22* +42° +3)Q — (2% + 2* — 22" —2)R
—(42% +1)S + 2°T| +[A - 6B + 3(22* + 5)C
—(z* +202% +20)E — 42°F + (92 + 262 + 15)H
+ (ac4 +82%) + 2277 — (2% + 9zt + 1427 + 6)L
—2(4x* +52*)M + 22°N —22°0 + (2* +1)°P
+(2% + 32" +227)Q + 2(z* + 2”)R — 2275 + xQT]

= (2% +1)A -2(22* + 3)B + (22" +132% +15)C — 22°D
+(32% = 52" —272% —20)E + 22°F + 2°G
—(2® —22°% =192 - 312> —15)H — (52° + 112" + 2*)I
+ 2(3:4 + 2 ) - ?K — (5x6 +172t +172% + 6)L
+2(a® + 2% -2t — )M + (22° + 82" —2*)N
200+ (2® +1)*P - (2% + 2* + 27)Q
—(2® + 2% —42* — 42*)R — (42" + 32%)S

+(z* +2H)T. (7)
Next we pursue a sum for z°f; ., .

2.5 A Fibonacci Sum for z°f;, ., : It follows by the gibonacci recurrence,
and identities (6) and (7), we get
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2 finea = 2 fonrs + 2 finso
=[A-4B+(22° +7)C - 2D + (32" — 42® ~T)E +6F + G
— (2% 22" —=102% - 5)H — (52" +122% + 9)I
+22%] — K — (42* + 82 + 3)L +2(2% + 2* + 32% + 4)M
+(22" + 82 = 3)N —2(2* —1)0 + (2> +1)° P
— (22" +42® +3)Q - (2% + 2* =227 —-2)R
—(42% +1)S + 2°T] +[(2? +1)A - 2(22* + 3)B
+(22* +132% +15)C — 227D +(32° — 52* — 2727 - 20)E
+22% + 2°G - (2® - 22% — 192 - 312° —15)H
—(52% + 112" + 2T +2(2* + 2*)J - 2’K
—(52% +172* +172% + 6)L +2(a® + 2% — 2 —2*)M
+(22° + 82 —2”)N —22'0 + (2* +1)* P
(2% + 2 +2H)Q - (2® + 2% —42* —42®)R
— (42" +32%)S + (z* + )T]
= (2® +2)A - 2(22% +5)B + (22" +152% + 22)C - 2(z* +1)D
+(32% —22* = 3127 —27)E + 2(2® + 3)F + (z* +1)G
( — 25 =212 — 4122 QO)H
( 2% + 162 + 1322 +9)I+2(x + 2z )J
—(2® + DK — (52° + 212" +252* + 9)L
2(1‘ +22% + 227 + 4)M +(2:1: +10z* + 727 )N
2(x +a2? - 1)0 + (:c2 + 2)(3U2 + 1)3P
— (2% + 32" + 527 +3)Q — (2 +22° - 32* — 627 —2)R
—(4z* + 72% + )8 + (z* +22°)T . (8)
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Next we investigate a sum for z°f; ..

2.6 A Fibonacci Sum for z°f ..: By the gibonacci recurrence, and
identities (7) and (8), we have

2 fones = 0% (¢ fonra) + 2 fina

= 2?[(2® +2)A - 2(22® + 5)B + (22" + 1527 +22)C —2(2* +1)D
+(32° — 22" = 3127 —27)E + 2(2® + 3)F + (z* + 1)G
—(2® — 2% —212% —20)H — (52° + 162" +132” + 9)I
+2(z* +222)J —(2* + 1)K - (52° + 212 + 2527 + 9)L
+2(2® +22% + 227 + )M +(22° +102" + 72° - 3)N
2zt +2* —1)0 + (¢* +2) (2> +1)* P
— (2% + 32" + 527 +3)Q — (2 +22° - 32* — 627 —2)R
— (42 +72% +1)S + (z* +22H)T]+[(2* +1)A
~2(24” + 3)B + (22" +132% +15)C — 22°D
+(32° = 52" —272% —20)E + 22°F + 2°G
—(2® —22°% =192 - 312® —15)H — (52° + 112" + 2*)I
+2(z* + 2?)J — 2°K — (52% + 172 +172% + 6)L
+2(a® + 2% — 2t — )M + (22° + 82" —2*)N
—2z%0 + (x2 + 1)4P —(x6 +at o+ :1:2)62
—(2® + 2% —42* —42P)R — (42 + 32H)S + (z* + a:z)T]

= (a* + 327 +1)A-2(2z" + 72* + 3)B
+(22% +172% + 352%) +15C —2(z* +22%)D
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—(z* +227)K —(52° +262° + 422" + 262° + 6)L

+2(z'0 + 32 + 2% + 2t + 327 M

+(22° +122° + 152% — 42%)N —2(2% + 22" —2%)0

+ (z4 +32% + 1) (:132 + 1)3P - (xs + 425 + 62 + 427 )Q

— (2" +32% 22 — 42" 102" - 2)R

—(4x6 +11z* + 427 )S + (x6 + 3z +4° )T €)]

Finally, we find a sum for z°f, . We will find it useful in the next
subsection.

2.7 A Fibonacci Sum for °f; = Since 2f;, | = 2%f, ., — 2 (2" f;,), it
follows by equations (4) and (5) that

2Sf = A-2(2% +3)B+ (42" +142% +15)C + 22D
— (425 +172* + 3327 +20)E
—2(2z* + 52°)F — 2°G + (2® + 72% + 252" + 362% +15)H
+(62°% + 212" +172°)1 + 24°T + °K
—(2® +62° + 152" +172% + 6)L
—2(2® + 525 +122* + 922)M — (22° + 62 — 52*)N
4220 + (2* +1)* P +(2® + 62° + 92 + 52%)Q

+(2% +32% + 22" R + (22 - 2*)S + 2°T . (10)
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2.8 Numeric Fibonacci Byproducts: It follows from equations (4) through
(10) that

Fs,_1 =a—8b+33c+2d—"T4e —14f — g + 84h + 441
+2j+k—451-54m —-3n—-40+8p+21g+6r+s+t

F;, =2b—12c —2d + 33e +10f + g — 34h — 351 — k + 15/
+36m + 5n + 20 — 15q — 2r — 3s;

Fs,i1 =a—6b+2lc—4le—4f +50h +9i+ 25 — 30l —18m + 2n
—20+8p+6q+4r—2s+t;

Fs, .0 =a—4b++49c—2d —8e +6f + g +16h — 260+ 25 — k — 151
+18m+Tn+8p—-9¢+2r—->5s+t;

F, .5 =2a—10b+30c —2d —49e + 2f + g + 66h —17i + 45 — k — 45]
+9n —20+16p —3q + 6r —7s + 2t ;

Fs, oy =3a—14b +39c —4d — 57e + 8 f + 2g + 45h — 431 + 65 — 2k — 601
+18m +16n —20 +24p —12¢ + 8r —12s + 3t ;

Fy, .5 =5a —24b + 69c — 6d —106e + 10f + 3g + 148k —60¢ + 107
—3k —105[ +18m + 25n — 40 + 40p — 15q + 14r — 19s + 5t .

3. Sums of Lucas Polynomial Products of Order 6

Using gibonacci recurrence and the identity [, =f ., + f,_;, we now
explore the counterparts for Lucas polynomials [, ., where 0 <k <5.

3.1 A Fibonacci Sum for x6lﬁn: Using equations (5) and (10), we have
lﬁlGn = lﬁfénﬂ + Iﬁfénfl

=[A-6B+3(22% +5)C — (z* +202” +20)F
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—42%F + (92" +262% +15)H + (2 + 82*)I +22°J
— (2% + 92" +142” + 6)L — 2(42" + 52°)M + 22°N
~22%0 + (z* +1)°P + (:EG +32% +227)Q
+2(z* + 2%)R - 227 + xQT] + [A ~2(z* +3)B
+(z* +142% +15)C + 222D — (42° + 172" + 332% + 20)E
—2(2z* + 52°)F — 2°G + (2® + 72% + 252" + 362% + 15)H
+(62° + 212" + 17231 + 22°J + 2°K
—(2® +62° + 152" +172% + 6)L
—2(2® + 525 + 122 + 92%)M — (225 + 62 - 52%)N
—42%0 + (2% +1* P + (2% + 62° + 92" + 52)Q
+(2% +32% + 22")R + (227 — 2°)S + xQT]
=24 -2(z* + 6)B + (42" +202* + 30)C + 22°D
—(42° + 182" + 532” + 40)E —2(22" + 72*)F
~2°G + (2% + 72% + 342" + 6227 + 30)H
+(62° + 222" +2522) I + 42°T + °K
—(2® +72% + 242" + 3127 +12)L
~2(z® +52° + 162" + 1427 )M — (22° + 62" — 72*)N
—62%0 +2(2® +1)° P +(2® + 725 +122* + 72%)Q

+(2® +32° + 42' + 22*)R + (22" - 327)S +2°T .  (11)

Next we find a sum for 2%l .,
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3.2 A Fibonacci Sum for x‘r’lﬁml: Using equations (4) and (6), we get

Plopir =T fina + 2 fin
=[A-4B+(22° +7)C - 2D + (32" — 42 ~T)E +6F + G
— (2% — 22" —102% - 5)H — (5z* +122% + 9)I
+22%] — K — (42 + 82 + 3)L +2(2% + 2* + 32% + 4)M
+(22' + 827 —=3)N —2(2* —=1)0 + (2* +1)*P
—(22* +42° +3)Q — (2% + 2* —22% —2)R
—(42® +1)S + 2°T] +[2B - 4(2* + 2)C' - 2D
+(42* +162% +13)E +2(22° + 3)F + G
— (2% + 72" +162% +10)H — (62 + 202® + 9)I
—K + (2% + 52" + 62 + 3)L +2(2% + 52 + 822 + )M
+(2z" + 627 —3)N +20 —(2° + 52 + 627 + 3)Q
—(2% + 32" =2)R — (227 +1)S]
= A-2B - (22% +1)C —4D + (72* +122% + 6)E
+4(z* + 3)F +2G — (22° + 52 + 62% + 5)H
—(11z* + 322 +18)] +22°J — 2K +(2° + z* — 22%)L
+(42% + 122" + 2227 +16)M

(
(
+ (42 + 1427 —6)N -2(z* =2)0 + (2* +1)*P
(2% + 72* +102% +6)Q — (225 + 42" — 22> — )R
(

—(62% +2)S + 2°T . (12)

Next we investigate a sum for z°f;,, . .
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3.3 A Fibonacci Sum for 2%, ,,: Using the gibonacci recurrence, and
equations (11) and (12), we get

I616n+2 = I2($516n+1) + I616n

= 2?[A-2B — (22" +1)C — 4D + (7z* + 1227 + 6)E
+4(2% + 3)F +2G —(22° + 52" + 62 + 5)H
—(11z* + 3227 +18) +22°J — 2K + (2% + 2* —22%)L
+(42° + 122" + 2227 +15)M + (42* +142* — 6)N
~2(z? =2)0 + (22 +1)* P = (2% + 72* +102% +6)Q
—(24% + 42" —22% —4)R - (6:1:2 +2)S + xQT]
+[24 - 2(z” + 6)B + (42 + 202” + 30)C + 227
—(42° + 182" + 532% + 40)E —2(22" + 72*)F
~2°G + (2% + 72% + 342" + 6227 + 30)H
+ (6:136 +22z% + 2527 )1+ 42°J + 2°K
—(® + 725 + 242 + 3127 +12)L
~2(z® +52° + 162" + 1427 )M — (22° + 62" — 72*)N
—6220 + 2(z* +1)°P +(¢® + 72% + 122 + 721)Q
+ (2% + 325 + 42 + 22°)R + (22" - 32%)S + 22°T|

= (2® +2)A - 4(z* + 3)B + (22" +1927 + 30)C - 24°D
+(32° — 62" —472% — 40)E —22°F + 2°G
—(2® —22% — 282" — 572 - 30)H — (52° + 102" — 72%)I
+2(z* +22%)J - *K — (62° + 262" + 3127 +12)L

+2(2® + 20 - 5at — 62° WM + (225 + 82* + 2*)N
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—2(x4 + 1‘2)0 + (:1:2 +2) (1‘2 + 1)3P +(2x4 + 1‘2)62
—(2® + 2% —62* —62°)R - (42 + 52%)S

+(x4 + 217 )T (13)
Next we investigate a sum for z°f,,, ;.

3.4 A Fibonacci Sum for z°l, . , - Gibonacci recurrence, and equations (12)
and (13) yield

Dlonrs = T ppn + g0
= [(2? +2)A - 4(z* + 3)B + (22" +192® + 30)C — 22°D

+(32° — 62" — 4727 — 40)E —22°F + 2°G
—(2® —22% — 282" — 5727 — 30)H — (52° + 102" - 72%)I
+2(z* +22%)J - 2*K — (62° + 262" + 312 +12)L
+(22% + 225 —102* —122°)M +(22° + 82 + 2*)N
—2(z* +22)0 + (2 +2)(2® +1)° P + (22" +27)Q
—(2% + 2% — 62" —62%)R — (42 + 52%)S + (z* + 22°)T]
+[A-2B (22> +1)C —4D + (72" +124* +6)E
+4(2% + 3)F +2G —(22° + 52" + 62 + 5)H
—(11z* + 3227 +18)T + 22T — 2K + (2% + 2* — 22%)L
+(42° + 122" +222% +15)M + (42" +142* - 6)N
~2(z? =2)0 + (22 +1)° P — (2 + 72" +102° +6)Q
—(22° + 42 — 227 — 4)R - 2(32” +1)S + 2°T]

= (2® +3)A—2(22% + T)B + (22" +172% +29)C —2(2* +2)D
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+ (325 + 2t — 3522 — 34)E +2(z% + 6)F + (2° +2)G
—(2® - 232* —512% —25)H — (525 + 212 + 2527 +18)I
+2(z* +327)J — (2 +2)K —(52° + 252" + 3327 +12)L
+2(2® +32° + 2" + 52 + 8)M
+(22% +122% +152° —6)N —2(z* +22% —2)0

(

+(2% +3)(2* +1° P — (2 + 52" + 927 +6)Q
(2% +32° — 22* — 847 —4)R — (42" +112* +2)$
(

+(zt + 31:2)T. (14)
Next we explore a sum for 2%, . , .

3.5 A Fibonacci Sum for 2%, ,: It follows by the gibonacci recurrence,
and equations (13) and (14) that

Iﬁl6n+4 = $2($5l6n+3) + ‘T6l6n+2
= 2?[(2® + 3)A - 2(22° + 7)B + (22" +172% + 29)C - 2(z* + 2)D
+(32% + 2* — 3527 — 34)E + 2(2® + 6)F + (2% +2)G
—(2® —232" —512% —25)H —(52° + 212" + 2527 +18)I
+2(z* + 32°)J - (2® +2)K —(52° + 252 + 332% +12)L
+2(2® + 62° + 2* + 522 + 8)M

+(22% +122* +152% —6)N —2(z* + 227 - 2)0

+

(

(22 +3) (2> +1)° P —(2° + 52" + 92% + 6)Q
—(2® +32° 22" —82% —4)R — (42" +112* + 2)S
(

+ x4+3x) ] [(x2+2)A—4(x2+3)B
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+(2z* +192% + 30)C — 22°D + (32° — 62 — 472° — 40)E
—22°F + 2°G — (2® — 22% - 282* — 572 — 30)H
—(52°% +10z* = 72 +2(z* +227)J - 2°K
—(62° + 262" +312% +12)L + 2(2® + 2° — 52t — 62*)M
+(225 + 821 + 21N — (22 +222)0 + (2* +2)(2® +1)°P
+(2z* +22)Q - (2® + 2% —62* - 627)R
—(4z* +52%)8 + (z* + 22T
= (2" +42® +2)A-2(22" +92° + 6)B
+(22% +192* + 4847 + 30)C - 2(z* + 32°)D
+ (3z8 +42°% — 412" - 827 - 40)E + 2(:134 +51° )F
+(z* +32%)G - (2" + 2 —252° — 792* — 8227 — 30)H
—(52° +262° + 352" + 1127)T +2(a° + 42" +22%)J
(z* +32%)K — (52° + 312% + 592" + 434 +12)L
+2(2'0 + 42® + 22° + 227 )M
+(22% + 1425 + 232" — 52°)N - 2(25 + 32* - 2%)0
+(z* +42? +2)(2® +1)°P — (2% + 52° + 72" +527)Q
— (2" + 42% — 2% —142* —102H)R

— (425 +152* +72%)8 + (25 + 42* + 22T . (15)
We now find a sum for 2%l , 5 .

3.6 A Fibonacci Sum for z°l, 5 : The gibonacci recurrence, coupled with
equations (14) and (15) yield



182 THOMAS KOSHY
Plines = Tlinea + Tz

= (2" + 527 +5)A -2(22* +112* +13)B
+(22°% + 212 + 6527 + 59)C —2(z* + 42% +2)D
+(32% + 72 — 402" — 11627 — T4)E + 2(a* + 627 + 6)F
+(z* +42° +2)G
— (2" + 22 — 2525 —1022" —1332% —55)H
—(52% + 312 + 562 + 3627 +18)I +2(° + 5z* + 527)J
—(z* + 42? +2)K — (52° + 362° + 842 + 7627 +24)L
+2(z'0 +52% + 52° + 2 + 727 + Q)M
+(22° +162° + 352" +102° — 6)N
~2(2% + 42 + 2% —2)0 + (z* + 527 +5) (2% +1)°P
- (xg +62° + 122 +142° + 6)Q
— (2" +52% +22° — 162" — 182 —4)R

— (425 +192* +182% +2)8 + (2° + 52 + 52°)T. (16)

Finally, we extract the numeric counterparts of the Lucas sums.

3.7 Numeric Lucas Byproducts: Equations (11) through (16) yield the
following numeric counterparts:

Lg,, =2a —14b + 54c +2d —115e —18f — g + 134h + 531 + 45 + k — 75l
—72m—-n—60+16p +27q+ 10r — s + 2t

Lepi1 =a—2b—3c—4d +25e +16f +2g —18h — 610 + 25 — 2k
+54m +12n+ 20+ 8p —24q —8s + t;

Ly, 0 = 3a —16b + 51c —2d —90e — 2f + g + 116k — 8i + 65 — k — 75l
—18m+11n—40+24p + 3¢ +10r —9s + 3t ;
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L, 5 = 4a —18b + 48¢c — 6d — 65e + 14 f + 3g + 98h — 69¢ + 85 — 3k — 75l
+36m +23n —20+ 32p —21qg + 10r —17s + 4t ;

Lgyiy =Ta—34b+99c — 8d —155e + 12f + 49 + 214h - TTi + 145
—4k — 1500 +18m + 34n — 60 + 56p — 18p — 18q + 20r — 265 + 7t ;

Lg, .5 = 11a — 52b + 147¢ — 14d — 220e + 26 f + Tg + 312h — 146i + 22
— 7k — 2251 + 54m + 37n — 80 + 88p — 39¢ + 307 — 435 + 11¢ .
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1. Introduction
the recurrence

Gibonacci  polynomials  z,(x) are defined by
Z,40(2) = a(z)z,,1(z) + b(x)z, (z) , where z is an arbitrary integer variable; a(z),
b(x), 2,(x),and 2, (z) are arbitrary integer polynomials; andn > 0.

and  z(z)=1,

and b(z)=1. When z,(z)=0
)=,

Suppose a(z) =z
z,(x) = f,(x), the nth Fibonacci polynomial; and when z,(z) =2 and z,(z

z,(x) =1,(z) , the nth Lucas polynomial.

Clearly, f,(1)=F,, the nth Fibonacci number; and I,(1) =L, , the nth

Lucas number [1, 2, 3].
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Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by
p,(z) = f,(2z) and g,(x) =1,(2z), respectively. In particular, the Pell numbers
Pn and Pell-Lucas numbers (), are given by P, =p (1)=f(2) and
2Q, = q,(1) =1,(2), respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). We let

g”l/ = f;b or lTL' b”l/ = p7L or qTL'

A= f5, B= f’,f, C = flof

D = flofifis E = flof! F o= [oflfis
G = fn3+2fnfn272 H = fn?+2fnl,l I = fn?+2fn3f;z,72
J = fn?JerTI?f;?fQ K = ﬁ?wﬁlfn?ﬂ L = fi 7?

M = fohifis N = hofifis 0 = Lofifls
P = /S Q = f2f R = f'f7,

S = [ T = [y

and also omit a lot of basic algebra.

It iS We“ known that fn+1 + n-1 = ln' f;LQ = fnln' fna—l = fn2+1 +fn?v
foso ¥ foo = (332 +2)f, foso — foo =xl,, and the gibonacci addition formula
Gasv = Jarr9p + fu9p1 [3]-

1.1 Sums of Gibonacci Polynomial Products of Order 4: Sums of

gibonacci polynomial products of order 4 are studied in [5]; four of them play an
important role in our discourse:

$3f4n = fn§+2 n 2f712+2fn2 - fv§+2fnf;z72 + 2($2 + 1)f;z+2fn? + fn+2jt;z,fn?72
= 2Aa® + DI + 2000 — e )
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4 4 3 2 2 2 4 2 3
€ f;anrl = fn+2 - 4fn+2fn + 2(21‘ + 3)fn+2 n (l‘ +62° + 4)fn+2 n

=20 f o oo + (@ 1P+ (0 +207) S,

3 4 2 2 2 4 2 2
z f4n+2 = fn+2 - 3fn+2fn + 2fn+2fn fn—? + fn - fn fn—?‘

187

2)

©)

T fies = (@ + Dy — AL of, + (27 +6) £ f7 — (2" + 627 + 4)f, o f)

+ (2t + 327 + 1)f) + (2t +22°)f2 f, L — 2L,

(4)

1.2 Sums of Gibonacci Polynomial Products of Order 6: In [6], we
explored a family of sums of gibonacci polynomial products of order 6. Six of them

are the following:

20f, . = A= 6B +3(22% +5)C — (z* +202® + 20)E — 42*F + (92" + 262> + 15)H

+ (2t + 82T + 22T — (2 + 92 +142” + 6)L — 2(4z* + 52°)M
+22°N — 2220 + (2* +1)* P + (2° + 32" + 22%)Q

+ 2(:1:4 + 22 )R — 21°8 + 2°T.

2 f g = A=4B +(22* +7)C = 2D + (32" — 42> —7)E +6F + G
— (2% = 22" —=102® = 5)H — (52" +124* + 9 +22°T - K
— (42 + 82 + 3)L +2(2% + 2* + 322 + )M + (22* + 82° —3)N
—2(2® =10 + (¢® +1°P — (22" + 42° + 3)Q

— (2% +2* —24® —2)R - (42® + 1)S + 2°T .

20 s = (2% +1)A-2(22" + 3)B + (22" +132% +15)C — 22°D
+ (32° = 52t — 274 — 20)E + 22°F + 4G
— (2% =225 =192 = 3127 —15)H — (52° + 112 + 2*)I

+2(z" + 2T - 2K — (52° + 172" + 1727 + 6)L

(®)

(6)
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+ 2(:138 +a% -t —:132)M + (21‘6 + 8zt - xz)N - 220 + (1'2 + 1)4P

— (2% +2* +27)Q - (¢ + 2% — 42 —42HR

— (42" +32%)S + (z* + 2*)T .

2O o= (2" + 322 +1)A-22z" + 72 + 3)B + (22° + 172" + 352 +15)C
— 2(z* +22°)D + (32° + 2° — 362" - 542% - 20)E
+2(z" +42)F + (2" +22°)G — (2" - 232° - 602" - 512* —15)H

- (5308 +212% + 242 + 10:52)[ + 2($6 + 320 + x2)J - (m4 + 21’2)[(

— (52% + 2625 + 422" + 2627 + 6)L + 2(z"” + 32° + 25 + 2 + 32*)M

+ (22% +122° + 152" —42?)N - 2(2° + 22" - 2%)0

(
(

+ (2 +32° +1)(2® +1)°P - (2° + 42° + 62" + 42°)Q

— (2" + 32% — 225 — 42 —102% — 2)R — (42 + 112 + 42?)8
(

+ (2% + 3z + 29T .

200, o = (2% +2)A - 4(2* + 3)B + (22" +192° + 30)C — 22D
+ (32° — 62" — 4727 —40)E - 22°F + 2°G
— (2% —22°% — 282" —572® — 30)H — (52° + 102" — 72?)I
+2(z* +24°)J - 2K — (62° + 262 + 312% +12)L
+ 2(z% + 2% =52 —627)M + (22° + 82 + 2*)N - 2(z* + 2*)0
+ (27 +2)(2® + 1P P + (22" + 27)Q — (2° + 2° — 62" —627)R

— (42" +52%)S + (z* + 22T

200, = (" + 4% +2)A - 222" + 927 +6)B + (225 + 192" + 4827 + 30)C

2zt +32°)D + (32° + 425 — 412" — 82 —40)E + 2(z* + 52%)F

()

(8)

©)
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+ (z* +32%)G = (210 + 2° — 252° — 792" — 8247 — 30)H

— (52% +262° + 352" + 1121 + 2(2° + 42 +24)J - (a* + 32*)K

— (52% +312° + 592 + 4327 +12)L + 2(2"" + 42® + 22° + 22*)M

+ (22% +142° + 232" — 52*)N = 2(2% + 32* - 2)0

+ (z* + 42 +2)(2® +1)° P — (2% + 5% + 72" +527)Q

— (2" +42% — 2% 142" —102*)R — (42° + 152 + 72%)S

+ (2% + 42* + 22T, (10)

2. Some Graph-theoretic Tools

Our goal is to confirm the polynomial identities (5), (7), (9), and (10) using
graph-theoretic techniques. To this end, first we develop the needed tools. Consider

the Fibonacci digraph D in Figure 1 with vertices v, and v,, where a weight is
assigned to each edge [3, 4]. It follows by induction

Figure 1: Weighted Fibonacci Digraph D

from its weighted adjacency matrizis the Q-matrix

N that
Q_1 of ™
n_fnJrl fn
Q a fn fn717

where n >1 [3, 4].
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A walk from vertex v, to vertex v, is a seguence

v, — € — vy — v —e;_y —v; of vertices v and edges ¢, , where edge ¢, is

incident with vertices v, and v;,. The walk is closed if v; = v;; otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a walk
is the product of the weights of the edges along the walk.

The sum of the weights of closed walks of length n originating at v, in the
digraph is f,,, and that of those originating at v, is f,_; [3, 4]. Consequently, the

sum of the weights of all closed walks of length n in the digraphisf ., + f,_, =1,.
These facts play a crucial role in the graph-theoretic proofs.

Let A, B, and C denote the sets of walks of varying lengths originating
at a vertex v. Then the sum of the weights of the elements (a,b,c) in the product

set AxBxC is defined as the product of the sums of weights from each
component [4].

With this background, we are on the way for the graph-theoretic
confirmations.

3. Graph-Theoretic Confirmations

3.1 Confirmation of Identity (5): Proof: Let S denote the sum of the
weights of closed walks of length 6 in the digraph D originating (and ending) at v, .

Then S = f;, .1, and hence, 288 = xﬁfﬁnﬂ-

We will now compute the sum z%S in a different way. To this end, let w be
an arbitrary closed walk of length 6n originating at v, . Clearly, it can land at v, or
vy at the 2nth and 4nth steps:

w = 111—...—1{ V—...—V ’U—...—’U1 5

v . v g —_—
subwalk of length 2n subwalk of length 2n subwalk of length 2n

where v = v Or w,.
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Table 1: Sum of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe | SU™ of the weights
of walks w
2nth step? 4nth step? 6nth step?
3
yes yes yes S
2
2
2
no no yes Sondon—1

Table 1 shows the various possible cases and the corresponding sums of
weights of walks w. Consequently, by equations (1) and (2), it follows from the table

that the sum S of the weights of all such walks is given by

S = f23n+1 + 2f2n+1fQQn + f22nf2n71
2 2 2
= f2n+1 (f2n+1 + f2n) + f2n (anJrl + f2n71)

= f2n+1-ﬁln+1 + f2nf4n ;

259

+ (2 +1)?

+ [fn3+2fn

—2f7 o f7

(@ fr )@ + 2 £ ]+ (2 f1,) (€ £, ) (a,)

@ frs) [((Fro = £ + 22 ]+ (2 £1,) (02 1,) (Fso

(@ frn) 2 = 2finky + (@ + D]+ (0 £,) @ £) (fria = F1a)
=[fho =48} of, +2020° +3)f] o f] - (2" +62° + 4)f, o f
(2t 20 ) o) e = 2hak, + (27 4 )]

— oL fos +2(2” + 1)fn+2f$ + fraadufrs

- fn—?)

- 2$2fn+2fn2fn—2

= 2Aa® + D)+ 2000~ o) @0 (e = f)
= A-6B+3(2¢* +5)C — (z* + 202 +20)E — 42°F + (92" + 262° + 15)H

+ (x4 + 83:2)1 + 24T - (mG + 928 + 1427 + 6)L — 2(4:1:4 +51° )M + 202N

~ 22°0 + (x2 + 1)3P + (:156 +3z* + 2302)@ + 2(x4 + xQ)R — 2228 + 2°T .
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This value of 29, coupled with its initial value, yields identity (5), as

desired.

Next pursue the graph-theoretic proof of identity (7).

O

3.2 Confirmation of Identity (7): Proof: Let S’ denote the sum of the
weights of closed walks of length 6n +2 originating at v, in the digraph. Then

!/ _ . 6gr_ 6
S _f6n+3'SOIS _‘/EfénJr3'

Table 2: Sums of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe sum of the weights
2nth step? (4n + 1)st step? (6n + 2)nd step? ofwalks
yes yes yes nf227;+2]%n+1
yes no yes f22n+1
no yes yes hns2bnrban
no no yes f2n+1fQQn

We will now compute 25’ in a different way. To achieve this, we let w be

an arbitrary closed walk of length 6n + 2 originating atv, . It can land at v, or v, at
the 2nth and (4n + 1)st steps:

ﬁ_l
subwalk of length 2n subwalk of length 2n+1 subwalk of length 2n+1

where v = v Or v,.

It follows by Table 2, and equations (3) and (4) that the sum S’of the
weights of the corresponding walks w is given by

2 3 2
S = J[2n+2an+l + f2n+1 + f2n+2an+1an + f2n+1f2n

= f2n+1 (f22n+2 + f22n+1) + f2n+1f2n (f2n+2 + an)

= f2n+1ﬁln+3 + ‘f;ln+2f2n ;
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= (@ ) [(@hyir )P + 2 £2 ]+ (2% fr0) (@) (a,)
= (2 f4n+3)[( Josa = h )2 + $2an] + (373f4n+2)(372 ) (fos2 = f1a)
=[(e® +3)f s —Af7 ok, + 27 fRnf] — (2 + 627 +4)f, o)
+ Al fi + (@t +30% 4 3)[1 + (0 +20°) 7,
— (@ 2] [fe ~ 2had, + (@ 4 1)1
+ [(m +2)fg = 82k, + (52? +12)f7 17 — 2" + 627 + 4)f, of)
— 22 f, o f o + (2954 +527 +2)fF + 20zt + 222 £3f,
S o (G B [V APEY APy
= (2® +1)A-2(24* + 3)B + (2z* + 1327 +15)C — 22°D
+ (32° -5z — 272 —20)E + 22°F + 2°G — (2® - 22° —192* — 312® —15)H
— (52% + 112" + 2*)I +2(z* + 2*)J — 2°K — (52 + 172" +172% + 6)L
+2(a:8 +2° -zt - IQ)M + (2x6 + 8z - xQ)N -220 + (x2 + 1)4P

(2% + 2" +2*)Q - (2% + 2° — 42" —42*)R - (42" + 327)S + (2" + 27T .

Equating this value of z°S’ with its earlier version yields identity (7), as
expected.

3.3 Confirmation of Identity (9): Proof: Let S* denote the sum of the
weights of all closed walks of length 6n + 2 in the digraph.

Then S* =, and hence, 2°S* = 2%, ,, .

To compute z%5* in a different way, we let w be an arbitrary closed walk of
length6n + 2.

Case 1: Suppose w originates at v, . It can land at v, or v, at the 2nth and
4nth steps:

w= Y —..=0 V—...—0 VY ,

— d . v g —
subwalk of length 2n subwalk of length 2n subwalk of length 2n+2

where v = v Or v,.
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Table 3: Sums of the Weights of Closed Walks Originating at v,

w lands at v, at the | w lands at v, at the | w lands at v, at the | SUM of the weights
of walks w
2nth step? 4nth step? (6n + 2)nd step?
2
yes yes yes f2n+3an+1
yes no yes f2n+2f2n+1an
2
no Yes Yes f2n+3on
no no yes f2n+2f2nf2n—l

It follows from Table 3 that the sum Sl* of the weights of all such walks w is

given by

* 2 2
Sl = f2n+3an+1 + f2n+2f2n+1f2n + f2n+3f2n + f2n+2an‘]€2n—1

= f2n+3 (f22n+1 + f22n) + f2n+2f2n <f2n+1 + f2n71)

= f271,+3f4n+1 + f271,+2f4n

= f6n+3 :

Case 2: Suppose w originates at v,. Then also it can land at v, or v, at the

2nth and 4nth steps:

w =

3]2—...—’1{

V—...—V (%

e,

)

v . v g —
subwalk of length 2n subwalk of length 2n subwalk of length 2n+2

where v = v Or v,.

Table 4: Sums of the Weights of Closed Walks Originating at v,

w lands at v, at the

w lands at v, at the

w lands at v, at the

sum of the weights

2nth step? 4nth step? (6n + 2)nd step? of walks w
yes yes yes huvebonsibon
yes no yes Fynaon
no yes yes hnsafontina
no no yes f2n+1f22n—1
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It follows from Table 4 that the sum S5 of the weights of all such walks w is
given by
S; = f2n+2f2n+1an + f2n+2f2annfl + f2n+1f22n + f2n+1f22n71

= f2n+1f2n (f2n+1 + f2n71) + f2n+1 (f22n + f2271,71)
= f2n+2-ﬁln + f2n+1-ﬁln—1

= f6n+1'
Using equations (5) and (7), we then get
258% = 258 + 4585

= 956]06%3 + x6f6n+1

= (2® +2)A - 4(z® + 3)B + (22" +192° + 30)C — 22D
+(32° — 62" — 472 — 40)E - 22°F + 2°G
—(2® —22% — 282" — 572 - 30)H — (52° + 102" — 72%)I
+2(zt +22%)J - *K — (62° + 262" + 3127 +12)L
+2(2® + 2% = 52" —627)M + (22° + 82" + 2*)N
~2z* +2?)0 + (2* +2)(2” +1)° P + (22" + 2H)Q
—(2® + 2% — 62" —62*)R — (42 +527)S + (" +227)T .

Equating the two values of z°S* yields identity (9), as desired. O

Finally, we present the graph-theoretic confirmation of identity (10).

3.4 Confirmation of Identity (10): Proof. Let S denote the sum of the
weights of all closed walks of length 6n + 4 in the digraph.

Then S = l6TL+4 | SO IﬁS = ‘T6l6n+4 )

We will now compute 2z in a different way. To this end, we let w be an
arbitrary walk of length 6n + 4.
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Case 1: Suppose w originates at v, . It can land at v, or v, at the (2n + 1)st

and (4n +2)nd steps:

w = v

—...— v

V—...

-0

V—...— 0

1 )

subwalk of length 2n+1 subwalk of length 2n+1 subwalk of length 2n+2

where v = v 0Or w,.

Table 5: Sums of the Weights of Closed Walks Originating at v

w lands at v, at the

w lands at v, at the

w lands at v, at the

sum of the weights

(2n + 1)st step? (4n +2)nd step? (67 + 4)th step? orvale
yes yes yes f2n+3f22n+2
yes no yes f22n+2f2n+1
no yes yes f2n+3f22n+1
no no yes bonsotoniibon

It follows from Table 5 that the sum S, of the weights of all such walks w is

given by

2 2 2
Sl = f2n+3f2n+2 + an+2f2n+1 + f2n+3f2n+1 + f2n+2f2n+1f2n

2 2
= f2n+3(f2n+2 + f2n+1) + f2n+2f2n+1(f2n+2 + f2n)

= An+3]f271+3 + ﬁ4n+2f2n+2

= ]%n+5'

Case 2: Suppose w originates at wv,. It also can land at v or wv,

(2n +1)st and (4n + 2)nd steps:

w = V.

2

—...— v

v—...

-0

V—...— 0

2 )

—_— —_— —_—
subwalk of length 2n+1 subwalk of length 2n+1 subwalk of length 2n+2

where v = v O vy.

at the
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Table 6: Sums of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe sum of the weights
(2n + 1)st step? (4n + 2)nd step? (6n + 4)th step? of walks 1
yes yes yes hurafonsn
yes no yes Fopa
no yes yes f2n+2an+1an
no no yes f2n+1fQZn

It follows from Table 6 that the sum S, of the weights of all such walks w is
given by

2 3 2
52 = f2n+2f2n+1 + f?n+1 + j12n+2f2n+1f2n + f2n+1f2n

2 2
= f2n+1(f2n+2 + f2n+1) + f2n+1an (anJrQ + f2n)
= finsshons1 T finsaton

= f6n+3 :

Thus, by equations (7) and (8), we get

298 = 298, + 195,
= 2% finis + 2 finia
= (a* +42% +2)A - 222" + 92" + 6)B + (22° + 192" + 4827 + 30)C
2z +32%)D + (32° + 42° — 412" — 827 —40)E + 2(a* + 52°)F
+ (z* +32°)G = (2" + 2% — 252% — 792" — 8227 — 30)H
— (52° +262° + 352" + 112*)T + 2(2% + 42 +22°)J
— (2" +32")K — (52° + 312° + 592" + 432® +12)L
+ Q(xm +42® + 225 + 2x2)M + (2x8 +142% + 2321 - 5302)]\7

— 2z% + 32" —2?)0 + (z* +42” +2) (2 +1)°P
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— (2® +52° + 72 +522)Q — (2" + 42% — 2% — 142" —102*)R

— (42° + 152" +72%)S + (25 + 42 +22°)T .

This value of z°5, together with its earlier version, yields equation (10), as
desired.

In conclusion, we add that the graph-theoretic confirmations of the Pell
versions of the gibonacci identities (5), (7), (9), and (10), and hence the
corresponding numeric versions follow from the above arguments.
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