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Abstract: In this paper, second order finite difference scheme for one 
dimensional shallow water equations is presented. Derivatives and functions 
appearing in one dimensional shallow water equations are approximated by 
finite differences evaluated at 1

2
n

t t
+

= . Finite difference method is proved 

to be consistent and is of second order in both space and time variables. 
Stability of the method is discussed. The numerical solutions obtained by 
proposed method are listed to demonstrate the reliability of method. 
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1. Introduction 
 
 The shallow water equations are one of the simplest form of equations of 
motion that can be used to describe the horizontal structure of an atmosphere and 
ocean that model the propagation of disturbances in fluids. They are widely used to 
model the free surface water flows such as periodic flows (tidal), transient wave 
phenomena (tsunamis, flood waves, and dam break problems etc.).  
 
 Several explicit and implicit finite difference methods have been used to 
solve the shallow water equations. Shallow water equations are used to model 
tsunami wave propagation near coastal line and that model correctly predicts 
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behavior of tsunami water wave. In [1], a modified two-four finite difference scheme 
is developed to solve shallow water equations for simulating dam break flows over 
wet and dry bed. Stability is discussed using CFL condition. For large value of time t, 
it is observed that Mohapatra and Choudhari scheme is unstable even though CFL 
condition is satisfied. In [2], two Predictor-Corrector methods are developed for one 
dimensional shallow water equations. Numerical methods used for this model are 
Lax Wendroff finite difference method and MacCormack finite difference method. 
Both methods are stable under CFL condition and are of second order. Numerical 
solutions developed by these methods seem to be capable of describing the 
propagation of flood wave after the failure of a reinforced concrete dam with an open 
channel downstream. In [3], the numerical schemes such as Mac cormack method, 
method of characteristics, Leap Frog and Lax Wendroff methods are used to simulate 
dam break flow and results are compared with analytic solution. Some of the 
methods discussed in [3] are stable and has best accuracy while some of them 
generate most unstable results. In [4], explicit finite difference method is developed 
to solve one dimensional shallow water equations. In [5], finite difference schemes, 
adoption of Roe’s approximate Riemann solver and Q schemes of Bermudez and 
Vazquez are considered to obtain approximate solution of the Shallow water 
equations with good accuracy.  
 
 In this paper, we proposed a finite difference scheme for homogeneous one 
dimensional shallow water equations, 
 

   0( )t xh hu+ = ;                  (1.1) 
 

         2 21
2 0( ) ( )t xhu hu gh+ + =                   (1.2) 

 

with initial conditions, 1 )( (, 0)u x g x= , 2( , ) ( )h x o g x=  and boundary conditions

1( , ) ( )au x t f x= , 2( , ) ( )bu x t f x= , 3( , ) ( )ah x t f x= , 4( , ) ( )bh x t f x= . In equation (1.1) 
and (1.2), ( , )h x t  and ( , )u x t  represents the wavelength and the horizontal velocity of 
fluid (water) respectively. On eliminating th  from equation (1.2), equations (1.1) and 
(1.2) get reduced to 
 

   0t x xh hu h u+ + = ;                                                                (1.3) 
 

   0t x xu uu gh+ + =                                                                  (1.4) 
 
 Second order implicit numerical scheme is developed for equations (1.3) and 
(1.4) by approximating functions h, u and the partial derivatives at 1

2( )t n t= + ∆ . 
The paper is arranged as follows: 
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 In section II, the difference scheme is developed for equations (1.3) and 
(1.4). It is proved that the method is consistent and is of second order in both space 
and time variables. In section III, stability of the proposed method is discussed. In 
section IV, numerical solutions of certain test problems are obtained by using 
proposed method. The results obtained by this method are compared with exact 
solutions and solutions obtained by different numerical schemes available in the 
literature. 
 
2. Second Order Finite Difference Method for 1D SWEs 
 
 Consider equations (1.3) and (1.4) with initial conditions 1( , 0) ( )u x g x= , 

2( , ) ( )h gx o x=  and boundary conditions 1( , ) ( )au x t f x= , 2( , ) ( )bu x t f x= ,

3( , ) ( )ah x t f x= , 4( , ) ( )bh x t f x= . 
 
 Let 0 1 2 3a N bx x x x x x x= < < < < < =  be a uniform partition of 

,[ ]a bx x , where 0ix x i x= + ∆ , b ax x
x

N

−
∆ =  and 1n nt t t+ = + ∆ , where ∆t is some 

increment and 0 0t = . The numerical value of u  at  nt t=  and ix x=  is denoted by 
n
iu  whereas numerical value of  h  at  nt t=  and  ix x=  is denoted by n

ih . 
 
 Implicit finite difference scheme for (1.3) and (1.4) is modeled at 1

2
n

t t
+

= . 

The time derivatives th  and tu  are approximated by central difference of h and u at 

1
2

n
t t

+
= . The function h and u at 1

2
n

t t
+

=  are approximated by the average value of 

h and u at nt  and 1nt +  whereas xu  and xh  are approximated by average value of 

central difference at nt  and 1nt +  .  
 
 Thus, finite difference scheme for (1.3) and (1.4) becomes 
 

 
1 1 1 1

1 1 1 1( )( )
2 4 4

n u n u n n n n
i i i i i i i ih h h h u u u u

t x x

+ + + +
+ − + −− + − −

+ +
∆ ∆ ∆

  

 

   
1 1 1

1 1 1 1( )( ) 0
2 4 4

n n n n n n
i i i i i iu u h h h h

x x

+ + +
+ − + −+ − −

+ + =
∆ ∆

              (2.1) 
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1 1 1 1

1 1 1 1 
( ) ( + )

2 4 4

n n n n n n n n
i i i i i i i iu u u u u u u u

t x x

+ + + +
+ − + −− + − −

+
∆ ∆ ∆

  
 

    
1 1

1 1 1 1( ) 0
4 4

n n n n
i i i ih h h h

g
x x

+ +
+ − + −− −

+ + =
∆ ∆

                   (2.2) 

 
 On rearranging equations (2.1) and (2.2), we have 
 
 1 1 1 1 1

1 1 1 1
n n n n n n n n n
i i i i i i i i irA h h rA h rB u rB u+ + + + +

− + − +− + + − +  

     1 1 1 1  n n n n n n n n n
i i i i i i i i irA h h rA h rB u rB u− + − += + − + −        (2.3) 

 

 1 1 1 1 1
1 1 1 1   n n n n n n n

i i i i i i irgh rgh rA u u rA u+ + + + +
− + − +− + − + +   

       1 1 1 1  n n n n n n n
i i i i i i irgh rgh rA u u rA u− + − += − + + −            (2.4) 

 

where  
1  

2

n n
n i i
i

u u
A

+ +
=  

1  

2

n n
n i i
i

h h
B

+ +
=  and 

4
t

r
x

∆
=

∆
. 

 

 Substituting expansions of h and u in Taylor series at ix x=  and nt t=  in 
equations (2.1) and (2.2) and rearranging them we get following equations 
 

 
2

( )t x x t x x t
t

h hu h u h hu h u
∆

+ + + + +   

    
2

2
34

( )
( )ttt xtt t xt tt x xtt xt t x tt

t
h hu h u h u h u h u h u

∆
+ + + + + + +   

   
2

3 2 0
3 !

( )
( ) (( ) ,( ) ( ))xxx xxx

x
hu h u o t x t

∆
+ + + ∆ ∆ ∆ =                    (2.5) 

 
2( ) 2

32 4
( ) ( )x x x x t ttt xtt x tt t xt xtt

tt
ut uu gh ut uu gh u uu u u u u gh

∆∆
+ + + + + + + + + +   

 
2

3 2( )
, 0

3 !
( ) (( ) ( ) ( ))xxx xxx

x
uu gh o t x t

∆
+ + + ∆ ∆ ∆ =                                  (2.6) 

 
 In the view of equation (1.3), (2.5) and equations (1.4), (2.6) it is observed 
that the finite difference scheme (2.3), (2.4) is consistent and of order 2 in both space 
and time variables. 
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3. Stability of Finite difference Scheme 
 
 To analyze stability of numerical scheme (2.3) and (2.4), consider linearized 
form of equations (2.3) and (2.4) as follows 
 
 1 1 1 1 1

1 1 1 1
n n n n n
i i i i irAh h rAh rBu rBu+ + + + +
− + − +− + + − +  

     1 1 1 1  n n n n n
i i i i irAh h rAh rBu rBu− + − += + − + −        (3.1) 

 

 1 1 1 1 1
1 1 1 1   n n n n n

i i i i irgh rgh rAu u rAu+ + + + +
− + − +− + − + +   

       1 1 1 1  n n n n n
i i i i irgh rgh rAu u rAu− + − += − + + −            (3.2) 

 

where n
iA A=  and n

iB B=  
 
 The error equations corresponding to (3.1) and (3.2) gives system of 
equations 

   ϵ 
1

1 1
1

2 2

n n

n n
M N

+

+

   
   =
      

 

 
                                           (3.3) 

 

where  

11

21
1

( 1)1

n

n
n

n
N

ε

−

 
 
 

=  
 
 
 









 and  

12

22
2

( 1)2

n

n
n

n
N

ε

−

 
 
 

=  
 
 
 









 

 

1 2, n n n n n n
k k k k k kH h U u= − = −  , 

 
, n n

k kH U  are exact solutions of (3.1), (3.2)  at nt t= ,   kx x= . 
 
 The matrices M, N are block matrices 
 

P Q
M

R P

 
=  
  

 and  
T T

T T

P Q
N

R P

 
 =
  

 

 

where P Q and R are tridiagonal matrices given by 
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1 0 0 0

1 0 0

0 1 0 0

0 0 0 1

rA

rA rA

rAP

rA

 
 
− 
 −=
 
 
 − 







     



 , 

 
0 0 0 0

1 0 0

0 0 0 0

0 0 0 0

rB

rB rB

rBQ

rB

 
 
− 
 −=
 
 
 − 







     



, 

 
0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

rg

rg rg

rgR

rg

 
 
− 
 −=
 
 
 − 







     



. 

 
 Now matrix equation (3.3) can be written as 
 

    
1

1 11
1

2 2

n n

n n
M N

ε ε

ε ε

+
−

+

   
   =
      

                                        (3.4) 

 

 Matrix M can be written as 
P Q I K Q

M
R P R I K

   +
= =   

+      
  

 
 Eigenvalues of M are given by roots of characteristic equation, 

 
0( )det M Iλ− =  

 

i.e.           0
I K I Q

R I K I

λ
λ

+ −
=

+ −
. 
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 Since, )( ) (I K I R R I K Iλ λ+ − = + − , QR RQ= , from [6] the 
characteristic equation of matrix M becomes, 

 
2 21 2 1 0( ) ( )[ ]det I K K QRλ λ− + − + − =  

 
 Simillarly, eigenvalues of N are given by roots of characteristic equation, 

 
2 21 2 1 0( ) ( )[ ]det I K K QRλ λ− + − + − =  

 
 Since characteristic polynomials of matrices M and N are identical, M and N 
have same eigenvalues. 
 
 By Brauer’s Theorem [7], all the eigenvalues of M and N denoted by λ lie in 
the region, 

1 2 max { , }r A B A gλ − ≤ + +  
 
 Therefore Minimum eigenvalue of 1 2 max { , }M r A B A g≥ − + +  and 

Maximum eigenvalue of 1 2 max { , }N r A B A g≤ + + + . 
 
 Thus, the spectral radius, 

 

1
1 2 max { , }

1 2 max { , }
( )

r A B A g
M N

r A B A g
ρ −

+ + +
≤

− + +
 

 

1 4 max { , }r A B A g≈ + + +  
 
 Therefore 1 1( )M Nρ − ≥  and the proposed method is unconditionally 

unstable. Though the method is unstable, 1( )M Nρ −  lies in neighbourhood of 1 since 
value of r is very small and the numerical scheme given by equation (2.3) and (2.4) 
will give reliable solutions. 
 
4. Numerical Experiments 
 
 Problem 4.1: Consider one dimensional shallow water equations (1.3) and 
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(1.4) defined on the domain { / 1 1}D x x= − ≤ ≤  with 1g =  satisfying initial 
conditions 

22 1 4, 0  1 , , 0 1
3 4 9

( ) ( ) ( ) ( )u x x h x x= − = + −   

 
and boundary conditions 

4
1,  1, 0,

3 1
( ) , ( )

( )
u t u t

t
−

− = =
+

 

 

2/3 2 2/3

1 16 11 1  1, ,  1,
4 4( 1) 9( 1) ( 1)

( ) ( )h t h t
t t t

− = + =
+ + +

 

 
 Exact solutions u and h denoted by U and H of equations (1.3) and (1.4) with 
above intial and boundary conditions are obtained from [8] 

 

                     
2

2/3 2

2 1 11 4, , ,
4 93 1 1

( ) ( 1)
( ) ( )

( ) ( ) ( 1)

x
U x t H x t

t t

x

t

−
= = +

+ +

−
+

                (4.1) 

 
 The numerical solution for this problem is obtained from the finite difference 
scheme (2.3) and (2.4) with 0.01t∆ = , 0.001  and 0.01x∆ = , 0.05 , 0.1 . These 
numerical solutions h, hu are compared with exact solutions H, HU. The comparision 
of the solutions obtained by difference scheme (2.3) and (2.4) and exact solutions at 
different time t are shown in Table (1) to Table (5). From Table (1) to Table (5), it is 
observed that the solutions obtained from the scheme (2.3) - (2.4) are correct upto 
three decimal places. 

 
 Table 1: Comparison of numerical and exact solution for  

0.01t∆ = , 0.01x∆ = , at 0.5t =   
 

x h H hu HU 

-1. 0.388317 0.388317 -0.34517 -0.34517 

-0.8 0.350737 0.350786 -0.280631 -0.280629 

-0.6 0.317147 0.317205 -0.22555 -0.225568 

-0.4 0.287485 0.287576 -0.178875 -0.178936 
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x h H hu HU 

-0.2 0.261766 0.261897 -0.139574 -0.139678 

0. 0.240066 0.240168 -0.10667 -0.106742 

0.2 0.222311 0.222391 -0.0790246 -0.0790722 

0.4 0.208502 0.208563 -0.055587 -0.0556169 

0.6 0.198639 0.198687 -0.0353049 -0.0353221 

0.8 0.192727 0.192761 -0.017129 -0.0171343 

1. 0.190786 0.190786 0. 0. 

 
Table 2: Comparison of numerical and exact solution for 

0.01t∆ = , 0.01x∆ = , at 1t =  
 

x h H hu HU 

-1. 0.268601 0.268601 -0.179067 -0.179067 

-0.8 0.247485 0.24749 -0.148523 -0.148494 

-0.6 0.228595 0.228601 -0.121964 -0.121921 

-0.4 0.211942 0.211935 -0.0989507 -0.0989028 

-0.2 0.197498 0.19749 -0.0790361 -0.0789961 

0. 0.185248 0.185268 -0.0617678 -0.061756 

0.2 0.175191 0.175268 -0.0467069 -0.0467381 

0.4 0.167426 0.16749 -0.0334769 -0.033498 

0.6 0.16189 0.161935 -0.0215834 -0.0215913 

0.8 0.158586 0.158601 -0.0105703 -0.0105734 

1. 0.15749 0.15749 0. 0. 
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Table 3: Comparison of numerical and exact solution for 
0.01t∆ = , 0.05x∆ = , at 0.5t =  

 
x h H hu HU 

-1. 0.388317 0.388317 -0.34517 -0.34517 

-0.8 0.350742 0.350786 -0.280634 -0.280629 

-0.6 0.31715 0.317205 -0.225554 -0.225568 

-0.4 0.287472 0.287576 -0.17886 -0.178936 

-0.2 0.26177 0.261897 -0.139578 -0.139678 

0. 0.240066 0.240168 -0.10667 -0.106742 

0.2 0.222311 0.222391 -0.0790246 -0.0790722 

0.4 0.208502 0.208563 -0.055587 -0.0556169 

0.6 0.198639 0.198687 -0.035305 -0.0353221 
0.8 0.192728 0.192761 -0.0171282 -0.0171343 

1. 0.190786 0.190786 0. 0. 

 
Table 4: Comparison of numerical and exact solution for 

0.01t∆ = , 0.05x∆ = , at 1t =  
 

x h H hu HU 
-1. 0.268601 0.268601 -0.179067 -0.179067 

-0.8 0.24748 0.24749 -0.148523 -0.148494 
-0.6 0.228597 0.228601 -0.121966 -0.121921 
-0.4 0.211945 0.211935 -0.0989532 -0.0989028 
-0.2 0.197496 0.19749 -0.0790344 -0.0789961 
0. 0.185245 0.185268 -0.0617652 -0.061756 
0.2 0.175197 0.175268 -0.0467112 -0.0467381 
0.4 0.167428 0.16749 -0.0334776 -0.033498 
0.6 0.16189 0.161935 -0.0215824 -0.0215913 
0.8 0.158587 0.158601 -0.0105703 -0.0105734 
1. 0.15749 0.15749 0. 0. 
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Table 5: Comparison of numerical and exact solution for 
0.001t∆ = , 0.1x∆ = , at 0.5t =  

 
x h H hu HU 

-1. 0.388317 0.388317 -0.34517 -0.34517 

-0.8 0.350781 0.350786 -0.280629 -0.280629 

-0.6 0.3172 0.317205 -0.225567 -0.225568 

-0.4 0.287565 0.287576 -0.178928 -0.178936 

-0.2 0.261884 0.261897 -0.139669 -0.139678 

0. 0.240158 0.240168 -0.106734 -0.106742 

0.2 0.222382 0.222391 -0.0790674 -0.0790722 

0.4 0.208557 0.208563 -0.0556139 -0.0556169 

0.6 0.198682 0.198687 -0.0353204 -0.0353221 

0.8 0.192758 0.192761 -0.0171337 -0.0171343 

1. 0.190786 0.190786 0. 0. 
 
 Problem 4.2: Consider one dimensional shallow water equations (1.3) and 
(1.4) defined on the domain { / 5 5}D x x= − ≤ ≤  with 1g =  satisfying initial 
conditions 

2( 5)2, 0 0,  , 0 1
5

( ) ( ) xu x h x e −= = +  

and boundary conditions 
 

5, 0,  5, 0,  5, 1,  5, 1( ) ( ) ( ) ( )u t u t h t h t− = = − = = . 
 
 The example models dam break problem. Solution graphs are shown in 
Figure (1) to Figure (10). 
 
 In Figures (1) to (10), figures with odd number are from [9] whereas figures 
with even number are constructed from numerical scheme (2.3–2.4). From all figures 
it is seen that the solutions obtained by the proposed numerical scheme are reliable. It 



12 APARNA SHINDE, SARITA THAKAR AND SUNIL KUMBHAR  

is observed that as time passes the initial condition produces two waves one moving 
in each direction. Each of the wave shows the same behavior at all time in future. 
Initially the momentum is zero since the velocity in x direction is zero. As time 
passes momentum curve also shows two waves one moving in each direction but 
mirror image about X axis. 
 
 Since the numerical solutions of problem (4.2) are not available in literature 
the numerical solutions of (4.2) by using finite difference scheme at different time 
levels are listed in Table (6) and (7). 

 
Table 6: Numerical solution for 0.1t∆ = , 0.1x∆ = , at 0.5t =  

 
x h u hu 

-5 1 0 0 

-4 1. -1:65115 × 10-15 -1:65115 × 10-15 

-3 1. -4:10305 × 10-10 -4:10305 × 10-10 

-2 1.00003 -0.0000294016 -0.0000294024 

-1 1.06608 -0.0651121 -0.0694147 

0 1.1128 8:48731 × 10-19 9:444655951555686 × 10-19 

1 1.06608 0.0651121 0.0694147 

2 1.00003 0.0000294016 0.0000294024 

3 1. 4:10305 × 10-10 4:10305 × 10-10 

4 1. 1:21870 × 10-15 1:21870 × 10-15 

5 1 0 0 
 

Table 7: Numerical solution for 0.1t∆ = , 0.1x∆ = , at 1t =  
 

x h u hu 

-5 1 0 0 

-4 1. -2:25827 × 10-11 -2:25827 × 10-11 

-3 1. -8:30577 × 10-7 -8:30578 × 10-7 

-2 1.00399 -0.00398586 -0.00400176 
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x h u hu 

-1 1.1798 -0.173156 -0.20429 

0 0.996458 2:35858 × 10-16 2:35023 × 10-16 

1 1.1798 0.173156 0.20429 
2 1.00399 0.00398586 0.00400176 
3 1. 8:30577 × 10-7 8:30578 × 10-7 

4 1. 2:25824 × 10-11 2:25824 × 10-11 

5 1 0 0 
 
 Finite difference Model Results 
 

 
Figure 1: Graph of h and hu from [9] at 0t =  

 

 
Figure 2: Graph of h and hu from proposed finite difference scheme at 0t =  

 

 
Figure 3: Graph of h and hu from [9] at 0.5t =  
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Figure 4: Graph of h and hu from proposed finite difference scheme at 0.5t =  

 

 
Figure 5: Graph of h and hu from [9] at 1t =  

 

 
Figure 6: Graph of h and hu from proposed finite difference scheme at 1t =  

 

 
Figure 7: Graph of h and hu from [9] at 2t =  

 

 
Figure 8: Graph of h and hu from proposed finite difference scheme at 2t =  
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Figure 9: Graph of h and hu from [9] at 3t =  

 

 
Figure 10: Graph of h and hu from proposed finite difference scheme at 3t =  

 
5. Conclusion 
 
 The finite difference scheme is presented for one dimensional Shallow Water 
Equations. The method is proved to be consistent and is of order two in both space 
and time variables. Though method is unstable, it gives reliable solutions. The 
reliability of solutions is assured by comparing numerical solutions with 
exact solutions. 
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1. Introduction 
 
 Gibonacci polynomials ( )nz x  are defined by the recurrence, 

2 1( ) ( ) ( ) ( ) ( )n n nz x a x z x b x z x+ += + where x is an arbitrary complex variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary complex polynominals; and 0n ≥ . 
  
 Suppose ( )a x x=  and ( ) 1b x = . When 0( ) 0z x =  and 1( ) 1z x = , 

( ) ( )n nz fx x= , the nth Fibonacci polynomial; and when 0( ) 2z x =  and 1( )z x x= , 

( ) ( )n nz x l x= , the nth Lucas polynomial. 
 
 Clearly, (1)n nf F= , the nth Fibonacci number; and )1(n nl L= , the nth Lucas 
number [1, 2, 3]. 
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 In the interest of brevity, clarity, and convenience, we omit the argument in 
the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We let 

n ng f=  or nl  and 2 2 4x∆ = + . We also omit a lot of basic algebra. 
 
 It is well known [3] that 2

2 2 ( 2)n n nf f x f+ −+ = + , 2 2n n nf f xl+ −− = , 

1 1n n nf f l+ −+ = , 2
2 3( 1)n n nf x f xf− −= + + , 2n n nf f l= , 2

2 1 2 1
n

n nf f f+ += + , and the 
gibonacci addition formula  
 

1 1a b a b a bg f g f g+ + −= + . 
 
 A gibonacci polynomial product of order m is a product of gibonacci 

polynomials n kg +  of the form sj
n k

k

g +
∈
∏


, where 
1 

j
sj

s m
≥

=∑  [4, 6].   

 
 1.1 Sums of Gibonacci Polynomial Products of Order 3: In [5], we 
explored the following sums of gibonacci polynomial products of order 3: 
 
         2 2 2 2 2 3 2 2

3 2 2 23 (2 5) ( 1) ( 1) .n n n n n n n nx f f f x f f x f x f f+ + −= − + + + + +                   (1) 
 
      2 3 2 2 2 2 3 2 2

3 1 2 2 2 23 (2 7) ( 1) ( 2) .n n n n n n n n nx l f f f x f f x f x f f+ + + + −= + − + + + + +       (2) 
 
  2 2 2 3 2 2 4 2 2 2

3 2 2 2 2 2 2( 4) 2 2( 3 4)n n n n n n n n nx f x f x f f x x f f x f f f+ + + + + −∆ = + + − + + +   

      4 2 2 2 2
2 2( 3 4) .n n n nx x f f x f f− −+ + + −                                 (3) 

 
2. Some Graph-theoretic Tools 
 
 To confirm these three polynomial identities using graph-theoretic 
techniques, we now develop the needed tools. To this end, consider the Fibonacci 

digraph 1D  in Figure 1 with vertices 1v  and 2v , where a weight is assigned to each 

edge [3, 4]. It follows by induction from its weighted adjacency matrix 

1
,

1 0

x
Q

 
   
  

that 
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Figure 1: Weighted Fibonacci Digraph 1D   

 

1

1
,n nn

n n

f f
Q

f f




 
   
  

 

where 1n ≥  [3, 4]. 
 

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . The walk is closed if i jv v ; otherwise, it is 

open. The length of a walk is the number of edges in the walk. The weight of a walk 
is the product of the weights of the edges along the walk. 
 

 We can employ the matrix nQ  to compute the weight of a walk of length n 

from any vertex iv  to any vertex jv , as the following theorem shows [3, 4]. 
 

 Theorem 1: Let M be the weighted adjacency matrix of a weighted, 

connected digraph with vertices 1 2, ,. . ., kv v v . Then the ijth entry of the matrix 

nM  gives the sum of the weights of all walks of length n from iv  to jv , where

1n ≥ .                    
 

 The next result follows from this theorem. 
 

 Corollary 1: The ijth entry of nQ  gives the sum of the weights of all 

walks of length n  from iv  to jv  in the weighted digraph 1D , where 1 i≤ ,

j n≤ .                         
 
 It follows by this corollary that the sum of the weights of closed walks of 
length n originating at 1v in the digraph is 1nf +  and that of those originating at 2v  is
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1nf − . Consequently, the sum of the weights of all closed walks of length n in the 

digraph is 1 1n n nf f l+ −+ = . These facts play a crucial role in the graph-theoretic 
proofs. 
 
 Let A, B, and C denote the sets of walks of lengths r, s, and t all originating 
at a vertex v, respectively. Then the sum of the weights of the elements (a, b, c) in 

the product set A × B × C is defined as the product of the sums of weights from each 
component [4]. 
 
 We are now ready for the proofs. 
 
3. Graph-theoretic Proofs 
 
 3.1 Proof of Identity (1): Let S denote the sum of the weights of closed 

walks of length 3 1n −  in the digraph from 1v  to 2v . Then 3nS f= , and hence,
2 2

3nx S x f= . 
 

 We will now compute the sum 2x S  in a different way. To this end, let w be 

an arbitrary closed walk of length 3 1n −  from 1v  to 1v . It can land at 1v  or 2v at the 

nth and 2nth steps: 
1 1

subwalk of lengthsubwalk of length subwalk of length 1

... ... ... ,
nn n

w v x x x x v

−

= − − − − − −


 

  

where 1x v=  or 2v . 
 

 

Table 1: Sum of the Weights of Closed Walks Originating at 1v  
 

w  lands at 1v  at the 

nth step? 

w  lands at 1v  at the 

2nth step? 

w  lands at 1v  at the 

(3 1)n − st step? 

sum of the weights 
of walks w 

yes yes yes 2
1n nf f+  

yes no yes 1 1n n nf f f+ −   

no yes yes 3
nf  

no no yes 2
1n nf f −  
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 Table 1 shows the possible cases and the sums of weights of the 
corresponding walks. It follows from the table that the sum S of the weights of all 

closed walks originating at 1v  is given by 
 

2 3 2
1 1 1 1n n n n n n n nS f f f f f f f f+ + − −= + + + . 

 Then 
 

       2 2 2 3 2
1 1 1 1( ) ( ) ( ) ( )n n n n n n n nx S xf f xf f xf x f f xf+ + − −= + + +   

  2 2 3 2
2 2 2 2( ) ( ) ( ) ( )n n n n n n n n n n n nf f f f f f f f x f f f f+ + − −= − + − − + + −   

  2 2 2 3 2 2
2 2 2 2 2 2( 1)n n n n n n n n n n n nf f f f f f f x f f f f f+ + + − − −= − − + + − +   

  2 2 2 3
2 23 ( 1)n n n n nf f f f x f A+ += − + + + , 

where 

          2 2 2
2 2 2 2 22 n n n n n n n n nA f f f f f f f f f+ + − − −= − − + −   

  2 2 2
2 2 2 2 2 2( ) ( )n n n n n n n n nf f f f f f f f f+ + − + − −= − + − − −   

  2
2 2 2 2 2( )(2 )n n n n n n nf f f f f f f+ − + − −= − + − −   

  2 2
2 2 2( 2) (2 )[ ]n n n n n nf x f f f f f+ − −= − + − −   

  2 2 2 2
2 22( 2) ( 1) .n n n nx f f x f f+ −= − + + +   

 Consequently, 
 

2 2 2 2 2 3 2 2
2 2 23 (2 5) ( 1) ( 1) .n n n n n n nx S f f x f f x f x f f+ + −= − + + + + +  

 
 Equating this value of 2x S  with the earlier one yields the desired result.      
 
 We now turn to identity (2). 
 
 3.2 Proof of Identity (2): Let S   denote the sum of the weights of all closed 
walks of length 3 1n +  in the digraph. Then 3 1nS l += ; so 2 2

3 1nx S x l += . 
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 We will now compute 2x S   in a different way. Let w be an arbitrary closed 
walk of length 3 1n + . 
 
 Case 1: Suppose w originates (and ends) at 1v . It can then land at 1v  or 2v  at 
the st( 1)n + and st(2 1)n + steps: 
 

1 1
subwalk of lengthsubwalk of length 1 subwalk of length

... ... ... ,
nn n

w v x x x x v

+

= − − − − − −


 

 

where 1x v=  or 2v  . 
 

Table 2: Sums of the Weights of Closed Walks Originating at 1v   
 

w  lands at 1v  at the 

th( 1)n +  step? 

w  lands at 1v  at the 

th(2 1)n +  step? 

w  lands at 1v  at the 

(3 st1)n + step? 

sum of the weights 
of walks w 

yes yes yes 2
2 1n nf f+ +  

yes no yes 2
2n nf f+   

no yes yes 2
1n nf f+  

no no yes 1 1n n nf f f+ −  

 
 Table 2 shows the possible cases and the sums of weights of the respective 
walks. It follows from the table that the sum 1S   of the weights of such walks w is 
given by 
         2 2 2

1 2 1 2 1 1 1n n n n n n n n nS f f f f f f f f f+ + + + + −= + + +   

  2 2
2 1 1 1 1( ) ( )n n n n n n nf f f f f f f+ + + + −= + + +   

  2 2
2 1 1( ) ;n n n n n nf f f f f l+ + += + +   

 

     2 2 2
1 2 1 1( ) ( ) ( ) ( )[ ]n n n n n nx S f xf xf xf f xl+ + += + +  

  2 2 2
2 2 2 2 2( ) ( )( )[ ]n n n n n n n n nf f f x f f f f f f+ + + − += − + + − −   
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  3 2 2
2 2 2 2 2( )[ ]n n n n n n n nf f f f f x f f f+ + + − −= − + − +   

  3 2 2 2
2 2 2)2( [ ]n n n n n n nf f f x f x f f f+ + −= − + − +   

  3 2 2
2 2 22 .n n n n nf f f f f+ + −= − +   

 Case 2: Suppose w originates (and ends) at 2v . Then w can land at 1v  or 2v  
at the st( 1)n + and st(2 1)n + steps: 
 

2 2
subwalk of lengthsubwalk of length 1 subwalk of length

... ... ... ,
nn n

w v x x x x v

+

= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 3: Sums of the Weights of Closed Walks Originating at 2v  
 

w  lands at 1v  at the 

th( 1)n +  step? 

w  lands at 1v  at the 

th(2 1)n +  step? 

w  lands at 2v  at the 

(3 st1)n + step? 

sum of the weights 
of walks w 

yes yes yes 2
1n nf f+  

yes no yes 1 1n n nf f f+ −   

no yes yes 3
nf  

no no yes 2
1n nf f −  

 
 Table 3 shows the possible cases and the corresponding sums of weights of 
the walks. Clearly, the sum 2S   of the weights of all such walks w is given by 
 

2 3 2
2 1 1 1 1.n n n n n n n nS f f f f f f f f+ + − −= + + +  

 
 By the algebraic proof in Section 2.1, we then have 
     2 2 2 2 2 3 2 2

2 2 2 23 (2 5) ( 1) ( 1) ;n n n n n n nx S f f x f f x f x f f+ + −= − + + + + +   

     2 2 2
1 2x S x S x S= +    

  3 2 2
2 2 2( 2 )n n n n nf f f f f+ + −= − +      



24 THOMAS KOSHY  

                         2 2 2 2 3 2 2
2 2 23 (2 5) ( 1) ( 1)[ ]n n n n n n nf f x f f x f x f f+ + −+ − + + + + +   

 

  3 2 2 2 2 3 2 2
2 2 2 23 (2 7) ( 1) ( 2) .n n n n n n n nf f f x f f x f x f f+ + + −= + − + + + + +   

 

 This value of 2x S  , coupled with its original value, yields the desired result, 
as expected.                         
 
 Finally, we present the proof of identity (3). 
 
 3.3 Proof of Identity (3): Let S ∗  denote the sum of the weights of closed 
walks of length 3 1n +  originating at 1v  in the digraph. Clearly, 3 2nS f∗

+= , and 

hence, 2 2 2 2
3 2nx S x f∗

+∆ = ∆ . 
 

 To compute 2 2x S ∗∆  in a different way, we first let w be an arbitrary closed 

walk of length 3 1n +  originating at 1v . 
 
 Case 1: Suppose w begins with a loop. It can then land at 1v  or 2v  at the 

st( 1)n + and st(2 1)n + steps: 

1 1
subwalk of lengthsubwalk of length 1 subwalk of length

... ... ... ,
nn n

w v x x x x v

+

= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 4: Sums of the Weights of Closed Walks Beginning with a Loop 
 

w  lands at 1v  at the 

th( 1)n +  step? 

w  lands at 1v  at the 

th(2 1)n +  step? 

w  lands at 1v  at the 

(3 st1)n + step? 

sum of the weights 
of walks w 

yes yes yes 3
1nxf +  

yes no yes 2
1n nxf f+   

no yes yes 2
1n nxf f+  

no no yes 2
1n n nxf f f−  
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 Table 4 shows the various possible cases and the respective sums of weights 
of such walks. It then follows that the sum 1S ∗  of the weights of walks w is given by 
 
        3 2 2

1 1 1 1  2n n n n n nS xf xf f xf f f∗
+ + −= + +   

  2 2 2
1 1 1 1( ) ( )n n n n n nxf f f xf f f+ + + −= + + +   

  2 2 2
1 1( )n n n nxf f f xf ln+ += + +   

  1 2 1 2n n n nxf f xf f+ += +   

  3 1nxf += . 

 Case 2: Suppose w does not begin with a loop. Then also it can land at 1v  or 

2v  at the st( 1)n + and st(2 1)n + steps: 

1 1
subwalk of lengthsubwalk of length 1 subwalk of length

... ... ... ,
nn n

w v x x x x v

+

= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 5: Sums of the Weights of Closed Walks not Beginning a Loop 
 

w  lands at 1v  at the 

th( 1)n +  step? 

w  lands at 1v  at the 

th(2 1)n +  step? 

w  lands at 1v  at the 

(3 st1)n + step? 

sum of the weights 
of walks w 

yes yes yes 2
1n nf f+  

yes no yes 3
nf   

no yes yes 1 1n n nf f f+ −  

no no yes 2
1n nf f −  

 
 Table 5 shows the possible cases and the corresponding sums of weights of 

such walks. It follows from the table that the sum 2S ∗  of the weights of such walks w 

is given by 
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         2 3 2
2 1 1 1 1n n n n n n n nS f f f f f f f f∗

+ + − −= + + +   

  2 2
1 1 1 1( ) ( )n n n n n n nf f f f f f f+ − + −= + + +   

  2 1 2 1n n n nf f f f+ −= +   

  3 .nf=   

 
 By the identities [5] 
 
 2 2 2 2 2 2 2

3 2 2 2 2( 12) (9 20)n n n n n n n nx f x f f x f f x f f f+ + + −∆ = + − + −   

            2 2 3 2 2 2 2
2 2( 1)( 4) (3 4) ;n n n n nx x f x f f x f f− −+ + + + + +   

 2 3 2 3 2 2 4 2 2
3 1 2 2 2( 4) ( 12) (2 3 12)n n n n n nx f x f x f f x x f f+ + + +∆ = + + − − − −   

            2 2 2 3 4 2 2 2
2 2 2 2( ) ,2 ( 1) 4 2n n n n n n n nx f f f x x f x f f x f f+ − − −+ − + + + −   

we then get 
 

 2 2 2 2
1 2( )x S x S S∗ ∗ ∗∆ = ∆ +   

  2 3 2 2
3 1 3n nx f x f+= ∆ + ∆   

  2 3 2 2 4 2 2 2
2 2 2 2 2 2( 4) 2 ( 3 4)n n n n n n n nx f x f f x x f f x f f f+ + − + + −= + + + + +   

    4 2 2 2 2
2 2( 3 4) .n n n nx x f f x f f− −+ + + −   

 Equating this value of 2 2x S ∗∆  with its earlier version yields the desired 

result, as expected.                                              
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1. Introduction 
 
 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz xa z b zx x x x+ += + , where x is an arbitrary complex variable; ( )a x , 

( )b x , 0( )z x , and 1( )z x  are arbitrary complex polynomials; and 0n ≥  [1, 2, 5, 6]. 
 
 Suppose ( ) 1a x =  and ( )b x x= . When 0( ) 0z x =  and 1( ) 1z x = , 

( ) ( )n nz x J x= , the nth Jacobsthal polynomial; and when 0( ) 2z x =  and 1( ) 1z x = , 

( ) ( )n nz x j x= , the nth Jacobsthal-Lucas polynomial [1, 2]. Correspondingly, 

(2)n nJ J=  and (2)n nj j=  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively. Clearly, (1)n nJ F=  and (1)n nj L= . 
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 In the interest of brevity, clarity, and convenience, we omit the argument in 
the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We also 

let 2 4 1D x= +  and omit a lot of basic algebra. 
 
 It is well known [3] that 1 1n n nJ xJ j+ −+ = , 2n n nJ J j= , 2 2 2

1 1n n nJ J xJ+ += + , 

and the Jacobsthal addition formula 1 1m n m n m nJ J J xJ J+ + −= + . 
 
 An extended gibonacci polynomial product of order m is a product of 

polynomials n kz +  of the form 
sj
n k

k

z +
∈
∏


, where 
1sj

sj m
≥

=∑  [4, 7]. 

 
 1.1 Sums of Jacobsthal Polynomial Products of Order 3: In [5], we 
investigated the following sums of gibonacci polynomial products of order 3: 
 
 3 2 2 2 2

3 1 2 2 2 2 2(3 1) 3( )n n n n n n n n nxJ J x J J x x J J x J J J− + + + + −= − + + + +   

   3 2 3 4 2
2( 2 ) n n nx x x J x J J −− + + − .                                        (1) 

 

       3 2 2 2 2
3 2 2 2 2 22 (6 1) (6 5 )n n n n n n n n nj J x J J x x J J x J J J+ + + + −= − + + + +   

              3 2 3 3 2 4 2
2 2 (2 3 ) ;n n n n nx x x J x J J x J J− −− + + − −                   (2) 

 

          2 2 3 2 2 3 2 2
3 1 2 2 2(12 ) (12 3 2 )n n n n n nD J D J x x J J x x x J J+ + + += − − + + −   

                                         3 4 3 2 3
2 2 2 (4 5 )n n n nx J J J x x x J+ −+ − + +   

                                          3 2 5 2
2 22n n n nx J J x J J− −+ − .                                                  (3) 

 
 Our goal is to confirm these Jacobsthal identities using graph-theoretic tools. 
 
2. Some Graph-theoretic Tools 
 
 To confirm these Jacobsthal results, consider the weighted Jacobsthal 

digraph 2D  in Figure 1 with vertices 1v  and 2v  [3, 4]. It follows from its weighted 

adjacency matrix 
1

,
1 0

x
Q

 
   
  

that 
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Figure 1: Weighted Digraph 2D   
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
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where ( )n nJ J x=  and 1n ≥ . 
 
 It then follows that the sum of the weights of closed walks of length n 

originating at 1v  is 1nJ + , and that of those originating at 2v  is 1nxJ − . So the sum of 

the weights of all closed walks of length n in the digraph is 1 1n n nJ xJ j+ −+ = . 
These facts play a major role in the graph-theoretic proofs. 
 
 Let A, B, and C denote the sets of closed walks of lengths a, b, and c 
originating at vertex v, respectively. Then the sum of the weights of the elements in 

the product set A B C× ×  is defined as the product the sums of the walks in each 
component [4]. 
 
 With these tools at our fingertips, we are now ready for the graph-theoretic 
proofs. 
 
3. Graph-theoretic Proofs 
 
 3.1 Proof of Identity (1): Let S denote the sum of the weights of closed 

walks of length 3 2n −  originating at 1v . Clearly, 3 1nS J −=  and hence, 3 1nxS xJ −= . 
 
 We will now compute the sum xS  in a different way. To this end, let w be an 

arbitrary closed walk of length 3 2n −  originating at 1v . 
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 Case 1: Suppose w begins with a loop. It can land at 1v  or 2v  at the 
st( 1)n +  and st(2 1)n +  steps: 

1 1
subwalk of lengthsubwalk of length 1 subwalk of length 3

... ... ... ,
nn n

w v x x x x v

+ −

= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 1: Sum of the Weights of Closed Walks 
 

w  lands at 1v  at the 

st( 1)n +  step? 

w  lands at 1v  at the 

st(2 1)n +  step? 

w  lands at 1v  at the 

(3 2)n − nd step? 

sums of the weights 
of walks w 

yes yes yes 2
1 2n nJ J+ −  

yes no yes 1 3n n nxJ J J+ −   

no yes yes 2
2n nxJ J −  

no no yes 2
1 3n n nx J J J− −  

 
 Table 1 shows the possible cases and the sums of weights of the 
corresponding walks. It follows from the table that the sum 1S  of the weights of such 
closed walks is given by 
 
 2 2 2

1 1 2 1 3 2 1 3n n n n n n n n n nS J J xJ J J xJ J x J J J+ − + − − − −= + + +  

      2 2
1 2 3 1 1( ) ( )n n n n n n nJ xJ J xJ J J xJ+ − − + −= + + +   

      2 1 2 2 3n n n nJ J xJ J+ − −= +   

      3 2nJ −= . 
 
 Case 2: Suppose w does not begin with a loop. Once again, it can land at 1v  

or 2v  at the st( 1)n +  and st(2 1)n +  steps: 
 

1 1
subwalk of lengthsubwalk of length 1 subwalk of length 3

... ... ... ,
nn n

w v x x x x v

+ −

= − − − − − −


 

 

where 1x v=  or 2v . 
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Table 2: Sum of the Weights of Closed Walks 
 

w  lands at 1v  at the 
st( 1)n +  step? 

w  lands at 1v  at the 
st(2 1)n +  step? 

w  lands at 1v  at the 
(3 2)n − nd step? 

sums of the weights 
of walks w 

yes yes yes 1 2n n nxJ J J+ −  

yes no yes 2 2
3n nx J J −   

no yes yes 2
1 2n n nx J J J− −  

no no yes 3 2
1 3n nx J J− −  

 
 It follows from Table 2 that the sum 2S  of the weights of all such closed 
walks w is given by 
 

 2 2 2 3 2
2 1 2 3 1 2 1 3n n n n n n n n n nS xJ J J x J J x J J J x J J+ − − − − − −= + + +   

      2 2 2
2 1 1 3 1( ) ( )n n n n n n nxJ J J xJ x J J xJ− + − − −= + + +   

      2
2 2 1 3( )n n n nx J J xJ J− − −= +   

      3 3nxJ −= . 
 
 Combining the two cases and using the Jacobsthal identity [6] 
 
 3 2 2 2 2

3 1 2 2 2 2 2(3 1) 3( )n n n n n n n n nxJ J x J J x x J J x J J J− + + + + −= − + + + +   

   3 2 3 4 2
2 ( 2 ) n n nx x x J x J J −− + + − , 

we then get 
 
 1 2( )xS x S S= +   

       3 1nxJ −=   

        3 2 2 2 2
2 2 2 2 2(3 1) 3( )n n n n n n n nJ x J J x x J J x J J J+ + + + −= − + + + +   

    3 2 3 4 2
2( 2 ) n n nx x x J x J J −− + + −  . 

 
           This value of xS , coupled with its earlier value, yields the desired result.       
  
 Next we explore the graph-theoretic proof of identity (2). 
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 3.2 Proof of Identity (2): Let S   denote the sum of the weights of all closed 
walks of length 3n  in the digraph. Then 3nS j= . 
 
 To compute S   in a different way, let w be an arbitrary closed walk of  
length 3n . 
 

 Case 1: Suppose w originates (and ends) at 1v . It can then land at 1v  or 2v  at 
the nth and 2nth steps: 

1 1
subwalk of lengthsubwalk of length subwalk of length

... ... ... ,
nn n

w v x x x x v= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 3: Sums of the Weights of Closed Walks Originating at 1v  
 

w  lands at 1v  at the 

nth step? 

w  lands at 1v  at the 

2nth step? 

w  lands at 1v  at the 

3nth step? 

sums of the weights 
of walks w 

yes yes yes 3
1nJ +  

yes no yes 2
1n nxJ J+   

no yes yes 2
1n nxJ J+  

no no yes 2 2
1n nx J J −  

 
 Using the identity [6] 
 

3 2 2 2 3 2 3 3 2
3 1 2 2 2 23 (3 2 ) ( )n n n n n n n n nJ J xJ J x x J J x x J x J J+ + + + −= − + + − + − , 

 

it then follows by Table 3 that the sum 1S   of the weights of such walks w is given by 
 

 3 2 2 2
1 1 1 12n n n n nS J x J x J J+ + −= + +   

      2 2 2
1 1 1 1( ) ( )n n n n n nJ J xJ xJ J xJ+ + + −= + + +   

      2
1 2 1n n n nJ J xJ J+ += +  

      3 1nJ +=   

      3 2 2 2 3 2 3 3 2
2 2 2 23 (3 2 ) ( )n n n n n n n nJ xJ J x x J J x x J x J J+ + + −= − + + − + − . 
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 Case 2: Suppose w originates (and ends) at 2v . Then w can land at 1v  or 2v  

at the nth and 2nth steps:  

1 1
subwalk of lengthsubwalk of length subwalk of length

... ... ... ,
nn n

w v x x x x v= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 4: Sums of the Weights of Closed Walks Originating at 2v  
 

w  lands at 1v  at the 

nth step? 

w  lands at 1v  at the 

2nth step? 

w  lands at 1v  at the 

3nth step? 

sums of the weights 
of walks w 

yes yes yes 2
1n nxJ J+  

yes no yes 2 2
1n nx J J −   

no yes yes 2 2
1n nx J J −  

no no yes 3 3
1nx J −  

 
 Using the identity [6] 
 

 3 2 2 2 2
3 1 2 2 2 2 2(3 1) 3( )n n n n n n n n nxJ J x J J x x J J x J J J− + + + + −= − + + + +   

             3 2 3 4 2
2 ( 2 ) n n nx x x J x J J −− + + − , 

 
it follows by Table 4 that the sum 2S   of the weights of all such walks w is given by 
 
 2 2 2 3 3

2 1 1 12n n n n nS xJ J x J J x J+ − −= + +   

      2 2 2 2 2
1 1 1 1( ) ( )n n n n n nx J J xJ x J J xJ+ − − −= + + +   

      2
2 1 1( )n n n nx J J xJ J− −= +   

      3 1nxJ −=  

      3 2 2 2 2
2 2 2 2 2(3 1) 3( )n n n n n n n nJ x J J x x J J x J J J+ + + + −= − + + + +   

                      3 2 3 4 2
2( 2 ) n n nx x x J x J J −− + + − . 
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 Thus 
 
 1 2S S S= +    

      3 2 2 2 2
2 2 2 2 22 (6 1) (6 5 )n n n n n n n nJ x J J x x J J x J J J+ + + + −= − + + + +   

            3 2 3 3 2 4 2
2 2 (2 3 ) n n n n nx x x J x J J x J J− −− + + − − . 

 
 Equating the two values of S   yields the desired result, as expected.            
 
 Finally, we explore the graph-theoretic proof of identity (3). 
 
 3.3 Proof of Identity (3): Let S ∗  denote the sum of the weights of closed 
walks of length 3n originating at 1v . Clearly, 3 1nS J∗

+=  and hence, 2 2
3 1nD S D J∗

+= .  
  
 To compute 2D S ∗  in a different way, suppose that w is an arbitrary closed 

walk of length 3n originating at 1v . 
 
 Case 1: Suppose w begins with a loop. It can then land at 1v  or 2v  at the nth 
and 2nth steps: 

1 1
subwalk of lengthsubwalk of length subwalk of length

... ... ... ,
nn n

w v x x x x v= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 5: Sums of the Weights of Closed Walks Beginning with a Loop 
 

w  lands at 1v  at the 

nth step? 

w  lands at 1v  at the 

2nth step? 

w  lands at 1v  at the 

3nth step? 

sums of the weights 
of walks w 

yes yes yes 2
1n nJ J+  

yes no yes 3
nxJ   

no yes yes 1 1n n nxJ J J+ −  

no no yes 2 2
1n nx J J −  

 
 Using the identity [6] 
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 2 2 2 2 2
3 2 2 2 2(12 1) (20 9 )n n n n n n n nD J x J J x x J J x J J J+ + + −= + − + −   

   3 2 3 4 3 2 4 2
2 2 (4 5 ) (4 3 )n n n n nx x x J x x J J x J J− −+ + + + + +  , 

 
it follows by Table 5 that the sum 1S ∗  of the weights of walks w is given by 
 
 2 3 2 2

1 1 1 1 1n n n n n n n nS J J xJ xJ J J x J J∗
+ + − −= + + +   

      2 2
1 1 1 1( ) ( )n n n n n n nJ J J xJ xJ J xJ+ + − −= + + +   

      2
1 2 1n n n nJ J xJ J+ −= +   

      3nJ=  

       2 2 2 2 2
1 2 2 2 2(12 1) (20 9 )n n n n n n nD S x J J x x J J x J J J∗

+ + + −= + − + −   

   3 2 3 4 3 2 4 2
2 2(4 5 ) (4 3 )n n n n nx x x J x x J J x J J− −+ + + + + +  . 

 
 Case 2: Suppose w does not begin with a loop. Then also it can land at 1v  or 

2v  at the nth and 2nth steps: 

2 2
subwalk of lengthsubwalk of length subwalk of length

... ... ... ,
nn n

w v x x x x v= − − − − − −


 

 

where 1x v=  or 2v . 
 

Table 6: Sums of the Weights of Closed Walks not Beginning a Loop 
 

w  lands at 1v  at the 

nth step? 

w  lands at 1v  at the 

2nth step? 

w  lands at 1v  at the 

3nth step? 

sums of the weights 
of walks w 

yes yes yes 2
1 1n nxJ J+ −  

yes no yes 2 2
1n nx J J −   

no yes yes 2
1 2n n nx J J J+ −  

no no yes 2
1 2n n nx J J J− −  

 
 Using the identity [6] 
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 2 2 3 2 2 3 2 2
3 1 2 2 2(12 11 1) (12 23 7 )n n n n n nD xJ D J x x J J x x x J J− + + += − + + + + +   

   3 2 2 2 3
2 2(2 ) ( 1) (4 )n n n nx x J J J x x x J+ −+ + − + + , 

 
it follows by Table 6 that the sum 2S ∗  of the weights of such walks w is given by 
 
 2 2 2 2 3

2 1 1 1 1 1 1 2n n n n n n n n n nS xJ J x J J x J J J x J J J∗
+ − − + − − −= + + +   

      2 2 2
1 1 2 1 1( )n n n n n n nxJ J xJ x J J J xJ− + − + −= + + +   

      2
1 1 2 2( )n n n nx J J xJ J+ − −= +   

      3 1nxJ −=   
 
        2 2 3 2 2 3 2 2

2 2 2 2(12 11 1) (12 23 )n n n n nD S D J x x J J x x x J J∗
+ + += − + + + + +   

    3 2 2 2 3
2 2 (2 ) ( 1) (4 )n n n nx x J J J x x x J+ −+ + − + + . 

 
 Combining the two cases, we then get 
 
 2 2 2

1 2D S D S D S∗ ∗ ∗= +   

           2 3 2 2 3 2 2
2 2 2(12 ) (12 3 2 )n n n n nD J x x J J x x x J J+ + += − − + + −   

     3 4 3 2 3 3 2 5 2
2 2 2 2 2 (4 5 ) 2n n n n n n n nx J J J x x x J x J J x J J+ − − −+ − + + + − . 

 
 This value of 2D S ∗ , together with its earlier value, yields the desired result, 
as expected.            
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Abstract: In the present paper, we discuss the generating functions 
involving the product of modified Laguerre polynomials 𝐿𝑛

(𝛼−𝑛)(𝑥), 
modified Bessel polynomials 𝑌𝑚

(𝛼+𝑚)[𝑞]  and the confluent hypergeometric 
functions 𝐹1 1

 [. ] and then obtain some more generating functions by group-
theoretic approach and discuss their applications. Earlier Chandel, Kumar 
and Senger [1] introduce the generating functions involving the product of 
modified Bessel polynomials 𝑌𝑛

(𝛼+𝑛)[𝑥] and the confluent hypergeometric 
functions 𝐹1 1

 [. ]. 
 
Keywords: Generating Functions, Modified Laguerre Polynomials, 

Modified Bessel Polynomials, Confluent Hypergeometric 
Functions. 
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1. Introduction   
          
 The modified Laguerre polynomials 𝐿𝑛

(𝛼−𝑛)(𝑥) and modified Bessel 
polynomials 𝑌𝑚

(𝛼+𝑚)(𝑢) are defined by Srivastava and Manocha [6] as: 
 

𝐿𝑛
(𝛼−𝑛)(𝑥) = Γ(1+α)

Γ(1+n)Γ(1+α−n)
 𝐹1 1

 [−𝑛; 1 + 𝛼 − 𝑛; 𝑥]                     (1.1) 
 

 𝑌𝑚
(𝛼+𝑛)(𝑢) =   2𝐹0 �−𝑚,𝑚 + 𝑛 + 𝛼 − 1 ;− ;  −𝑢

𝛽
 �                     (1.2) 
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 The confluent hypergeometric functions 𝐹1 1
 [. ] can be replaced by many 

special functions. Srivastava and Manocha [6] defined and studied various bilinear, 
bilateral and multilinear generating functions. 
 
 In this paper, we introduce the following new general class of generating 
functions: 
 
          𝐺(𝑥,𝑢, 𝑞,𝑤) =    ∑ 𝑎𝑛 

∞
𝑛=0 𝐿𝑛

(𝛼−𝑛)(𝑥) 𝑌𝑚
(𝛼+𝑚)(𝑢) 𝐹1 1

 �–𝑛;𝑚 + 1; 𝑞� 𝑤𝑛     (1.3) 
 
where 𝑎𝑛 is any arbitrary sequence independent of 𝑥,𝑢, 𝑞 and 𝑤. 
 
 Again in (1.3) setting various values of 𝑎𝑛 , we may find several results on 
generating functions involving different special functions, hence (1.3) is a  general 
class of generating functions. 
 
 In this paper, we evaluate some more general class of generating functions 
and finally discuss their applications. 
 
2. Group-Theoretic Operators: In our investigations, we use the following group-
theoretic operators: 
 
 The operators 𝑅1 due to Majumdar [4] is given by  
 

𝑅1 = 𝑥𝑦𝑧 𝜕
𝜕𝑥
− 𝑦2𝑧 𝜕

𝜕𝑦
− (𝑥 − 𝛼)𝑦𝑧                               (2.1) 

 

 Such that  
 
                          𝑅1 �𝐿𝑛

(𝛼−𝑛)(𝑥)𝑦𝑛𝑧𝛼� = (𝑛 + 1) 𝐿𝑛+1
(𝛼−𝑛−1)(𝑥)𝑦𝑛+1𝑧𝛼+1                (2.2) 

 
 The operators 𝑅2 due to Chongdar [2] is given by  
 

𝑅2 =  𝑢2𝑡−1𝑣 𝜕
𝜕𝑢

+ 𝑢𝑣 𝜕
𝜕𝑡

+ 𝑢𝑡−1𝑣2 𝜕
𝜕𝑣

+  𝑡−1𝑣 (𝛽 − 𝑢)            (2.3) 
  
 Such that 
 

             𝑅2 �𝑌𝑚
(𝛼+𝑛)(𝑢) 𝑡𝑛𝑣𝑚� =  𝛽 𝑌𝑚+1

(𝛼+𝑛−1)(𝑢) 𝑡𝑛−1𝑣𝑚+1             (2.4) 
 
 The operator R3 due to Miller Jr. [5] is given by  
 
                                          𝑅3 = 𝑟 𝜕

𝜕𝑝
+ 𝑟𝑞𝑝−1 𝜕

𝜕𝑞
− 𝑟𝑞 𝑝−1                                   (2.5) 
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 Such that  
 

𝑅3[ 𝐹1 1
 [−𝑛;𝑚 + 1;𝑞]𝑟𝑛𝑝𝑚] = 𝑚 𝐹1 1

 �–𝑛 − 1;𝑚; 𝑞�𝑟𝑛+1 𝑝𝑚−1             (2.6) 
 
 The actions of 𝑅1, 𝑅2 and 𝑅3 on function 𝑓 are obtained as follows: 
 

𝑒𝑤𝑅1𝑓(𝑥,𝑦, 𝑧) = (1 + 𝑤𝑦𝑧)𝛼  𝑒𝑥𝑝(−𝑤𝑥𝑦𝑧) 𝑓 �𝑥(1 + 𝑤𝑦𝑧), 𝑦
1+𝑤𝑦𝑧

, 𝑧�          (2.7) 
(cf. Majumdar [4]) 

            
𝑒𝑤𝑅2𝐹(𝑢, 𝑡, 𝑣) =  (1 −𝑤𝑢𝑡−1𝑣) 𝑒𝑥𝑝(𝛽𝑤𝑡−1𝑣) 𝐹 � 𝑢

1−𝑤𝑢𝑡−1𝑣 
, 𝑡
1−𝑤𝑢𝑡−1𝑣

, 𝑣
1−𝑤𝑢𝑡−1𝑣

 � 
                    (2.8) 
                                                                                                (cf. Chongdar [2]) 
 And 
 

𝑒𝑤𝑅3𝑓(𝑟,𝑝, 𝑞) = exp � −𝑞𝑟𝑤𝑝  � 𝑓 � 𝑟, 𝑝 + 𝑤𝑟,   𝑞 �1 + 𝑤𝑟
𝑝 ��            

(2.9)(cf. Miller Jr. [5]) 
 
3. Some More General Class of Generating Functions 
 
 In this sections, making an use of the general class of generating function 
(1.3) and group-theoretic operators 𝑅1 𝑅2 and 𝑅3 with their actions given in the 
section 2, we obtain some more general class of generating functions through 
following theorem: 
 
 Theorem: If there exists a general class of generating functions involving 
the triple product of modified Laguerre polynomials 𝐿𝑛

(𝛼−𝑛)(𝑥), modified  
Bessel polynomials 𝑌𝑚

(𝛼+𝑚)(𝑢)  and the confluent hypergeometric functions 
𝐹1 1

 [−𝑛;  𝑚 + 1;𝑞] given by  
 
      𝐺(𝑥,𝑢, 𝑞,𝑤) =    ∑ 𝑎𝑛 

∞
𝑛=0 𝐿𝑛

(𝛼−𝑛)(𝑥) 𝑌𝑚
(𝛼+𝑚)(𝑢) 𝐹1 1

 �–𝑛;𝑚 + 1;𝑞� 𝑤𝑛        (3.1) 
 
 Then the following more general class of generating functions holds:  
 

(1 + 𝑤)𝛼+𝑚(1− wut−1𝑣)1−m   . exp[−𝑤(𝑥 − 𝛽t−1𝑣 + 𝑞)]. 
 

𝐺 �𝑥(1 + 𝑤),
𝑢

1 −𝑤𝑢
, 𝑞(1 +𝑤),

𝑤𝑦𝑣
1 + 𝑤�

= �   
𝑎𝑛 (𝑛 + 1)𝑖 
𝑖!    𝑗!    𝑘!

.
∞

𝑛,𝑖,𝑗,𝑘=0
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𝐿𝑛+𝑖
(𝛼−𝑛−𝑖)(𝑥) 𝑌𝑚+𝑗

(𝛼+𝑛−𝑗)(𝑢) 𝐹1 1
 [–𝑛 − 𝑘;  𝑚 − 𝑘 +  1;  𝑞] 𝑤𝑖 (𝑤𝛽𝑡−1𝑣)𝑗(𝑚𝑤)𝑘(𝑤𝑦𝑟)𝑛 

                    (3.2) 
 
 Proof of the Theorem: In the general class of generating functions (3.1), 
replacing 𝑤 by 𝑤𝑦𝑡𝑟 and then multiplying by  𝑧𝛼  𝑣𝑚 𝑝𝑚 on both sides, we get 
 

𝐺(𝑥, 𝑞,𝑢,𝑤𝑦𝑡𝑟) 𝑧𝛼  𝑣𝑚 𝑝𝑚  =  ∑ 𝑎𝑛 
∞
𝑛=0 𝐿𝑛

(𝛼−𝑛)(𝑥) 𝑃𝑚
(𝛼,   𝛽−𝑚)(𝑞) .  

 
    𝐹1 1

 [−𝑛;  𝑚 + 1;𝑢] 𝑦𝑛𝑡𝑛 𝑟𝑛. 𝑧𝛼  𝑣𝑚 𝑝𝑚 .𝑤𝑛                              (3.3) 
 
 Now, operating both the sides of (3.3) with  𝑒𝑤𝑅1𝑒𝑤𝑅2𝑒𝑤𝑅3, we obtain 
 

𝑒𝑤𝑅1𝑒𝑤𝑅2𝑒𝑤𝑅3[ 𝐺(𝑥, 𝑞,𝑢,𝑤𝑦𝑡𝑟) 𝑧𝛼  𝑣𝑚 𝑝𝑚]  
 

               = 𝑒𝑤𝑅1𝑒𝑤𝑅2𝑒𝑤𝑅3 ∑ 𝑎𝑛 
∞
𝑛=0 𝐿𝑛

(𝛼−𝑛)(𝑥)𝑦𝑛𝑧𝛼. 
 

 𝑌𝑚
(𝛼+𝑛)(𝑢) 𝑡𝑛𝑣𝑚. 𝐹1 1

 �–𝑛;𝑚 +  1;𝑞�𝑟𝑛𝑝𝑚. 𝑤𝑛             (3.4) 
      
 The left hand side of (3.4) becomes 
 

 𝑧𝛼  (1 +𝑤𝑦𝑧)𝛼  (1 −𝑤𝑢𝑡−1𝑣) � 𝑣
1−𝑤𝑢𝑡−1𝑣

�
𝑚

(𝑝 + 𝑤𝑟)𝑚  exp �−𝑤𝑥𝑦𝑧 + 𝛽𝑤𝑡−1𝑣 −
𝑞𝑟𝑤
𝑝  � 𝐺 �𝑥(1 + 𝑤𝑦𝑧) , 𝑢

1−𝑤𝑢𝑡−1𝑣 
, 𝑞 �1 + 𝑤𝑟

𝑝 � , 𝑤𝑦𝑣
1+𝑤𝑦𝑧

�                                       (3.5) 
 
 And the right hand side of (3.4) becomes 
 

∑   𝑎𝑛  (𝑛+1)𝑖 𝛽𝑗 𝑚𝑘𝑤𝑛+𝑖+𝑗+𝑘

𝑖! 𝑗! 𝑘!
  𝐿𝑛+𝑖

(𝛼−𝑛−𝑖)(𝑥)𝑦𝑛+𝑖   𝑧𝛼+𝑖  𝑌𝑚+𝑗
(𝛼+𝑛−𝑗)(𝑢)𝑡𝑛−𝑗𝑣𝑚+𝑗   𝐹1 1

 �– 𝑛 −∞
𝑛,𝑖,𝑗,𝑘=0

1;𝑚; 𝑞� 𝑟𝑛+𝑘 𝑝𝑚−𝑘                    (3.6) 
  
 Now equating (3.5) and (3.6), and setting  r = p and yz = 1, 
 
      (1 + w)α+m (1− wut−1𝑣)1−m  exp(−w(x − βt−1𝑣 +  q) 
 

            . G �x(1 + w) + u
1−wut−1𝑣 

, q(1 + w), wy𝑣
1+w

� =  
 
                                                   ∑   𝑎𝑛 (𝑛+1)𝑖 

𝑖!   𝑗!   𝑘!
  𝐿𝑛+𝑖

(𝛼−𝑛−𝑖)(𝑥)  𝑌𝑚+𝑗
(𝛼+𝑛−𝑗)(𝑢).∞

𝑛,𝑖,𝑗,𝑘=0     
    
            𝐹1 1

 �–𝑛 − 𝑘;𝑚 − 𝑘 + 1;𝑞� .𝑤𝑖(𝑤𝛽𝑡−1𝑣)𝑗  (𝑚𝑤)𝑘(𝑤𝑦𝑡𝑝)𝑛              (3.7)  
 
which is the required result. 
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4. Special Case 
 
 Taking  𝑢 = 0, 𝑞 = 0  in given theorem and proceeding as the proof of the 
main theorem, we get 
 
      𝑒𝑥𝑝(−𝑤𝑥) 𝐺 �𝑥(1 + 𝑤), 𝑤𝑦𝑣

1+𝑤
�=∑  ∞

𝑛=0 ∑  ∞
𝑖=0

𝑎𝑛 (𝑛+1)𝑖 𝑤𝑛+𝑖

𝑖!
 𝐿𝑛+𝑖

(𝛼−𝑛−𝑖)(𝑥) 𝑦𝑛+𝑖 𝑧𝑖 
 
                           ∑  ∞

𝑛=0 ∑  𝑛
𝑖=0

𝑎𝑛−𝑖 (𝑛−𝑖+1)𝑖 𝑤𝑛

𝑖!
 𝐿𝑛

(𝛼−𝑛)(𝑥) 𝑦𝑛 𝑧𝑖  
 

                                                   = ∑  ∞
𝑛=0 𝜎𝑛(𝑥, 𝑧). (𝑤𝑦)𝑛                                          (4.1) 

where   
 
                             𝜎𝑛(𝑥, 𝑧) = ∑  𝑛

𝑖=0
𝑎𝑛−𝑖 (𝑛−𝑖+1)𝑖 

𝑝!
 𝐿𝑛

(𝛼−𝑛)(𝑥) 𝑧𝑖                              (4.2) 
 
which is given by Majumdar [4]. 
 
 (ii) If we set  𝑥 = 0 , 𝑞 = 0 & 𝑡 = 𝑣  in given theorem and proceeding as the 
proof of main theorem with operator 𝑅2, we get 
 

(1 −𝑤𝑢)1−𝑚 𝑒𝑥𝑝(𝑤𝛽) 𝐺 � 𝑢
1−𝑤𝑢

, 𝑤𝑦𝑣
1+𝑤

� =  ∑ 𝑎𝑛 𝛽𝑗 𝑤𝑛+𝑗

𝑗!
∞
𝑛,𝑞=0  𝑌𝑚+𝑗

(𝛼+𝑛−𝑗)(𝑢)𝑦𝑛     (4.3) 
 

which is a known result and as parallel to Kar [3]. 
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Abstract: In this article, the analytical solution for Laplace equation using 
differential transform method has been presented. To represent this we have 
obtained the corresponding exact solutions by considering four models with 
two well-known boundary conditions known as Dirichlet and Neumann. 
The achieved outcome shows the easiness of the method and substantial 
decrease in successive iterations in comparison to the other well-known 
iterative methods. We can say that very less number of iterations gives the 
desired output for the problem nearer to the expansions of series for the 
identified functions. 
 
Keywords: Laplace equation, boundary Conditions of Dirichlet and 

Neumann, Finite Difference. 
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Introduction 
 

It is very difficult to solve analytically the problems which are related to 
engineering and physics where the governing equations are in the form of standard 
boundary value problems such as Laplace, heat and wave equations in one and two 
dimensions. The exact solution of the governing differential equation corresponding 
to the problem can be obtained after difficult calculations. To reduce this difficulty, 
different approximations and direct methods,  such as Adomian decomposition [1], 
Homotopy analysis [2], Variational iteration [3], New iterative [4, 5] and Differential 
transform [6] are invented. 
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 The different methods have been applied by investigators for obtaining the 
required outcomes of the problems [7–12]. 
  

The solution of the Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 with Dirichlet and 
Neumann boundary conditions using differential transform scheme (two 
dimensional) with less number of iterations is the main purpose of this article. 
Different examples with different boundary conditions have been solved. Applied 
scheme builds one analytic output without need of liberalization or discretization. 
The computational iterations have been reduced and desired output in the series form 
with fast convergence has been obtained. 

 
Methodology 

 
If 𝑢(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦) is a function of variables 𝑥 and 𝑦, where the functions 

𝑓(𝑥) and 𝑔(𝑦) are two different functions of variable 𝑥 and 𝑦 respectively. Now by 
considering the differential transform property of one dimension we can write 
𝑢(𝑥,𝑦) as 
 
            𝑢(𝑥,𝑦) =  ∑ 𝐹(𝑚)𝑥𝑚∞

𝑚=0 ∑ 𝐺(𝑛)∞
𝑛=0 𝑦𝑛 = ∑ ∑ 𝑈(𝑚,𝑛)𝑥𝑚𝑦𝑛∞

𝑛=0
∞
𝑚=0       (1) 

1 
 
here  𝑈(𝑚,𝑛)  =  𝐹(𝑚) 𝐺(𝑛) is known as spectrum of the function  𝑢(𝑥,𝑦), given as 
follows: 
 

   𝑈(𝑚,𝑛) = 1
𝑚!𝑛!

�𝜕
𝑚+𝑛𝑢(𝑥,𝑦)
𝜕𝑥𝑚𝜕𝑦𝑛 𝑥=𝑥0,𝑦=𝑦0

�                                 (2) 

 
and the inverse of differential transform of  𝑈(𝑚,𝑛) is of the form: 
 
                           𝑢(𝑥,𝑦) = ∑ ∑ 𝑈(𝑚,𝑛)(𝑥 − 𝑥0)𝑚(𝑦 − 𝑦0)𝑛∞

𝑛=0
∞
𝑚=0                       (3) 

 
  On combining equations (2) and (3), we have 
 

 𝑢(𝑥,𝑦) = ∑ ∑ 1
𝑚!𝑛!

�𝜕
𝑚+𝑛𝑢(𝑥,𝑦)
𝜕𝑥𝑚𝜕𝑦𝑛 𝑥=𝑥0,𝑦=𝑦0

� (𝑥 − 𝑥0)𝑚(𝑦 − 𝑦0)𝑛∞
𝑛=0

∞
𝑚=0        (4) 

 
 Now suppose that 𝑈(𝑚,𝑛),𝑉(𝑚,𝑛)  and  𝑊(𝑚,𝑛) represents the 
transformations of the functions 𝑢(𝑥,𝑦), 𝑣(𝑥,𝑦)  and  𝑤(𝑥,𝑦)  at (0, 0) respectively 
then: 
 

(a) If  𝑢(𝑥,𝑦) = 𝑣(𝑥,𝑦) ± 𝑤(𝑥,𝑦), then  𝑈(𝑚,𝑛) = 𝑉(𝑚, 𝑛) ± 𝑊(𝑚,𝑛) 
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(b) If 𝑢(𝑥, 𝑦) = 𝑎𝑣(𝑥,𝑦)  then   𝑈(𝑚,𝑛) = 𝑎𝑉(𝑚,𝑛) 
 

(c) If 𝑢(𝑥, 𝑦) = 𝑣(𝑥,𝑦)𝑤(𝑥,𝑦), then   𝑈(𝑚,𝑛) 
    = ∑ ∑ 𝑉(𝑘,𝑛 − 𝑙)𝑊(𝑚 − 𝑘, 𝑙)𝑛

𝑙=0
𝑚
𝑘=0  

 
(d) If 𝑢(𝑥, 𝑦) = 𝜕𝑟+𝑠𝑣(𝑥,𝑦)

𝜕𝑥𝑟𝜕𝑦𝑠
, then  𝑈(𝑚,𝑛) = (𝑚+𝑟)!

𝑚!
(𝑛+𝑠)!
𝑛!

𝑉(𝑚 + 𝑟,𝑛 + 𝑠) 
 

(e) If 𝑢(𝑥, 𝑦) = 𝑒𝑎𝑣(𝑥,𝑦),   then 
 

𝑈(𝑚,𝑛) =  

⎩
⎪
⎨

⎪
⎧ 𝑒

𝑎𝑣(0,0),                                                                      𝑚 = 𝑛 = 0

𝑎� �
𝑚− 𝑘
𝑚

𝑉(𝑚 − 𝑘, 𝑙)𝑈(𝑘,𝑛 − 𝑙), 𝑚 ≥ 1
𝑛

𝑙=0

𝑚−1

𝑘=0

𝑎� �
𝑛− 𝑙
𝑛

𝑉(𝑘,𝑛 − 𝑙)𝑈(𝑚 − 𝑘,𝑛),          𝑛 ≥ 1.
𝑛−1

𝑙=0

𝑚

𝑘=0

� 

  
(f) If 𝑢(𝑥, 𝑦) = 𝑥𝑘𝑦ℎ,   then  

 

 𝑈(𝑚,𝑛) = �𝜕(𝑚 − 𝑘,𝑛 − ℎ),𝑚 = 𝑘,𝑛 = ℎ
0,            otherwise

� 

 
(g)  If 𝑢(𝑥,𝑦) = 𝑥𝑘𝑒𝑎𝑦, then 𝑈(𝑚,𝑛) = 𝜕(𝑚− 𝑘) 𝑎

𝑛

𝑛!
. 

  
Different Examples 
 
          A. Solve:                𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,       0 < 𝑥,𝑦 < 𝜋                                      (5) 
 
      With Dirichlet boundary conditions: 
 

   𝑢(𝑥, 0) = sinℎ𝑥,    𝑈(𝑥,𝜋) = − sinℎ𝑥, 
 
  𝑢(0,𝑦) = 0,     𝑢(𝜋,𝑦) = sinℎ(𝜋) cos𝑦.                           (6) 
 

    Now taking the differential transform of (5) we have 
   
             (𝑚 + 1)(𝑚 + 2)𝑈(𝑚 + 2,𝑛) + (𝑛 + 1)(𝑛 + 2)𝑈(𝑚,𝑛 + 2) = 0              (7) 
  
from (6) and (3) it implies that 

 
    𝑢(𝑥, 0) = ∑ 𝑈(𝑚, 0)∞

𝑚=0 𝑥𝑚 = sinℎ𝑥 = ∑ 𝑥𝑚

𝑚!
∞
𝑚=1,3,5…… ,                         (8) 
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 Now on comparing the both sides, we have 
 

                  𝑈(𝑚, 0) = �
1
𝑚!

 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑖𝑠 𝑜𝑑𝑑
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                                       (9) 

 
 Also from (6) and (3) we have 
 
                 𝑢(0,𝑦) = ∑ 𝑈(0,𝑛)𝑦𝑛 = 0∞

𝑛=0                                         (10) 
 
which gives 
       𝑈(0,𝑛) = 0                                                        (11) 
 
 Substituting (9) and (11) into (7) and after some calculations, we reach at 
 

                𝑈(𝑚,𝑛) = �
(−1)

𝑛
2

𝑚!𝑛!
, when 𝑚 is odd and 𝑛 is even

0,                                       otherwise
�                       (12) 

 
 Similarly by substituting (12) into (3), we have 
 

 𝑢(𝑥,𝑦) =   ∑ ∑ (−1)
𝑛
2

𝑚!𝑛!
𝑥𝑚𝑦𝑛,∞

𝑛=0,2,4…
∞
𝑚=1,3,5…  

 

       = �∑ 𝑥𝑚

𝑚!
∞
𝑚=1,3,5… � �∑ (−1)

𝑛
2

𝑛!
𝑦𝑛∞

𝑛=0,2,4… �, 

 
                               = sinℎ𝑥 cos𝑦                                                                            (13) 
 
 B. Solve:                  𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,      0 < 𝑥,     𝑦 < 𝜋                            (14) 
 
 With Dirichlet boundary conditions: 
 
                   𝑢(𝑥, 0) = 0,   𝑢(𝑥,𝜋) = 0, 
 

                            𝑢(0,𝑦) = sin𝑦,   𝑢(𝜋,𝑦) = cosℎ(𝜋) sin𝑦                      (15) 
 

 Now taking the differential transform of (14) we have 
 
                  (𝑚 + 1)(𝑚 + 2)𝑈(𝑚 + 2,𝑛) + (𝑛 + 1)(𝑛 + 2)𝑈(𝑚,𝑛 + 2) = 0         (16) 
 



STUDY ON DIFFERENTIAL TRANSFORM FOR LAPLACE EQUATION  53 

 From conditions (15) and (3), we obtain 
 
                   𝑢(𝑥, 0) = ∑ 𝑈(𝑚, 0)𝑥𝑚 = 0,∞

𝑚=0                                     (17) 
 
 Now by comparison both sides we have 
 
                   𝑈(𝑚, 0) = 0.                                                                   (18) 

 
 Also, (3) and (15), imply that 
 

                   𝑢(0,𝑦) = ∑ 𝑈(0,𝑛)𝑦𝑛 ∞
𝑛=0 =sin𝑦 = ∑ (−1)

𝑛−1
2

𝑛!
∞
0 𝑦𝑛                    (19) 

 
 Now by comparison of both sides we have 
 

                        𝑈(0,𝑛) = �
(−1)

𝑛−1
2

𝑛!
,   when 𝑛 is odd

0,          otherwise
�                                    (20) 

 
from (18), (20) and (16), we have      
       

                     𝑈(𝑚,𝑛) = �
(−1)

𝑛−1
2

𝑚!𝑛!
, when 𝑚 is even and 𝑛 is odd

0,                                       otherwise
�                 (21) 

 
 Now making use of (21) in (3), we obtain 
 

                             𝑢(𝑥,𝑦) = ∑ ∑ (−1)
𝑛−1
2

𝑚!𝑛!
𝑥𝑚𝑦𝑛,∞

𝑛=0,2,4…
∞
𝑚=1,3,5…  

 

                                          = �∑ 𝑥𝑚

𝑚!
∞
𝑚=1,3,5… � �∑ (−1)

𝑛−1
2

𝑛!
𝑦𝑛∞

𝑛=0,2,4… �, 

 
                             = cosℎ𝑥 sin𝑦                                                                 (22) 

 
 C. Solve:               𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,       0 < 𝑥 ,     𝑦 < 𝜋                              (23) 
 
 With Neumann boundary conditions 
 
   𝑢𝑦(𝑥, 0) = 0,   𝑢𝑦(𝑥,𝜋) = 2 cos 2𝑥 sin 2𝜋 
 

       𝑢𝑥(0,𝑦) = 0, 𝑢𝑥(𝜋,𝑦) = 0                                              (24) 
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 Now the differential transform of (23) gives 
 
 (𝑚 + 1)(𝑚 + 2)𝑈(𝑚 + 2,𝑛) + (𝑛 + 1)(𝑛 + 2)𝑈(𝑚,𝑛 + 2) = 0            (25) 

 
 From (3) and (24) we obtain 
 
 𝑢𝑦(𝑥,𝜋) = ∑ ∑ 𝑛∞

𝑛=0 𝜋𝑛−1𝑈(𝑚,𝑛)𝑥𝑚,∞
𝑚=0  

 
 = 2 cos 2𝑥 sin 2𝜋, 
 

       = ∑ (−1)
𝑚
2 (2𝑥)𝑚

𝑚!
∑ (2𝜋)𝑛

𝑛!
∞
𝑛=0

∞
𝑚=0 .                                     (26) 

 
 On comparison after the changing the index 𝑛we have 
 

 𝑈(𝑚,𝑛 + 1) = (−1)
𝑚
2 2𝑚+𝑛+1

(𝑛+1)𝑚!𝑛!
, 

 

and 𝑈(𝑚,𝑛) = �
(−1)

𝑚
2 2𝑚+𝑛

𝑚!𝑛!
, when 𝑚 and 𝑛 are even 

0,                                       otherwise
�                  (27) 

 
as a result. Now putting (27) in (3), we obtain 
 

    𝑢(𝑥, 𝑦) = ∑ ∑ (−1)
𝑚
2 2𝑚+𝑛

𝑚!𝑛!
𝑥𝑚𝑦𝑛,∞

𝑛=0,2,4…
∞
𝑚=0,2,4…  

 

              = �∑ (−1)
𝑚
2 (2𝑥)𝑚

𝑚!
∞
𝑚=0,2,4… � �∑ (2𝑦)𝑛

𝑛!
∞
𝑛=0,2,4… �, 

 
                           = cos 2𝑥 cos 2𝑦,                                                                (28) 

 
 D. Solve:               𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0,       0 < 𝑥,       𝑦 < 𝜋                             (29) 

 
 With Neumann boundary conditions 
 
   𝑢𝑦(𝑥, 0) = cos𝑥 ,   𝑢𝑦(𝑥,𝜋) = cosℎ𝜋 cos𝑥, 
 

𝑢𝑥(0,𝑦) = 0, 𝑢𝑥(𝜋,𝑦) = 0                                              (30) 
 
 Taking the differential transform of (29) we have 
 
             (𝑚 + 1)(𝑚 + 2)𝑈(𝑚 + 2,𝑛) + (𝑛 + 1)(𝑛 + 2)𝑈(𝑚,𝑛 + 2) = 0             (31) 
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 From (3) and (30), we obtain 
 

 𝑢𝑦(𝑥, 0) = ∑ 𝑈(𝑚, 1)𝑥𝑚 = cos𝑥 = ∑ (−1)
𝑚
2 𝑥𝑚

𝑚!
∞
𝑚=0

∞
𝑚=0 ,            (32) 

 
 Now by cosine series comparison, we obtain 
 

  𝑈(𝑚, 1) = �
(−1)

𝑚
2

𝑚!
,        when 𝑚 is even 

0,                        otherwise.
�                          (33)  

 Also, from (3) and (30) we have 
 
  𝑢𝑥(0,𝑦) = ∑ 𝑈(1,𝑛)𝑦𝑛 = 0,∞

𝑛=0                                       (34)  

which gives  
   𝑈(1,𝑛) = 0                                                          (35) 

 
 Substituting (33) and (35) in (31), we have  

                               𝑈(𝑚, 1) = �
(−1)

𝑚
2

𝑚!𝑛!
,       when 𝑚 is even and 𝑛 is odd 

0,                                             otherwise.
�              (36) 

 Making use of (36) in (3), we get 

                       𝑢(𝑥,𝑦) = ∑ ∑ (−1)
𝑚
2

𝑚!𝑛!
𝑥𝑚𝑦𝑛,∞

𝑛=1,3,5…
∞
𝑚=0,2,4…  

 

                                   = �∑ (−1)
𝑚
2 (𝑥)𝑚

𝑚!
∞
𝑚=0,2,4… � �∑ (𝑦)𝑛

𝑛!
∞
𝑛=1,3,5… �, 

 
                                    = cos𝑥 sin𝑦                                                              (37) 
 
Conclusion  

It has been observed in above examples with different conditions that 
differential transform scheme is very effective to achieve the exact solutions of 
Laplace equation and maintain the fast convergence rate with minimization of 
iterations. Also this method reduces the required calculation to achieve the desired 
output in comparisons to the other well-known available schemes. Hence we 
conclude that this method is very effective and perfect for the solution of different 
types of practical problems of the different fields of engineering and physics. 
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1. Introduction 
 
 The very first use of mathematical induction was seen in the works of a 
sixteenth century mathematician named Francesco Maurolico (1494-1575). In his 
book Arithmeticorum Libri Duo, he presented various properties of integers and their 
proofs [1, 2].   
 
 Mathematical induction can be used to prove statements that assert that 
( )P n is true for all positive integers n , where ( )P n  is a propositional function. A 

proof by mathematical induction has the following three parts, 
 
 Steps of Mathematical Induction 

 Basis Step: Verifying the preposition ( )1P  is true. 
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 Induction Hypothesis: Assuming it to be true for all positive integer ( )P k . 

 Inductive Step: Proving it is also true for ( )1P k + . 
 
 1.1 Types of Induction [1, 2] 
 
 1.1.1 Strong Induction: Strong mathematical induction assumes 
( ) ( ) ( )1 , 2 ,P P P k  are all true and uses them to show that ( )1P k +  is also true.  

 
 Basis Step: We verify that the proposition ( )1P  is true. 

 
 Inductive Step: We show that the conditional statement  
                 ( ) ( ) ( ) ( )1 2 1P P P k P k ∧ ∧ → +  is true for all positive integers k . 
 
 1.1.2 Recursive Induction: We use two steps to define a function with the 
set of non-negative integers as its domain. 
 

Basis step: Specify the value of the function at zero. 
 

 Recursive step: Give a rule for finding its value at an integer from its values 
at smaller integers. 
 
 1.1.3 Generalized Induction: Under generalized mathematical induction we 
use a property i.e. lexicographic ordering where an ordered pair of non-negative 
integers N N× specify that ( )1 1,x y  is less than or equal to ( )2 2,x y  if either 1 2x x< , 

or 1 2x x= and 1 2y y< ; has the property that every subset of N N×  has a least 
element. This implies we can recursively define the terms ,m na , with m N∈  and

n N∈  . 
 
2. Pigeonhole Principle [1, 2] 
 
 If k  is a positive integer and 1k +  or more objects are placed into k boxes, 
then there is at least one box containing two or more of the objects. 
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Figure 2: There are more pigeons than the pigeonholes 
 
Generalized Pigeonhole Principle 
 
 The pigeonhole principle stated that there can be must be at least two objects 
in the same box when there are more objects than boxes. Generalized pigeonhole 
principles states that if N  objects are placed into k boxes, then there is at least one 
box containing at least [ ]/N k  objects. 
 
3. Applications of Induction [2, 3] 
 
 3.1 People Telling Secrets  
 

 
 

Figure 3: People Telling Secrets 
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 3.2 Dominoes  
 
 

 
 

Figure 4: Illustrating How Mathematical Induction Works Using Dominoes 
 
 3.3 Checkerboard: Suppose n  be a positive integer. Show that every 2 2n n×  
checkerboard with one square removed can be titled using right triominoes, where 
these pieces cover three squares at a time, as shown in figure. 

 
Figure 5: A Right Triominoes 

 
Solution: 
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Figure 6: Tiling 2 2×  Checkerboards with One Square Removed 

 
 3.4 Painting 
 

 
 

Figure 7: A painting showing recursive induction 
 
 3.5 MatLab Program for Induction 
 
 3.5.1 Programs for Factorial [4] 
 

I: n=9; 
%use iteration 
f=1; 
for i=1:n 
    f=f*i; 
end 
disp('The factorial is:') 
disp(f) 
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II: function fout = fact_1 (n) 
x = n; 
for i=n-1:-1:1 
x=x*i 
end 
fout=x 
end 
 
III: function fout = fact_2(n) 
%n=5; 
f=n; 
while n>1 
    n=n-1; 
    f=f*n 
end 
f 
%disp(['n!='f]) 
end 
 
IV: function fout = fact(n) 
x=1; 
for i=1:n 
    x=x*i 
end 
fout = x 
end 
 

 3.5.2 Program for Fibonacci Series [5] 
 

function fout = fact(n) 
x=1; 
for i=1:n 
    x=x*i 
end 
fout = x 
end 

 
4. Applications of Pigeonhole Principle [1, 2] 
 
 During a month with 30 days, a baseball team plays at least one game a day, 

but no more than 45 games. Using pigeonhole principle, there must be a 
period of some number of consecutive days which the team must play 
exactly 14 games. 
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 Using pigeonhole principle, among any 1n +  positive integers not exceeding 
2n  there must be an integer that divides one of the other integers. 
 

 The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms. Note that
210 3 1= + . There are four increasing subsequences of length four, 

namely, 1, 4, 6, 12; 1, 4, 6, 10  and 1, 4, 5, 7. Using pigeonhole 
principle, there is also a decreasing subsequence of length four, 
namely, 11, 9, 6, 5. 

 
 4.1 MatLab Program for Pigeonhole Principle Birthday Paradox 
 

function [A] = birthday(n) 
A = ones(n,1); 
p=1; 
for i=1:n 
    A(i) = 1-p; 
    p = p * (365-i)/(365); 
end 
end 

 
taking value of n = 100 

we obtain the graph in Figure 8 
 

 
 

Figure: 8 
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5. Conclusion 
 
 In this paper, we demonstrated mathematical induction and pigeonhole 
principle with applications in the form of review study. The concept of proof by 
mathematical induction and pigeonhole principle are one of the most powerful tools 
for proving statements in discrete mathematics. 
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1. Introduction 
 
 For defining the algebraic structure of the set of natural number  
N = {1, 2, 3....}, to each pair 𝑎, 𝑏 of natural numbers, there corresponds a natural 
number denoted by 𝑎 + 𝑏 the sum of 𝑎 and 𝑏 is called the Addition Composition and 
a natural number denoted by 𝑎𝑏  the product of 𝑎 and 𝑏  is called Multiplication 
Composition in the set of natural numbers. The fact of these existing in the set 𝑁 of 
natural numbers these compositions is referred as possessing an algebraic structure 
[1, 7]. 
 
 1.1. Basic Properties of the Two Compositions in N 

 
 1.1.1 Commutatively of addition and multiplication 
 

a + b = b + a;  ab = ba, ∀ a, b ∈ N.  
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 1.1.2 Associativity of addition and multiplication 
 

a + (b + c) = (a + b) + c;   a(bc) = (ab)c,∀ a, b, c ∈ N. 
 

 1.1.3 Cancellation laws 
 

𝑎 + 𝑐 = 𝑏 + 𝑐 ⇒ 𝑎 = 𝑏;    𝑎𝑐 = 𝑏𝑐 ⟹ 𝑎 = 𝑏. 
 

 1.1.4 Distributivity of addition with respect to multiplication  
 

a(b + c) = ab + ac,∀ a, b, c ∈ 𝑁. 
 

 1.1.5 Multiplication property of 1 
 

𝑎. 1 = 𝑎 ∀ 𝑎 ∈ 𝑁. 
 

 Because of this property, 1 is called the Multiplicative Identity.  
 
 1.2 Order Structure of the Set N of Natural Numbers: The relation for 
given any two different natural numbers 𝑎, 𝑏, we have, 𝑎 > 𝑏 ⟺ 𝑏 < 𝑎, i.e., 
 𝑎 is greater than  𝑏 ⇔ 𝑏 is smaller than 𝑎. 
 
 The relation ‘greater than’ between different natural numbers is known as an 
‘Order relation’ in the set of natural numbers and the presence of this relation in 𝑁 is 
referred to as 𝑁 having an order structure [2, 7]. 
 
 1.2.1 Properties of the Order Relation: Transitivity of the relation as 
 

[𝑎 > 𝑏] ∧ [𝑏 > 𝑐] ⇒ 𝑎 > 𝑐. 
 
 This property is referred to as the transitivity of the order relation. 
 
 1.3 Compatibility of Algebraic Structure with Order Structure 
 

 1.3.1 Compositions separately. 
 
 1.3.2 Compatibility of the order relation with the addition composition 
  

a > 𝑏 ⟹ 𝑎 + 𝑐 > 𝑏 + 𝑐. 
 

 1.3.3 Compatibility of the order relation with the multiplication composition 
 
                                                𝑎 > 𝑏 ⟹ 𝑎𝑐 > 𝑏𝑐. 
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 As a result of the last two properties, we can say that the order structure in 𝑁 
is compatible with its algebraic structure or 𝑣𝑖𝑐𝑒 –  𝑣𝑒𝑟𝑠𝑎. 
 

1.3.4 Principle of finite induction  
 

Let n ∈ N and let 𝑃(𝑛) denotes a statement pertaining to n. if  
 
(a) 𝑃(1) is true, i.e., the statement is true for 𝑛 = 1 and  

 
(b) 𝑃(𝑛) is true ⟹ 𝑃(𝑛 + 1) is true , then P (n) is true for every natural 

number 𝑛. 
 

 We say that the set 𝑁 of natural numbers satisfies the principle of finite 
induction [3, 7]. 
 
 1.4. Inverse Operations and Corresponding Limitations  
                    (Subtraction and Division in 𝑵) 
 
 1.4.1 Subtraction: Given two members 𝑎, 𝑐  of   𝑁, does there exist 𝑥 ∈ 𝑁 
such that 𝑎 + 𝑥 = 𝑐? 
 
 It is easy to see that 𝑥, if it exists, is unique. This is a consequence of the 
cancellation principle in as much as  𝑎 + 𝑥 = 𝑎 + 𝑦 ⟹ 𝑥 = 𝑦. 
 
 Also 𝑥 exist if and only if  𝑐 >  𝑎. 
 
 For example,  if  𝑎 = 5, 𝑐 = 8  so that  𝑐 = 8 > 5 = 𝑎, we have  𝑥 = 3. 
 
 If, however, we take 𝑎 = 5, 𝑐 = 3 so that 𝑐 = 3 < 5 = 𝑎, there exists no 
𝑥 ∈ 𝑁  such that 5 + 𝑥 = 3. 
 
 In case 𝑐 >  𝑎, so that there exists 𝑥 such that 𝑎 + 𝑥 = 𝑐, we denote this 𝑥 by 
𝑐 − 𝑎. 
 
 The symbol 𝑐 − 𝑎 denotes the natural number which when added to 
𝑎 gives 𝑐. This symbol is meaningful if and only if  𝑐 > 𝑎. 
 
 1.4.2 Division: Given two natural numbers a and c, does there exist a natural 
number x such that 

ax = c?  
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 The number 𝑥, if it exists, is unique. This is a consequence of the 
cancellation law which states that 𝑎𝑥 = 𝑎𝑦 ⟹ 𝑥 = 𝑦. 
 
    Also the number x exists if 𝑎 is divisor of 𝑐. 
 
    For example, 𝑖𝑓 𝑎 = 3, 𝑐 = 15  so  that 3 is a divisor of 15 , we have 𝑥 = 5. 
 
    If, however, we take 𝑎 = 3, 𝑐 = 14  so that  𝑎 = 3 is not a divisor of 
𝑐 = 14, there exists no natural number x such that 3𝑥 = 14. 
 
    In case 𝑎 is a divisor of 𝑐 so that there exists x such that  𝑎𝑥 = 𝑐, we denote 
this x by 𝑐 ÷ 𝑎. 
 
 From above, we see that if 𝑎, 𝑐 be two given natural numbers, the symbol 
𝑐 − 𝑎 is meaningful if and only if c is greater than a and the symbol 𝑐 ÷ 𝑎 is 
meaningful if and only if 𝑎 is  a divisor of 𝑐 [4,7] 
 
2. The Set I or Z of Integers 
 
    The set 𝐼 or 𝑍 of integers consists of the number… … … . . ,−3,−2,−1,0,1,2,3, … …, 
so that we have   𝑍 =  𝐼 =  {0,−1,1,−2,2,−3,3,−4,4, … … … . }. In this section 
𝑎, 𝑏, 𝑐 etc., referred to arbitrary members of  𝐼 , viz., arbitrary integer. 
 
 2.1 Algebraic Structure of the set I of integers 
 
 2.1.1 Addition Composition in I: Addition composition in 𝐼 which associates 
to each pair of members 𝑎, 𝑏 of 𝐼 a number called their sum and denoted by 𝑎 +  𝑏 
has the following basic properties: 
 

(1) 𝑎 + 𝑏 = 𝑏 + 𝑎 ∀𝑎, 𝑏 ∈ 𝐼.   Commutativity. 
 

(2) (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)∀𝑎, 𝑏, 𝑐 ∈ 𝐼.   Associativity 
 

(3) The number 0 ∈ 𝐼 is such that 𝑎 + 0 = 𝑎 ∀ 𝑎 ∈ 𝐼. The number ‘0’ because of 
this relation is referred to as the additive identity. 

 
(4) To each 𝑎 ∈ 𝐼 there corresponds another, viz., −𝑎 ∈ 𝐼 such that 

 𝑎 + (−𝑎) = 0. 
 

         The integer, −𝑎, is said to be the negative of the integer 𝑎 or the 
additive inverse of  𝑎. 
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 Inverse of addition: The equation  a + x = b, a ∈ I, b ∈ I  admits of a 
unique solution x, viz., 𝑏 − 𝑎 ∈ 𝐼. 
 
 Subtraction in 𝐼: It will be seen that subtraction is always possible in 𝐼, i.e., 
given any two members, 𝑎, 𝑏 of  𝐼,𝑎 –  𝑏 is again a member of 𝐼 for all 𝑎, 𝑏 so that 
here we have a property of  𝐼 which does not hold for 𝑁[5,7]. 
 
            Example: Deduce from the above properties of the addition composition in 𝐼, 
that the cancellation law holds for addition in 𝐼, viz., that 𝑎 + 𝑐 = 𝑏 + 𝑐 ⟹ 𝑎 = 𝑏. 
 
 2.1.2 Multiplication composition in 𝑰: Multiplication composition in 𝐼 which 
associates to each pair of members 𝑎, 𝑏 of  𝐼  a member of  𝐼 denoted by 𝑎𝑏 and 
called their product has the following basic properties: 
 

(1) 𝑎𝑏 = 𝑏𝑎 ∀ 𝑎, 𝑏 ∈ 𝐼.  Commutativity 
 

(2) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)∀ 𝑎, 𝑏, 𝑐 ∈ 𝐼.  Associativity 
 

(3) The number ‘1’ ∈ 𝐼 in such that 𝑎. 1 = 𝑎 ∀𝑎 ∈ 𝐼. Because of the property 3, 
the integer ‘1’ is known as the multiplicative identity. 

 
(4) [𝑎𝑏 = 𝑎𝑐 ∧ 𝑎 ≠ 0 ]  ⟹ 𝑏 = 𝑐.   Cancellation law for multiplication. 

 
    The following law relates the two compositions: 
 

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐼.   Distributivity. 
 
    We refer to this law by saying that Multiplication distributes addition in 𝐼 . 
 
 Ex. Deduce from above the following basic properties of addition and 
multiplication in 𝑰. 
 

(1) 𝑎𝑏 = 0 ⇔ 𝑎 = 0 ∨ 𝑏 = 0. 
 

(2) 𝑎(−𝑏) = −(𝑎𝑏), (−𝑎)(𝑏) = −(𝑎𝑏), (−𝑎)(−𝑏) = 𝑎𝑏. 
 

 2.2 Division in 𝑰 (Factors and multiples): If 𝑎, 𝑏 are two non-zero members 
of  𝐼, we say that 𝑎 is a factor of 𝑏 if there exists 𝑐 ∈ 𝐼 such that 𝑏 = 𝑎𝑐. It will be 
seen that 𝑏 ÷ 𝑎 is meaningful if and only if 𝑎 ≠ 0 and 𝑎 is a factor of 𝑏 or that 𝑎 is a 
divisor of 𝑏. 
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 2.3 Order Structure of 𝑰: Given any two different members 𝑎, 𝑏 ∈ 𝐼, we 
have either 𝑎 > 𝑏 or 𝑏 > 𝑎. 
 
         The ‘Greater than’ relation is transitive in as much as 𝑎 > 𝑏 ∧ 𝑏 > 𝑐 ⟹ 𝑎 > 𝑐. 
 
 Also         𝑎 > 𝑏 ⟹ 𝑎 + 𝑐 > 𝑏 + 𝑐 
 
and                𝑎 > 𝑏, 𝑐 > 0 ⟹ 𝑎𝑐 > 𝑏𝑐. 
 
       Thus, the system 𝐼 of integers has, what has already been referred to, an 
order structure compatible with its algebraic structure. 
 
 Ex. It is clear that 𝑎 > 𝑏 ∧ 𝑐 < 0 ⟹ 𝑎𝑐 < 𝑏𝑐. 
 
3. The Set 𝑸 Of Rational Numbers 
 
 The rational numbers are of the form 𝑝/𝑞 where 𝑝, 𝑞 are arbitrary integers 
with 𝑞 ≠  0. 
 
 3.1 Algebraic structure of 𝑸: As in 𝐼, the set 𝑄 of rational numbers admits 
of two compositions, viz., addition and multiplication. We give below the basic 
properties of these two compositions [6, 7]. 
 
 Here 𝑎, 𝑏, 𝑐 etc., denote arbitrary members of the set 𝑄 of rational numbers. 
 

1. The addition composition is commutative, associative, admits of an additive 
identity, viz., 0 and each element 𝑎 admits of an additive inverse, 𝑣𝑖𝑧. ,−𝑎. 
 

2. The multiplication composition is commutative, associative, admits of a 
multiplicative identity, viz., 1 and each non-zero element 𝑝/𝑞 admits of 
multiplicative inverse, viz., 𝑞/𝑝. 
 

3. Multiplication distributes addition. 
 

 Let 𝑎, 𝑏 be two given rational numbers. We write  
 

a − b = a + (−b). 
 

 Thus, 𝑎 − 𝑏 is obtained by adding to 𝑎 the additive inverse – 𝑏, of 𝑏. Also, if 
𝑏 ≠ 0, we write 𝑎 ÷ 𝑏 = 𝑎 �1

𝑏
� so that 𝑎 ÷ 𝑏 is obtained on multiplying 𝑎 with the 

multiplicative inverse 1
𝑏
 of the non–zero 𝑏. 
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 Ex. 1: It is clear that  𝑎(𝑏 − 𝑐) = 𝑎𝑏 − 𝑎𝑐. 
 
                                             ab = 0 ⇔ a = 0 ∨ b = 0. 
 

𝑎(−𝑏) = −(𝑎𝑏), (−𝑎)(𝑏) = −(𝑎𝑏), (−𝑎)(−𝑏) = 𝑎𝑏. 
 

 Ex. 2: It is clear that show that if 𝑎 ≠ 0, the equation 𝑎𝑥 + 𝑏 = 0 admits of a 
unique solution in 𝑄; given that 𝑎 ∈ 𝑄, 𝑏 ∈ 𝑄. 
 
 It is also clear that if 𝑎 = 0, 𝑏 ≠ 0,  the equation has no solution and  
if  𝑎 = 0, 𝑏 = 0, every member of 𝑄 is a root of the equation. 
 
 Ex. 3: It is clear that 𝑎𝑏 = 𝑎𝑐 ∧ 𝑎 ≠ 0 ⇒ 𝑏 = 𝑐. 
 
 3.2 Order Structure of Q: Given any two different rational numbers 𝑎, 𝑏, 
we have either 𝑎 > 𝑏 or 𝑏 > 𝑎. 
 
 Moreover, the order relation is transitive and compatible with the addition 
and multiplication compositions, i.e., we have  
 

  1. 𝑎 > 𝑏 ∧ 𝑏 > 𝑐 ⟹ 𝑎 > 𝑐. 
 
  2. 𝑎 > 𝑏 ⟹ 𝑎 + 𝑣 > 𝑏 + 𝑐. 
 
  3. 𝑎 > 𝑏 ∧ 𝑐 > 0 ⟹ 𝑎𝑐 > 𝑏𝑐. 
 

 Ex. 1:(a) It is clear that  x > 𝑦 ∧ 𝑧 < 0 ⟹ 𝑥𝑧 < 𝑦𝑧. 
 
                       (𝑏) It is clear that  𝑥 ≥ 0 ∀ 𝑥 ∈ 𝑄. 
 
 Ex. 2: Given two different rational numbers 𝑎, 𝑏 such that 𝑎 < 𝑏; it is clear  
that there exist an infinite number of rational numbers 𝑐 such that 𝑎 < 𝑐 < 𝑏. 
 
4. Attributes of Real Number 
 
 A set K of numbers containing at least two members is called a field, if it is 
such that when 𝑎, 𝑏 are arbitrary members of 𝐾, then 𝑎 + 𝑏,𝑎𝑏,𝑎 − 𝑏 are also 
members of 𝐾 and if 𝑏 ≠ 0, then 𝑎 ÷ 𝑏 is also a member of 𝐾.  It will be seen that 
while the set 𝑄 of rational numbers is a field, the sets I and N are not fields [4.7]. 
 
 Ex: It is clear that no proper sub–set of the field of rational numbers is a 
field. 
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 Since the set 𝑄 of rational numbers, besides having a field structure, also has 
an order structure compatible with its field structure, we say that the set 𝑄 of rational 
numbers is an ordered field. 
 
 We now demonstrate the basic properties of the set of the set R of real 
numbers. These properties will be describes in three stages. The set of properties 
included in the first stage will describe the Field Structure of the set of real numbers. 
We shall then proceed to describe at the second stage the Order structure of the set of 
real numbers as an Ordered field. It will be seen that the set of rational numbers and 
the set of real numbers are both ordered fields. At the third stage, we shall describe a 
property of the ordered field of rational numbers. This property will be referred to by 
saying that the Field of real numbers is order-complete. On the basis of the properties 
of the set of real numbers enumerated in the three stages, we say that the set of real 
numbers is a complete ordered field. The set of rational numbers is an ordered field 
alright but not a complete ordered field. Every property of the set of real numbers can 
be derived as a consequence of the basic character of the set of real numbers as a 
complete ordered field. The character of the set of real numbers as a complete 
ordered field will now be described [7]. 
 
 4.1 Field Structure (Addition Composition): To each ordered pair of real 
numbers, there corresponds a real number called their sum and denoted by 𝑎 + 𝑏. 
This process of associating to each ordered pair of real numbers a real number called 
their sum is known as addition composition in the set. In the following 𝑎, 𝑏, 𝑐, etc. 
denote real numbers. This addition composition has the following properties: 
 

4.1 𝑎 + 𝑏 = 𝑏 + 𝑎 [ 𝑎, 𝑏 ∈  ℝ.  [Commutativity] 
 
4.1.2 (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)  [ 𝑎, 𝑏 𝑐 ∈  ℝ.  [Associativity] 
 
4.1.3 There exist a real number, viz., ‘0’ such that [ 𝑎 ∈ ℝ. 

𝑎 + 0 = 𝑎  [Existence of additive identity] 
 

             4.1.4 To each real number 𝑎 there corresponds a real number, viz., −𝑎 , such 
       that 𝑎 + (−𝑎) = 0 [Existence of additive inverse] 

 
 4.2 Field Structure (Multiplication Composition): To each ordered pair 
𝑎, 𝑏 of real numbers, there corresponds a real number called their product and 
denoted by 𝑎𝑏. This process of associating to each ordered pair of real numbers a real 
number called their product is known as multiplication composition in the set. This 
multiplication composition has the following properties: 
 
 4.2.1 ab = ba  [a , b ∈ ℝ.    [Commutativity] 
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 4.2.2 (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)  [𝑎, 𝑏, 𝑐 ∈  ℝ    [Associativity] 
 
            4.2.3 There exists a real numbers, viz., ‘1’ such that [ 𝑎 ∈ ℝ. 
          𝑎. 1 = 𝑎  [Existence of multiplicative identity] 
 
 4.2.4 To each real number 𝑎 ≠ 0, there correspond another, viz., 1/𝑎 such 
          that 𝑎 �1

𝑎
� = 1    [Existence of multiplicative inverse] 

 
 There is also a law known as distributive law which relates the two 
compositions, viz., 
 
  𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐  [𝑎 , 𝑏 , 𝑐 ∈ ℝ.    [Distributive law] 
 
 The fact of the set of real numbers admitting of two compositions satisfying 
the nine properties mentioned above is referred to as the set of real numbers having a 
field structure. 
 
 4.3 Applications: One of the most common ways of obtaining a discrete-
time signal is by sampling a continuous-time signal. The discrete-time signal 
obtained by sampling the continuous-time signal can be denoted by 
 𝑥(𝑛𝑇) = 𝑥(𝑡)𝑡=𝑛𝑇, where 𝑇 is called the sampling period and 𝑛 is an integer 
ranging from −∞ 𝑡𝑜 + ∞ called the time index [8]. The instants at which the  
signal appears are called sampling instants. For convenience, we write 
 𝑥(𝑛𝑇) = 𝑥(𝑛),𝑛 = 0, ±1, ±2, …Thus, a discrete-time signal is represented by the 
sequence of numbers … 𝑥(−2),𝑥(−1), 𝑥(0), 𝑥(1), 𝑥(2), … 
 
 We use real numbers for discrete-time signal as sequence: 
 
𝑥(𝑛) = �… , 𝑥(−3),𝑥(−2),𝑥(−1),    ↑

𝑥(0),𝑥(1), 𝑥(2), 𝑥(3), … �  as 
 
𝑥(𝑛) = {… ,−2,1.3, ↑

2,−3,4,−1, 2, 1, … } means 
 
𝑥(−2) = −2, 𝑥(−1) = 1,3,𝑥(0) = 2, 𝑥(1) = −3.4,𝑥(2) = −1, 𝑥(3) = 2,𝑥(4) = 1. 
 
 FFT algorithms are based on the fundamental principle of decomposing the 
computation of discrete Fourier transform of a sequence of length 𝑁 into 
successively smaller discrete Fourier transforms. There are basically two classes of 
FFT algorithms. They are decimation-in-time and decimation-in-frequency. In 
decimation-in-time, the sequence for which we need the DSFT is successively 
divided into smaller sequences and the DFTs of these subsequences are combined in 
a certain pattern to obtain the required DFT of the entire sequence. In the decimation-
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in-frequency approach, the frequency samples of the DFT are decomposed into 
smaller and smaller subsequences in a similar manner [8]. 
 
5. Conclusion 
 
 In this paper, we demonstrate in the form of review study that the property of 
the set 𝑅 of real numbers, viz., which every non-empty sub-set of 𝑅 which is 
bounded above admits of least upper bound, is referred to as its order-completeness 
property of real numbers. It will be also seen that the Archimedean property of 𝑅 is a 
consequence of the order-completeness property of 𝑅.  Attributes of real numbers are 
used in digital signal processing, to describe the different types of signals, fast 
Fourier transform algorithm, DIT-DIF FFT algorithm etc. 
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