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sunil Kumbhar® | SHALLOW WATER EQUATIONS

Abstract: In this paper, second order finite difference scheme for one
dimensional shallow water equations is presented. Derivatives and functions
appearing in one dimensional shallow water equations are approximated by

finite differences evaluated at ¢ = tHl . Finite difference method is proved
n+l
2

to be consistent and is of second order in both space and time variables.
Stability of the method is discussed. The numerical solutions obtained by
proposed method are listed to demonstrate the reliability of method.

Keywords: Finite Difference Method, Shallow Water Equations.

Mathematical Subject Classification (2020) No.: 65M06.
1. Introduction

The shallow water equations are one of the simplest form of equations of
motion that can be used to describe the horizontal structure of an atmosphere and
ocean that model the propagation of disturbances in fluids. They are widely used to
model the free surface water flows such as periodic flows (tidal), transient wave
phenomena (tsunamis, flood waves, and dam break problems etc.).

Several explicit and implicit finite difference methods have been used to
solve the shallow water equations. Shallow water equations are used to model
tsunami wave propagation near coastal line and that model correctly predicts
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behavior of tsunami water wave. In [1], a modified two-four finite difference scheme
is developed to solve shallow water equations for simulating dam break flows over
wet and dry bed. Stability is discussed using CFL condition. For large value of time t,
it is observed that Mohapatra and Choudhari scheme is unstable even though CFL
condition is satisfied. In [2], two Predictor-Corrector methods are developed for one
dimensional shallow water equations. Numerical methods used for this model are
Lax Wendroff finite difference method and MacCormack finite difference method.
Both methods are stable under CFL condition and are of second order. Numerical
solutions developed by these methods seem to be capable of describing the
propagation of flood wave after the failure of a reinforced concrete dam with an open
channel downstream. In [3], the numerical schemes such as Mac cormack method,
method of characteristics, Leap Frog and Lax Wendroff methods are used to simulate
dam break flow and results are compared with analytic solution. Some of the
methods discussed in [3] are stable and has best accuracy while some of them
generate most unstable results. In [4], explicit finite difference method is developed
to solve one dimensional shallow water equations. In [5], finite difference schemes,
adoption of Roe’s approximate Riemann solver and Q schemes of Bermudez and
Vazquez are considered to obtain approximate solution of the Shallow water
equations with good accuracy.

In this paper, we proposed a finite difference scheme for homogeneous one
dimensional shallow water equations,

by + (hu), = 0; (1.1)
(hu), + (hu? +%gh2)x =0 (1.2)

with initial conditions, wu(z,0) = g,(z), h(z,0) = go(z) and boundary conditions
u(z, ) = (2), u(ayt) = hx), hz,.t) = f(2), h(z.t) = f,(z). In equation (1.1)
and (1.2), h(z,t) and wu(x,t) represents the wavelength and the horizontal velocity of

fluid (water) respectively. On eliminating A, from equation (1.2), equations (1.1) and
(1.2) get reduced to

hy +hu, +h,u=0; (1.3)
u, +uu, +gh, =0 (1.4)

Second order implicit numerical scheme is developed for equations (1.3) and
(1.4) by approximating functions A, « and the partial derivatives at ¢ = (n +%)At.
The paper is arranged as follows:



ONE DIMENSIONAL SHALLOW WATER EQUATIONS 3

In section Il, the difference scheme is developed for equations (1.3) and
(1.4). 1t is proved that the method is consistent and is of second order in both space
and time variables. In section Ill, stability of the proposed method is discussed. In
section IV, numerical solutions of certain test problems are obtained by using
proposed method. The results obtained by this method are compared with exact
solutions and solutions obtained by different numerical schemes available in the
literature.

2. Second Order Finite Difference Method for 1D SWEs

Consider equations (1.3) and (1.4) with initial conditions u(z,0) = g,(z),
h(z,0) = g,(z) and boundary conditions wu(z,,t) = fi(z), w(z,,t)=f(z),
h(z,,t) = f5(x), hzy,t) = fy(2).

Let z, =2)<2, <2y <23 <...<zy =z, be a uniform partition of

[2,,m,], where z; = 2y +iAz, Az = % and t,,, =t, + At, where At is some

increment and ¢, = 0. The numerical value of v at ¢ =¢, and = = z; is denoted by

u; whereas numerical value of h at ¢=t, and z =z, is denoted by A" .

Implicit finite difference scheme for (1.3) and (1.4) is modeled at ¢ =¢ e
D)

The time derivatives h, and u, are approximated by central difference of » and « at

t= tn+1 . The function hand u at t = tn+1 are approximated by the average value of
2 2

hand v at ¢, and ¢, , whereas u, and h, are approximated by average value of

central difference at ¢, and ¢, .

Thus, finite difference scheme for (1.3) and (1.4) becomes

hinﬂ — hiu + (hz'm—l + h;l )(uzn++11 — uin—+11 + uz'n+1 — uzn—l)
At 2 1Az 4Ax
1 1 1
+ (uzn+ + uzn)(h’;rrl — an + in+1 — 7n—1) =0 (2.1)

2 4Ax 4Ax
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n+1 n n+1 n n+1 n+1 n n

i i + )(UHI U;_q +Uz‘+1 _uz‘fl)
At 2 4Ax 4Ax
A AT
+g (= = =) =0 2.2
9( 4Ax 4Ax ) 22)

On rearranging equations (2.1) and (2.2), we have

nyn+l n+1 nyn+l n,_ n+l n,_ n+l
= rATh + by rAThY — BTy + By

_ nin n nin n_n n_n
=rA hiy +hy =T A hiy +rBiu Ly — B, (2.3)

n+1 n+l n, n+l n+1 n, n+l
- rghi—l + Tth_l - TAZ u,_l + UZ + TA'L uH_l

n n n_n n n_ n
=rgh; —rghl,, + A +u — TA UL, (2.4)

n+1 n n+1 n
A hi'™" +h At
where A S AL B'=———and r=—.
2 4Ax

Substituting expansions of ~ and v in Taylor series at z =z, and ¢ =+¢, in
equations (2.1) and (2.2) and rearranging them we get following equations
At
h, + hu, +h,u + ?(ht +hu, + hyu),

(At 2
+ —(§ Pygg + Mgy + hyttyy + Py, + hygu + by, + hyuyg)

(Az)?
31

(htiy,, + hyppu) + o((AL)?, (Az)?(AL)) = 0 (2.5)

TrT

(At)?

At
ut + vu, + gh, + ?(ut + uu, + gh, )t +— (% Uy + Uy + Uy Uy + U Uy + ghl.tt)

(Az)?
3!

+ (uttyyy + ghyy, ) + o((At)?,(Az)*(At)) =0 (2.6)

TTT

In the view of equation (1.3), (2.5) and equations (1.4), (2.6) it is observed
that the finite difference scheme (2.3), (2.4) is consistent and of order 2 in both space
and time variables.
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3. Stability of Finite difference Scheme

To analyze stability of numerical scheme (2.3) and (2.4), consider linearized
form of equations (2.3) and (2.4) as follows

— AR+ B AR = rBu + rBulY!

=rAh" | +h!' —rAh/\y + rBu; y —rBu,, (3.1)

n+1 n+1 n+1 n+1 n+1
_ n n n n n

where A= A" and B = B/

The error equations corresponding to (3.1) and (3.2) gives system of

equations
61n+1 eln
€ M =N (3.3)
n+1 n
€ €
SN S
‘1 G2
n n
€ €
where &' =| 2 |and & =| *
n n
LS(N-1)1 | | €(N-1)2 |

n n

n n n n
&1 = Hy —hy, e = Uy —uy

Hp', Uy areexact solutions of (3.1), (3.2) at ¢ =¢,,z = ;.

The matrices M, N are block matrices

P Q pT QT
M:[R P]and N:[RT PT]

where P () and R are tridiagonal matrices given by
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1 rd 0 ... 0 O
-rA 1 r4 ... 0 0
P=| 0 -rd 1 ,
0 0 0 -rd4 1
0 B 0 .. 0 O]
-rB 1 rB 0
Q= 0 —-rB 0 0 ,
0 0 0 -rB 0
0 rg 0 ]
-9 0 rg 0 0

0 0 0 .. —rg O

8n+1 gn
{ 1+1] - M‘U\{ 1] (3.4)
& &

] . P Q I+K Q
Matrix M can be writtenas M = =

R P

Eigenvalues of M are given by roots of characteristic equation,

det(M — AI) =0
_ I+K-AI Q
l.e. =0.
R I+K—Al




ONE DIMENSIONAL SHALLOW WATER EQUATIONS 7

Since, (I+K-AI)R=R(I+K-1I), QR=RQ, from [6] the
characteristic equation of matrix M becomes,

det[(A -1’1 +2(A-1)K + K> —=QR] =0
Simillarly, eigenvalues of N are given by roots of characteristic equation,
det[(A-1)’T+2(A-1)K + K> —=QR] =0

Since characteristic polynomials of matrices M and N are identical, M and N
have same eigenvalues.

By Brauer’s Theorem [7], all the eigenvalues of M and N denoted by A lie in

the region,
‘/1—1‘ < 2r max {‘A‘ +‘BHA‘ +9}

Therefore Minimum eigenvalue of M >1-2r max {‘A‘ + ‘BHA‘ + g} and

Maximum eigenvalue of N <1 + 2r max {‘A‘ + ‘BHA‘ +g}.

Thus, the spectral radius,

() < 1 +2r max {‘A‘ + ‘BHA‘ +g}
P oy ma {[A[+[B [+ o}

~ 1+ 4r max {‘A‘+‘B‘,‘A‘+g}

Therefore p(M_lN)Zl and the proposed method is unconditionally

unstable. Though the method is unstable, p(M~'N) lies in neighbourhood of 1 since
value of ris very small and the numerical scheme given by equation (2.3) and (2.4)
will give reliable solutions.

4. Numerical Experiments

Problem 4.1: Consider one dimensional shallow water equations (1.3) and
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(1.4) defined on the domain D ={z/-1<z <1} with ¢ =1 satisfying initial
conditions

u(z,0) = %(z -1),  h(z,0)= i—i— (z 1)

O |

and boundary conditions
—4
3(t+1)

u(-1,t) = , w(lt)=0,

1L, 1 ap-1t
L+12 9t +1)

h(-1,t) = _ZW

Exact solutions « and h denoted by U and H of equations (1.3) and (1.4) with
above intial and boundary conditions are obtained from [8]

(z-1)°
(t+1)

1

Ulst) = 2(z-1) H(x,t)=i<t+l)2/3

3(t+1)’

+% 4.1)

The numerical solution for this problem is obtained from the finite difference
scheme (2.3) and (2.4) with A¢=0.01, 0.001 and Az =0.01, 0.05,0.1. These

numerical solutions h, hu are compared with exact solutions H, HU. The comparision
of the solutions obtained by difference scheme (2.3) and (2.4) and exact solutions at
different time ¢ are shown in Table (1) to Table (5). From Table (1) to Table (5), it is

observed that the solutions obtained from the scheme (2.3) - (2.4) are correct upto
three decimal places.

Table 1: Comparison of numerical and exact solution for
At =0.01, Az =0.01,at t =0.5

X h H hu HU

-1. 0.388317 0.388317 -0.34517 -0.34517
-0.8 0.350737 0.350786 -0.280631 -0.280629
-0.6 0.317147 0.317205 -0.22555 -0.225568
-0.4 0.287485 0.287576 -0.178875 -0.178936




ONE DIMENSIONAL SHALLOW WATER EQUATIONS

X h H hu HU
-0.2 0.261766 0.261897 -0.139574 -0.139678
0. 0.240066 0.240168 -0.10667 -0.106742
0.2 0.222311 0.222391 -0.0790246 -0.0790722
0.4 0.208502 0.208563 -0.055587 -0.0556169
0.6 0.198639 0.198687 -0.0353049 -0.0353221
0.8 0.192727 0.192761 -0.017129 -0.0171343
1. 0.190786 0.190786 0. 0.

Table 2: Comparison of numerical and exact solution for
At =0.01, Az=0.01,at¢t=1

X h H hu HU

-1. 0.268601 0.268601 -0.179067 -0.179067
-0.8 0.247485 0.24749 -0.148523 -0.148494
-0.6 0.228595 0.228601 -0.121964 -0.121921
-0.4 0.211942 0.211935 -0.0989507 -0.0989028
-0.2 0.197498 0.19749 -0.0790361 -0.0789961

0. 0.185248 0.185268 -0.0617678 -0.061756
0.2 0.175191 0.175268 -0.0467069 -0.0467381
0.4 0.167426 0.16749 -0.0334769 -0.033498
0.6 0.16189 0.161935 -0.0215834 -0.0215913
0.8 0.158586 0.158601 -0.0105703 -0.0105734

1. 0.15749 0.15749 0. 0.
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Table 3: Comparison of numerical and exact solution for
At =0.01, Az =0.05,at ¢ =0.5

X h H hu HU

-1. 0.388317 0.388317 -0.34517 -0.34517
-0.8 0.350742 0.350786 -0.280634 -0.280629
-0.6 0.31715 0.317205 -0.225554 -0.225568
-0.4 0.287472 0.287576 -0.17886 -0.178936
-0.2 0.26177 0.261897 -0.139578 -0.139678
0. 0.240066 0.240168 -0.10667 -0.106742
0.2 0.222311 0.222391 -0.0790246 -0.0790722
0.4 0.208502 0.208563 -0.055587 -0.0556169
0.6 0.198639 0.198687 -0.035305 -0.0353221
0.8 0.192728 0.192761 -0.0171282 -0.0171343
1. 0.190786 0.190786 0. 0.

Table 4: Comparison of numerical and exact solution for
At =0.01, Az =0.05,at t =1

X h H hu HU

-1. 0.268601 0.268601 -0.179067 -0.179067
-0.8 0.24748 0.24749 -0.148523 -0.148494
-0.6 0.228597 0.228601 -0.121966 -0.121921
-0.4 0.211945 0.211935 -0.0989532 -0.0989028
-0.2 0.197496 0.19749 -0.0790344 -0.0789961

0. 0.185245 0.185268 -0.0617652 -0.061756
0.2 0.175197 0.175268 -0.0467112 -0.0467381
0.4 0.167428 0.16749 -0.0334776 -0.033498
0.6 0.16189 0.161935 -0.0215824 -0.0215913
0.8 0.158587 0.158601 -0.0105703 -0.0105734

1. 0.15749 0.15749 0. 0.
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Table 5: Comparison of numerical and exact solution for
At =0.001, Az =0.1,at ¢ =0.5

X h H hu HU

-1. 0.388317 0.388317 -0.34517 -0.34517
-0.8 0.350781 0.350786 -0.280629 -0.280629
-0.6 0.3172 0.317205 -0.225567 -0.225568
-04 0.287565 0.287576 -0.178928 -0.178936
-0.2 0.261884 0.261897 -0.139669 -0.139678

0. 0.240158 0.240168 -0.106734 -0.106742
0.2 0.222382 0.222391 -0.0790674 -0.0790722
0.4 0.208557 0.208563 -0.0556139 -0.0556169
0.6 0.198682 0.198687 -0.0353204 -0.0353221
0.8 0.192758 0.192761 -0.0171337 -0.0171343

1. 0.190786 0.190786 0. 0.

Problem 4.2: Consider one dimensional shallow water equations (1.3) and
(1.4) defined on the domain D ={z/-5<z <5} with g=1 satisfying initial

conditions

2
u(z,0) = 0, h(z,0) =1+ %é‘w

and boundary conditions
u(—5,t) =0, u(5,t) =0, b(-5t) =1, h(5t)=1.

The example models dam break problem. Solution graphs are shown in
Figure (1) to Figure (10).

In Figures (1) to (10), figures with odd number are from [9] whereas figures
with even number are constructed from numerical scheme (2.3-2.4). From all figures
it is seen that the solutions obtained by the proposed numerical scheme are reliable. It
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is observed that as time passes the initial condition produces two waves one moving
in each direction. Each of the wave shows the same behavior at all time in future.
Initially the momentum is zero since the velocity in x direction is zero. As time
passes momentum curve also shows two waves one moving in each direction but

mirror image about X axis.

Since the numerical solutions of problem (4.2) are not available in literature
the numerical solutions of (4.2) by using finite difference scheme at different time

levels are listed in Table (6) and (7).

Table 6: Numerical solution for At =0.1, Az =0.1,at t =0.5

X h u hu
-5 1 0 0
-4 1. -1:65115 % 10-15 -1:65115 % 10-15
-3 1. -4:10305 % 10-10 -4:10305 % 10-10
-2 1.00003 -0.0000294016 -0.0000294024
-1 1.06608 -0.0651121 -0.0694147

0 1.1128 8:48731 x 10-19 9:444655951555686 x 10-19
1 1.06608 0.0651121 0.0694147

2 1.00003 0.0000294016 0.0000294024

3 1. 4:10305 % 10-10 4:10305 x 10-10

4 1. 1:21870 x 10-15 1:21870 x 10-15

5 1 0 0

Table 7: Numerical solution for At =0.1, Az =0.1,at ¢t =1

X h u hu

-5 1 0 0

-4 1 -2:25827 x 10-11 -2:25827 % 10-11
-3 1 -8:30577 x 10-7 -8:30578 x 10-7
-2 1.00399 -0.00398586 -0.00400176
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X h u hu

-1 1.1798 -0.173156 -0.20429

0 0.996458 2:35858 x 10-16 2:35023 x 10-16
1 1.1798 0.173156 0.20429

2 1.00399 0.00398586 0.00400176

3 1. 8:30577 x 10-7 8:30578 x 10-7
4 1. 2:25824 x 10-11 2:25824 x 10-11
5 1 0 0

Finite difference Model Results

hati=10 huati=0

aal
azl

-1

—azf

RO, | e e g

Figure 2: Graph of i and hu from proposed finite difference scheme at ¢ = 0

hatt=0.5 huatt=0.5

i 1 . L L L ' L L v s
[ 5

Figure 3: Graph of hand hu from [9] at ¢ = 0.5
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Figure 4: Graph of i and hu from proposed finite difference scheme at ¢ = 0.5

hatit=1 huatt=1
15 T T T T 25 T T T T
IJ\——/\ . \#
aé =) -] 2 =1 a 1 2 3 4 5 .a.n =] 3 1 a 1 2 =

Figure 6: Graph of ~ and hu from proposed finite difference scheme at ¢ = 1

Batt=2 huati=2
i3 T T T T L} T T T T
| S ) e
o4, = 3 = o ] 0 3 3 i S - 3 ) ¥ o 1 z ) v

MNP |- R

Figure 8: Graph of ~ and hu from proposed finite difference scheme at ¢ = 2
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hatt=3 huatt=23

as L i i L L L s asl
] E [ 4

Figure 10: Graph of h and hu from proposed finite difference scheme at ¢ = 3

5. Conclusion

The finite difference scheme is presented for one dimensional Shallow Water
Equations. The method is proved to be consistent and is of order two in both space
and time variables. Though method is unstable, it gives reliable solutions. The
reliability of solutions is assured by comparing numerical solutions with
exact solutions.
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1. Introduction

Gibonacci  polynomials  z,(x) are defined by the recurrence,
Zpro(2) = a(x)z, 1 (z) + b(x)z, (z) where z is an arbitrary complex variable; a(z),

b(z), zy(x),and z (z) are arbitrary complex polynominals; and n > 0.

Suppose a(z)=x and b(z)=1. When z,(z)=0 and z/(z)=1,
z,(z) = f (), the nth Fibonacci polynomial, and when z (z) =2 and z () =z,
z, (z) =1 (), the nth Lucas polynomial.

Clearly, fn(l) = I, the nth Fibonacci number; and [, (1) = L, the nth Lucas
number [1, 2, 3].
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In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so 2 will meanz (r). We let

g, =f, orl and A’> =2” + 4. We also omit a lot of basic algebra.

It is well known [3] that f ., +f ,=@"+2)f, f .,—f ,=al,

- Ty
fn+1 + j;L—l = ln’ fn = ($2 + 1)fn72 + Ifn%ﬂ’ f2n = fnln’ f2n+1 = 2711 + fn?’ and the
gibonacci addition formula

arp = forr9 T F951-

A gibonacci polynomial product of order m is a product of gibonacci

polynomials g, of the form [ ¢7,, , where > s; =m [4,6].

. S22
keZ 9] 1

1.1 Sums of Gibonacci Polynomial Products of Order 3: In [5], we
explored the following sums of gibonacci polynomial products of order 3:

2f, =37 f — (22" +5)f, o f + @ + 1P + (& + DS, (1)
x213n+1 = fn3+2 + 3fn2+2fn - (2% + 7)fn+2fn2 + (2 + 1)f7? +(a® + 2)f712fn—2' )

N fy g = (@ D), 42070 o f 2" +30° + 4)f Y+ 27, L

+(at 4327 + )7 f, L, -2 . ®)
2. Some Graph-theoretic Tools

To confirm these three polynomial identities using graph-theoretic
techniques, we now develop the needed tools. To this end, consider the Fibonacci

digraph D, in Figure 1 with vertices v, and v,, where a weight is assigned to each

1
edge [3, 4]. It follows by induction from its weighted adjacency matriz

_1% Y that
Q_l o’ a
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Figure 1: Weighted Fibonacci Digraph D,

fnJrl fn

Q N fn fnfl

Y

where n >1 [3, 4].

A walk from vertex v, to vertex v, is a seguence

v — € — Uy — v —e;_y —v; of vertices v, and edges e, , where edge ¢, is
incident with vertices v, and v;_,. The walk is closed if v; = ;] otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a walk
is the product of the weights of the edges along the walk.

We can employ the matrix Q" to compute the weight of a walk of length n

from any vertex v, to any vertex v;, 88 the following theorem shows [3, 4].

Theorem 1: Let M be the weighted adjacency matriz of a weighted,

connected digraph with vertices v, v,,. . .,v, . Then the ijth entry of the matriz
M" gives the sum of the weights of all walks of length n from wv, tov]., where

n>1. O

The next result follows from this theorem.

Corollary 1: The ijth entry of Q" gives the sum of the weights of all
walks of length n from v, to v in the weighted digraph D, , where 1<1,
j<n. U

It follows by this corollary that the sum of the weights of closed walks of

length n originating at v, in the digraph is f  and that of those originating at v, is
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[,_,- Consequently, the sum of the weights of all closed walks of length n in the

digraph is f  +f =1 . These facts play a crucial role in the graph-theoretic
proofs.

Let A, B, and C denote the sets of walks of lengths r, s, and ¢ all originating
at a vertex v, respectively. Then the sum of the weights of the elements (a, b, ¢) in

the product set A x B x C'is defined as the product of the sums of weights from each
component [4].

We are now ready for the proofs.
3. Graph-theoretic Proofs

3.1 Proof of Identity (1): Let S denote the sum of the weights of closed

walks of length 3n —1 in the digraph from v to v,. Then S =f, , and hence,

2 2
oS =1 f, .

We will now compute the sum 22 in a different way. To this end, let w be
an arbitrary closed walk of length 3n —1 from v, to v, . It can land at v, or v,at the

nth and  2nth  steps: 4= 4 - -z T—..—% T—..—v

1 1 ’

subwalk of length n

subwalk of length n subwalk of length n—1

where z = v, Or v,.

Table 1: Sum of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe | U™ of the weights
of walks w
nth step? 2nth step? (3n —1) st step?
yes yes yes 2.5
Yes no yes fn+1fnfn—1
no yes yes 7
no no yes I, fnz_1
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Table 1 shows the possible cases and the sums of weights of the
corresponding walks. It follows from the table that the sum S of the weights of all

closed walks originating at v, is given by

S= fn2+lfn + fn+1fnfn—1 + fT? + fnan—l '
Then

xQS = ( n+1)2fn +(I‘ n+1)fn(x n—1)+x2f7? +fn(x n—1)2
= (fn+2 - fn)Qf;L + (fn+2 - fn)f;z(fn - fn—2) + I2f713 + fn(fn - f;z—2)2
= n2+2fn - fn+2fn? - fn+2fnﬁ172 + ($2 + 1)fn3 - fnzfan + fnfn272

= 3f712+2fn B fn+2fn2 + (xQ + 1)]07? + A’

where
A==2f2 f — b fog + E 12y = P
= Lo (Fr + L) = £ (e = L) = 2
=—f,(fyn + £, )@y = £, ) = I2F,
= L@ 2L )@y fy) = L2

= —2(z% + 2)fn+2fn2 +(a* + 1)f712fn—2'

Consequently,
2’8 = 3f7 o f, =% +5)f, o f) + (@ + f) + (2 + DL,

Equating this value of z>S with the earlier one yields the desired result. ]

We now turn to identity (2).

3.2 Proof of Identity (2): Let S’ denote the sum of the weights of all closed

walks of length 3n +1 in the digraph. Then $' =1, ;50 2°S' =2%l, ..
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We will now compute z25’ in a different way. Let w be an arbitrary closed
walk of length 3n +1.

Case 1: Suppose w originates (and ends) at v, . It can then land at v, or v, at
the (n + 1)stand (2n + 1)st steps:

w = ’Ul_...—l' r—...— T r—...— U s
| 1
[ —

subwalk of length n

————
subwalk of length n+1 subwalk of length n

where z = v, Or v, .

Table 2: Sums of the Weights of Closed Walks Originating at v,

w lands at v, at the | w lands at v, at the | w lands at v, at the | SUM of the weights
of walks w
(n + 1)th step? (2n + 1)th step? (3n + 1)st step?

yes yes yes fn+2 n2+1

yes no yes Frool?
2

no yes yes fn+1 n

no no yes fn+1fnfn71

Table 2 shows the possible cases and the sums of weights of the respective

walks. It follows from the table that the sum Sl/ of the weights of such walks w is
given by

S = fusafia * Dol # S+ ff
= fn+2(f712+1 + fn2) + fn+1fn (fn+1 + fn—l)
= fn+2(fn2+1 + fn2) + fn+1fnln;

IQS; = fn+2[($ n+1)2 + (xfn )2] + (:I; n+1)f;z(mln)

= fn+2[(fn+2 - fn )2 + fonZ] + fn (fn+2 - fn—2)(fn+2 - fn)
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n+2

=1,

n

_ 3 _
T In+2

+2

2fn+2fn2 + anfn—Q'

fn+2fn[(fn+2 + fn—2) - fon] + fnzfn—Q

fn+2fn [(‘7'2 + 2)fn - fon] + anfn—Q

Case 2: Suppose w originates (and ends) atv,. Then w can land at v, or v,

atthe (n + 1)stand (2n + 1)st steps:

w =

where z = v, Or v,.

subwalk of length n+1

.

2—...—$

subwalk of length n

r—...— T Tr—...—

1

)

subwalk of length n

Table 3: Sums of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe | SU™ of the weights
of walks w
(n + 1)th step? (2n + 1th step? (3n + 1)st step?
Yes yes Yes fn?Jrl n
yes no yes Foalit
no yes yes f;’
no no yes I, fnz_1

Table 3 shows the possible cases and the corresponding sums of weights of

the walks. Clearly, the sum S; of the weights of all such walks w is given by

Sy = Lok + b b f + F+ £ S

By the algebraic proof in Section 2.1, we then have

228, = 3f2 f, — (227 +5)f ,f2 + (&% +1)f* + (@® + D)f,
229! = xQSl, + 228,

2

= (f7?+2 -2 n+2f;12 + anfn—Q)
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+ [0, = Q2® 4 5)f o f) + (2 + D+ (27 D]

=2 32 =2+ D o f + (@ + )+ (@ +2)f .

This value of %5’ , coupled with its original value, yields the desired result,
as expected. O

Finally, we present the proof of identity (3).

3.3 Proof of Identity (3): Let S* denote the sum of the weights of closed
walks of length 3n +1 originating at v, in the digraph. Clearly, S* = finsor a@nd

2 2a% _ A2 2
hence, A“z“S =AT°fy -

To compute A%z2S* in a different way, we first let w be an arbitrary closed

walk of length 3n + 1 originating at v, .

or v, at the

Case 1: Suppose w begins with a loop. It can then land at v N

(n +1)stand (2n + 1)st steps:

w = v =T T—...—T T—..—v
ﬁ—/ 1
subwalk of length n

%—J
subwalk of length n+1 subwalk of length n

where z = v, Or v,.

Table 4: Sums of the Weights of Closed Walks Beginning with a Loop

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe | SU™ of the weights
of walks w
(n + 1)th step? (2n + 1)th step? (3n + 1)st step?

yes yes yes X §+1

yes no yes Ifn+ ) fn2

no yes yes xfn+ 1 an
2

no no yes af f i
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Table 4 shows the various possible cases and the respective sums of weights
of such walks. It then follows that the sum Sf of the weights of walks w is given by

Sf = xf;irl + 2$fn+1fn2 + xanfn—lfn
=z n+1(f7?+1 + an) + ZL‘an (f;wl + fnfl)

=L n+1(fn2+l + fn2) + mffln

= $fn+1an+1 + xfann
= $f3n+1'

Case 2: Suppose w does not begin with a loop. Then also it can land at v, or

v, atthe (n +1)stand (2n + 1)st steps:

1

w = V= =T T—...— T r—..-v
%,—J

subwalk of length n

%—/
subwalk of length n+1 subwalk of length n

where z = v, Or v,.

Table 5: Sums of the Weights of Closed Walks not Beginning a Loop

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe | UM of the weights
(n +1)th step? (2n + 1)th step? (3n + 1)st step? of walks w
- e o | g
yes no yes fr?
- e ves fuihdi
- i ves hii

Table 5 shows the possible cases and the corresponding sums of weights of
such walks. It follows from the table that the sum S; of the weights of such walks w

is given by



26 THOMAS KOSHY

Sy = fiady + haludua 1+ £ 0
=L+ D+ h (g + 1)
= bpardy T bk
= fyn-

By the identities [5]

A2z2f3n = (1'2 + 12)fn?+2 n (9:1;2 + 2O)fn+2 712 - xQ n+2fnfn72
+ (2" + 1)@ +4)fP + B + A f L, + 27 1

AQI?)f?»rHl - (IQ + 4)f7?+2 + (352 - 12)f2 - (251”4 - 327 - 12)f 2

n+2Jn n+2Jn

+2$2fn+2fnfn72 - (xQ + 1) (xQ + 4)fT? + x4fn?fn72 - 2$2fnfn272’

we then get

2 2q* 2 2/qa* *
A2"S" = A7 (5] +5,)

= A21’.3']l‘3’>71,+1 + A2$2f3n
= (ZE2 + 4)fn3+2 + 2x2f712+2 n—2 (x4 + 3x2 + 4)fn+2f712 + I2fn+2fnfn—2
+(z* + 327 + 4)fnzfn_2 - x2fnfn?—2'

Equating this value of A%z?S* with its earlier version yields the desired

result, as expected. O
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1. Introduction

Extended gibonacci polynomials z (r) are defined by the recurrence
z, o) =a(z)z,,,(7) +b(x)z, (r), where x is an arbitrary complex variable; a(z),

b(z), z,(r),and z (x) are arbitrary complex polynomials; and n > 0 [1, 2, 5, 6].

Suppose a(z)=1 and Ob(z)=z. When z,(z)=0 and z(z)=1,
z,(z) =J (v), the nth Jacobsthal polynomial, and when z (r) =2 andz(z) =1,
z,(z) = j, (z), the nth Jacobsthal-Lucas polynomial [1, 2]. Correspondingly,
J,=J (2) and j =j (2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J (1)=F and j (1)=L, .

n
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In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean 2 (r). We also

let D* = 4z +1 and omit a lot of basic algebra.

It is well known [3] that J ., +xJ =3 . J,

and the Jacobsthal addition formula J . =J . J +xJ J

. 2 2 2
w=d g L =d g el

n+1 n+1

.
An extended gibonacci polynomial product of order m is a product of

polynomials z ., of the form [ 27 where Z sji=m [4,T].

n+k ?
keZ s7=1

1.1 Sums of Jacobsthal Polynomial Products of Order 3: In [5], we
investigated the following sums of gibonacci polynomial products of order 3:

aly,  =J0 ., —Be+ 1) T +3a" +a)] I+t T T
— (2% +24° + x)JS - :E4JHJZ_2. 1)
Gy, =200 = (6 +1)J2 ,J +(62% +52)] L J2+2%T T J
— (22° + 32 +2)]> —2*J2T -2 TP )
D*J, . =DJ?  —(122° —x)J> ] +(122° + 32° —22)J ,J>

+ 2x3Jn+2Jan_2 — (42 +52° + xQ)JS

+ 22T —22"T T . (3)

Our goal is to confirm these Jacobsthal identities using graph-theoretic tools.

2. Some Graph-theoretic Tools

To confirm these Jacobsthal results, consider the weighted Jacobsthal
digraph D, in Figure 1 with vertices v, and v, [3, 4]. It follows from its weighted

X

,that
0

1
adjacency matrix Q) = ll
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Figure 1: Weighted Digraph D,

Jn+1 zJ
J xJ

n

n

M" =

n—1

where J =J (z) and n >1.

It then follows that the sum of the weights of closed walks of length n
is J

n+1’

originating at v and that of those originating at v, is zJ_ _, . So the sum of

1
the weights of all closed walks of length n in the digraphis J ., +zJ =7 .
These facts play a major role in the graph-theoretic proofs.

Let A, B, and C denote the sets of closed walks of lengths a, b, and ¢
originating at vertex v, respectively. Then the sum of the weights of the elements in

the product set Ax B x C is defined as the product the sums of the walks in each
component [4].

With these tools at our fingertips, we are now ready for the graph-theoretic
proofs.

3. Graph-theoretic Proofs

3.1 Proof of Identity (1): Let S denote the sum of the weights of closed

walks of length 3n —2 originating at v, . Clearly, S =, | and hence, z5 =zJ, .

We will now compute the sum xS in a different way. To this end, let w be an

arbitrary closed walk of length 3n — 2 originating at v, .
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Case 1: Suppose w begins with a loop. It can land at v or v, at the
(n+1)st and (2n + 1)st steps:

w =

where z = v, O v,.

—_—
subwalk of length n+1

’Ul—...—LE

subwalk of length n

T—...—T T—...—0 ,
— 1

%—/
subwalk of length n—3

Table 1: Sum of the Weights of Closed Walks

w lands at v, atthe | w landsat v, atthe | w landsat v, atthe sums of the weights
of walks w
(n +1)st step? (2n + 1)st step? (3n —2) nd step?
yes yes yes Js 1n_2
yes no yes x‘]n+1‘]n']n—3
no yes yes szjnﬂ
no no Yes $2Jan71<]n73

Table 1 shows the possible cases and the sums of weights of the
corresponding walks. It follows from the table that the sum S, of the weights of such
closed walks is given by

Sl = 721+1Jn—2 + x‘]n-%—l‘]n‘]n—i’) + er%Jn—Q + xz‘]n‘]n—l‘]n—S
= (J7%+1 + IJTQ))JTI72 + x‘]n‘]n{’)(JnJrl + m‘]nfl)
= J2n+l‘]n—2 + x‘]271,‘]71,—3

= ']3n—2 '

Case 2: Suppose w does not begin with a loop. Once again, it can land at v,
or v, atthe (n +1)st and (2n + 1)st steps:

w = Ul—...—.T r—...— T .T—...—Ul

)

— —
subwalk of length n+1 subwalk of length n gy wall of length n—3

where z = v, Or v,.



CONFIRMATIONS OF THREE SUMS OF JACOBSTHAL POLYNOMIAL 33

Table 2: Sum of the Weights of Closed Walks

w lands at v, atthe | w landsat v, atthe | w lands at v, atthe | Sums of the weights
(n +1)st step? (2n + 1)st step? (3n — 2) nd step? of walks w
yes yes yes x‘]n+1‘]n‘]n72
272
yes no yes T Jan_S
no yes yes xQJan_lz]n_Q
" n yes xgjg—l‘]n—?)

It follows from Table 2 that the sum S, of the weights of all such closed
walks w is given by

_ 2 72 2 372
S2 - xJnHJanfQ +x Jn‘]nffi +x ‘]n‘]nfl‘]an + ‘]71,71‘]7173

= xJanfQ (Jn+1 + $Jn71) + :U2J7k3(<]3 + x‘]fl,fl)

x(JSJn—z + 3y, 17, 3)

= m‘]371,—3 '

Combining the two cases and using the Jacobsthal identity [6]

ry, 1 = J2+2 -3z + 1)J2+2Jn + 3(372 + x)Jn+2J721 + $2Jn+2Jan—2

— (2® + 22 + 2)JP — 2t TP,

we then get

= $J3n—1
= ‘]731)+2 - (3‘7“ + 1)”’24—2‘]71 + 3(.’1)2 + x)‘]n+2‘]72z + x2Jn+2Jan—2

—(a® + 22 + )P —2'T I, .

This value of zS5, coupled with its earlier value, yields the desired result. [

Next we explore the graph-theoretic proof of identity (2).
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3.2 Proof of Identity (2): Let S’ denote the sum of the weights of all closed
walks of length 3n in the digraph. Then S’ = j,, .

To compute S’ in a different way, let w be an arbitrary closed walk of

length 3n .

Case 1: Suppose w originates (and ends) at v, . It can then land at v, or v, at

the nth and 2nth steps:

w =

where z = v, or v,.

subwalk of length n

U —...— 7

r—...— X T —...
H—J
subwalk of length n

-

)

subwalk of length n

Table 3: Sums of the Weights of Closed Walks Originating at v,

w lands at v; atthe | w landsat v; atthe | w landsat v, atthe | SUMS of the weights
nth step? 2nth step? 3nth step? of walks w
- e "
" yes yes x‘]n+1‘]2
no no yes 272

Using the identity [6]

Jap1 = J3+2 - 3$J2+2Jn + (35”2 + 2$)Jn+2<]72z - (953 + $2)JS - 5”3J2Jn72!

it then follows by Table 3 that the sum S{ of the weights of such walks w is given by

! 3 2 272
Sl = Jn+1 + 2xn+1jn +x Jn‘]nfl

= J7L+1(J721+1 + mJWQ) + £EJZ (J

=J

T

= J3n+1

= Jp 9 =322 50, + (327 +2z)J

n

2
L+1J2n+1 + x‘]n‘]n

atad, )

n+2

J2 (2 + 2P -2 T2T .
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Case 2: Suppose w originates (and ends) atv,. Then w can land at v; or v,
at the nth and 2nth steps:

w= v —.—-T T—...— T T—..—v

H—J
subwalk of length 1, a1l of length n

subwalk of length n

where z = v, Or v,.

Table 4: Sums of the Weights of Closed Walks Originating at v,

w lands at v, atthe | w landsat v, atthe | w lands at v, atthe | Sums Of the weights
of walks
nth step? 2nth step? 3nth step? v

yes yes yes o O
2 72

yes no yes I

no yes yes a0

no no yes :c3J3_1

Using the identity [6]

ry, 1 = J2+2 -3z + 1)J72L+2Jn + 3(372 + x)Jn+2J721 + 952Jn+2<]n<]n—2

— (2® + 22 + 2)JP -2t TP,

it follows by Table 4 that the sum Sé of the weights of all such walks w is given by

Sy =, J2 +22020, |+ BT
= $2J72L(Jn+1 +xt, )+ 952Jn—1(<]721 + xJTQH)
= x(JTQLJn + x‘]%z,fl‘]nfl)
= xJ3n—l

= J7?§+2 — (37 + 1)J721+2Jn + 3(332 +)J +2J72L + $2Jn+2Jan—2

n

—(2® + 22 +2) P - 2T I,
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Thus

S =5 +5,
=2J3 o — (62 +1)J2,,J, + (62° + 5z)J

2 2
n+2‘]n +z Jn+2‘]n‘]n72

— (20° + 327 + 2)J> — 2P T2T

4 2
n-2 — < Jan—Q'

Equating the two values of S’ yields the desired result, as expected. O

Finally, we explore the graph-theoretic proof of identity (3).

3.3 Proof of Identity (3): Let S* denote the sum of the weights of closed
walks of length 3n originating at v, . Clearly, $* = J, ., and hence, D*S* = D*J, ..

To compute D?S* in a different way, suppose that w is an arbitrary closed
walk of length 3n originating atv, .

Case 1: Suppose w begins with a loop. It can then land at v, or v, at the nth
and 2nth steps:
w= v —..—X T—..—T T—...—v

—_— i g —_—
subwalk of length n subwalk of length 1, a1l of length n

where z = v, or v,.

Table 5: Sums of the Weights of Closed Walks Beginning with a Loop

w lands at v; atthe | w landsat v; atthe | w landsat v, atthe | SUMS of the weights
nth step? 2nth step? 3nth step? of walks w
- e |
yes no yes . ‘]7?;
" yes yes 2y 1
no no yes 2] J2,

Using the identity [6]
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D*J,, = (122 + 1)J2,,J, — (2027 +92)J, ,J> — 2T, ,oJ,J, o

+ (42 + 527 + 2)J2 + (42t + 32%) 2T, 5 + 2t T T2,
it follows by Table 5 that the sum S} of the weights of walks w is given by

St =J2 J +ad wad, J T, 2 TR

nYn-1
= Jn+1Jn (Jn+1 + xJn—l) + xJn (Jg + 3:‘]2—1)
= ‘]71,+1J2n + ‘TJanLfl

= J?m,

DQSl* = (12$ + 1)‘]7%+2Jn - (201’2 + 9‘T)Jn+2‘]g - ‘TZ‘]nJrQJanfQ

+ (42 + 527 + 2)J2 + (42 + 323 2T, + 2T R,

Case 2: Suppose w does not begin with a loop. Then also it can land at v, or
vy at the nth and 2nth steps:

W= Vy—...—T T—...— T T—. =0y

%’_J H_J
subwalk of length n subwalk of length 1, a1k of length n

where z = v, Or .

Table 6: Sums of the Weights of Closed Walks not Beginning a Loop

w lands at v; atthe | w landsat v; atthe | w landsat v, atthe | SUMS of the weights
nth step? 2nth step? 3nth step? of walks w
a yes yes x‘]72l+1‘]n—1
yes no yes 72 J72l I
" yes yes PRV
i n yes o Y

Using the identity [6]
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D*xJy, = D*J2 ., — (1227 + 11z +1)J2,,J, + (122° + 2327 + 72)J,0J>

n

+ (22 + 1), 0] Ty — (x+ 1) (42 + 2)J7

n

it follows by Table 6 that the sum S; of the weights of such walks w is given by

* 2 272 2 3
SQ = ZEJn,+1Jn71 +x Jn‘] -1 +x Jn+1‘]n‘]n71 +x Janfl‘]an

n

=) JE +xt 2t T T (]

n+1 + an—l)
= x(‘]721,+1‘]n71 +xJy,J,, )

= $J3n—1

DSy = D2, — (124 + 11z + 1)J2 o J,, + (122° +232% + 2)J, ,,J>

+ (20 + 1), 0 T, o — (x+ 1) (42” + )]
Combining the two cases, we then get
D*S* = DS} + D*S;
=DA2,, — (122 — 2)J% 0T, + (1227 + 32° —22)J, ,J>
+22%0 o J T o — 4zt + 52+ 2?)TP + 23T, — 2200 T .

This value of D?S*, together with its earlier value, yields the desired result,
as expected. O
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Abstract: In the present paper, we discuss the generating functions
involving the product of modified Laguerre polynomials L%“_")(x),

modified Bessel polynomials Y,f{”m) [q] and the confluent hypergeometric
functions ;F;[.] and then obtain some more generating functions by group-
theoretic approach and discuss their applications. Earlier Chandel, Kumar
and Senger [1] introduce the generating functions involving the product of

modified Bessel polynomials Y,f‘””) [x] and the confluent hypergeometric
functions F;[.].
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1. Introduction

The modified Laguerre polynomials Lgf‘_")(x) and modified Bessel
polynomials Y,%“J“m) (u) are defined by Srivastava and Manocha [6] as:

(a—n) _ F(1+a) . e
Ly (x)= I W— Fl-nm1+a—n;x] (1.0

vt ) = 2FO[—m,m+n+a—1;—; —%] (1.2)
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The confluent hypergeometric functions F;[.] can be replaced by many
special functions. Srivastava and Manocha [6] defined and studied various bilinear,
bilateral and multilinear generating functions.

In this paper, we introduce the following new general class of generating
functions:

Gx,u,q,w) = Yg_oan LS{’“") (x) Y,Elmm) W) F[-m;m+ 1;q]w™  (L1.3)
where a,, is any arbitrary sequence independent of x, u, g and w.

Again in (1.3) setting various values of a,,, we may find several results on

generating functions involving different special functions, hence (1.3) is a general

class of generating functions.

In this paper, we evaluate some more general class of generating functions
and finally discuss their applications.

2. Group-Theoretic Operators: In our investigations, we use the following group-
theoretic operators:

The operators R, due to Majumdar [4] is given by

d 9
Ry =xyz o—— y2z i (x —a)yz (2.1)

Such that
(a-n) n,al|l _ 1 L(a—n—l) n+1_a+1 22
Ry|Ly 7V (0)y"z%|=m+1) Ly, “(0)y" 'z (2.2)

The operators R, due to Chongdar [2] is given by

— 241, O 9 -1,,29 |, ;-1 _
Ry = ut™ v —+uv ——+ut™ v -+t v(B—u) (2.3)
Such that
R, [Y,&{"*")(u) t"vm] = Bylatn y) gn-1ymtl (2.4)

The operator R5 due to Miller Jr. [5] is given by

0 _1 0 _
R3=r—p+rqp 3~ T4P 1 (2.5)
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Such that
R3[1Fi[-mm+ 1;qlr"p™] = m 1Fy[-n — 1;m; g|r 1 p™~t (2.6)

The actions of Ry, R, and R5 on function f are obtained as follows:

eWRif(x,y,z) = (1 + wyz)® exp(—wxyz) f [x(l + wyz), 1+3‘;y2,z] 2.7

(cf. Majumdar [4])

eWReF(u,t,v) = (1 —wut™ ) exp(Bwt™v) F [ “ : Z ]

1-wut~ v’ 1-wut~v’ 1-wut~1v
(2.8)
(cf. Chongdar [2])
And

eWRsf(r,p,q) = exp(%)f[r,p + wr, q(l +%)]
(2.9)(cf. Miller Jr. [5])

3. Some More General Class of Generating Functions

In this sections, making an use of the general class of generating function
(1.3) and group-theoretic operators R; R, and R; with their actions given in the
section 2, we obtain some more general class of generating functions through
following theorem:

Theorem: If there exists a general class of generating functions involving
the triple product of modified Laguerre polynomials Lgf‘_") (x), modified

Bessel polynomials Y,%“J“m)(u) and the confluent hypergeometric functions
1F [—n; m + 1; q] given by

Glx,u,q,w) = Yr_oan LS{’“”) (x) Y,,S“*m) (W) 1Fi[-n;m+ 1;q] wh (3.1)
Then the following more general class of generating functions holds:

(1 +w)**™m(1 —wut )™ -exp[-w(x — ft™ v + q)].

Wyv]= i an(n+1)i.

G[X(HW)' T+w ir k!

q 1+w
1 ) ( )I A
n,i,j,k=0
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LT O v D) Fl-n -k m =k + 1 q) wi (Wt~ v)) (mw)* (wyr)™
(3.2)

Proof of the Theorem: In the general class of generating functions (3.1),
replacing w by wytr and then multiplying by z* v™ p™ on both sides, we get

GO g uwytr) 2% v p™ = Foan L@ B P (@)
1Fil—n m+ Lu] y™ " r™t 2z v™m p™ . wh (3.3)
Now, operating both the sides of (3.3) with e"R1eWRzeWRs we obtain
eWRieWR2eWRs[ G (x, q, u, wytr) z% v™ p™]
= eWRigWReeWRs 310 o ay LT (0)y "2
Y,%M") (w) t"v™. JF; [— nm+ 1; q]r"pm. wh (3.4)
The left hand side of (3.4) becomes

z% (1 +wyz)® (1 —wut~ 117)(
‘"W) G [x(l + wyz),

m) (p + wr)™ exp (—nyz + pwt v —

v (1+u), 22 (3.5)

1-wut~1lv 1+wyz

And the right hand side of (3.4) becomes

an (n+1); pJ mkwntititk (a n—i)

(a+n—j) —j i
Zﬁl.] k=0 li! k! n+L (X)ynﬂ a+i Ym+] (u)tn ]Um+] 1F1 [_ n-—

1;m; q| rtk pmk (3.6)

Now equating (3.5) and (3.6), and setting r = pandyz = 1,

(1 +w)*m (1 —wut™ )™ exp(—w(x— Bt v+ q)

wyv]
Gx(1+ W) + = q(1 +w), 2] =
® an (+1); o ( ) (a+n—j)
mijk=0 T bnei 0 Yy Q).
Fil-n—km—k+1;q] . w(wpt™ )] (mw)k(wytp)™ (3.7)

which is the required result.



EXTENSION OF GENERATING FUNCTIONS 45

4. Special Case

Taking u = 0,q = 0 in given theorem and proceeding as the proof of the
main theorem, we get

exp(—wx) G [x(1+w), 22 =y, pi, WD @D oy yns i

n+i

Sieo Tip IR LT () yn 2!

i!

= Yn=o On(x,2). (Wwy)" (4.1)
where

which is given by Majumdar [4].

(i) Ifweset x =0,q = 0&t = v in given theorem and proceeding as the
proof of main theorem with operator R,, we get

(1= wi)' ™ exp(wh) 6 [, 222 = Birgog 2B v Dy (43)

1-wu’ 1+w J! m+]j

which is a known result and as parallel to Kar [3].
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Arvind Mahar‘;‘;‘i% TRANSFORM FOR LAPLACE EQUATION

Abstract: In this article, the analytical solution for Laplace equation using
differential transform method has been presented. To represent this we have
obtained the corresponding exact solutions by considering four models with
two well-known boundary conditions known as Dirichlet and Neumann.
The achieved outcome shows the easiness of the method and substantial
decrease in successive iterations in comparison to the other well-known
iterative methods. We can say that very less number of iterations gives the
desired output for the problem nearer to the expansions of series for the
identified functions.

Keywords: Laplace equation, boundary Conditions of Dirichlet and
Neumann, Finite Difference.

Mathematical Subject Classification: 35K20.
Introduction

It is very difficult to solve analytically the problems which are related to
engineering and physics where the governing equations are in the form of standard
boundary value problems such as Laplace, heat and wave equations in one and two
dimensions. The exact solution of the governing differential equation corresponding
to the problem can be obtained after difficult calculations. To reduce this difficulty,
different approximations and direct methods, such as Adomian decomposition [1],
Homotopy analysis [2], Variational iteration [3], New iterative [4, 5] and Differential
transform [6] are invented.
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The different methods have been applied by investigators for obtaining the
required outcomes of the problems [7-12].

The solution of the Laplace equation u, + u,, = 0 with Dirichlet and
Neumann boundary conditions using differential transform scheme (two
dimensional) with less number of iterations is the main purpose of this article.
Different examples with different boundary conditions have been solved. Applied
scheme builds one analytic output without need of liberalization or discretization.
The computational iterations have been reduced and desired output in the series form
with fast convergence has been obtained.

Methodology
If u(x,y) = f(x)g(y) is a function of variables x and y, where the functions

f(x) and g(y) are two different functions of variable x and y respectively. Now by
considering the differential transform property of one dimension we can write

u(x,y) as

u(x,y) = Xm=o F(m)x™ Xnso an) y" = Y=o Zn=o U(m,m)x™y™ (1)

here U(m,n) = F(m) G(n) is known as spectrum of the function u(x,y), given as
follows:

1 |a™ " u(x,y)

U(m,n) = |50 S )
and the inverse of differential transform of U(m,n) is of the form:
u(x,y) = Y=o Zn=o Um,n)(x — x0)™(y — yo)" 3

On combining equations (2) and (3), we have

1 |o™tu(x,y)

u(x, }’) = Z?ZZO Z;?Zom dxmoyn

x=x)"@y—y)" (4

X=X0,Y=Yo

Now suppose that U(m,n),V(m,n) and W(m,n) represents the
transformations of the functions u(x,y), v(x,y) and w(x,y) at (0,0) respectively
then:

@ If u(x,y) =v(x,y) xw(x,y), then U(m,n) =V(m,n) + W(m,n)
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(b) If u(x,y) = av(x,y) then U(m,n) = alV(m,n)

(©) fulx,y) =v(x,y)w(x,y), then U(m,n)
= Y=o Zi=o V(k,n = DW(m — k, 1)

" Sv(x,y) (m+7)! (n+s)!

d) Ifulx,y) = 77 ays then U(m,n) = — TV(m +r,n+s)
e) If u(x,y) = e®™®Y) then
(e) y

( e®(00) m=n=0

I m-—1 n m_k
U(m,n) = 1“2 —Vm—kDUkn-D, m=1

k= 1=0
m n-1n —1

kaz Z e Yk —DUM=—kn), n=>1.
k=04&~i=0 N

(f) Ifu(x,y) = x*y", then

_(0m—k,n—h)ym=kn=nh
U(m,n) = { 0, otherwise

(9) Ifu(x,y) = x*e®,then U(m,n) = d(m — k) a;r:
Different Examples
A. Solve: Uy + Uy, =0, 0<xy<m
With Dirichlet boundary conditions:
u(x,0) =sinhx, U(x,m)= —sinhx,
u(0,y) =0, u(m,y) = sinh(mr)cosy.
Now taking the differential transform of (5) we have
m+1D)(m+2)Um+2,n)+(n+1D)(n+2)U(mn+2)=0
from (6) and (3) it implies that
m

u(x,0) = Y=o U(m, 0) x™ = sinhx = Z%=1,3,5......ﬁr

51

Q)

(6)

(7)

(8)
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Now on comparing the both sides, we have
1

U(m, 0) = {m! where mis odd )
0 otherwise

Also from (6) and (3) we have

u(0,y) = Xz U(0,n)y" = 0 (10)

which gives
U,n) =0 (11)

Substituting (9) and (11) into (7) and after some calculations, we reach at

U(m,n) = {%, when m is odd and n is even (12)

0, otherwise

Similarly by substituting (12) into (3), we have

n
-1z
u(x,y) = Z?fz:l,&s... Z?f:o,z,zt..._xmyn'

min!
(e m (o) -1 %
= (Zm=1,3,5...%) <Zn:o,2,4...%yn>y
= sin hx cosy (13)
B. Solve: Uy Uy, =0, 0<x, y<m (14)

With Dirichlet boundary conditions:

u(x,0) =0, ulx,m) =0,

u(0,y) = siny, u(m,y) = cosh(m)siny (15)
Now taking the differential transform of (14) we have

m+1)(m+2)Um+2,n)+(n+1D)(n+2)U(mn+2)=0 (16)
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From conditions (15) and (3), we obtain
u(x,0) = Ym—o U(m,0)x™ =0,
Now by comparison both sides we have
U(m,0) = 0.

Also, (3) and (15), imply that

n-—1

0 . 0 _1 Y
u(0,y) = Yo U0, n)y™ =siny = ), ﬁyn

0 n!
Now by comparison of both sides we have

n-1

U,n) = {( Tle when n is odd
0, otherwise

from (18), (20) and (16), we have

n-1
U(m,n) = {(_nljn.z , when m is even and n is odd

0, otherwise

Now making use of (21) in (3), we obtain

n-1
=1

u(x,y) = Em=135.. Xn=024.. X" V"

n-1

= (Z%:Ls,s...xm) <Z$1°=o,2,4... (_1)Ty">,

m! n!

= coshxsiny
C. Solve: Upx + Uy, =0, 0<x, y<m
With Neumann boundary conditions

u,(x,0) =0, uy(x,m) = 2cos2xsin2m

U, (0,y) =0, u,(m,y) =0

53
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(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Now the differential transform of (23) gives
m+1)(m+2)Um+2,n)+(n+1D(n+2)U(mn+2)=0 (25)
From (3) and (24) we obtain
Uy (X, ) = Ym0 Lmeon " U (M, n)x™,

= 2 cos 2x sin 2m,

. —1%2 m o (mT
=y SRR g COT (26)

m! n!

On comparison after the changing the index nwe have

m
(_ 1)72m+n+1

Umn+1) =

(n+1)min! ’
(_1)%2m+n
and U(m,n) = {T’ when m and n are even (27)
0, otherwise

as a result. Now putting (27) in (3), we obtain

m
(-1)z2mtn m.n

w(x,y) = Xim=0,24.. 5n=0,2,4... XY
o CDZEO™) (v @)
= <2m=o,2,4...Tx> (Zn=0,2,4... 3:! )
= c0S 2X C0S 2y, (28)
D. Solve: Uy T Uy, =0, 0<x, y<m (29)

With Neumann boundary conditions

uy(x,0) = cosx, u,(x,m) = coshm cosx,

uy(0,y) =0, uy(m,y) =0 (30)
Taking the differential transform of (29) we have

m+1)(m+2)Um+2,n)+(n+1)(n+2)U(mn+2)=0 (31)
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From (3) and (30), we obtain

1y (6,0) = 2o Ulm, Dx™ = cosx = ¥, C2 (32)
Now by cosine series comparison, we obtain
(-7 .
Um 1) =" when m is even (33)
0, otherwise.
Also, from (3) and (30) we have
u(0,y) = Xn=o UL, n)y™ = 0, (34)
which gives
U(l,n) =0 (35)
Substituting (33) and (35) in (31), we have
17 : .
Uim 1) = { — when m is even and n is odd (36)
0, otherwise.
Making use of (36) in (3), we get
o o (D2
u(x,y) = Xm=024.. Xn=135.. min myr
oo -1 % m o n
= <Zm=0,2,4...%> (Zn:1,3,5...%)!
= cosxsiny (37)

Conclusion

It has been observed in above examples with different conditions that
differential transform scheme is very effective to achieve the exact solutions of
Laplace equation and maintain the fast convergence rate with minimization of
iterations. Also this method reduces the required calculation to achieve the desired
output in comparisons to the other well-known available schemes. Hence we
conclude that this method is very effective and perfect for the solution of different
types of practical problems of the different fields of engineering and physics.
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Abstract: In this paper, we present a review study mathematical induction
and pigeonhole principle with applications which have importance in the
theory of automata.

Keywords: Mathematical Induction, Strong Induction, Pigeonhole
Principle, Extended Pigeonhole Principle.

Mathematical Subject Classifications (2010) No.: 46A13, 03B48, 03D70,
05-XX.

1. Introduction

The very first use of mathematical induction was seen in the works of a
sixteenth century mathematician named Francesco Maurolico (1494-1575). In his
book Arithmeticorum Libri Duo, he presented various properties of integers and their
proofs [1, 2].

Mathematical induction can be used to prove statements that assert that
P(n) is true for all positive integers n, where P(n) is a propositional function. A
proof by mathematical induction has the following three parts,

Steps of Mathematical Induction

> Basis Step: Verifying the preposition P (1) is true.
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» Induction Hypothesis: Assuming it to be true for all positive integer P(k) .
> Inductive Step: Proving it is also true for P(k +1).

1.1 Types of Induction [1, 2]

1.1.1 Strong Induction: Strong mathematical induction assumes
P(1),P(2),...P(k) areall true and uses them to show that P (k +1) is also true.

Basis Step: We verify that the proposition P (1) is true.

Inductive Step: We show that the conditional statement
[P(l) AP(2)A... P(k):| — P(k +1)is true for all positive integers K .

1.1.2 Recursive Induction: We use two steps to define a function with the
set of hon-negative integers as its domain.

Basis step: Specify the value of the function at zero.

Recursive step: Give a rule for finding its value at an integer from its values
at smaller integers.

1.1.3 Generalized Induction: Under generalized mathematical induction we
use a property i.e. lexicographic ordering where an ordered pair of non-negative
integers N x N specify that (X, ;) is less than or equal to(X,, y, ) if either x, <X,
or X, =X,and Yy, <Y,; has the property that every subset of NxN has a least
element. This implies we can recursively define the termsa, , with me N and

neN .
2. Pigeonhole Principle [1, 2]

If K is a positive integer and k+1 or more objects are placed into k boxes,
then there is at least one box containing two or more of the objects.
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Figure 2: There are more pigeons than the pigeonholes

Generalized Pigeonhole Principle

The pigeonhole principle stated that there can be must be at least two objects
in the same box when there are more objects than boxes. Generalized pigeonhole

principles states that if N objects are placed into K boxes, then there is at least one
box containing at least [N / k] objects.

3. Applications of Induction [2, 3]

3.1 People Telling Secrets

Figure 3: People Telling Secrets
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3.2 Dominoes

Figure 4: lllustrating How Mathematical Induction Works Using Dominoes

3.3 Checkerboard: Suppose n be a positive integer. Show that every 2" x 2"
checkerboard with one square removed can be titled using right triominoes, where
these pieces cover three squares at a time, as shown in figure.

Figure 5: A Right Triominoes

Solution:
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Figure 6: Tiling 2x 2 Checkerboards with One Square Removed

3.4 Painting

Figure 7: A painting showing recursive induction

3.5 MatLab Program for Induction
3.5.1 Programs for Factorial [4]

I: Nn=9;
%use i1teration
=1;
for 1=1:n
f=F*i;
end
disp("The factorial is:")
disp(P)
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Il: function fout = fact_1 (n)
X = n;

for 1=n-1:-1:1

X=X*1

end

fout=x

end

I1l: function fout = fact_2(n)
%n=5;
f=n;
while n>1
n=n-1;
f=F*n
end
T
%disp([*nI="T])

end

IV: function fout = fact(n)

3.5.2 Program for Fibonacci Series [5]

function fout = fact(n)
x=1;
for 1=1:n
X=X*1
end
fout = X
end

4. Applications of Pigeonhole Principle [1, 2]

» During a month with 30 days, a baseball team plays at least one game a day,
but no more than 45 games. Using pigeonhole principle, there must be a
period of some number of consecutive days which the team must play
exactly 14 games.
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» Using pigeonhole principle, among any n+1 positive integers not exceeding
2n there must be an integer that divides one of the other integers.

» The sequence 8,11,9,1,4,6,12,10,5,7 contains 10 terms. Note that
10=3%+1. There are four increasing subsequences of length four,
namely, 1,4,6,12;1,4,6,10 and 1,4,5,7. Using pigeonhole
principle, there is also a decreasing subsequence of length four,
namely, 11,9, 6, 5.

4.1 MatLab Program for Pigeonhole Principle Birthday Paradox

function [A] = birthday(n)
A = ones(n,1);

p=1;
for i1=1:n
A(1) = 1-p;
p=p* (365-i1)/(365);
end
end

taking value of n = 100

we obtain the graph in Figure 8
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5. Conclusion

In this paper, we demonstrated mathematical induction and pigeonhole
principle with applications in the form of review study. The concept of proof by
mathematical induction and pigeonhole principle are one of the most powerful tools
for proving statements in discrete mathematics.
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1. Introduction

For defining the algebraic structure of the set of natural number
N = {1, 2, 3....}, to each pair a, b of natural numbers, there corresponds a natural
number denoted by a + b the sum of a and b is called the Addition Composition and
a natural number denoted by ab the product of aand b is called Multiplication
Composition in the set of natural numbers. The fact of these existing in the set N of
natural numbers these compositions is referred as possessing an algebraic structure
[1, 7].

1.1. Basic Properties of the Two Compositions in N
1.1.1 Commutatively of addition and multiplication

a+b=Db+a; ab=ba, Vab €N.
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1.1.2 Associativity of addition and multiplication
at+(b+c)=(@+b)+c a(bc)=(ab)c,Va,b,c €N.
1.1.3 Cancellation laws
at+c=b+c>a=b; ac=bc=a=b.
1.1.4 Distributivity of addition with respect to multiplication
a(b+c)=ab+ac,Vab,c €N.
1.1.5 Multiplication property of 1
a.l=aVac€N.

Because of this property, 1 is called the Multiplicative Identity.

1.2 Order Structure of the Set N of Natural Numbers: The relation for
given any two different natural numbers a,b, we have, a >b < b <a, i.e,
a is greater than b < b is smaller than a.

The relation “‘greater than’ between different natural numbers is known as an
‘Order relation’ in the set of natural numbers and the presence of this relation in N is
referred to as N having an order structure [2, 7].

1.2.1 Properties of the Order Relation: Transitivity of the relation as

[a>b]A[b>c]=>a>c.

This property is referred to as the transitivity of the order relation.

1.3 Compatibility of Algebraic Structure with Order Structure

1.3.1 Compositions separately.

1.3.2 Compatibility of the order relation with the addition composition

a>b =a+c>b+c.

1.3.3 Compatibility of the order relation with the multiplication composition

a>b=ac > bc.
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As a result of the last two properties, we can say that the order structure in N
is compatible with its algebraic structure or vice - versa.

1.3.4 Principle of finite induction
Let n € N and let P(n) denotes a statement pertaining to n. if
(@) P(1)istrue, i.e., the statement is true forn = 1 and

(b) P(n)istrue = P(n+ 1) istrue, then P (n) is true for every natural
number n.

We say that the set N of natural numbers satisfies the principle of finite
induction [3, 7].

1.4. Inverse Operations and Corresponding Limitations
(Subtraction and Division in N)

1.4.1 Subtraction: Given two members a,c of N, does there exist x € N
suchthata + x = ¢?

It is easy to see that x, if it exists, is unique. This is a consequence of the
cancellation principleinasmuchas a+x=a+y=x=y.

Also x existifand only if ¢ > a.
For example, if a=5, c =8 sothat c =8 >5 = a, we have x = 3.

If, however, we take a = 5,c = 3 so that ¢ = 3 < 5 = qa, there exists no
x € N suchthat5 + x = 3.

Incase ¢ > a, so that there exists x such that a + x = ¢, we denote this x by

The symbol ¢ —a denotes the natural number which when added to
a gives c. This symbol is meaningful if and only if ¢ > a.

1.4.2 Division: Given two natural numbers a and ¢, does there exist a natural

number X such that
ax = ¢?



68 JITENDRA BINWAL AND PREETI SHEORAN

The number x, if it exists, is unique. This is a consequence of the
cancellation law which states that ax = ay = x = y.

Also the number x exists if a is divisor of c.
For example, if a = 3,c = 15 so that 3 is a divisor of 15, we have x = 5.

If, however, we take a =3,c = 14 sothat a =3is not a divisor of
¢ = 14, there exists no natural number x such that 3x = 14.

In case a is a divisor of ¢ so that there exists x such that ax = ¢, we denote
this x by ¢ + a.

From above, we see that if a,c be two given natural numbers, the symbol
¢ —ais meaningful if and only if ¢ is greater than a and the symbol ¢ + ais
meaningful if and only if a is a divisor of ¢ [4,7]

2. The Set | or Z of Integers

The set I or Z of integers consists of the number...........,—3,-2,-1,0,1,2,3, ... ... ,
so that we have Z =1 = {0,—-1,1,—-2,2,—-3,3,—4,4, ..........}. In this section
a, b, c etc., referred to arbitrary members of I, viz., arbitrary integer.

2.1 Algebraic Structure of the set | of integers
2.1.1 Addition Composition in I: Addition composition in I which associates
to each pair of members a, b of I a number called their sum and denoted by a + b
has the following basic properties:
(1) a+b=b+aVab €. Commutativity.
(2 (a+b)+c=a+ (b+c)Va,b,c €1. Associativity

(3) The number 0 € I'is such thata + 0 = a V a € 1. The number ‘0’ because of
this relation is referred to as the additive identity.

(4) Toeach a € I there corresponds another, viz., —a € I such that
a+(—a)=0.

The integer, —a, is said to be the negative of the integer a or the
additive inverse of a.
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Inverse of addition: The equation a+x=b, a€l, bel admits of a
unique solution x, viz., b —a € I.

Subtraction in I: It will be seen that subtraction is always possible in I, i.e.,

given any two members, a,b of I,a - b is again a member of I forall a, b so that
here we have a property of I which does not hold for N[5,7].

Example: Deduce from the above properties of the addition composition in I,
that the cancellation law holds for addition in I, viz.,thata+c=b +c = a = b.

2.1.2 Multiplication composition in I': Multiplication composition in I which
associates to each pair of members a,b of I a member of I denoted by ab and
called their product has the following basic properties:

(1) ab =ba Vv a,b € 1. Commutativity

(2) (ab)c = a(bc)V a,b,c € I. Associativity

(3) The number ‘1’ € I in such that a.1 = a Va € I. Because of the property 3,
the integer ‘1’ is known as the multiplicative identity.

(4) [ab=ac ANa+# 0] = b = c. Cancellation law for multiplication.
The following law relates the two compositions:
a(b+c)=ab+acVa,b,c €1l Distributivity.
We refer to this law by saying that Multiplication distributes addition in I .

Ex. Deduce from above the following basic properties of addition and
multiplication in I.

1) ab=0sa=0vVvb=0.

(2) a(=b) = —(ab), (=a)(b) = —(ab), (=a)(=b) = ab.

2.2 Division in I (Factors and multiples): If a, b are two non-zero members
of I, we say that a is a factor of b if there exists ¢ € I such that b = ac. It will be
seen that b + a is meaningful if and only if a # 0 and a is a factor of b or that a is a
divisor of b.



70 JITENDRA BINWAL AND PREETI SHEORAN

2.3 Order Structure of I: Given any two different members a,b € I, we
have eithera > b or b > a.

The “Greater than’ relation is transitive inas muchasa >bAb >c¢c = a > c.
Also a>b =a+c>b+c
and a>b,c>0 = ac > bc.

Thus, the system I of integers has, what has already been referred to, an
order structure compatible with its algebraic structure.

Ex. Itisclearthata > b Ac < 0= ac < bc.
3. The Set @ Of Rational Numbers

The rational numbers are of the form p/q where p, q are arbitrary integers
withg # 0.

3.1 Algebraic structure of Q: Asin I, the set Q of rational numbers admits
of two compositions, viz., addition and multiplication. We give below the basic
properties of these two compositions [6, 7].

Here a, b, c etc., denote arbitrary members of the set Q of rational numbers.

1. The addition composition is commutative, associative, admits of an additive
identity, viz., 0 and each element a admits of an additive inverse, viz., —a.

2. The multiplication composition is commutative, associative, admits of a
multiplicative identity, viz.,1 and each non-zero elementp/q admits of
multiplicative inverse, viz., q/p.

3. Multiplication distributes addition.

Let a, b be two given rational numbers. We write

a—b=a+ (-b).

Thus, a — b is obtained by adding to a the additive inverse - b, of b. Also, if
b+#0, wewritea+~b=a (%) so that a <+ b is obtained on multiplying a with the

.. . . 1
multiplicative inverse > of the non-zero b.
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Ex. 1: Itis clear that a(b — c) = ab — ac.
ab=0a=0vb=0.
a(=b) = —(ab), (=a)(b) = —(ab), (—a)(=b) = ab.

Ex. 2: It is clear that show that if a # 0, the equation ax + b = 0 admits of a
unique solution in Q; giventhata € Q, b € Q.

It is also clear that if a =0, b # 0, the equation has no solution and
if a =0, b =0,every member of Q is a root of the equation.

Ex. 3: Itisclearthatab = ac Aa+0 = b =c.

3.2 Order Structure of Q: Given any two different rational numbers a, b,
we have eithera > bor b > a.

Moreover, the order relation is transitive and compatible with the addition
and multiplication compositions, i.e., we have

lL.a>bAb>c =>a>c.
2.a>b=a+v>b+c.
3.a>bAc>0 = ac > bc.
Ex. 1:(a) Itisclearthat x > yAz < 0 = xz < yz.
(b) Itisclearthat x = 0V x € Q.

Ex. 2: Given two different rational numbers a, b such that a < b; it is clear
that there exist an infinite number of rational numbers ¢ such that a < ¢ < b.

4. Attributes of Real Number

A set K of numbers containing at least two members is called a field, if it is
such that when a,b are arbitrary members of K, then a + b,ab,a — b are also
members of K and if b # 0,then a = b is also a member of K. It will be seen that
while the set Q of rational numbers is a field, the sets I and N are not fields [4.7].

Ex: It is clear that no proper sub—set of the field of rational numbers is a
field.
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Since the set Q of rational numbers, besides having a field structure, also has
an order structure compatible with its field structure, we say that the set Q of rational
numbers is an ordered field.

We now demonstrate the basic properties of the set of the set R of real
numbers. These properties will be describes in three stages. The set of properties
included in the first stage will describe the Field Structure of the set of real numbers.
We shall then proceed to describe at the second stage the Order structure of the set of
real numbers as an Ordered field. It will be seen that the set of rational numbers and
the set of real numbers are both ordered fields. At the third stage, we shall describe a
property of the ordered field of rational numbers. This property will be referred to by
saying that the Field of real numbers is order-complete. On the basis of the properties
of the set of real numbers enumerated in the three stages, we say that the set of real
numbers is a complete ordered field. The set of rational numbers is an ordered field
alright but not a complete ordered field. Every property of the set of real numbers can
be derived as a consequence of the basic character of the set of real numbers as a
complete ordered field. The character of the set of real numbers as a complete
ordered field will now be described [7].

4.1 Field Structure (Addition Composition): To each ordered pair of real
numbers, there corresponds a real number called their sum and denoted by a + b.
This process of associating to each ordered pair of real numbers a real number called
their sum is known as addition composition in the set. In the following a, b, c, etc.
denote real numbers. This addition composition has the following properties:

41a+b=b+alab € R. [Commutativity]
412(a+b)+c=a+ (b+c) [abc € R. [Associativity]

4.1.3 There exist a real number, viz., ‘0’ such that [ a € R.
a + 0 = a [Existence of additive identity]

4.1.4 To each real number a there corresponds a real number, viz., —a , such
that a + (—a) = 0 [Existence of additive inverse]

4.2 Field Structure (Multiplication Composition): To each ordered pair
a,b of real numbers, there corresponds a real number called their product and
denoted by ab. This process of associating to each ordered pair of real numbers a real
number called their product is known as multiplication composition in the set. This
multiplication composition has the following properties:

421ab=Dba [a,b € R. [Commutativity]
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4.2.2 (ab)c = a(bc) [a,b,c € R [Associativity]

4.2.3 There exists a real numbers, viz., ‘1’ such that [ a € R.
a.1 = a [Existence of multiplicative identity]

4.2.4 To each real number a # 0, there correspond another, viz., 1/a such
that a (2) =1 [Existence of multiplicative inverse]

There is also a law known as distributive law which relates the two
compositions, viz.,

a(b+c)=ab+ac [a,b,c €R. [Distributive law]

The fact of the set of real numbers admitting of two compositions satisfying
the nine properties mentioned above is referred to as the set of real numbers having a
field structure.

4.3 Applications: One of the most common ways of obtaining a discrete-
time signal is by sampling a continuous-time signal. The discrete-time signal
obtained by sampling the continuous-time signal can be denoted by
x(nT) = x(t)¢=nr, Where T is called the sampling period and n is an integer
ranging from —ooto + oo called the time index [8]. The instants at which the
signal appears are called sampling instants. For convenience, we write
x(nT) = x(n),n = 0,%1,%2,..Thus, a discrete-time signal is represented by the
sequence of numbers ... x(—2),x(—1),x(0), x(1), x(2), ...

We use real numbers for discrete-time signal as sequence:
x(m) = . x(=3), 22, x(-1), 1, x(1), x(2), x@3), .} as
x(n) ={..,—2,1.3, %-3,4,-1,2,1,..} means

x(-2)=-2,x(-1)=1,3,x(0) = 2,x(1) = =3.4,x(2) =-1,x(3) = 2,x(4) = 1.

FFT algorithms are based on the fundamental principle of decomposing the
computation of discrete Fourier transform of a sequence of length N into
successively smaller discrete Fourier transforms. There are basically two classes of
FFT algorithms. They are decimation-in-time and decimation-in-frequency. In
decimation-in-time, the sequence for which we need the DSFT is successively
divided into smaller sequences and the DFTs of these subsequences are combined in
a certain pattern to obtain the required DFT of the entire sequence. In the decimation-
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in-frequency approach, the frequency samples of the DFT are decomposed into
smaller and smaller subsequences in a similar manner [8].

5. Conclusion

In this paper, we demonstrate in the form of review study that the property of
the set R of real numbers, viz., which every non-empty sub-set of R which is
bounded above admits of least upper bound, is referred to as its order-completeness
property of real numbers. It will be also seen that the Archimedean property of R is a
consequence of the order-completeness property of R. Attributes of real numbers are
used in digital signal processing, to describe the different types of signals, fast
Fourier transform algorithm, DIT-DIF FFT algorithm etc.
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