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Thomas Koshy | GIBONACCI EXTENSIONS OF
A CATALAN DELIGHT WITH
GRAPH-THEORETIC CONFIRMATIONS
REVISITED

Abstract: We explore the extension of the Catalan-like identity

GpshIn_k — g2 = (=1)""* 1 f2[6] and its ramifications to the Pell,

Jacobsthal, Vieta, and Chebyshev families, and give graph-theoretic
confirmations of the Gibonacci and Jacobsthal versions.

Keywords: Fibonacci Numbers, Pell Numbers, Jacobsthal Vieta, and
Chebyshev Families, Graph-Theoretic Confirmations.

Mathematical Subject Classification (2010) No.: 05A19, 11B37, 11B39,
11Cxx.

1. Introduction

Eztended gibonacci polynomials z,(z) are defined by the recurrence
z,(z) = a(x)z,_,(z) + b(z)z,_o(z), where =z is a complex variable;

a(x), b(z), zy(z) and z/(x) are arbitrary complex polynomials; and n > 2.

Fibonacci, Lucas, Pell-Lucas, Vieta, Vieta-Lucas, and Chebyshev
polynomials belong to the family {zn (x)}, they are denoted by f (z), [, (z), p,(z),

q,(x), J,(x), V,(x), v,(z), T, (z), and U, (z), respectively [7, 8]. The nth
Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal Lucas numbers
are denoted by F,, L,, P,, Q,, J,, and j, , respectively; they are given by
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F, =10, L, =
and j, = j,(2),[7,

THOMAS KOSHY

ln (1) > P?L = pn (1) = fn (2) > 2Q7L = qn (1) = lTL (1) > Jﬂ
8].

These subfamilies are linked by the following relationships [1, 7, 8]:

(@) = "2 (1) Julw) = 2%, (1))

V,(2) ="', (~iz) v, (2) = 1", (—ix)
Vn(x) = Un71($/2) /Un(x) = 2Tn(x/2)’
where i = V1.

In the interest of brevity, clarity, and convenience, we omit the argument in

the functional notation, when there is no ambiguity; so z, will mean z,(z); we also

let g,=f, or i, b,=p, or q,, ¢, =J,(x) or j, (z), and correspondingly,
G,=F,orL,, B, =P or @, and C, =J, or j,.

2. Gibonacci Extensions of a Catalan Delight

The charming identity [4]

2 —k 2
F;thkF;Lfk - Fn = (_ 1)71 +1Fk’

has a gibonacci extension [6, 7], where n > k :

where

—k
TnskInr — 0o = (1" pufl

1 it g,=1

= plz) = .
) —(*+4) i g, =1,

This identity has a delightful extension [6]:

n—k+1

Im+k9n—k — ImIn = (_ 1) Mfkfmfn+k :

(M
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We can establish this using the Binet-like formulas

L= u and I, =a" + 8",
a—pf

where o = a(z) and 3 = 3(z) are the solutions of the equation * —at —1=0.

For example,

lmln _i_(_l)nfk(xQ +4)ﬁ/‘fm_n+k — (Oém +/8m)(05n +/8n)
+ (aﬂ)nfk(ak - I@k’)(amfnJrk _ 16mfn+k>

_ am+n +am+k6n—k +an—kﬁm+k +ﬁm+n
_ (am-‘rk + ﬁm-i-k)(an—k +ﬁn—k)
= lm+kln—k .

This gives identity (1) when ¢, =1, . Its Fibonacci counterpart follows
similarly.

It follows from identity (1) that
G 1Got = GG, = ()" " U(RE, )
b iiboi = bby = (D" 0 22)pp g
BBy — BB, = (_1)n7k+lﬂ(2)PkPm—n+k :
Identity (2) with G, = F,, is the d’Ocagne identity [4, 6].
Next we explore the consequences of identity (1) to the Jacobsthal family.
2.1 Jacobsthal Implications: Replacing = with 1/ Jz in identity (1), we get

Im+kIn—k = Im9n = (_1)nik+1u(1/\/z)fkfm—n+k ’ (3)

where g, =g, (1/Vz).
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m+n—2)/

Suppose g, = f,. Multiplying the resulting equation with a ?, we get

Jerk(x)Jnfk(x) - Jm (x)‘]n (‘T) = - (_l‘)nik‘]k (:I")JmfnJrk(x) .

Likewise, when ¢, =1, , multiplying the corresponding equation with

n >

m+n)/2

al yields
Gk (@) dn (@) = G (@) (@) = (=2)" " (42 + DI () g1 (@)
Combining the two cases, we get
Crn+kCn—k — CmCn = _(_m)niky(x)JkJmfnJrk > (4)
where
1 it ¢, =J,(z)
v(z) = . ,
—(4z+1) if ¢, =j,(2).
This can be confirmed independently using the Binet-like formulas for J, ()
and j,(z).
Identity (4) implies
CerkCnfk - Can = — (—2)717]f VJkJm7n+k N
1 it ¢,=J,
where V= . .
-9 it ¢, =7,

2.2 Vieta and Chebyshev Implications: Identity (1) has Vieta and
Chebyshev consequences as well. In the interest of brevity, we omit the details.

d +kdn—k - dmdn = 6(‘7”)‘/kvm—n+k ’

m

where
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Since U, (z) =V,

T

+1(22) and 2T, (z) = v,(2z), it then follows that

Crm+kbn—k — €l = (x)Uk—lUm—n—}-k—l ’

where

Next we confirm identities (1) and (4) using graph-theoretic tools.
3. Graph-theoretic Confirmations
In order to confirm identity (1), first we present some basic facts.

Consider the weighted digraph D, with vertices v; and v, in Figure 1. A

weight is assigned to each edge.

Figure 1: Weighted Digraph D,

Its weighted adjacency matrixis the (Q-matrix

where ) = Q(z) . It then follows by induction that

fn+1 fn

Q, N fn fn—l

)

where n >1 [3].
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A walk from vertex v, to vertex v; Is a sequence

U — € — Uiy — - —V;_ —e;_y —v; of vertices v, and edges ¢;,, where edge ¢ is

incident with vertices v, and v, . The walk is closed if v; = v;; otherwise, it is

open. The length of a walk is the number of edges in the walk. The weight of a walk
is the product of the weights of the edges along the walk.

The following theorem provides a powerful tool for computing the weight of
a walk of length n from v; to v, [2, 3].

Theorem 1: Let A be the weighted adjacency matriz of a weighted
and connected digraph with vertices v, vy, ..., v,. Then the ijth entry of
the matriz A" gives the sum of the weights of all walks of length n from wv; to

v;, where n > 1. m]
The next result follows from this theorem.

Corollary 1: The ijth entry of Q" gives the sum of the weights of all

walks of length n from wv; to v; in the weighted digraph D, where

1<, j<n. O

Consequently, the sum of the weights of all closed walks of length n
originating at v, is f,, and that of walks of length n originating at v, is f,_;. So

the sum of the weights of all closed walks of length nis f, ., + f,_; =1,. These
facts play a pivotal role in our graph-theoretic proofs.

3.1 Proof of Identity (1): Let A, B, C, and D be the sets of closed walks of
lengths m+k—-1, n—k—-1, k-1 and m—-n+k—-1 from v to v,
respectively. The sum S; of the weights of pairs (v,w) in AxB is given by

Si = fuirfo_i»and the sum S, of the weights of elements (v,w) in C'x D is given
by
SZ = f}ffm—n-&-k - So Sl + (_1)nik+152 = fm+k’fnfk + (_1)nik+1f}€fmfn+k :
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We will now compute this sum in a different way. Let (v, w) be an arbitrary

element of A x B. If both v and w begin with a loop, the sum of the weights of such
pairs is (zf,,, ;1) (@f, p_1) = 2 foip1fo_p_15 if © begins with a loop and w does
not, the corresponding sum is (xf,, . 1)1 -1-f,_; o) = af, 1 _1f,_r_o: if v does

not and w does, the corresponding sumis (1-1- f ., o)(xf,_1_1) = zf, p_ofr1
and if neither does, the resulting sum is
(1 -1 ferk’fQ)(l -1 fnfka) = fm+k72fnfk72 .

Thus, by identity (1), we have

2
Sl =T m+k71fnfk’71 + xf;n+k71fn7k72 + xferk’fo;Lfkfl + fm+k72fn7k72
= (ZE m+k—1 + fm+k72)($fnfkfl + fnfk72)
= ferkfnfk

= fudy D" ff ik

To re-compute S, , let (v,w) be an arbitrary element of C' x D . If both v and

w begin with a loop, the sum of the weights of such pairs is
(@fy1) @ pin1) = $2fk71fm7n+k71; if v does and w does not, the corresponding
sum is (xf,_1)(L-1- f,_1n9) = @1 f_pir_os if v does not and w does, then

the sum is  (1-1- f,_o)(af,_in—1) = Tfy_ofyu_nir_1s and if neither does, then

the sumis (1-1-fi o)(1-1- fo_ir2) = ficofn—nsr—2- S0

Sy = @ fyrfunitot + Wi fynsio + Thoahy ko1 T fioofu—nir
= (@fi1 + fim2) @ik + fnontr—2)
= fkfm—n+k-
Thus,

Sl + (_1)nik+152 = [fmfn + (_ 1)nikﬁ§fmfn+k] + (_1)nik+1fkfmfn+k = fmfn .
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Equating the two sums yields identity (1) when g, = f,, as desired.

Now let g, =1,. Let A and B be the sets closed walks of length m + &
originating at v; and v,, respectively; and C'and D the sets closed walks of length

n — k originating at v, and wv,, respectively. Then AU B and C UD denote the
sets of closed walks of lengths m +k and n —k% in the digraph, respectively.
The sum S, of the weights of the pairs (v, w) of walks in (AU B) x (C'U D) is given

by Sy =1l,4l,_r.- Let R and S be the sets of closed walks of lengths
k—1 and m—-n+k—1 from v, to v, respectively. The sum S, of the

weights of elements (v, w) in R xS is givenby Sy = f,.f,,_, ., . Then

Sy — (0" @ + )y = by ply e — (1" @ D) oS -

We will now compute this sum in a different way. To this end, let (v, w) be
an arbitrary element of (AU B)x(C U D).

Case 1: Suppose v € A and w € C'. If both v and w begin with a loop, the

sum of the weights of such pairs (v,w) is (zf,,, ;) (zf,_;) = z°

otk fui > 1f v does
and w does not, the corresponding sum is (zf,, ;. )(1-1-f 1) = af, 0 fo_p_15 if
v does not and w does, the resulting sum is (1-1-f ., ()(@f,_1) = of, o1 fu_ps

and if neither does, the corresponding sum is
-1 fm+k—1)(1 1 fog) = Jnsi—to—p—1-

Case 2: Suppose v € A and w € D. If v begins with a loop, the sum of the
weights of such pairs is (zf, ;. )f,_r_1 = @f 1 fo_r_15 and if v does not, the

corresponding sumis (1-1- f, p )fy—p—1 = furh—1fo—i—1-

Case 3: Suppose v € B and w € C'. If w begins with a loop, the sum of the
weights of such pairs is f, ., (%f,_;) = f, ;_1f,_;; and if w does not, the

corresponding sumis f . (L-1-f ;)= fnfoi1-
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Case 4: Suppose v € B and w € D . The sum of the weights of such pairs is

fm+k71 n—k—1-
Combining the four cases, by identity (1) we have

Sy = @hyip + Forh—0) @hog + fomimr) + @hgr + o) fimiaa
+ fm-‘rk—l(z n—k + fn—k—l) + fm—}—k—lfn—k,—l

= (f;n+k+1 + fm+k71)(fnfk+1 + fnfkfl)
= lm+kln—k

= Zmln + (_1)n—k(x2 + 4)fkfmfn+k :
With the sets R and S above, we have Sy = f.f,,.,_; - Thus,
S — (1" @ +4)S, = [Lly + (D" @ + A fi ]
_(_1)nik(x2 + 4)fkfm—n+k = lmln :
This, coupled with the earlier sum, gives the desired result.
Next we confirm the Jacobsthal delight in (4) using graph-theoretic tools.

4. Graph-theoretic Confirmation of Identity (4)

Consider the weighted digraph D, in Figure 2 with vertices v; and v,. Its
weighted adjacency matrix is given by

Vi Vs
1

Figure 2: Weighted Digraph D,

1 =z

M = .
1 0
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Since,
Jopr(@) @, (2)

M" =
Jn(x) ‘TJn—l(x)

Y

by induction [5], it follows that the sum of the closed walks of length n from v, to
itself is J, (), and that from v, to itself is z.J,_;(z). Consequently, the sum of

the weights of all closed walks of length nis J,, ,(z) + zJ,_;(z) = j,(z).

We are now ready to confirm identity (4). We begin with ¢, = J, (). Let A,
B, C,and D be the sets of closed walks of lengths m +k—1, n—k—1, k—1, and
m—n+k—1 from v to v, respectively. The sum S| of the weights of pairs of
walks in Ax B is S; =J,, . (®)J,_.(2); and the sum S, of the weights of pairs of
walks in C'x D is Sy = J(2)J,,_, (). Then

Sl + (_x)n_kSZ = m+k($)‘]nfk(l‘) + (_x)n_kjk (l‘)‘]mfnqtk(l‘) .

We will now compute this sum in a different way. To re-compute S;, we let
(v,w) an arbitrary element of A x B. If both v and w begin with a loop, the sum of
the weights of such pairs is [1-J,, ;. (@)][1-J,_;_(@)] = J, (@), __1(2);
if v does and w does not, the corresponding sum @ is
L dpra@)[x-1-J, o) = 2, _1(2)],,_1_o(2); if v does not and w does,
the corresponding sum is [z-1- J,, . »(@)][1-J, 4 1(@)] = 2,y 5 5(0)], 4 4()
and if neither does, the resulting sum is
(o1 Ty g @]z - 1+ T, o (2)] = & 4 5(@),_jo() . Then, by identity

(4), we have

Sy = [Jppa (@) + 2 o (D[ _1 () + 2T, o (2)]
= m+k(l‘)‘]mfk(l‘)

= Jm (z)‘]n (:L’) - (_x)nik‘]k:(x)‘]mfnJrk(x) :
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We will now re-compute S, . Let (v,w) be an arbitrary element of C'x D .
If both v and w begin with a loop, the sum of the weights of such pairs is
- Jp (@)1 T pir(@)] = 1 (2)] _py—1(2) 5 if v does and w does not, the
corresponding sum is [1-J; ((2)|[z-1-J,,_, 1 o@)] =2 _1(2)],,_ 1p_a(2);
if v does mnot and w does, the corresponding sum @ is
-1 Jp_o@)][1-Jp_pina()] =2t _5(x)J,,_, x_1(x); and if neither does, the
resulting sum is [z 1-J o(@)][z-1- T, o po(@)] = 22T, o(@) ik _o(T).
Then

Sy = [J1(@) + @y o ()] [T -1 (2) + 2,0 (7)]
= Jk(x)‘]mfn%»k(z) .
Thus,
S+ (=) Sy =[], (@), (@) = (—2)" T (@), k()]

+(=2)" (@) k(@)
=y (@), (2) .

Equating this with the earlier sum yields identity (4) with ¢, = J, ().

Finally, consider the case ¢, = j,(z). Let A and B be the sets of closed
walks of length m + £k originating at v; and v,, respectively; and R and S the sets

closed walks of length n —k originating at v; and w,, respectively. Let C'and D
denote the sets of closed walks of lengths ¥ —1 and m —n + k — 1, originating at
v , respectively. The sum S; of the weights of pairs of walks in (AU B)x (RUJS)

is given by S} = j,,,1.(2)j,_;(z); and the sum S, of the weights of pairs of walks
in C X D iS SQ = Jk(I)J"L_”_i_k(x) . SO

S = (x +1)(=2)" "8y = fpyp(#)ju i (2) — (2 + D) (=) Ty (@)1 ().

We will now compute this sum in a different way. Let (v, w) be an arbitrary
element of (AU B)x(RUS).



160 THOMAS KOSHY

Case 1: Suppose v € A and w € R. If both v and w begin with a loop,
the sum of  the weights of such pairs (v, w) is

LTy (@)]L- T, (@) =, (@), _p(2); if v does and w does not, the
corresponding sum is [1-J, ()] -1-J, ;_(z)] =], 1 (2)],__(z); if v
does not and w does, the resulting sum is

[-1-J,, g (@)]1-J, ()] = 2], _(x)],_(x); and if neither does, the

corresponding sum is [z - 1-J,, ;1 (@)|[z-1-J, (@) =2, 1 (2)], 1 (2).

Their sum is
(i (@) + 2 @i (@) + 2,1 (2)] = Ty 1 (2) i (2) -

Case 2: Suppose v € A and w € §. If v begins with a loop, the sum of
the weights of such pairs is [1-J, . (2)][z],__(z)] = 2], . (2)],_1_1(2);
and if v does not, the corresponding sum is

[z 1 T @)[ad, 1 (2)] = I2jm+k—1(x>‘]n—k—1(x) - Their sum is

i1 (®@) + 2Ty g @[, 1 (0)] = 200 (€)1 (2) -

Case 3: Suppose v € B and w € R. If w begins with a loop, the sum of
the weights of such pairs is [zJ, . (2)][L-J,_p(z)] = 2], 4 (2)],_;(2);
and if w does not, the corresponding sum is
(2 s pr(@)][z -1 T,y (2)] = $2Jm,+k71(l‘)‘]nfk71(l‘) - Their sum is

TS 1 (@) [T p () + 2, ()] = 2y g (2) g (2)

Case 4: Suppose v € B and w € S. The sum of the weights of such pairs is

[T o1 (@)][2 1 (2)] = $2Jm+k71(37)<7n7k71 (z).

Combining the four cases, by identity (4) we have
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Sy = g1 (@) + 2oy (O] [Ty gpa (2) + 2T,y (2)]
= Jmrk (@) i (7)

= G (@) (@) + (42 + 1) (=2)" " Ty (@) (3)

Earlier, we found that S, = J;.()J,,_, ().

Consequently,

Sy — (dz + 1) (=2)" 752 = [j,,(2)], (2) + (42 + 1) (=2)" " T (2)] 44 ()]
- (41‘ + 1) (7$)nikjk;($)‘]mfn+k;(x)

= jm (x)]n (:E) N

Equating the two sums yields the desired result.
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Abstract: We explore twelve sums of gibonacci polynomial products of
order 3, involving g3, 1, 93, > 93,11 and g3, 5, where g, denotes the

nth gibonacci polynomial.

Keywords: Gibonacci Polynomial, Fibonacci Polynomial.
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1. Introduction

Gibonacci  polynomials  z,(x) are defined by the recurrence
2y 40(2) = a(2)2, 1 (x) + b(2)z,(x), where z is an arbitrary complex variable;

a(x), b(x), zy(x),and 2z (z) are arbitrary complex polynomials; and n > 0.

Suppose a(z) =2z and b(z)=1. When z,(z)=0 and 2z(z)=1,
T,

z,(z) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and z (z) =
z,(z) = 1,(x), the nth Lucas polynomial.

Clearly, f,(1) = F,, the nth Fibonacci number; and [, (1) = L, , the nth
Lucas number [1, 6, 8].
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In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will mean z,(z). We let

g, = f, or [, , and omit a lot of basic algebra.

A gibonacci polynomial product of order m is a product of gibonacci

polynomials g, of the form H 9:17+k , where Z s; =m [9, 10].

keZ SjZl

1.1 Sums of Gibonacci Polynomial Products of Orders 2 and 3: Table 1
shows some well known gibonacci polynomials involving sums of products of orders

2 and 3, where A% =22 +4 [5, 6, 8].

Table 1
Sums of Gibonacci Polynomial Products of Orders 2 and 3

an+1 + an = fzn+1 lg+1 + lg = A2fzn+1
frio =iy = (@ + 200, Lo =iy = (2° +20)A%,
f7?+1 + xfn3 - fn371 = xf?m ZT?L’+1 + $li - 1371 = $AQl?m

fn$+2 — (@ +2f) + £, =2°(2" +2)f;, ZS+2 — (@ + 2)43 + 1372 = 2*(a® + 2)A213n

With this background, we now investigate a family of similar formulas for
930> 93n—1> Y3n41- and g3, o as sums of gibonacci polynomial products of order 3.

2. A Family of Sums of Gibonacci Polynomial Products of Order 3

The development of the desired formulas hinges on gibonacci recurrence,
identities fn+2 + fn72 = (xZ + 2)fn ’ f;H—Q - j;L—Q = xln’ j;L-‘rl + fn—l = ln >

b=+ Df s T af g0 oy = hilue fupn =i +f7. and the gibonacci
addition formula [8]

Gorv = fo10 + Fi9p-1-
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We begin our exploration with z? Bnio-

2.1 A Gibonacci Sum for z°f;, 4o ¢ By the Fibonacci addition formula,
we have

$2f3n+2 = x2f2n+1f;z+2 + fn(zln)(w n+1)
= fn+2 [(ZL’ n+1)2 + xzfnz] + fn (fn+2 - f;L72)(f;L+2 - fn)
= f;z+2[(fn+2 - f;z)z + :L,fo] + f;z(fn+2 - f;zf2)(fn+2 - fn)

= 7?+2 + (—fn2+2fn + $2fn+2f712 — fosoluhuo) + f;?f;L72

3 2 2
= Jn+2 — f;L+2f;L(f;L+2 + f;L72 -z n) + fn fn72

= [0 = Fooh (@ +2)f — )+ Fo s

= 7?—%—2 - 2fn+2fn2 + anfn—Q . (1)
It then follows that
3 2 2 .
F3n+2:Fn+2_2Fn+2Fn +FnFn—2’ (2)

see [2, 7] for a graph-theoretic proof of this using path graphs.

Next we find a similar formula for z* Bnit-

2.2 A Gibonacci Sum for z°f;, +1 ¢ Again by the addition formula, we get

5E3f3n+1 = $3fzn+1fn+1 + fonly
= [(ZL’ n+1)2 + :E?fnz] (ZL’ n+1) + lzfnz (xln)
=((foya = £ + 2L (e = £) + B2 (fogn — Foa)

= £ = 3L o h 207 43 o f) — (@ + 1 — P f . ()
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This yields
Fyiy = Fpyg = 3By o Fn+ 5F, o Fy =28, — FYF, . (4)

Next we explore a formula for z° o1 -

2.3 A Gibonacci Sum for z°f, : Since f;, | = Jonatfn1 + hptias
we have

z3f3n—1 = [(1} n+1)2 + fonQ[(z n—l) + Ianfn—?(xln)

= (o2 — £,V + £ frro — (@ + 1)L,
+ $2fnfn72(fn+2 - fn72)

= 713—0—2 - (xQ + 3)f712+2fn + 3(‘7:2 + 1)fn+2f712 + $2fn+2fnfn—2
—(@" L -2 hs )

Consequently,
3 2 2 3 2
F3n—1 = Fn+2 - 4Fn+2Fn + 6Fn+2Fn + Fn+2FnFn—2 - 4Fn - FnFn—2 . (6)
Identity (1) can be used to find a gibonacci sum forz°f, .

2.4 A Gibonacci Sum for z°f;, | : It follows from identity (1) that

2 3 2 2
z f3n—1 = fn+1 - 2fn+1fn—1 + fn—lfn—S

°f, ,=A+B,
where
A= (ZE n+1)3

= (fn+2 - fn)3

= f20 = 3fraf, +3ffl — £



A FAMILY OF SUMS OF GIBONACCI POLYNOMIAL PRODUCTS 167

B = (af, 1 '] = 2af, 1) + (@, _3)]
= (fy = ) {=2f o — £) + [ — (@ +Df 0 1}
= (f2 =2fifs o+ F20)[=2f, 0 +3f, — (@ +Df, ]
~2f ol T A uafufus = 2iali s + 37— (@ TV

+22° +5)f e, — (@ +Df .
Thus,

& fony = fopo — 3fn+zf + fn+2f + 4fn+zf f o =2 ol +2f)

This gives an alternate formula for £,

Fy oy =F 5 —3F’ ,F, + F, +2F? +4F, ,F,F, o —2F, ,F> , +2F’
- 8Fn?Fn72 + 7F;LFN?72 - 2}7;?72 . (8)

It follows from formulas (6) and (8) that

F} oy +3E, ZF,F,_, +6F +8F,F’ ), =5F, ,F’
+2F, o F? , + SFF, +2F3 .

this can be confirmed independently.

2.5 A Gibonacci Sum for =z f?m Using identities (1) and (3), we can
develop a sum of Fibonacci polynomial products of order 3 for

x2f3n = x2f3n+2 - x3f3n+1
- (fn+2 2fn+2f —|—f fn 2)
— s = 3f ok + 227 +3)f of) — (8 + ) — 2 £ 1, ]

=310t — (22" +5)f, o ff + (@ D + @+ Dy )
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An Alternate Method: By the addition formula, we have
fn3 = f712+1f!l + f2nfn—1
$2f3n = [($ n+1)2 + x2fn2] fn + f;z(x nfl)(wln)
= (oo = £V + 2L o + Flfurs — (@ + DL g2 — fis)

= 2f;z2+2f;z — (=" + 3)fn+2fn2 — fotatnln—2

@+ D+ @+ D, - (10)
Since

2fn2+2f;t - (xZ + 3)11;1-&-2]0712 - f;l-‘r?ﬁl-ﬁl—? = 3ﬁ12+2fn - ﬁ1+2f;l [fn+2 + fn—2 + (xQ + 3)ﬁz]
= 3fn2+2fn - fnJer;L[(xQ + 2)f;z + ($2 + 3)fn]

= 3friaky — (22% +5)f, o f7

it follows that identities (9) and (10) are equivalent.

Identities (9) and (10) yield the following results:

F?m = 3FTL2+2F;L - 7Fn+2Fn2 + ZF;? + 2F2F;L72; (11)

n

=2F? ,F, —4AF, oF? —F, o F,F, o +2F> +2FF, _,. (12)

n

Next we explore a gibonacci sum for z°l; .

2.6 A Gibonacci Sum for :U3l3n : Using identities (3) and (5), we get

33 33
n+1 +x fnfl

Pl =
=20 = 3f1af, + 227 +3)f, o f? — (® + )P —2f2f, )]
Fflo — (@ +3) fraf, +3" + Dy ofr + 22 friofufis

— (&% +12f) — 2P f, f7 ]
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= 2f7§+2 - ($2 + 6)fn2+2fn + (5$2 + 6)fn+2fn2 + 172fn+2fnfn—2

—(@® + )@ +2)f) — [ — TS, (13)

An Alternate Formula: Since zf, +2f, _, =1, it follows by formulas (5)
and (10) that

z3l3n = 1‘2(1‘2][371) + 2(1‘3][371—1)
= 2?2fofs — (2" +3) ool — foialifoo + (@7 + DE + @+ DS ]
F2f2 0 — (@ + ) oSy + 3 1)y ofr + 2oL
—(a® +12f) — 2Pf, f7 ]
= 2f¢?+2 - 6fn2+2fn - (5”4 —32% — 6)fn+2fn2 + x2fn+2fnfn72
—(@® + )@ +2)f) + 27 (@ DSy — 287 1 (14)
Since

2 p2 4 2 2 4 2\ p2 2 2
T n+2fn _($ +x )fnJer;L +($ +x )fnf;L72 -z f;Lfn72

= 2 fyof lfuss — (@ + 2L+ 2 f f [0 +2)f, = f,s]
= & f ok laf, 0 — @+ DL+ 2L f o0 + D, + af, ]
= 2 fol @y — £) + 2o fyolw (af, + 1) + 1]

= 2o fums + T f fy oy + )

2 2
=T n+2fn—2 +x fn+2fnfn—2
= O,

it follows that identities (13) and (14) are indeed equivalent, as expected.

It then follows that

3 2 2
Ly, = 28 — TE o, +11E, oI + By o B F o
—6F® —F*F, , — F,F* ,; (15)
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3 2 2 3
= 2Fn+2 - 6Fn+2Fn + 8Fn+2Fn + Fn+2FnFn72 - 6Fn
+2F F,_, —2F,F) . (16)

2.7 A Gibonacci Sum for 2%l 414 Since f, .1 + f,_; =1,, it follows by
identities (1) and (9) that

$213n+1 = $2f3n+2 + $2f3n
= (fn3+2 - 2f;z+2f3 + anfn72)
F[Bf2af, — (227 +5)f, ofr + (2 + D + (2 + D2 f, ]

= [l 300k, — Q0% + T o f) + @+ D + (2 + 22,5 (17)
In particular,
Lyysy = By + 3 oF, —9F, oF; +2F) +3FF,_,.  (18)
2.8 A Gibonacci Sum for z°l; ,: By identities (13) and (17), we have
$213n71 = $213n+1 - ffgl?m
= [[lhe + 3L S, — @2 + D ofy + (2 + D + (@ + 20171, ]
= —[2f)00 — (2 + ) ok, + (52" +6)f, o fs + 27 fiak fys
—(@® + 1)@ +2)f) = [ s — 2 f f ]
= —foro + (@ + o, — (T2® +13)f, o) — @ fiakfys
+(@® + 1)@ +3)f) + 20 + DS s + 2 S (19)

It then follows that

3 2 2
L?mfl = _Fn+2 + 10Fn+2Fn - 20Fn+2Fn —F +2FnFn72

n

+8F} 4+ 4F’F, , + F,F*, . (20)
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Next we express xglgn 4o as a sum of gibonacci polynomial products of

order 3.
2.9 A Gibonacci Sum for x3l3n 1o ¢ Using identities (13) and (17), we get
$3l3n+2 = $413n+1 +2°ly,
= [ [0 + 387 [2 o f, — Qa' +Ta)f, o7 + (& + 2P}
+(@t +227) 2, )+ [2F 0 — (&7 + 6)f 1ok,
+ (527 +6)f, o fs +2 f o fys — (2 +1)(2° +2)f)

- :L‘ananfQ - :I"anfn?fQ]

= (@ +2)f} s + 20" = 3)f]ofy — 2’ + 27 = 3)f, o)

+ 2o fofoy —2(2° + 1S

+(@t ) — . Q1)

This implies

Lo = 3F) s —AF] 5 F, +2F, oF] + F, oF,F, 5 —AF)
+2F?F, , —FE F*,. (22)

n-n—2

With these tools, we now express A%x’f, | A’z*f, |, A%z*f, 41> and

N J3n+o as gibonacci sums with the desired properties.

2.10 A Gibonacci Sum for A,z’f, : Since lyyr 1,1 = A?f,, it follows
from identities (17) and (19) that

A2$2f3n = $213n+1 + 172137%1
= [f20 +3f0af, — Q22 + D ofd + (@ +Df + (2" +2)ff, ]

= [—£la + (@ + NI of, — (T2% +13)f, o f) — 22 f,afufus
(@ + 1)@ +3)f) + 2@ + Df f o + 2 )
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= (552 + 12)f;z2+2f;z - (95E2 + 20)fn+2an — 2 Y Ay S

+(@ + 1)@+ DL + B + Dy 2. (23)

Consequently,

211 A Gibonacci Sum for A%°f, . Using the identities

Lo +1, = A%f, ,,and (1) and (21), we have

A fy =P, 20,
=[(2® +2)f2, 5 +2(2% = 3)f1of, — 2z +a* = 3)f, +2f
+ 0 fy o fus =20 A0+ @+ @)y — 2P ]
+[2f00 = (@ +O)fLaf, + (52 +6)f o f) + 27, ok ks
—(@® D)@ +2)f) =2 [ f — 2P ]
=@+ + (2 —12)f2 of, — (22" = 32® —12)f, o f
+20°f, o fufys — (@ + 1)@ +A)f
ot [ = 2% S (25)

It then follows that

3 2 2 3
5F?erl = 5Fn+2 — 11Fn+2Fn -+ 13Fn+2Fn -+ 2Fn+2FnFn_2 — 10Fn
+FF,_, —2F,F;,. (26)

2.12 A Gibonacci Sum for A%z%f, | : It follows by gibonacci recurrence,
and identities (23) and (25) that

2 3 2 3 2 4.3
A%z fy, :A$f3n+1_A$fn

=[(@® + D))o + (@ —12)f7 of, — (22" =32 —12)f, o f

n
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+22° f o fofoy — (@ D)@+ + 2 fy — 227 ]
_5”2[(5”2 + 12)f77,2+2fn - (95”2 + 2O>fn+2fn2 — 2’ Y Ay
+(@® + 1)@+ O+ B+ )y + 2 f )]

= (2" +4)f2, — (2" + 112" +12)f7,f, + (Ta* +232° +12)f, [

(@t +22%)f, o fofy s — (27 + 17 +A)f)

= 2zt +20%) [y — (@ +207) [ 27
This yields
: 2
5F3n71 = 5Fff+2 - 24F;L2+2Fn + 42F;L+2F;L + 3F;L+2FnF;L72
- 20Fn3 - 6’F;L2’F;L72 - 3FnFn?72 . (28)

2.13 A Gibonacci Sum for A®z°f;, ,: Using identities (23) and (25),

we have
A2$2f3n+2 = A2$3f3n+1 + A%y,
=@+ Ofle + (@ =12)f0f, — Qo' = 32" —12)f o
+20° ol fyo — (@ + D)@+ AL + 2 £ f, o =227, f) ]
+ (@ +12) 20 f, — 92 +20)f, o f) — 2ok, fys
+(@® + 1)@+ + B + O+ 2 [ ]
= (2" + D) f o + 207 o fy o (@ +30° + ) f o f) + 2o f fy
=+ ($4 + 3.(172 =+ 4)f;z2fn72 - fonfn?72 . (29)
In particular, we have

2
BFy, 9 = 5Fy g +2F7 o F, —16F, ,F: + F, ,F,F, ,
+ 8E’F, , —EF?,. (30)

n-n—2
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1. Introduction

Eztended gibonacci polynomials z,(z) are defined by the recurrence
Zy40(x) = a(x)z, 1 (z) + b(z)z,(x), where z is an arbitrary complex variable;

a(x),b(z), zy(x), and z,(z) are arbitrary complex polynomials; andn > 0.

Suppose a(z) =2z and b(z)=1. When z,(z)=0 and 2z(z)=1,
z,(z) = f,(z), the nth Fibonacci polynomial; and when z,(z) =2 and z/(z) = z,
z,(x) =1,(x), the nth Lucas polynomial. Clearly, f, (1)= F,, the nth Fibonacci
number; and/, (1) = L, , the nth Lucas number [1, 6, 8].
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Pell polynomials p, (z) and Pell-Lucas polynomials ¢, (z) are defined by
p,(z) = f,(2z) and q,(z)=1[,(2z), respectively. In particular, the Pell numbers
P, and Pell-Lucas numbers (), are given by P, =p,(1)=f,(2) and

n

2Q, = q,(1) =1,(2), respectively [8].

Suppose a(z)=1 and b(z)=2. When z,(z)=0 and 2z(z)=1,
z,(z) = J,(z), the nth Jacobsthal polynomial; and when z,(z) = 2 and z(z) =1,
z,(z) = j,(x), the nth Jacobsthal-Lucas polynomial [3, 6]. Correspondingly,
J, =J,2) and j, = j,(2) are the nth Jacobsthal and Jacobsthal-Lucas numbers,
respectively. Clearly, J,(1) = £, and j, (1) = L

n *

Let a(z)==2z and b(z)=-1. When z,(z)=0 and z(z)=1,
V,

n

2, () (z), the nth Vieta polynomial; and when zy(z)=2 and z(z) =z,

2, ()

v,(x) , the nth Vieta-Lucas polynomial [4, 6].

Finally, let a(z) =2z and b(z) = —1. When z,(z)=1 and 2z (z)==z,
z,(x) =T, (z), the nth Chebyshev polynomial of the first kind; and when

zo(x) =1land z(z) =2z, z,(x)=U,(x), the nth Chebyshev polynomial of the
second kind [4, 6].

The Jacobsthal, Vieta, and Chebyshev subfamilies are closely linked by the
relationships in Table 1, where ¢ = v—1 [4, 6].

In the interest of brevity, clarity, and convenience, we omit the argument in
the functional notation, when there is no ambiguity; so z, will meanz, (z). We also

let g, =f, ori,, b,=p, or q,, c,=J,(x) or j,(x), d, =V, or v,, and

n?

e, =1, or U,; and correspondingly, G, =F, or L, , B, =P, or @,, and

n

C, =J, or j,. We also omit a lot of basic algebra.

A gibonacci polynomial product of order m is a product of gibonacci

polynomials g, ,; of the form H g7, , where Z s; =m [9, 11].
kez sj>1



GIBONACCI| POLYNOMIAL PRODUCTS OF ORDER 3 177

Table 1: Links Among the Subfamilies

(@) ="V f (V) gn(@) = 2", (1/ Jz)
V, (z) = "\ f, (~iz) v, (z) = i"l, (—iz)

1.1 Sums of Gibonacci Polynomial Products of Order 3: In [10], we
studied the following sums of gibonacci polynomial products of order 3:

2 fy = 31010k, — (207 +5)fof + (@ D+ (@ + DS (1)

2 fony = Sy — (7 +3)f2 o fy + 3@ + D fy o f + 2 f o fufos

—(a® +12f) =2 f fr . )
$3f3n+1 = f7?+2 - 3fn2+2fn + (2$2 + 3)fn+2fn2 - ($2 + 1)f7? — xzfannﬂ; 3)
2 fynin = [orn = 2frafe + f2f, a5 4)

2y, = 2f25 — (2" +6)f7 o fy + (52 +6)f, ofs + 37 fyiofifu s
—(@® + D)@ +2f = f ey — P fr o (5)

Blyy g = —fog + (2 + N of, — (T8° +13)f o f — 2 fo o fufus
(@ + 1)@ +3)f) + 22 + D f s 2 (6)

Dlyy iy = firo T 3f0iafy — 22" + Doty + @+ D + (@ +2)f f s (D)

$3Z3n+2 = (2" + 2)fn?)+2 +2(z” — 3)f712+2fn72(334 +a” — 3)fn+2f73
+$2fn+2fnfn—2 — 22 +0)f) + (2t + ) o — P (8)



178 THOMAS KOSHY

A25E2f3n = (552 + 12)fn2+2fn - (9552 + 20)fn+2an — 2 Y A
+(@® + 1)@+ + B Dy + 20 ©9)

N2 fy, =@+ O, — (@' + 11" +12)f7 o f, + (Ta* + 232 +12)f, o f,
+ (@' +20°)f, o fofy o — (7 + 177+ A)f
—2(zt + 2222, — (22D f (10)

A25E3f3n+1 = (ZEQ + 4)fr?+2 + (ZEQ - 12)fn2+2fn - (2554 — 32 — 12)fn+2f712
+20%f, o ffos — (@ D)@ + )2+ 2 f2f, 207, s (1)

N@Pfy o = (@ + O, + 2077 o f, — 22" + 327 + ) fy o f + 27 f, o f o fos
+(l‘4 + 3$2 + 4)fn?fn72 - :Ezfnfn?72 s (12)

where g, = g,(z).

With this background, we now explore the implications of this family of
gibonacci sums to the Pell, Jacobsthal, Vieta, and Chebyshev subfamilies.

2. Sums of Pell Polynomial Products of Order 3

Since b, (z) = g, (2), it follows from identities (1) through (12) that
4% py, = 3D, oD, — (82° +5)p, 1opy + (4° + Dy} + (42” + Dpp,, o3

82° Py = Py — (4% + 3)p} L op, + 3(42” + 1)p, oph + 427Dy 9Py Py s
—(4352 + 1)2 pg — 4x2pnp2_2 ;

3 3 2 2 2 2 3

82° Py iy = Pho — 30 1aPy + (827 4+ 3)p,oph — (42” + 1)pl — 42’ plp,
2 3 2 2 .

42" P3yio = Ppyo — 2Pn490y + PpPn_as

3 3 2 2 2 2 2
42°q3, = P9 — (227 + 3)py 40P, + (1027 + 3)p,, L oDr 9T Dy 2P0 P2
—(2:1c2 +1) (4%2 + l)pg — Zpran_Q — 2x2pnp2_2;
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4x4q3n71 = —p2+2 + (4532 + 9)P72L+2Pn - (28%2 + 13)Pn+2p721 - 4$2pn+2pnpn72
+(42” +1)(42” + 3)p) +2(42” + 1)pp, o +42°p, Dy s

2 3 2 2 2 2 3 2 2
T 43p+1 = Pp+2 + 3pn+2pn - (8$ + 7)pn+2pn + (4$ + 1)pn + 2(2$ + 1)pnpn72;

82°s, o = 222" + 1)p o +2(42” — 3)p. op, — 2(162" +42® —3)p, o)
+42°p, 0P,y s — 2(42% + 1)p]

+ 4(4:1c4 + :162)]7721]77%2 — 4x2pnp272 ;

4 2 2 2 2 2 2
4(13 +z )p?m = (.13 + 3)pn+2pn - (91‘ + 5)pn+2pn - T pn+2pnpn—2
—i—(av2 + 1)(4:%2 + 1)p2 + (33v2 + 1)p,2,,pn,2 + prnp,QLfQ;

322 + 2°)py, ;= 4z +1)p° 5 — 4(42t +112% + 3)p% p,
+ (1442 + 9222 4 5)p, 907 +8(22" + %), 9Dy Dy o
—4(2® + 1742 +1)pd ~16(2z* +27)prp, s
—8(2z" +2°)p,pp o

16(z" + 2%)py, 41 = 4(2” + 1)pyy +4(a” = 3)p)Lop, — 482" —3¢° = 3)p, »p;
+ 8$2pn+2pnpn72 - 4($2 + ]‘) (41"2 + 1)p2
+162'p2p, o — 82D, D

16(z* + x2)p3n+2 = 4(z* + 1)p2+2 + 8$2P2+2Pn —8(4z* + 327 + 1)pn+2p721

2
+427p, oDy Pus + A4zt + 32° + Dplp,_, —427p,pr s,

where b, =b,(z).

Consequently, we have

4Py, = 3P2,,Pn —13P, ,P? + 5P + 5P’P, ,;

n

3 2 2 3 2 .
8P3n71 = Pn+2 —7F +2Pn + 15Pn+2Pn + 4Pn+2PnPn72 - 25Pn - 4PnPn72 >
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8Py,1 = By — 3PP, +11P,,F; — 5P —4PJP, ,;

2 2
4P3n+2 P +2 2Pn+2Pn +Pn Pn—2 5

n

3 2 2 3

8Q3n = RL+2 - 5})n+2pn + 13})7L+2Pn + 2})n+2pnpn72 - 15pn
2 2 .
72Pn Pn—2 - 2PnPn—2 >

8Qs,_1 = —PB’ , +13P? ,P, —41P, ,P? — 4P, ,P,P, , + 35P;
+10Pn?Pn72 +4F, Pn2 25

2Qs41 = By + 3P, 5B, —15P, ,F; + 5P, +6P’F, y;

16Qs, o = 6P 5 +2P2 ,P, —34P, ,P? + 4P, ,P,P, , —10P}
+20P*P, , —4P,P? ,;

2 3 2 2 .
8P, = 4P?,,P, —14P, ,P> — P, ,,P,P, 5 +10P> + 4P’P, 5 + P,P? ,;

n

64P;, | = 8P’ , —T2P? ,P, +241P, ,P’ 4+ 24P, ,P,P, , — 80P}
—48P?P, , —24P,P? ,;

32P,,., = 8P’ , —8P? ,P, —8P, ,P’ +8P, ,P,P, o — 40P}
+16P7F,  —8F,P) 5;
82Py,15 =8P,y + 8B, P, — 64P, o B + 4, 3PP,y + 328, 5P, ,.
Next we explore the Jacobsthal implications of the gibonacci sums.
3. Sums of Jacobsthal Polynomial Products of Order 3
The identities (1) through (12), coupled with the gibonacci-Jacobsthal

relationships in Table 1, can be established the following results involving Jacobsthal
polynomial products of order 3:
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Jan = 3J2 od, — (52 +2)J,, 0 d2 + (2% 4+ 2)J2 + (2 + 2%)T2T, s (13)

n

zSy, 1 = JS+2 —(3z + 1)‘]’3—}—2‘]71 +3(2” + x)Jn+2J721 + $2Jn+2jnjn—2
—(2® 422 + 2)JP -t R, (14)

Tanar = Juvo =325 00, + (32 +22)], 1 0dh — (20 + %)) 3030, 55 (15)
Tanio = Jno = 2220, o T2 + 20T, o, (16)

j?m = 2J2+2 - (6ZE + 1)J72L+2Jn + (6%2 + 5x)Jn+2J2 + xQJn+2Jan72
— @22 + 327 4 2)J2 —PTET, , —atT T (17)

xj{infl = _JS+2 + (9:E + 1)J72L+2Jn - (13‘%2 + 7$)Jn+2‘]72z - x2J7L+2Jan72
+(32° + 42® + )T + 22t + 22T, + T TR (18)

n

j3n+1 = JS+2 + 3$JZ+2J7L - (71”2 + 2$)Jn+2‘]2 + (:L,3 + :EZ )JS
+ 2zt + 22T, (19)

j3n+2 = (25” + 1)‘]3+2 - 2(3$2 - w)JZ+2Jn+2 (3$3 - xz - $)Jn+2<]2
2T, oy Ty — 2zt + 2% + (2t + 2T,y — 2 T, Ty (20)

D2J3n = (121" + 1)J72L+2Jn - (20%2 + 9$)Jn+2<]2 - xZ‘]n+2Jn‘]n72
+(4z® + 5a® + 2)JP + (4xt + 3% 2T, + 2t T TP (21)

n n
D*xJy, = D*J2 5 — (1227 + 1z + 1)J2 o J, + (122° +232% + 72)J, o J;

2% 4 2%, Sy — (12 (4a® + 2)J2 — 222" + )2,
—22% 4 2)J, T (22)

D*Jy, .y = D?J2 5 —(120% —2)J2 o, + (1227 + 32 —22)J,, ,»J7
+22° T, o d o — (dzt +52% 4+ 2%)T2 4 2P,y — 2270, T2 5 (23)
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D*Jy 0 = D*J2 o 42002 0, — 242”4 32 + 2)J

+(42° 4 3zt + 22T, — 20T T, (24)

2 3
+2Jn +z Jn+2‘]n‘]n72

where ¢, = ¢, ().

To establish identity (13), for example, replace z with Wz in equation (1)

and multiply the resulting equation with 20" D/2 We then get

B, = 3lar 2 T L2 5y 49y [t 02 a2y 2
(&% + ) [x(nfl)ﬁfnr’ + (P +$2)[$(n71)/2fnr x(”’f?’)ﬂfnﬂ
Jan = 30 od, — (52 +2)J, o Js + (2" + 2)J) + (2° +2°) 2T, s,
as desired, where f, = f,(1vz) and J, = J, (z).
The other results can be confirmed similarly.
It follows from equations (13) through (24) that
Jaw = 3J0 00, —12J, o J2 +6J2 + 12020, 5 (25)

2y =y g — T2+ 20, +18J, oJ2 +4d,  od o, o —18J2 —16J,J2_,.
J3n+1 = J3+2 - 6J72L+2Jn + 16Jn+2J72L - 12‘]2 - 8J72LJ7L72;

Tanpo = Jnio — 8Ty ody + 16727,y ; (26)

J3n = 2J2+2 - 13J721+2Jn + 34‘]n+2‘]721 +4Jy 00 nd 0 — 30JS
—8J2J o, —16J,J% ,; (27)

2gn-1 =~ Tnga T 1900 0T, =667, a7 — 4T, 0, T, g 42T

+48J2T, 5 +16J,J2 ,;
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anar = Jog +6J2 0 d, —32J, o2 +12J3 + 40027, ,;

Jamia = 50 o = 2002 od, +36J, +2J2 + 87, 0,5 — 48T}

F2402], 5 — 320,07, ; (28)

95, = 25J7 0, — 98T, 0dr — A, oy J, 5 +BATE + 882, 5 +16J,J%;

1875, 1 = T2y — TLI2 od,) +202J,, 0 J2 + 200, 0], T, o — 16272
— 80J2J, , —80J,J% 5

n—

Wiy = T2 o —46J2 o, +104], o J2 +16J, 5], J, o — 1087}
+ 8J2T, o — 64, ,;

9J3 +2 — 9‘]n+2 + 4J72L+2Jn 92Jn+2‘]2 + 8‘]n+2‘]n‘]n72
+184J2T, 5 —32J 2 ,,

It follows from identities (25), (26), and (28) that J;, = 3Jn 4o/, (mod 6),
Jn+2 n+2 (mod 8), and jn+2 = Jn+2 (mod 8), respectively.

Next we pursue the Vieta and Chebyshev consequences.
4. Vieta and Chebyshev Consequences
4.1 Vieta Implications: Using the gibonacci-Vieta relationships in Table 1,

equations (1) through (12) yield the following results. In the interest of brevity, we
omit their proofs.

eV, = 3V 40V, — (227 = 5)V, oV — (@ =DV + (@ = DVV,

T Vg = Vi + (@ =372V, 4+ 32 =)V, 0V — 2%V, 5V, V,
— (2% =12V + 2V, V2,

‘T3V3n+l V n+2 + 3V712+2Vn - (23:2 - B)Vn+2V712 - (‘TQ - 1)Vn3 + ‘TQVnQVn—Z >
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$2V3n+2 = Vn+2 2V, +2V2 + V Va3

2P, =2V — (2% — 6V, .V, — (5% —6)V, V72 + 2V, V.V,
+ (2% =1)(a® =2V} + 22V, , -2V V2,

"E2,U3n71 = -V} n+2 + (27 )Vn+2V + (727 )Vn+2v2 - 5E2Vn+2v Vo
—(l‘ - 1) ($ - 3)‘/71372 (l‘ - 1)Vn Vn72 + ‘I‘QVnVanQ;

$2“3n+1 Vn+2 3V3+2Vn + (2352 )Vn+2V2 (352 - 1)‘/7? - (552 - Q)VnQanz;

g,y = (@ =2V y —2(2” + 3V, LV, + 2" — 2 = 3)V, .,V
- xzanrQVnanZ + 2($ - 1)Vn3 _( ‘- )V Vn 2 + z2VnVn272;

($4 - 4$2)V3n = ($2 - 12)Vn2+2vn + (9%2 - )Vn+2v2 - xZV V Vn 2
— (@ =) (a® — VP — (32> — )V, , + xzvnvf,Q;

(2 —42® )Wy, | = — (2> —4WV2 5, + (2" —112® +12)V7 LV,
+ (72t — 2327 +12)V, V2 — (2t — 227V, LV, V,
—(z® =1 (2* — VP -2t —22P WY,
+(z* =222V V2,

(557 _4$3)V3n+1 ( )Vn+2 (37 +12)V2+2V
+ (22" +32% —12)V, V2 —22%V, WV V, 5 — (27 —1)(z® —4)V;]

n n

— VAV, L, 422V V2,

(¢! —42®WVy, g = (2® =4V, —20°V oV, + 22" = 32® +4)V, V)

— 2V, GV Vo —(z' = 32" + VIV, + 2V VE,,

where d, = d, ().
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4.2 Chebyshev Implications: Using the Vieta-Chebyshev relationships,
these Vieta properties yield the following Chebyshev factoids; again, in the interest
of brevity, we omit their justifications.

45Uy, = 3UZ, U, — (82 —5)U, U2 — (42® — VU2 + (42° —V)UU,,_,;

823U, | = —U2 o + (42 = 3)U2 U, + 3(42® — 1)U, U2

—42°U, LU, U,y — (42® = 1)U +42°U,U?_, .
82U, i1 = Up o +3U5 15U, — (82° = 3)U, ,US — (42® = DU, +42°UsU, 3
4$2U3n+2 = Un+2 2Un+2U2 + U Un 25

82°Ty, = Ul — (22° = 3)UZ +1U,_, + (10z° — 3)U

2
n+1Un—1

+2$2U7L+1U7L71Un73 + (2‘%‘2 - 1) (4$2 - 1)U7%71
+22%0° U, 5 —22°U, [U? ,;

82Ty, | = —Up ;4 (42® — U2, U, + (282 —13)U, U2 _,

- 4$2U7L+1U7L 1Un73 - (4$2 - 1)(41"2 - 3)U7§71
—24x® —VU? U, o +42°U, U> ;;

8$2T3n+1 Un+1 3U2+1Un 1 + (827 7)Un+1U7%71 + (427 —1)U271
+2(22° —DUZ_ U, 4;

8$3T3n+2 - ( )Un+1 (4$ + 3)U2+1Un 1 + (16$4 - 4$2 - 3)Un+1U271
— 22%U, U, U, _3 + (42 = DU, —2(4a" — 2" UZ_\U,
+22°U, U2 4,

Aot —a®)Uy, = (2° - 3)U721+2Un +(92° — 5)Un+2U721 - $2Un+2UnUn 2
—(2® —D)(42® = DU? — 32® —VU2U, o +2°U, U ,;

n—
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8(a” — 1)y, = — (2" = DU, 5 + (dz' —112% + 3)U3,,U,

n

+(282% —232% +3)U

n

U2 =222t — 1)U

n

+2UnUn72

— (2® —1)(42® —1)*U3n — 422" — 2®UPU, o + 222" —2*)U, U2 ,;

n

8(4$7 - x3)U37L+1 = (xQ - 4)U7?L’+2 - (:EQ + 3)U2+2Un + (8$4 + 3%2 - 3)U7L+2UZ
= 20°U, U, U,y — (a° = 1)(42” — 1)U,
— 42'U%U, ., + 22U, U2,;

Aot — )Wy, pp = (2% = DU,y = 20°U5 U, +2(42" = 30° + 1)U, 50U,
— 20, U U,y — (42" — 32> + WU2U,_, + 2°U,U2_,,

n
where ¢, = ¢, (z).
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1. Introduction and Definitions

Let A, denote the class of functions f(z) normalized by

f(@2)=2zP+ ) ay,,zPt* (1.1)

which are analytic in the open unit disc U= {z [ C; |z| < 1}.

For two functions f and g analytic in U, we say that the function f is
subordinate tog in U (denoted byf  g), if there exists a function ®(z) analytic in U
with ®(0) = 0 and |o(z)| < 1 (z € U), such that f(z) = f (o(z)) in U. Also, if f and
g analytic in U with f(0) = g(0) and g(z) is univalent in U, we say then f(z) g(z) in
U provided that f(U) < g(U).
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A function f(z)€A,is called starlike in U if it satisfies R (%) >0 (z€U)

A function f(z)€A,, is called starlike function of order a in U if it satisfies
zf'(z
R(ZD)5
f(@)
A function f(z)€EA,, is called strongly starlike of order a (0< o < 1) if it
satisfies
| (zf’(z)>| < na
arg —
f(@) 2
A function f(z)EA, is called strongly starlike of order a and type Bif it
satisfies
zf'(2) )| o
ar Bl <— 1.2)
| g( @ 2 (

In this present paper we shall derive certain sufficient condition for p-valent
strongly starlike functions. In order to prove main results, we need the following
Lemma.

Lemma 1.1: Let the function g(z) be analytic and univalent in U and let the
function 8(w) and @(w) be analytic in domain U containing g(U) with ¢(w) #
0,w € g(U). Set Q(2) = zg (2)p(g(2)) and (2) = H(g(z)) + g(z) and suppose
that

i.  Q(2) is univalently starlike in U and

. zh'(2)\ _ 0'(g(2) , zQ'(2)
. R ( o) ) =R (<p<g<z>) oo ) >0 (zeU)

If q(2) is analytic in U with q(0) = g(0), g(U) < D and
0(a(@) + 24 @De(a(2)) 6(9(D) +24 @Dp(9(@) = (@ qU)ED (1L3)
then q(z) g(2), (zel)
and g(z) is the best dominant of (1.3).
2. Sufficient Conditions for Strongly Starlike Functions of Order a and Type 8

In this section, we assume that a,45,a,b E Rand pu € C
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Theorem 2.1: Let

0<a<lAa=0lb+1<-,la b 1/<,if f(z) €4
satisfies

f(2).f(2)#0 (z e U{0}) 2.1
and
a ! b
1 zf'(2) 1 zf'(2) 1 zf'(2)
(2 0) + (2 0) (mrE2 ») ©

(2.2)

where

1+A42\*  a(l+A)z(1 + Az)*1+D)-1

(2) = AO( 1 ) (1 z)a(+b)+1 (2.3)

then the function f(z) is p-valent strongly starlike of order a and type £ in U. The
number « is sharp for the function f(z) defined by

1 zf (2) B 1+ Az\“
P ﬁ)(f(Z) ﬁ)‘“(l ) (24)

Proof: We choose q(z) = 5 (11_ 5 (Z}{ (S) [3)

and

a
g9(2) = (11+_AZZ) ,0(w) = Ayw® and p(w) = w? in Lemma.

Clearly the function g(z) is analytic and univalently convex in U and
a /s
larg (g(2)| <E7TSE,(ZEU), O0<a<1,0<p<1) (2.5)
The function q(z) is analytic in U with q(0) = g(0) =1 and g(z) # 0,
(z € U) and the function 8(w) and @(w) are analytic in a domain D containing
g(U) and q(U), with ¢(w) # 0 when w € g(U). For%1 <b+1< %

Then function Q(z) is given by

a(1+ A)z(1 4 Az)*(+b)-1
(1 Z)a(1+b)+1

Q(2) =24 (2)p(q(2)) =

is univalently starlike in U because
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R(Z

e ) =R(1+@1+b) DA+A42)+ (a(l+b)+ 1)%) (2.6)

(1+3lADA | + D))
2(1+ 14D

@a+3]A)(A-al1+b)D

2(1+]4)) >0

Q' .
Now R (ZQ (S)) > 0, provided that

or |b+1|Sl
a

Further, we have

1+ AZ)““ a(1+ A)z(1 + Az)*(+b)-1

0(9() +0() =2 (S e

where (z) is given by (2.3), and so

z (2) _0@@) 20

0@ @ 0@ @7
_ a-b-1 ZQ/(Z)
= Aoa(g(z)) + 0@
Alsofor|la b 1| S%
larg (9(2)* Y| <la b II%T[ < % (2.8)

Therefore, it follows from (2.1) and (2.5)-(2.8) that

z (2)
R(Q(z)>>0 (zel)

The other condition of lemma are also satisfied, hence we conclude that

3 1 zf (2) 1+Az\%
0 = ﬁ)< o ) () =s@eew
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and g(z) is the best dominant of (2.2). by (2.5) we see that the function f(z) is
univalent stronglystarlike of order a and type f in U. Furthermore, for the function
f(z) defined by (2.4) we have

10(0@2)* +2¢ (@2 (q@)" = (@)

which shows that the number « is sharp, the proof of theorem is now completed.
Theorem 2.2: Let

1
0<a<Lb+2)20,(b+DRUF20,[b+1<—iff(2) € 4,

satisfies

f@.f (@) #0 (z€U\0)

1 f'(2) (b+2) 1 £(2) b+1
and & <p(1—/3> ( i P )) tu <p(1_,;) ( ) B))
, ' ) b
1 (72 (@ 1 (zf (2)
v (p(l B) < f(2) ﬁ)) (p(l B) < @) ﬁ)) (z) (2.10)
where

(1 +Az (b+Da R 1+ AnY a(1+ Az)z -
(Z)_(l Z) <'u+ (1 Z) +(1 Z)(1+AZ)>' (2.11)

then the function f(z) is p-valent strongly starlike of order @ and type 8 in U. The
number « is sharp for the function f(z) defined by (2.4).

1 ' 1+Az\*
Proof: Let q(z) = S B) (Z]]:(S) ﬁ) and g(z) = (1+_ZZ) ,0(w) = Aqw?

and ¢(w) = w? in Lemma, clearly the function g(z),q(z),0(w),p(w) and
Q(2) = zg (2)p(g(2)) satisfies the condition of Lemma respectively. Further we
have:

1+ Az\P+0e 1+Az\"  a(l+A2)z
9(g(z))+Q(Z)=(1 Z) <H+A<1 z) +(1 z)(1+Az)>

where (z) is given by (2.11) and so on
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2@ 6(4@) 200G 2Q'@)
0 ~ o) T o T AI@ b+ 40

Now for
A(b+2)=0and u(b+ D)R{u} =0

2Q (2)
R(Q(z)>>0 (zeU)

We have

The other condition of lemma is also satisfied. Hence we obtain the desired
result of theorem. Further, for the function f(z) defined by (2.4), we have

2q@)"? + 1(q@) " +2¢ @D (q@)’ = (@)

which shows that the number ais sharp. The proof of theorem 2.2 is now completed.
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1. Introduction

Banach contraction principle (BCP) is a benchmark result established by
Banach [2] in fixed point theory. According to this principle, a contraction map on a
complete metric space always possesses a unique fixed point. After this interesting
result and its various applications, number of generalization of this result are
available in the literature by using different types of contractive conditions in various
abstract spaces.

By generalizing  the Banach contraction principle, Jungck [7] set out
tradition of common fixed point of mappings for two commuting mappings on
complete metric space. After the result of Jungck [7] many authors introduced many
concepts namely weak commutativity, compatibility, weak compatibility of maps
(Sessa [12], Jungck [6, 8], Jungck and Rhoades [9] etc.) and established results
regarding common fixed point. In fact commutativity of maps = weak commutativity
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of maps = compatibility of maps = weak compatibility of maps, = but the converse
of these implications are not true.

In 2011, Azam et. al [1] introduced a generalization of classical metric space
which is known as complex valued metric space. He established sufficient condition
for the existence of some common fixed point for a pair of maps satisfying rational
inequality.

In this article we prove some results regarding common fixed point of maps,
by using the notion of compatibility and weak compatibility of maps in complex
valued metric space satisfying contractive conditions involving rational expression.
We apply our result to find the solution of Uryshon’s integral equations as an
application.

2. Preliminaries

We recall some basic definition and results which will utilize in our
subsequent discussion.

Definition 2.1 [1]: Let  be the set of complex numbers andﬂ 71,22 €

Define a partial order on as:z; 2z, iff Re(z;) < Re(z,),Im(zy) < Im(zy). It
follows that z;  z, if one of the following conditions hold:

(i)  Re(z;) = Re(z,) and Im(z;) = Im(zy)
(i)  Re(z;) < Re(z,) and Im(z;) = Im(zy)
(iii)  Re(z;) = Re(z,) and Im(z;) < Im(zy)
(iv)  Re(z;) < Re(z,) and Im(z;) < Im(zy)

We write z; z, if z; # z, and one of (ii) and (iii) is satisfied and we
write z;  z, if only (iv) is satisfied.

Here we note the following holds trivially:

(1) If zy 2z, then |z;] < |z[;

(i) Ifz; zyandz, 2zzthenz; zs;

(iii)) Ifa,b € and a<bthenaz bzforallze ;

(ivy Ifa,b € and0<a<band z; z,impliesaz; bz,.
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Definition 2.2 [1]: Let X be a nonempty set. A function d: X X X = is
called a complex valued metric on X if for all z;, z,, z3 € X the following conditions
are satisfied.

(CVM1) 0 d(z,2z) and d(z;,2,) = 0ifand only if z; = zy;

(CVM 2) d(zy,2;) = d(23,21);

(CVM3) d(z1,z3) d(zq,23) + d(z3,2,).

Then the pair (X, d) is called a complex valued metric space.

Example 2.3 [5]: Let X = . Define the mappingd: X X X — by

d(zy,2z,) =ilzy 23|,V 21,2, € X.

Then (X,d) is a complex valued metric space.

Example 2.4 [11]: Let X = . Define the mappingd: X X X - by

d(zy,2,) = e®|z, z,|, where ke ,Vz,z, €X.

Then (X, d) is a complex valued metric space.

Example 2.5: Let X = [0,1]. Define the mapping d: X X X —» by

dx,y) =lx yl +ilx yl
then (X, d) is a complex valued metric space.
Example 2.6 [13]: Let X = . Define a functiond: X X X -  such that

d(zy,z3) = |x1 x| +ilys y21,V2,2; € X,

where
Zq =x1+iy1 s Zy = X3 +iy2.

then (X, d) is a complete complex valued metric space.

Definition 2.7 [10]: Let (X, d) be a complex valued metric space. Consider
the following,
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(1) A point x € X is called interior point of a set A € X whenever there exists
0 re€ suchthatB(x,r)={yeX:d(x,y) r} c A

(i) A point x € X is called a limit point of a set A whenever, for every
0 re ,Blxryn(A X))+

(iii) A subset A € X is called open whenever each element of A is an interior
point of A.

(iv) A subset A € X is called closed whenever each limit point of A belongs
to A.

(v) The family F = {B(x,r):x € X, and 0  r} is a sub basis for a topology
on X.This topology is denoted by 7.. Indeed, the topology t. is
Hausdorff.

Definition 2.8 [4]: Let (X,d) be a complex valued metric space and {z,,} a
sequence in X and z € X. Consider the following:

(i) If for every c€ withO0 ¢ there is N€ such that, for all
n = N,d(z,,z) c, then {z,}is said to be convergent, {z,,} converges to z and z is
the limit point of {z,}. We denote this 1i 1,2, =z or z, > zasn — oo.

(i1) If for every c € withO 71 there is N € such that, for all n >
N,d(zp, Zp+m) ¢, wherem € ,then{z,} is said to be a Cauchy sequence.

(iii) If every Cauchy sequence in (X, d) is convergent, then (X, d) is said to
be a complete complex valued metric space.

Lemma 2.9 [10]: Let (X, d) be a complex valued metric space and let {z,,}
be a sequence in X. Then {z,} converges to z if and only if
|d(z,,z)| = 0,as n - oo.

Lemma 2.10 [10]: Let (X, d) be a complex valued metric space and let {z,,}
be a sequence in X. Then {z,} is a Cauchy Sequence if and only if
|d(Zy, Znsm)| = 0 asn — o, where m € N.

Definition 2.11: Two self maps S and T of a complex valued metric space
(X, d) are weakly commuting iff |d(STz,TSz)| < |d(Sz,Tz)|,V z € X.
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Definition 2.12: Two self-maps S and T of a complex valued metric space
(X,d) are compatible iff 1 i gu,,|d(STz,, TSz,)| = 0 whenever {z,} is a sequence
in X such that

lim,,Sz, =1in,,Tz, =z forsome z € X.

Definition 2.13 [3]: Two self maps S and T of a complex valued metric
space (X, d) are weakly compatible iff Sz = Tz implies that TSz = STz.

Definition 2.14: A function T defined on a complex valued metric space
(X, d) is called continuous at a point z, € X if for every € > 0 there exist § > 0 such
that |d(Tz,Tzy)| < € forall z€ X with |d(z,zo)| <6.i.e.1im,, |d(Tz Tzy)| = 0.

Proposition 2.15: LetS and T be two self mappings defined on a complex
valued metric space (X,d).Then the commutativity of S and T implies weak
commutativity but the converse is not always true.

Proof: If S and T are two self maps on a complex valued metric space (X, d)
If S and T are commuting maps then STx=TSx Vx€X, therefore
|d(STx,TSx)| = 0. Then we have

0= |d(STx,TSx)| < |d(Sx, Tx)]|

is true, i.e. S and T are weakly commuting maps.

For the converse part, we consider the following example:

Let (X,d) be a complex valued metric space, where X = [0,1] and
d:X XX - defined by d(x,y) = |x y| +ilx y|, VxyeX.

Define self maps S and T on X by Tx = —— and szxxz VxeX,

x+1

Then we see that T(Sx)=T(x)= ~_ and S(Tx):S(x)— o

x+2 2x+2 x+1) ~ 3x+2°

Therefore, ST # TS 1i.e. the mappings S and T are not commuting. Now

d(STx, TSx) = |

X X . X X X X .
|+l| |=| |(1+1).
3x+2 2x+2

3x+2 2x+2 3x+2 2x+2

1 —x? ;
= Id(STX,TSX)l =3 |m| (1 + l)| .
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X X . X X
Also, d(Sx,Tx) = |(x+2) (x+1)| ti |(x+2) (x+1)|

X X

= |d(Sx, Tx)| = (x+2)  (x+1)

||1+i|=

—-X .
(x+2)(x+1)| d+0

Hence, |d(STx,TSx)| < |d(Sx,Tx)| Vx € X. i.e. S and T are weakly
commuting maps. Therefore weakly commutativity does not imply commutativity
of maps.

Proposition 2.16: LetS and T be two self mappings defined on a complex
valued metric space (X, d).

Proof: If S and T are two self maps of a complex valued metric space (X, d).
If S and T are weakly commuting maps then |d(STx,TSx)| < |d(Sx,Tx)|,V x € X.

Now we take a sequence {x,} such that Sx,, Tx, = t as n - oo for some
t € X. Then

|d(STx,, TSx,)| < |d(Sx,, Tx,)| = 0asn — . i.e. S and T are compatible
maps.

For the converse part, we consider the following example:

Let (X,d) be a complex valued metric space where X =[0,1] and
d:X XX -  defined by

dx,y)=|x y|l +ilx y| VxyeX.
Define self maps San T on X by
Tx =x? and Sx =2x% Vx€X.

Then we see that

T(Sx) = T(2x?) = 4x* and S(Tx) = S(x?) = 2x*
d(STx,TSx) = d(2x*,4x*) = |2x*  4x*| +i|2x* 4x*| = 2x*|(1+1)

|d(STx, TSx)| = 2v/2x*.

d(Sx,Tx) = d(x?,2x%) = [x? 2x?|+i|x? 2x%|=| x?|(1+10)

|d(Sx, Tx)| = V2x2 .
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Therefore we have |d(STx,TSx)| |d(Sx,Tx)]|i.e. S and T are not weakly
commuting.

. 2
But if we take a sequence defined by x,, = - then x, - 0 as n — oo,
Now

2 2\?2 2 2\?2
Sxp =2(x,)" = 2(;) — 0asn - oo and Tx, = (x,) =(;) —0as n—> o

d(STx,, TSx,) = |2x,*  4x,*| +il2x,*  4x,*| =] 2x,*|(1 +1)
|d(STx,, TSx,)| = 3:4/5 — 0asn — oo,

Hence, S and T are compatible maps.

Proposition 2.17: LetS and T be two self mappings defined on a complex
valued metric space (X,d). Then the compatibility of S and T implies weak
compatibility but the converse is not always true.

Proof: LetS and T be two self maps defined on a complex valued metric
space (X,d).Suppose that S and T are compatible maps and Sx = Tx for some
x € X. For every x € X, consider the constant sequence x, =x for all ne
then Sx, = Tx, - Sx or Tx as n - o and by the compatibility of S and T we
have |d(STx,TSx)| = |d(STx,,TSx,)| = 0 as n > . Hence STx =TSx ie. S
and T are weakly compatible maps, for the converse part we consider the following
example.

Let (X,d) be a complex valued metric space with the mapping where
X =10,2] and

d:XxX - definedby d(x,y)=|x y|+ilx y|,VxyeX.

Define self maps S and T on X by

1, x=1
2,0t erwise

1, x=1,2

Sx = { .
X,0t erwise

and Tx = {

Then 1 is the only coincidence point of S and T i.e. S(1) =1 =T(1) and
we see that

ST =S =1, TS(1) =T(1) =1

i.e. ST(1) = TS(1) the maps S and T are weakly compatible.
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On the other hand, if we take a sequence {x,}, defined by x,, = (2
asn — oo and

Sxp,—22,Tx,=x, >2as n—- o,
But,

STx, =S (2 1) =2 and TSx, =T(2) =1 and so

n

|d(STx,, TSx,)| =12 1|+i|2 1|=v2 0 as n- .
Hence, S and T are not compatible maps.
Also one cannot find a sequence {x,,} such that

lim,e Sxp =lim,e Tx, =x€X forsome xe€X,

such that
|d(STxy,, TSx,)| > 0 as n— 0.

Hence, S and T are not compatible maps.

Lemma 2.18: Let S and T be compatible mappings from a complex valued
metric space (X, d) into itself. Suppose that 11i . Sx;,, =x for some x € X and if

S is continuous. Then 1i g, T Sx,, = Sx.

Proof: If 1im,,Tx, =x, 1im,,STx, =Sx by continuity of S. But if

lig,e Sx, =x.

Then since d(TSxy,Sx) [d(TSx,, STx,) + d(STx,,Sx)] implies that

|d(TSx,,Sx)| < [|d(TSx,, STx,)| + |d(STx,, Sx)|]
Now by the compatibility of S and T we have
|d(TSx,,STx,)| » 0 asn— oo, and 1im,,ST x, = Sx.
Then letting n — oo in (i) ,we have |d(TSx,, Sx)| = 0 yields that
1idhSx, = Sx.
n—co

Azam et al. [1] proved the following result.

(@)
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Theorem 2.19 [1]: Let (X,d) be a complete complex valued metric space
and S,T: X — X be mapping satisfying

d(z,8z) d(w,Tw)

d(Sz,Tw) Ad(z,w) +u T dzw)

for all z,w € X,where 4, 4 are non negative real numbers with A + y < 1. then S,T
have a unique common fixed point in X.

3. Main Results

Here by using the notion of compatibility and weak compatibility of maps,
we generalize the above results by taking four maps as opposed to two maps.

Theorem 3.1: Let (X,d) be a complete complex valued metric space and
mappings 4, B,S and T satisfying.

(3.1.1) S(X) S B(X),TX) S A(X)
d(Az,Sz)d(Bw,Tw)
1+ d(Az, Bw)

d(Az,Sz)d(Az, Tw) + d(Bw, Sz)d(Bw,Tw)
d(Az,Tw) + d(Bw, Sz)

where, d(Az,Tw) + d(Bw,Sz) # 0

(3.1.2) d(Sz,Tw) ad(Az,Bw)+pf

d(S§z,Tw) = 0if d(Az,Tw) + d(Bw,Sz) = 0.
for all z, w in X where «, 5, y are non negative reals witha + f +y < 1.

(3.1.3) suppose that A is continuous, pair (S, A) is compatible and (T, B) is
weakly compatible. OR

(3.1.4) T is continuous, pair (S,A)is weakly compatible and (T, B) is
compatible.

Then A, B, S and T have unique common fixed point in X.

Proof: Suppose z, be an arbitrary point in X we define a sequence {w,,}
in X such that

Wan = SZzn = BZany1; Wons1=TZ2p41 = AZapyp, for n=0,1,2, (3.1
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Now from (3.1.2), we have

d(WZn,W2n+1) = d(5zyn, TZan41)

d(Azp, S22n)A(BZ2n41, TZ2n41)
14 d(Azypn, BZony1)

ad(AZZn' BZZn+1) + .B

ty Ad(Azyp, S2yy)d(AzZyn, TZon41) + d(BZans1,SZ2n)A(BZont1, TZon 1)
A(Azyn, TZan41) + A(BZan41,SZ2n)

Since
d(Azyn, TZony1) + A(BZyn41,S22n) = A(Won—1, Wany1) + d(Wap, Woy) # 0.

which implies that

| d(Wan—1, W) lld(Wap, Won1)]
|1+ dWzp—1,W2p)|

l[d(Wan, Wan+1)| < ald(Wypn_q, wop)l + B

+y l[d(Wan—1, W) [ld(Wapn—1, Wani )| + [d(Wopn, W) lld(Wan, Wani1)l
|d(Wan—1, Wans1) + d(Wap, Wap)|

|d(Wan, Wans1)| < ald(Wap_q, Wan)| + Bld(Wapn, Wapn 41|

+yld(Wan—1, Wan)|

aty

l[d(Wan, Wans)| < (ﬁ) |d(Wan—1, Wan)|.

Similarly

A(Az3n41,SZ2n+1)d(BZany2, TZon42)
1+ d(Azzn41, BZons2)

d(W2n+1,W2n+2) ad(Azypt1,BZonygz) + B

d(AZyn11,SZon+1)A(AZop11, TZon12) + A(BZany2, SZon+1)A(BZant2, TZon42)
Ad(Azzn41, TZan42) + A(BZany2, SZan41)

Since

d(Azzn11,TZont2) + A(BZyn42,SZon41)

= d(Wan, Wani2) + d(Wany1, Wane1) # 0.
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|d(Wan, Wan+ ) ld(Wan i1, Wans2)|
|1+ d(Wzn, Wans1)l

|d(W2n+1,W2n+2)| < ald(Wan, Wanet)| + B

|d(Wan, Wans ) ldWan, Woni2) | + [d(Wani1, Wone 1) ld(Wanis1, Wang2) |
|d(Wan, Wani2) + d(Wans1, Wane1)l

|d(W2n+1,W2n+2)| < aldwap, wons)| + Bld(Wapni1, Wons2)|

+y|d(Wan, Wans1)l

|d(W2n+1,W2n+2)| < (%) |d(Wan, Wan i)l

. . (aty) _ aty
Since ifa+f+y <1, then 1_—ﬁ<1 or § <1 (6— 1—/?)’

Therefore for all n = 0, we have
|d(Wans1,Wans2)| < 81dWap, Wans)| < 621d(Wap_q, Wap)|
<...< 82 d(wg, wy)| (3.2)
By using (3.2) foralln,me and m > n we have
|d(W2n,W2m)| < 8% d(wo, wy)| + 82 d(wo, wi)| + 822 |d(wo, wy)| +
ot 87 d (W, wy)|

< TITE ST d(wo, we)| = XEI5 8¢ |d (W, wh) |
0 t QN
< Xez2n(8) ld(wo, wy)| < (1_—5)|d(Wo:W1)| -0 as mn— oo
(since § < 1)
Hence, {w,,} is a Cauchy sequence in X. Since X is complete, therefore
{w,,} converges to point t in X and its  subsequences
{8290} {T 23041}, { AZypn42}, { BZy541} are also converge to t.

Case I: Suppose that A is continuous. Then A%z,, = AAz,, — At.

Also by the compatibility of S and A, from Lemma (2.18) SAz,, — At.
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Using (3.1.2), we have

d(AZZZn: SAzyn)d(Bzyns1, TZan41)

d(SAzyp, TZpn41)  d(AZyn, BZynyq) + B 1+ d(A22y,, BZons1)
n n+

d(AZZZn'SAZZn)d(A Zons TZans1) + d(BZan41,SAZ20)A(BZons1, TZ2n41)
A(A%zyn, TZyn41) + A(BZ2p11,SAZay)

Since, d(AZZZn,TZZn+1) + d(BZZTl+1'SAZZTL) = d(At , t) + d(At , t) #* 0.

n:SAZyn)||d(BZ2p 41, TZan 41|
[1+d(A?22n,BZan+1)|

d(A?
|d(SAZp, TZop11)| < ald(A%2yy, BZopy1)| + ﬁl (22,

|d(A2220n,5A220)||d(A% 220, TZ2n41)|+1d (BZon41,54220) 1A (BZ2nt1,TZ2n4 1)

+
14 |d(A2220,TZ2n41)+d(BZ2n+1,54220)]

Letting n — oo, we get

|d(At ,At)||d(t ,b)]| |d(At ,At)||d(At ) |+]d(t ,At)||d(t ,bt)]|
|1+d(At,b)| ld(At ,£)+d(t ,Ab)]|

|d(At, )| < ald(At, )| + B

= (1 a)|d(At,t)] <0 vyields At=t.
Again using (3.1.2), we get

d(At, St)d(Bzyni1,TZon+1)

d(St,Tzns1)  ad(At,Bzyniq) + B 1+ d(At,Bzyp41)
’ n+

+y d(At, St)d(At, Tzyn41) + d(BZn41, St)A(BZant1, TZon+1)
d(At, Tz2n41) + d(BZap41,St)

Since, d(At, Tzyp 1) + A(Bzypyq1,St) = d(t, t) +d(t,St) # 0.
Letting n — oo, we have

|t st)lld(t.t)] +y |a(e,slld(t,0)|+|d(E,SD)|d(t.t)]

ld(St’ t)l s ald(t, t)l + 'B [1+d(t,0)] |d(t,t)+d(t,St)]

= [d(St, )] <0 yields St=t=At.

Now from (3.1.1) since S(X) € B(X), there exists a point u in X such that
t =St =Bu=At.
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Then from (3.1.2), we have

|d(At, St)||d (Bu, Tw)|
|1+ d(At, Bu)|

ld(t, Tw)| = |d(St, Tw)| < ald(At, Bw)| + B

|d(At, St)||d(At, Tu)| + |d(Bu, St)||d(Bu, Tu)|
|d(At, Tu) + d(Bu, St)|

= |d(t,Tu)| <0 yields t=Tu=Bu=S5t=At.
Now by weak compatibility of T and B, we have TBu = BTu = Tt = Bt.

Again from (3.1.2), we get

d(At,St)d(Bt,Tt) d(At,St)d(At,Tt)+d(Bt,St)d(Bt,Tt)
1+d(At,Bt) d(At,Tt)+d(Bt,St)

d(St,Tt) ad(At,Bt) +p

|d(At, St)||d(Bt, Tt)|
|1+ d(At, Bt)|

|d(t, Bt)| = |d(St, Tt)| < ald(At,Bt)| + B

|d(At, St)||d(At, Tt)| + |d(Bt,St)||d(Bt, Tt)|
|d(At, Tt) + d(Bt, St)|

= |d(t,Bt)| < a|d(t,Bt)| or (1 «a)|d(t,Bt)| <0 yields Bt =t.

Hence, At=Bt=St=Tt=t, i.e. t is the common fixed point of
A,B,S andT.

Case II: For the ‘or’ part, let T is continuous. Then T?2z,,=TTz,, — Tt.
Also by the compatiblility of T and B, from Lemma (2.18) BTz,, — Tt.
Using (3.1.2), we have

d(Azzp, SZ2n)d(BT z3p, TZZZn)
1+ d(Azy,, BT zyy,)

d(Szyn, T?25,) ad(Azyy, BTzy,) +

N d(Azyp, S223)A(AZyn, T?Z5n) + A(BT 23, SZ20,)A(BT 23y, T? 23y)
v d(AZyy, T229y) + A(BT Zgn, SZam)

Since, d(Azyn, T?2yy) + d(BT 2y, Szyy) = d(t, Tt) + d(t,Tt) # 0.
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|d(AZ20,SZ20)||d(BT 220, T%227)|
|1+d(AZ3,,BTZp)|

= |d(Szon, T?220)| < ald(Azyp, BT22,)| + B

|d(AZZn:SZZn)”d(AZZn: TZZZn)l + |d(BT z3p,, Szp0) || d (BT zy, TzZZn)I
Id(AZZn: TZZZn) + d(BTZZn: SZZn)l

Letting n — oo, we have

|d(t,t)|1d(Tt,Tt)| |d(t,0)|1d(t,Tt)|+]|d(Tt,t)||d(Tt,Tt)|

|d(t’ Tt)l < ald(t, Tt)l +B |1+d(t,Tt)| |d(t,Tt)+d(Tt,b)|

=21 a)|d(tTt) <0 yields Tt=t.

Now from (3.1.1) since T(X) € A(X), there exist a point v in X such that

t=Tt=Av.
Then from (3.1.2), we have

d(AU; Sv)d(BTZZn: TZZZn)
1 + d(Avl BTZZTL)

d(Sv,T?z,,) ad(Av,BTz,,) +

N d(Av, Sv)d(Av, T?23,) + d(BT 23y, SV)A(BT 239, T? 23,)
v d(Av, T%2,,) + d(BT 2y, SV)

Since, d(Av, T?2,y,) + d(BTz,,, Sv) = d(t,Tt) + d(Tt,Sv) # 0.

|d(Av, Sv)|1d(BT 220, T?255) |

d S ’TZ S d A )BT +
1d(Sv, T*22)| < @ld(Azgn, BT Zn)| + B —— 057 )

|d(Av, S)Id(Av, T223,)| + |d(BT 230, SO A(BT 231, T225)
Ty |d(Av, T22,,) + d(BT 2y, SV)|

Lettingn — oo, we have

|d(t, Sv)||d(Tt, Tt)|

d(Sv, TH)| < ald(t, Tt
ld(Sv, TOl < ald(t. TOI+ B —7—"0 70,

|d(t, Sv)||d(t, Tt)| + |d(Tt,Sv)||d(Tt, Tt)|
|d(t, Tt)| + |d(Tt, Sv)|
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|d(t, Sv)ld(t, t)l
|14 d(t, t)]

[d(Sv,t)| < ald(t, )|+

ld(t, Sv)lld(t, )] + [d(t, Sv)lld(t, )l
ld(t, )] + 1d(t, Sv)l

= |d(Sv,t)| <0, yields Sv=t=Tt.

Since, S and A are weakly compatible on X and Sv =Av and
SAv = ASv = St = At.

Using (3.1.2), we have

d(At, St)d(Bzans1, TZan41)

d(St, TZZn+1) (Xd(At, BZZn+1) + B 1+ d(At Bz, 1)
) n+

+ d(At,St)d(At, Tzzn41) + d(BZzn41, St)A(BZ2n41, TZ2n41)
Y d(At, Tzzn41) + d(BZap41,St)

Since, d(At,Tzypny1) + d(BZypnyq, St) = d(At, t) + d(t,St) # 0.

|d(At, SO|d(Bzan+1, TZon+1)|
|1+ d(At, BZan41)|

|d(St, Tzyp41)| < a|d(At, Bzypiq)| + S

+y |d(At, St)||d (AL, Tzap11)| + |d(Bzapt1, SOA(BZant1, TZon41)|
|d(At, Tzyp41) + d(BZzp4q, SE)|

Letting n — oo, we have

|d(At, At)||d (¢, t)]
|1+ d(At, t)]

[d(St, t)| < ald(St, t)| +

|d(At, At)||d(At, t)| + |d(t, St)||d (¢, )]
[d(At, t)| + |d(t, St)|

= (1 a)|d(St,t)| <0, yields St =t = At =Tt = Sv.
Since, S(X) € B(X), there exists a point w in X such that t = St = Bw.

Now, from (3.1.2), we have
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d(t,Tw) = d(St,Tw)

d(At,St)d(Bw, Tw)
1+ d(At,Bt)

ad(At,Bw) + B

d(At, St)d(At, Tw) + d(Bw, St)d(Bw,Tr)
d(At,Tw) + d(Bw, St)

|d(At, t)||d(t, Tw)|
|1+ d(At, t)]

[d(t, Tw)| < ald(t, )|+ B

|d(At, t)||d(At, Tw)| + |d(t, t)||d(t, Tw)|
|d(At, Tw)| + |d(t, St)|

|d(t, )||d(t, Tw)|
|14+ d(t,t)|

|d(t, Tw)| < ald(t,t)| + B

ld (e, O)lld(e, Tw)| + 1d(t, Olld(E, Tw)]
|[d(t, Tw)| + |d(t, St)|

= |d(t,Tw)| <0, yields t = Tw. Hence, t = St = Bw = Tw = Tt = At.

Since T and B are compatible on X and Tw = Bw = t then by proposition

(2.18), d(BTw, TBw) = 0.

This implies Bt = BTw = TBw = Tt. Hence, St = Tt = At = Bt = t.

Therefore, t is a common fixed point of A4,B,S and T.

Now for the uniqueness of ¢, suppose that t # t be another common fixed

pointof A,B,S and T.

Then, from (3.1.2), we have

d(At,St)d(Bt ,Tt )
1+ d(At, Bw)

d(t,t ) =d(St,Tt ) ad(At,Bt )+

d(At,St)d(At, Tt )+ d(Bt ,St)d(Bt ,Tt )
d(At,Tt ) +d(Bt ,St)
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ld(e, Ollae ,t )l

ld (@, e )l < ald( el + B———77=5;

lde, O)lld (e, ¢ ) +1d(t ,)lld(e ,t )l
la(e,t )]+ |d(e , )]

= (1 a)|d(t,t )] <0 whichis contradiction. Hence t =t .
i.e. t is the unique common fixed point of A,B,S and T.

On setting A=B =1 and y =0 in the inequality (3.1.2), we have the
following results (Theorem 4 of [1]) as a corollary

Corollary 3.2: Let (X,d) be a complete complex valued metric space and
S,T: X = X be mapping satisfying
d(z,5z) d(w,Tw)
1+d(z,w)

d(Sz,Tw) ad(z,w)+B

forall z,w € X, where a, 8 are non negative real numbers witha + f < 1.then S, T
have a unique common fixed point in X.

On setting A = B =1 and a = f = 0 in the inequality (3.1.2), we have the
following result.

Corollary 3.3: Let (X,d) be a complete complex valued metric space and
let S, T: X — X be mappings satisfying:

d(z,82) d(z,Tw) + d(z,Sw) d(w, Tw)
d(z,Tw) + d(w,Sz)

d(Sz,Tw)
for all z,w € X, where y non negative real number with y € [0,1). Then S, T have a
unique common fixed point in X.
Example 3.1: Let X = [0,1] and d: X X X =  defined by
d(z,w) =1z w|+ilz w|Vz,welX.
Then (X, d) be a complete complex valued metric space. Now, we define the
self mappings 4,B,S,T: X = X by

Sz=§, Bz=2z and Tz = AZ=23—Z forall z,w € X.

z
Za
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S(X) = [o,%] c [0,1] = B(X), T(X) = [o,ﬂ = [o,g] = A(X).

By the definition of self mappings we get condition (3.1.1) of the
Theorem 3.1.

Now consider

d(szTw) = ISz Twl(l+0) =[5 Z|a+0)

d(Az,Bw) = Az Bwl(1+D) = |2 w|@1+1)
. 2z z .

d(Az,Sz) = |Az Sz|(1+1i) = 5 5@+D

dBw,Tw) = |Bw Twl(1+i) = |w Z[(1+0)

2z w

d(Az,Tw) = |Az Tw|(1+1i) = -

|a+o
d(Bw,Sz) = |[Bw  Sz|(1+1i) = |w §| 1 +10)

For the wverification of inequality (3.1.2), it sufficient to show that
d(Sz,Tw) ad(Az, Bw)

At z = 0 and w = 0 the result is obvious.

Atz=0and w=1, d(Sz,Tw) = % =0.25 and d(Az Bw) =1.
Atz=1and w=0, d(Sz, Tw) = % =0.5 and d(Az, Bw) = § = 0.66.

Atz=1land w=1, d(SzTw) = % =0.25 and d(Az, Bw) = §= 0.33.

Hence, the inequality

d(Az,Sz)d(Bw,Tw)

d(Sz,Tw)  ad(Az Bw) +f—— T 25

d(Az,Sz)d(Az, Tw) + d(Bw, Sz)d(Bw, Tw)
d(Az,Tw) + d(Bw, Sz)

. 3 9 6 .
holdsgoodforallz,mewherea—Z,ﬁ = Too and Y =15 1€ a+p+y <1
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Since the commutativity of pairs (S, A) and (T, B) yields the compatibility of
(S, A) and weak compatibility of (T, B).

4. Urysohn Integral Equations

In this section, we applied our main result (Theorem 3.1) to the existence and
uniqueness of a common solution of the system of the Urysohn’s integral equations.

z(t) = ¢;(t) + f: K;(t,s,z(s))ds 4.1)

where i=1,2,3,4,a,b € with a < b,t €[a,b], z,y; € C([a,b], ™) and
K;:la,b] X [a,b] X ™ — ™isagiven mapping for eachi =1, 2,3, 4.

Throughout this section, for each i = 1,2,3,4 and K; in equation (4.1) we
make use the following symbols

b
5;(z(0) =f K;(t,s,z(s))ds

Theorem 4.1: Consider the Urysohn’s integral equation (4.1). Assume the
following conditions hold for each t € [a, b]:

1) at+p+y<1,

(ii) 812(t) + 1 (t) + Pu(t)  64[612(t) + 1 (t) + P4 (t)] = 0 and
8,2(8) +12(1) + P3(8)  83[822(0) + (1) +3()] =0

(iii) 61((1632@) +930) + P10 [83(612() + YD) +y3(D)] =0
an

8,(8a2(t) +Pa(0) + Yo (®) [ 84(822(1) + ¥ (1)) + Yu(®)] =0

(iv) P (®) +33() + 8, (22(8) P (1)) + 2852(t)
+85(2z(t)  83z(t) 3(t)) = 4z(t) and

Yo (t) + 31a(t) + 82[6,2(t) + P (t)] + 28,2(t)
+84[22(t)  84z(t)  Pa(®)] = 42(t)

(v) 2z(t) 63z(t) Y3(t) S,w(t) P,(t) # 0 and
2w(t) Saw(t) Pu(t) Sw(t) P, (0) #0
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where,

Kow(@®) = 16:2(8) + 1) 8;w(®) Yo (O)lloVT + aZeltan e

Lu(@® =1122()  832(t) P3(t)  2w(t) + 8w (&) +hs(O)|oVT + aZeltan™ @
My (t) =

[1122(0) =85 2() =3 (D) =81 2(t)~P1 (Do ll2ZW(E) ~8,w (D) =14 () =83w (D) 15 (D |oo [V IFaZel tan " @
1+]122(£)=832(t) P35 () —2w(t) +8,w(t) +4 () |l oVI+aZeitan™ a

Nzw(t) =

122(8)~852(t) =3 () =81 2() =1 (Dlleo 122(6) ~832()~1h3(O) =8, WO~ (Olle | 3. itan-1a
[+||2w(t)—54w(t>—w4(t)—61w(t)—w1(t)||oo||zw(t>—54w(t)—w4(t)—azw(o—wz(t)||oo] 1taze't
122 () ~852(t)~P3 ()~ 8w () ~P2 (O lloo+12W(£)— 84w (£)—1h4 ()~ 8, W(E)—h1 (Dl WT+aZeitan™ 1 a

Then the system of equations (4.1) have a unique common solution.

Proof: LetX = C([a,b], ™),a>0andd:X XX —» be defined by
d(z,w) = mBX tefapllZ(8)  W(OllVT + e a (4.2)
Then (X, d) be a complete complex valued metric space.

Define mappings 4, B, S, and T : X — X by
S2(t) = 812(t) + Y1 (©) = [ Ky (t,5,2(5))ds + 1, ();
Tz(t) = 8,2(t) + P, (1) = [L Ky (t,5,2(5))ds + P, (8);
Az(t) = 2z(t) 83z(t) Ps(t) = 2z(t) f: K3(t,5,2(s))ds + P3(t);

Bz(t) = 2z(t) 084z(t) P,(t) = 2z(t) f: K4(t, s,z(s))ds + Y, (t);
Let z,w € X, then we get
d(S2,Tw) = X ceqll12(0) + 1 (8)  Sw(®)  Po(O)llVT+ aZelt™n "

d(Az, Bw) =
MBX te(qp]ll22(6)  832(t) P3(t) 2w(t) + Saw(D)+Ps(D]leV1 + aZeltan™'a
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d(Az,Sz) =
MBX 1e(qpill22(t)  832(t) Y3(t) 8:12(t) Y1(t)llwV1+ aZeltn @

d(Az, Tw) =
oo —1
X te(qp]l[22(0)  852(t) P3(t) S,w(t) Y2()lleo 1+ a?ettan " a

d(Bw,Sz) =
NBX efqp)l2W(®)  Saw(®)  Pu(®) WD) P1(DlloV + aZeltn e

d(Bw,Tw) =
MBX e[ p]l2W(E)  Saw(t)  Pu(t) Sw () YoV +aZe!™ ¢ (4.3)

From Theorem (3.1) for t € [a, b], we have

Maxte[a,b] sz (t) X NBX te[q,b] sz (t) + .B MBX te[q,b] Mzw (t)
+)/ J82:):¢ tela,b] NZW (t)

By the above equation we get

d(Sz, Tw)y

ad(Az, Bw) + pLAzSDABTW)

4+ d(Az,Sz)d(Az,Tw)+d(Bw,Sz)d(Bw,Tw)
1+d(Az,Bw) 14 d(Az,Tw)+d(Bw,Sz)

Now we shall show that S(X) € B(X). For this
B(Sz(t) +a(1)) = 2[S2(t) + Pa()]  84[S2(t) + Pa(]  ¥a(t)
=5z(t) +Sz(6) + Y4 (t)  84[Sz(6) + 4 (D)]
=52(t) + 6:12(8) + P1(O) + Pu(t)  64[612() + 1 (8) + 4 (0)]
Using the given condition of Theorem (4.1) we get

B(Sz(t) + 4 (t)) = Sz(¢)

which shows that
S(X) € B(X).
Similarly we show that T(X) € A(X).

Now, we shall prove that the pair (S, A) and (T, B) are compatible.
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Let {z,,} be a sequence such that
1i M0 Sz, (t) =11 m,, Az, (t) =z (t) forsome z(t) € X,
for each t € [a, b]. Then we have,
1S42,(®)  ASza (Il = [S(22a(®) 320 (0) W3 (©)  A(Brza(®) + 1))

= 161(22,(6)  832,(8)  P3(®)) + P1(D)
2612, +P1(0) (81220 + Y1(®) P3|

= 6:(22(t)  832(t) P3(®)) + P4 (1)
2(8,2) + 1 (D) Y@

ISAz,(£)  ASzp (Ol = ||61(832(t) + Y3 () + Y1(©)  65(8:2(t) + ¢1?|t))
Y3 (@) -

From condition (iii) we get ||SAz,(t) ASz,(t)|| = 0 whenever
linSz,(t) =1imiz,(t) =z(t)
n—-oo n—-oo
for some z(t) € X, for each t € [a, b].

Hence, the pair (S, A) is compatible. Similarly we can show that (T, B) is
compatible.

Next we shall prove that the pair (S, A) and (T, B) are weakly compatible.

For each t € [a, b], we get
14Sz(t)  SAz(O)Il = ||A(6:2(0) + Y1 (®))  S(2z(1) 83z(t) Y3 (D))|

=(|2(8,2(0) + P1(1))  83(812z(1) + Y1(1))  P3 (D)
51(22(t) 85z(t) 1/)3(t)) + lpl(t)” 4.4)

If Sz = Az for some z € X, then we have

81z(t) + Y. (t) =2z(t) 83z(t) Ys3(t) fort € [a, b]
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Therefore, from the (4.4), we get

1ASz(t) SAz(O)l = ||42(t) 28:z(t) 3ys(t) 63(2z(t) S3z(¢)
Y3(0) 6,(2z(t) Y1 (®) P ()| forall ¢ € [a,b].

From condition (iv) ||ASz(t) SAz(t)|| =0, that is ASz(t) = SAz(t) for
all t € [a, b].

Therefore, ASz = SAz whenever Sz = Az.

Hence, the pair (S, A) is weakly compatible. Similarly we can show that
(T, B) is weakly compatible.

Thus, all the conditions of Theorem (3.1) are satisfied. Therefore there exists
a unique common fixed point of A4,B,S and T in X and consequently there exist a
unique common solution of the system (4.1).
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1. Introduction

After the introduction of fuzzy sets by Zadeh [65] in 1965 and fuzzy
topology by Chang [17], several research studies were conducted on the
generalization of the notions of fuzzy sets and fuzzy topology. The concept of
intuitionistic fuzzy sets was introduced by Atanassov [2], [3], [4] as a generalization
of fuzzy sets. In the last 32 years various concepts of fuzzy mathematics have been
extended for intuitionistic fuzzy sets. In 1997 Coker [18] introduced the concept of
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces.

In 1999, Ozbakir and Coker [46] introduced the concept intuitionistic fuzzy
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity
from a topological space to an intuitionistic fuzzy topological space.
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Recently many weak and strong forms of upper and lower semi continuous
Intuitionistic fuzzy multifunctions such as Intuitionistic fuzzy lower and upper
p-continuous [31] Intuitionistic fuzzy lower and upper quasi continuous [59]
Intuitionistic fuzzy lower and upper irrosolute Intuitionistic fuzzy upper and lower
B-irresolute [63] have been appeared in the liturecture.

In this present paper we introduce and characterize the concepts of upper and
lower contra S-continuous intuitionistic fuzzy multifunctions from a topological
space to an intuitionistic fuzzy topological space.

2. Preliminaries

Through out this paper (X, t) and (Y,I") represents a topological space and
an intuitionistic fuzzy topological space respectively.

Definition 2.1 [30], [45]: A subset a of a topological space(X, 7) is called:
(a) Semi-open if A c Cl(Int(A)).

(b) Semi-closed if its complement is semi-open.

(¢) B-open if A c Int(Cl(Int(A))).

(d) B-closed if its complement is a-open.

Remark 2.1 [40]: Every open (resp.closed) set is f-open (resp.S-closed) and
every f-open (resp.f-closed) set is semi-open (resp.semi-closed) but not the
converse may not be true.

The family of all S-open (resp. semi-open) subsets of a topological space
(X,7) is denoted by SO(X)(resp.SO(X)), similarly for the family of all S-closed
(resp.semi-closed,) subsets of topological space (X, t) is denoted by SC(X)(resp.
SC(X)). The intersection of all S-closed (resp. semi-closed) sets of X containing a set
A of X is called the S-closure [32](resp. semi-closed) of A. It is denoted by SCI(A)
(resp.sCI(A)).The union of all a-open (resp.semi-open) subsets of A of X is called
the SB-interior [16] (resp. semi-interior) of A. It is denoted by S-Int(A)(resp.sInt(A)).
A subset A of X is f-closed(resp.semi-closed) if and only if
A D Cl(Int(CI(A))), (resp.A D Int(CI(A)). A subset N of a topological space (X, 1) is
called a f-neighborhood [31] of a point x of X if there exits an f-open set O of X
such that x € 0 € N. A is an f-open in X, if and only if it is a S-neighborhood of
each of its points. A subset V of X is called an f-neighbourhood of a subset a of X if
there exists U € f OX such that AetU c V. A mapping f from a topological space
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(X, 7) to another topological space (X ,7 ) is said to be f-continuous [31], [32] if the
inverse image of every open set of X is S-open in X.

Lemma 2.1 [52]: The following properties hold for a subset A of a
topological space(X, 7):

(a) A'is f-closed in X < sInt(CI(A)) € A ;
(b) sInt(CIl(A)) = Cl(Int(CI(A)));
(c) BCI(A) = A UCI(Int(CI(A))).

Lemma 2.2 [52]: The following properties hold for a subset A of a
topological space(X, 7):

(a) A€ pOX),

(b) U c A cInt(CIl(U)) for open set U of X.
(c) Uc A csCl(U) for some open set U of X.
(d) A csCl(Int(A)).

Definition 2.2 [2], [3], [4]: Let Y be a nonempty fixed set. An intuitionistic
fuzzy set A in Y is an object having the form A = {< x,uz(y),vi(y) >:y € Y}.
where the functions puz(y): Y = I and vz(y) : Y — I denotes the degree of
membership (namely uz(y)) and the degree of non membership (namely vz(y)) of
each elemently y €Y to the set A respectively, and 0 < uz(y) +vz(y) < 1
foreach yeY.

Definition 2.3 [2], [3], [4]: Let Y be a non-empty fixed set. An intuitionistic
fuzzy set A in Y is an object having the form

A = {(y, U A(y),vﬁ(y)) Y€ Y} where the functions pz(y):Y —>1 and
vz(¥) : Y = I where I = [0, 1], denotes the degree of membership (namely pz(y))

and the degree of non membership (namely vz(y)) of each element y € Y to the set
A respectively, and 0 < puz(y) + vz(y) < 1 foreachy €Y.

Definition 2.4 [2], [3], [4]: Let Y be a non- empty set and the intuitionistic
fuzzy sets A and B be in the form A = {(yv,uzvz):y€EYVY}
B = {y,us(»),vg(y):y €Y} and let {/I/;:ﬁ € } be an arbitrary family of
intuitionistic fuzzy sets in Y, then :
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o
N
o

(a) if Vy€Y [ua(y) <up(y) and va(y) 2vz(y) = va(y)
(b) A=BifAcBandB c4;

(€ A={ <x, vi(y)ua(y) >:yEY;

(d 0={<y,01>:yeY}andI={<y,1.0>:y€Y}

() NAg={<x, Vuiy), Vvay)>:y€Y}

(D Udp={<x Vuiy), Avaly)>:y€Y

Definition: 2.5 [19]: Two intuitionistic fuzzy sets A and B of Y are said to
be quasi-coincident A gB for short) if 3y € Y such that

ta (y) > va(y)
va(y) < pg(y)-
Lemma 2.3 [19]: For any two intuitionistic fuzzy sets A and B of Y,
~(AqB) A c B°.

Definition 2.6 [18]: An intuitionistic fuzzy topology on a non-empty set Y is
a family I' of intuitionistic fuzzy sets in Y which satisfy the following axioms:

(@ 0,1€T,
(by A;n A, €T forany Ay, A, €T,
(©) /I/; € I for arbitrary family {ﬁﬂ: BEALET.

In this case the pair (Y, I') is called an intuitionistic fuzzy topological
space and each intuitionistic fuzzy set in I', is known as an intuitionistic fuzzy open
setin Y.

The complement B¢ of an intuitionistic fuzzy open set B is called an
intuitionistic fuzzy closed setis Y.

Definition 2.7 [19]: Let Y be a non- empty set and c € Y a fixed element
inY,ifa € (0,1] and B € [0, 1) are two real numbers such that &« + 8 < / then,
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(@) c(a,B) = (y,cq,c1_p) is called an intuitionistic fuzzy point (IFP in short)
in Y, where a denotes the degree of membership of c(a, 8), and B denotes
the degree of non membership of c(a, f8).

® cPB)=(y,01 c;_ /3) is called a vanishing intuitionistic fuzzy point (VIFP
in short) in Y, where B denotes the degree of non membership of ¢(f3).

Definition 2.8 [18]: Let (Y,I') be an intuitionistic fuzzy topological space
and A be an intuitionistic fuzzy set in Y. Then the interior and closure of A are
defined by:

(a) cl(A) = {K:Kis an intuitionistic fuzzy closed setin Yand 4 < K}.

(b) Int(A) = { G:G is an intuitionistic fuzzy open setin Y and G S A}.

Lemma 2.4 [17]: For any intuitionistic fuzzy set in Ain (Y, T) we have:

(a) A is an intuitionistic fuzzy closed setinY  CI( A)=(4)

(b) 4 is an intuitionistic fuzzy opensetin Y  Int(A)=A

(c) Cl( A°) = (IntAd)"c

(d) Int(A°) = (CL A)°

Definition 2.9 [46]: Let X and Y are two non- empty sets. A function
F: (X,t)—> (Y,I) is called intuitionistic fuzzy multifunctions, if F(x) is an

intuitionistic fuzzy setin Y, V x € X.

Definition 2.10 [58]: Let F : ( X,7) — (¥,I') is an intuitionistic fuzzy
multifunction and A be a subset of X, then F(A)= ,c4 F(x).

Definition 2.11 [58]: Let F: (X, ) — (Y, I') be an intuitionistic fuzzy
multifunction. Then

(a) AS B = F(A) < F(B) for any subsets A and B of X.
(b) F(AN B) € F(A) N F(B) for any subsets A and B of X.

() F( qen)Aa = {F(A,): aeA} for any family of subsets in X. {(4,): @ € A}in X.
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Definition 2.12 [46]: Let F: (X,7) = (Y,I) is an intuitionistic fuzzy
multifunction, then the upper inverse F*(4) and lower F~(A) of an intuitionistic
fuzzy set A in 'Y are defined as follows:

@FTA)={ x€X:F(x) € (4d)}

(b) F~(A) ={x €X: F(x)q A}

Lemma 2.5 [58]: Let F:(X,t)—> (Y,I) be an intuitionistic fuzzy
multifunction and A, B be intuitionistic fuzzy sets in Y. Then

@ FrM=r"(1=X,

(b) F*(Ad) cF (4

© [F ()] =[F*(@)]

@ [F*(A)" = [F(A)°

(e) IfA < B,then F*(4) < F~(B)
() If AcB,then F~(A) € F (B)

Definition 2.13 [58]: An Intutionistic fuzzy multifunction F(X,t) — (Y,T)
is said to be:

(a) Intuitionistic fuzzy upper semi -continuous at a point xo € X, if for any
intuitionistic fuzzy open set W c Y such thatF(xg) € W there exists an open
set Uc X containing x, such F(U) c W.

(b) Intuitionistic fuzzy lower semi continuous at a point xgy € X ,if for any
intuitionistic fuzzy open set W < Y such that F(x,)gW there exists an open
set U c X containing x, such that F(x)qW, V x € X.

(¢) Intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semi-
continuous) if it is intuitionistic fuzzy upper semi-continuous (Intuitionistic
fuzzy lower semi-continuous) at each point of X.

Definition 2.14 [12]: An Intuitionisic fuzzy multifunction F (X,7) — (Y,I)
is said to be:
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(a) Intuitionistic fuzzy upper B-continuious at a point xg € X, if for any
intuitionistic fuzzy open set W c ¥ such that F(xo) € W there exists
U € BO(X) containing xq such that F(U) € W.

(b) Intuitionistic fuzzy lower f-continuous at a point x, € X, if for any
intuitionistic fuzzy open set W c Y such that F(xo)qW there exists
Ue BO(X) containing xy suchthat F(x)qW, Vx € X.

(¢) Intuitionistic fuzzy upper B-continuous (resp. Intuitionistic fuzzy lower
B-continuous) if it is intuitionistic fuzzy upper B-continuous
(resp. intuitionistic fuzzy lower -continuous) at every point of X.

Remark 2.2 [12]: Every intuitionistic fuzzy lower semi-continuous (resp.
intuitionistic upper semi continuous) multifunction is intuitionistic fuzzy lower
[-continuous (resp.intuitionistic fuzzy upper S-continuous) but the converse may
not be true.

Definition 2.15 [9]: An Intuitionistic fuzzy multifunction F : (X,t) = (Y,I)
is said to be:

(a) Intutionistic fuzzy upper contra continuous at a point x, € X, if for any
intuitionistic fuzzy closed set W € Y of Y such that F (x,) € W there exist
an open set Uof X containing xgsuch that F(U)c W.

(b) Intuitionistic fuzzy lower contra continuous at a point xy € X, if for any
intuitionistic fuzzy closed set W ¢ Y of Y such that F(xo)qW there exist an
open set U of X containing x¢ such that F(x)qW, V x € U.

(c) Intuitionistic fuzzy upper contra continuous (intuitionistic fuzzy lower contra
continuous) if it is intuitionistic fuzzy upper contra [-continuous
(Intuitionistic fuzzy lower contra B-continuous)at each point of X.

3. Upper(lower) Contra p-continuous Intutionistic Fuzzy Multifunctions

Definition 3.1 [10]: An Intuitionistic fuzzy multifunction F : (X, 7) — (Y, T)
is said to be:

(a) Intutionistic fuzzy upper contra a-continuous at a point xo € X, if for any
intuitionistic fuzzy closed set W c ¥ of Y such that F(x,) € W there exist
an 3-open set U of X containing x, such that F(U) c W.



226 SWATANTRA TRIPATHIAND S. S. THAKUR

(b) Intuitionistic fuzzy lower contra $-continuous at a point xy € X, if for any
intuitionistic fuzzy closed set W of Y such that F(xo)gqW there exist an
a-open set U of X containing xq such that F(x)qW, V x € U.

(¢) Intuitionistic fuzzy upper contra S-continuous (intuitionistic fuzzy lower
contra f-continuous) if it is intuitionistic fuzzy upper contra [-continuous
(Intuitionistic fuzzy lower contra -continuous) at each point of X.

Remark 3.1 [12]: Every intuitionistic fuzzy lower (resp.upper) contra
continuous multifunction is intuitionistic fuzzy lower (resp.upper) contra

[-continuous. But the converse may be not true.

The concepts of intuitionistic fuzzy lower (resp. upper) B-continuous and
intuitionistic fuzzy lower (upper) contra B-continuous multifunctions are
independent.

Theorem 3.1: Let F: (X, ) — (Y,TI), be an intuitionistic fuzzy multifunction
then following conditions are equivalent:

(a) F is intuitionistic fuzzy upper contra S-continuous.

(b) For each point x € X and any intuitionistic fuzzy closed set B of Y, such
that F(x) € B, 3 an B-neighborhood U of x such that U € F* (E)

(c) F*(B)is an B-open set in X for every intuitionistic fuzzy closed set B of Y.
(d) F~(B)is an B-closed set in X for every intuitionistic fuzzy open set B in Y.
Proof: (a)  (b): Obvious.

(b) (c): Let B be any intuitionistic fuzzy closed set of Y and let
x € F* (B.)) Then F(x) c B and so by (b) an B-neighboubhood U of x such that
U c F* (B). It follows that F*(B) is the union of B open sets of X is B-open
in X.

(¢) (b): Let x €X and B be an intuitionistic fuzzy closed set of Y such
that F*(B). Then U =F*(B) is an B-neighborhood of x such that U < F*(B).
Hence, F is intuitionistic fuzzy upper contra f-continuous.

(¢)  (d): It follows from the fact that [F*(B)]¢ = [F~(B)]".
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Definition 3.2: The kernel of an intuitionistic fuzzy set B in intuitionistic
fuzzy topological space (¥, T) given by Ker(B) =n{A: A €T and B < 4}

Lemma 3.1 [11]: For an intuitionistic fuzzy set B in an intuitionistic fuzzy
topological space (Y,T), if B € T, then B = Ker(B)

Theorem 3.2: Let F:(X,7) = (Y,T) be an intuitionistic fuzzy multifunction,
if
BCIU(F~(B) c F~(Ker(B))

for any intuitionistic fuzzy set B of Y, then F is intuitionistic fuzzy upper contra
S-continuous multifunction.

Proof:  Suppose that [Cl (F - (E)) CF (K er(ﬁ)) for any
intuitionistic fuzzy set B of Y. Let A €T, then hypothesis and lemma 3.1
BCL(F~(A)) € F~(Ker(A) = F~(A). This implies that BCL(F~(A)) < F~(A),
but we know F‘(ﬁ) c BCl (F‘(Z)), Hence, F~(A) is B-closed set in X. Thus, by
Theorem 3.1, F is intuitionistic fuzzy upper contra 8-continuous.

Theorem 3.3: Let F be an intuitionistic multifunction F:(X,t) — (Y,I),
then following conditions are equivalent:

(a) F is intuitionistic fuzzy lower contra 8-continuous.

(b) For any intuitiontistic fuzzy closed set B of Y such that F(x)gB, 3 an
B-neighbourhood U of x such that U € F~(B).

(c) F~(B) is B-open in X for every intuitiontistic fuzzy closed set B of Y.
(d) F*(B) is an B-closed in X for every intuitionistic fuzzy open set B in Y.
Proof: (a)  (b): Obvious.

(@) (¢): Let B be any intuitiontistic fuzzy closed set of Y and let
x € F*(B). Then F(x)c B and so an S-neighborhood U of x such that
U c F~(B). It follows that F~(B) is the union of S-open sets of X is B-open in X.

(¢) (a): Let x € X and B be an intuitionistic fuzzy closed set of Y such
that F~(B) is B-open in X. Then U = F~(B)is af-neighbourhood of x such that
Uc F(B).
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Hence, F is intuitionistic fuzzy lower contra 8-continuous.
()  (d): It follows from the fact that [F* (E’)]C = [F~ (E‘)C.

Theorem 3.4: Let F:(X,7) = (Y,I) be an intuitiontistic fuzzy
multifunction. If BCI (F + (E)) CFt (K er(E)) for any intuitiontistic fuzzy set

B of Y, then F is intuitiontistic fuzzy lower contra B-continuous multifunction.

Proof: Suppose that BCl (F *(B)cF +Ker(§)) for any intuitionistic
fuzzy set B of Y. Let A € T, by lemma 3.1 BCl (F+(ﬁ)) C F*(Ker(A) = F*(4A).

This implies that BCL(F*(A)) € F*(A).

But we know F*(4) € BCI(F~(A)), Hence, F*(A) isP-closed set in X.
Thus, by Theorem 3.2, F is an intuitionistic fuzzy lower contra -continuous.

Definition 3.2: Given a family {Fg: (X, t) — (Y,I): B € A}, of intuitionistic
fuzzy multifunction, we define the union .5 F, and intersection ,ep F, as,

(@)  peafp:(X,7) = (Y,1),( geaFp)(x) = pgen Fp(x).
®)  peaFp: (X, 7) = (V,1),( geaFp)(x) = penFp) ().

Theorem 3.5: If Fg:(X,7) » (Y,I), for €A B=123,.n is an
intuitionistic fuzzy upper contra B-continuous then gea Fp is intuitionistic fuzzy
upper fS-continuous.

Proof: Let B be an intuitionistic fuzzy closed set in Y. To show
that (U4 Fﬁ)+(§) ={x€X: Up_, Fg(x)SB }is B-open in X. Let
X € (UE=1 Fﬁ)+(§) then Fg(x) < (B) for =12 .3..n, Since Fg:(X,7) - (Y,T)
is an intuitionistic fuzzy upper contra f-continuous multifunction, for g = 1,2,3,...,
then 3 B-open set U containing x such that Vy € Uy, Fg(y) < B. let U=U§:1 U,

then U c (Up_4 F,;)+(§) . Therefore (Ujg_4 Fﬁ)+(§) is B-open.
Hence, pgep Fpgis an intuitionistic fuzzy upper contra B-continuous.

Theorem 3.6: If Fg :(X,7) > (Y,I), for B = 1, 2, 3,.n is an
intuitionistic fuzzy upper contra fB-continuous then gep Fg is an  intuitionistic
fuzzy lower B-continuous.
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Proof: Let B be an intuitionistic fuzzy closed set in Y. To show that
(Up=1 Fg)(B)™ = {x € X:U}_, F(x)qB} is a-open in X. Let x € (U, Fg) (B)
then Fﬁ(x)q(ﬁ) for g = 1,2 ,3..n . Since Fg:(X,7) » (¥,I) is an intuitionistic
fuzzy lower contra §-continuous multifunction, for g = 1,2,3,..., then 3f-open set
U containing x such that Vy € U,, Fﬁ(y)qﬁ. let U = Ug_y FgU, then
Uc (U;}:l Fﬁ)_(l?). Therefore (UE=1 F,;)_ (B)is B-open. Hence, peaFp is an
intuitionistic fuzzy lower contra 8-continuous.

Theorem 3.7: Let {Ug: B€ A} be an f-open cover of a topological space
(X, 7). An intuitionistic fuzzy mulifuntion F:(X,7) - (Y,I) is an intuitionistic
fuzzy upper contra B-continuous if and only if restriction F\Ug:Ug - Y is an
intuitionistic fuzzy upper contra f8-continuous for each f € A.

Proof: Necessity: Suppose that F is an intuitionistic fuzzy upper
P-continuous. Let Se A ,x €U, and V be any intuitionistic fuzzy closed set
in Y such that (F\Ug(x) < V. Since F is intuitionistic fuzzy upper contra
B-continuous and F(x) = (F\Ug)(x), there exists a-open set G of X containing x
such that F(G) S V. Let U=6G Ug, then x€U is B-open set in X and
(F\Up)(U) =F(U) < V. Therefore, it follows that (F \U If) is an intuitionistic fuzzy
upper contra S-continuous.

Sufficiency: Let x € X and V be any intuitionistic fuzzy closed set in Y such
that F(x) €V there exists BE€A and x€ Ug. Since F\Upg:Ug —Yis
anintuituionistic fuzzy upper contra B-continuous. and F(x) = (F\Upg)(x), there
exists B-open set UE Upg containing x such that (F \U g)(U) c V. We have B-open
set U € Ug containing x and F(U) < V. Therefore F is an intuitionistic fuzzy upper
contra [S-continuous.

Theorem 3.8: Let {Ug: f € A} be an a -open cover of a topological space
(X, 7). An Intuitionistic fuzzy multifunction F:(X,t) — (Y,T) is an intuitionistic
fuzzy lower contra a-continuous if and only if the restriction F\Ug:Ug - Y is
intuitionistic fuzzy lower contra a-continuous for each 8 € A.

Proof: Necessity: Suppose that F is intuitionistic fuzzy lower contra
B-continuous. Let B € A and x € Ug, let V be any intuitionistic fuzzy closed set in
Y such that (F \U I;)(x)qV. Since F is intuitionistic fuzzy lower contra f-continuous
and F(x)(F\Upg)(x), there exists B-open set Uy of X containing x such that
F(Uo)qV. Let U = Uy N Up, then x € U is B-open in X and (F\Ug)(U) = F(U)qV.
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Therefore, it follows that (F\Ug) is an intutionistic fuzzy lower contra
B-continuous.

Sufficiency: Let x € X and V be any intuitionistic fuzzy closed set in Y
such that F(x)qV there exists B € A and € Ug. Since F\Ug:Ug—>Y is an
intutionistic fuzzy lower contra B-continuous and F(x) = (F\Upg)(x),there exists
open set Uy € Ug containing x such that (F\U,,)(Uo)qfl, we have open set Uy € U

containing x and F(U,y)qV. Therefore F is an intuitionistic fuzzy lower contra
[-continuous.

Definition 3.3: An intuitionistic fuzzy multifunction F:(X,t) — (¥,T), then
the intuitionistic fuzzy multifunction BCIF:(X,t) = (Y,I) is defined by
(BCIF)(x) = BCl(F(x)) forevery x €Y.

Lemma 3.2 [31]: For an intuitionistic fuzzy multifunction F: (X,t) —» (¥,I)
it follows that (BCL(F)) (V) = F~(V), for each intuitionistic fuzzy open set 7 of Y.

Theorem 3.9: An intuitionistic fuzzy multifunction F:(X,t) = (Y,I) is
intuitionistic fuzzy lower contra B-continuous if and only if BCI(F): (X,t) = (Y,TI)
is intuitionistic fuzzy lower contra -continuous.

Proof: Necessity: Suppose that F is an intuitionistic fuzzy lower
B-continuous. Let x € X and let V be any intuitionistic fuzzy open set of Y such that
,BCZ(F(x))qV. By lemma 3.2 we have x € (Cl(F))_(V) = F~(V) and hence,
F(x)qV. Since F is intuitionistic fuzzy lower contra B-continuous, there exists a
B-closed set U of X containing x such that F(u)qV,Vu € U.

Hence, CI(F)(u)qV for eachu € U .
This show that CI(F) is an intuitionistic fuzzy lower contra -continuous.

Sufficiency: Suppose BCI(F) is an intuitionistic fuzzy lower contra f3-
continuous. Let x € X and let V be any intuitionistic fuzzy open set of Y such that
F(x)qV, by lemma 3.2, we have x€ F‘(V) = (BCI(F))_(V) and Hence,
BCL(F)(x)qV. Since BCI(F) is an intuitionistic fuzzy lower contra B-continuous,
there exists a B-closed set U of X containing x such that aCl(F (u))ql7

for each u € U. Since ¥V be an intuitionistic fuzzy open set of Y, hence F(u)qV for
eachu € U.

This shows that F is intuitionistic fuzzy lower contra -continuous.
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Definition 3.4: An intuitionistic fuzzy set A in intuitionistic fuzzy
topological space (Y,T)i s called cl-neighbourhood of an intuitionistic fuzzy set ¥ in
Y, if there exists an intuitionistic fuzzy closed set U in Y such that V € U < A.

Theorem 3.10: If F: (X,t) — (Y,I) is an intuitionistic fuzzy upper contra
B-continuous multifunction then for each point x € X and each intuitionistic fuzzy
cl-neighbourhood ¥ of F(x), F* (V) is an B-neighbourhood of x.

Proof: Let x € X and ¥V be an intuitionistic fuzzy cl-neighbourhood of F(x),
then 3 an intuitionistic fuzzy closed set 4 in Y such that F(x) € 4 € V. We have
x € F*(A) € F* (V) and Since F*(A) is B-open set, F*(V) is a B-neighbourhood
of x.

Theorem 3.11: For an intuitionistic fuzzy multifunction F : (X,7) = (Y,T)
the following are equivalent:

(a) F is intuitionistic fuzzy lower contra -continuous.
(b) For any and any net x € X and any net (x;);¢/is p-eventually in F~ (E)

Proof: (a) = (b): Let (x;);c; be net (x;)ie; B-coverging tox in X and B
be any intuitionistic fuzzy closed set Y with x € F~( B). Since F is intuitionistic
fuzzy lower contra -continuous Jan B-open set A € X containing x such that
Ac F~(B).Since x; » x, 3 anindex iy € I suchthatx; € A forevery i > iy we
have x; EA c F~(B),V i > i, . Hence, (x;);e is B-eventually in F~(B).

(b) = (a): Suppose that F is not intuitionistic fuzzy lower contra [-
continuous 3 a point x € X and an intuitionistic fuzzy closed set B with
x € F-(B)such that B F~(B)for any PB-open set B € X containing x. Let
(x;) EB and (x;) F~(B) for each B-open set B c X containing x. Then the
B-neighbourhood net (x;) P -converges to x but (xi)iel is not P-eventually in

F~(B). Thus, is a contradiction.

Theorem 3.12: For an intuitionistic fuzzy multifunction F : (X, 7) = (Y, TI)
the following are equivalent:

(a) F is intuitionistic fuzzy upper contra B-continuous.

(b) For any x € X and any net (x;);c; B-converging to x in X and each
intuitionistic fuzzy closed set B of Y with x € F* (E’), the net(x;)ier is
B-eventually in F*(B).

Proof: The proof of this theorem is similar to that of Theorem 3.3.
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1. Introduction and Preliminaries

After the introduction of fuzzy sets by Zadeh [29] in 1965 and fuzzy
topology by Chang [6] in 1967, several researches were conducted on the
generalizations of the notions of fuzzy sets and fuzzy topology. The concept of
intuitionistic fuzzy sets was introduced by Atanassov [2, 3, 4] as a generalization of
fuzzy sets. In the last 27 years various concepts of fuzzy mathematics have been
extended for intuitionistic fuzzy sets. In 1997 Coker [7] introduced the concept of
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces.
In 1999, Ozbakir and Coker [23] introduced the concept intuitionistic fuzzy
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity
from a topological space to an intuitionistic fuzzy topological space. In the present
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paper we introduce the concepts of intuitionistic fuzzy B-continuous multifunctions
and obtain some of their characterizations and properties.

Throughout this paper (X, ) and (Y, I') represents a topological space and
an intuitionistic fuzzy topological space respectively. A subset A of a topological
space (X,T) is called Semi open [11] (resf-open [19]) if Ac Cl(Int(A)) (resp.AC
Int (C l(Int(A))). The complement of a semi open (resp. S-open) set is called semi

closed (resp. f-closed). Every open (resp. closed) set is f-open (resp. f-closed) and
every $-open (resp. f-closed) set is semi open ( resp. semi closed) ,but the converses
may not be true. The family of all S-open (resp.S-closed) subsets of topological
space(X,T) is denoted by LO(X) (resp. SC(X)). The intersection of all S-closed
(resp. semi closed) sets of X containing a set A of X is called the S-closure [14]
(resp. semi closure) of A. It is denoted by SCI(A) (resp. sCI(A)). The union of all
B-open (resp. semi open) sub sets of A of X is called the a-interior [14] (resp. semi
interior) of A. It is denoted by SInt(A) ( resp. sInt(A)). A subset A of X is B-closed
(resp. semi closed) if and only if A D Cl(Int(Cl(A))) (resp.A > Int(Cl(A)). A
subset N of a topological space (X, T) is called a S-neighborhood [14] of a point x of
X if there exists a f-open set O of X such that x € 0 € N. A is a a-open in X if and
only if it is a a-neighborhood of each of its points. A subset V of X is called a
p-neighborhood of a subset A of X if there exists U € fO(X) suchthat Ac U c V.
A mapping f from a topological space (X, T°) to another topological space (X*,T )
is said to be fS-continuous [15, 16] if the inverse image of every open set of X* is
B-open in X. Every continuous mapping isf-continuous but the converse may not be
true [15]. A multifunction F from a topological space (X, T") to another topological
space (X*,J ) is saild to be lower [-continuous [18] (resp.upper
[B-continuous [18]) at a point x, € X if for every a-neighborhood U of x, and for
any open set W of X* such that F(xg) NW %=  (resp. F(xg) € W) there is a
B-neighborhood U of x, such that F(x) N W # (resp. F(x) € W) for every x € U.

Lemma 2.1 [25]: Let A be a subset of a topological space (X, T). Then:
(a) Ais f-closedin X  sInt(Cl(A) C A;

(b) sInt(CI(A)) = Cl(Int(CI(A)));

(¢) BCI(A) =A Cl(Int(CI(A))).

Lemma 2.2 [25]: Let A be a subset of a topological space (X, 7). Then the
following conditions are equivalent:

(a) A € BO(X)
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(b) U c A c Int(CL(U)) for some open set U.
(¢) U c A c sCl(U) for some open set U.

(d) A c sCl(Int(A)).
Definition 2.1 [2, 3, 4]: Let Y be a nonempty fixed set. An intuitionistic
fuzzy set A inY isan object having the form
A= {< x5, vz >yeY )

where the functions pz: Y = I and vz : Y — I denotes the degree of membership
(namely p 4 (y)) and the degree of non membership (namely v ; (y)) of each element
y € Y to the set A respectively, and 0 < pz(x) + vz(x) <1foreachy e Y.

Definition 2.2 [2, 3, 4]: Let Y be a nonempty set and the intuitionistic
fuzzy sets A and B be in the form A= {<y, Hz(¥), vg(y) > : y € T3},
B = {<y,pug(y),vg(y) >: y € Y} and let

{A, :B e } bean arbitrary family of intuitionistic fuzzy sets in Y. Then:

(@) Ac Bif vy e Y[pa(y) < ug(y) and vz(y) = vg(y)];
(b) A= Bif Kg B and I§gg;

(©) A= {<y, vz, uz(y) > :y et}

@ 0 =1{<y,0,l>:yeYland T={<y, 1,0>:y€EY!}
© N A,={<y Aug®), V() >y e ¥}
M UA, ={<y Vuz®, Avz(y) >:ye Y}

Definition 2.3 [8]: Two Intuitionistic Fuzzy Sets A and B of Y are said to
be quasi coincident (K q B for short) if 3 y €Y such that

ua () > vg(y) or vx(y) < pg(y)-
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~

Lemma 2.3 [8]: For any two intuitionistic fuzzy sets A and B of
Y, 1(4qB) < A c B.

Definition 2.4 [7]: An intuitionistic fuzzy topology on a non empty set Y is a
family I" of intuitionistic fuzzy sets in Y which satisfy the following axioms:

©O). 0,TeT,

(0y). ;;1 N Kz e T, for anygl,xz el

(03). U Ka for any arbitrary family {Ka aeA}el.

In this case the pair (¥, T) is called an intuitionistic fuzzy topological space
and each intuitionistic fuzzy set in I, is known as an intuitionistic fuzzy open set in Y.

The complement B © of an intuitionistic fuzzy open set B is called an intuitionistic
fuzzy closed set in Y.

Definition 2.5 [7]: Let (¥, ' ) be an intuitionistic fuzzy topological space

and A be an intuitionistic fuzzy set in Y. Then the interior and closure of A are
defined by:

cl( K) = n{K : K is an intuitionistic fuzzy closed set in ¥ and Ack }s
int(g) = U{G : G is an intuitionistic fuzzy open setin Yand G = G}.

Definition 2.6 [23]: Let X and Y are two non empty sets. A function
F: X — Y is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy

setin'Y, YV x e X

Definition 2.7 [27]: Let F : X — Y is an intuitionistic fuzzy multifunction
and A be a subset of X. Then F(A) = ,e4F(x).

Definition 2.8 [23]: Let F : X — Y be an intuitionistic fuzzy multifunction.
Then the upper inverse F+(K) and lower inverse F_(K) of an intuitionistic fuzzy
set A in'Y are defined as follows:

F'(A)={xe X: F(x) < A}

F (A)= {xe X: F(x)qg}.
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Definition 2.9 [23]: An Intuitionistic fuzzy multifunction F: (X,7) — (Y, T)
is said to be:

(a) Intuitionistic fuzzy upper B-continuous [28] (Intuitionistic fuzzy upper
semi continuous [23]) at a point x, € X if for any intuitionistic fuzzy
open set W < Y such that F(x,) € W there exists an U € BO(X) (resp.
open set U € X ) containing x, such that F(U) c W.

(b) Intuitionistic fuzzy lower [-continuous ( resp. Intuitionistic fuzzy lower
semi continuous) at a point xy € X if for any intuitionistic fuzzy open
set W c Y such that F(xo)qW there exists an U € BO(X) (resp. open set
U c X) containing x, such that F(x)qW ,v x € W.

(c) Intuitionistic fuzzy upper B-continuous (resp. intuitionistic fuzzy lower
B-continuous Intuitionistic fuzzy upper semi-continuous, intuitionistic
fuzzy lower semi-continuous) if it is intuitionistic fuzzy upper
[-continuous (resp. intuitionistic fuzzy lower S-continuous intuitionistic
fuzzy upper semi-continuous, intuitionistic fuzzy lower semi-continuous)
at each point of X.

P-Continuous Intuitionistic Fuzzy Multifunctions

Definition 3.1: An Intuitionistic fuzzy multifunction F: (X,7) — (Y,I) is
said to be:

(a) Intuitionistic fuzzy PB-continuous at a point x, € X if for any

Gy, G, € IFO(Y) such that F(xy) € G; and F(x,)qG, there exists
U € BO(X) containing x, such that F(u) c G, and F(u)qG,,V u € U.

(b) Intuitionistic fuzzy [-continuous if it has this property at each point of
X.

Theorem 3.1: If F : (X,T) — (Y, I') is intuitionistic fuzzy S-continuous then
F is intuitionistic fuzzy upper [-continuous and intuitionistic fuzzy lower
B-continuous .

Proof: Obvious.

Theorem 3.2: Let F: (X,7) — (Y, ') be an intuitionistic fuzzy multifunction,
Then the following statements are equivalent:

(a) F is intuitionistic fuzzy f-continuous at a point x € X;
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(b) for any G,,G, € IFO(Y) such that F(x) € G, and F(x)qG,, there
result the relation x € sCI( Int(F*(Gy) N F~(G,))).

(¢) for every G;,G, € IFO(Y) such that F(x) € G, and F(x)qG,, and for
any semi-open set U of X containing X, there exists a non-empty open
set Gyc U, such that F(Gy) < G; and F(u)qG,,V u € Gy.

Proof: (a) (b): Let G,,G,€IFO(Y) with F(x)cG,; and
F(x)qG,,3 U € BO(X) containing x such that F(U) c G; and F(u)qG,,Vu € U.
Thus,x € U € F*(G,) and x € U € F~(G,). Therefore x € U € F*(G;) N F~(G,).
Since U € a0(X). By Lemma 2.2 we have

x € U c sCl(IntU) c sCl(Int (F+((71) N F‘(ﬁz))).

(b) (c): Let G;,G, € IFO(Y) with F(x) c G; and F(x)qG,. Then
x € sCl (Int (F*(Gl) n F‘(Gz))). Let U be any semi-open subset of X containing Xx.
Then Unint(F*(G,)nF(G,)) # .PutGy = Int(Int(F*(GL) n F~(G2)) n V),
then Gy # ¢, Guc U, G Int(F*(G,)) c F*(G,) and Gy Int(F~(G,)) < F~(G>).
And thus, F(Gy) € G; and F(u)qG,, Vu € Gy.

(¢) (a): Let {U,} be the family of semi-open sets of X containing x. For
any semi-open set U ofX containing x and for every G,,G, € IFO(Y) with
F(x) € G, and F(x)qG,, there exists a non-empty open set Gyc U such that
F(Gy) € G, and F(u)qG, Vu € Gy. Let W=U {Gy:U € U,}. Then W is open in
X, xesCl(W), F(w)c G; and F(w)qG,, for every we W. Put S = WU {x}, then
W cScsCl(W)thus, WeEaO(X), x€S,F(S)cG, and F(t)qG, VtES.
Hence, F is intuitionistic fuzzy -continuous at x.

Definition 3.2: Let A be an intuitionistic fuzzy set of an intuitionistic fuzzy
topological space (Y,T). Then V is said to be a neighbourhood of A in Y if there
exists an intuitionistic fuzzy open set U of Y suchthat A c U c V.

Definition 3.3: Let (Y,I") be an intuitionistic fuzzy topological space, an
intuitionistic fuzzy set V is called a semi g-neighbourhood of an intuitionistic fuzzy
set A of Y if 3B U € IFSO(Y) such that AqU c V.

Theorem 3.3: Let F: (X,T) — (Y, T')be an intuitionistic fuzzy multifunction,
Then the following statements are equivalent:

(a) F is intuitionistic fuzzy [-continuous.
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(b) F*(G,) nF~(G,) € BO(X), for every Gy, G, € IFO(Y)
(¢) F*(V,)UF~(V}) € BC(X),forany V,,V, € IFC(Y).

(d) sint(CI(F~(B,) UF*(B;))) c F~(ClB,) U F*(CLB,), for any pair of
intuitionistic fuzzy sets B, B, of Y.

(e) BCI(F~(B,)UF*(B,)) c F~(ClBy) UF*(ClB,), for any pair of
intuitionistic fuzzy sets By, B, of Y.

) Bint(F~(B) nF*(B.))) o F~ (Int(B;)) n F*(Int(By)). for any
pair of intuitionistic fuzzy sets B;, B, of Y.

(g) For each point x of X for each neighbourhood V; of F(x) and for each
g-neighbourhood ¥, of F(x) , F +(I71) NnF _(172) is a a-neighbourhood
of x.

Proof: (a)  (b): Let any Gy,G, € IFO(Y) and x € F*(Gy) n F~(G,),
thus, F(x) € G; and F(x)qG,, Since F being intuitionistic fuzzy pB-continuous
according to the theorem 3.2 (b). There follows that x € sCI(Int(F*(G,) n F~(G,))).
And as x is chosen arbitrarily in F +(51) NnF _((72), we  have

F*(Gy) nF~(G,) € sclnt (F*(6,) n F~(6,))) and thus, F*(G,) nF~(G,) € BO(X)
by Lemma 2.2.

(b)  (c): It follows from Theorem 3.2 [27] (¢) and (d).

(¢)  (d): Suppose that (c) holds and let B;, B, be two intuitionistic fuzzy
sets of Y. Then Cl(By)€IFC(Y), Cl(B,)€IFC(Y)and thus, by
(¢) F~(CL(B,)) U F*(CL(B,)) € aC(X). Hence, by Lemma  2.1(a),
sint[ CL(F~(CL(By)) U F* (cz(Ez))] cF- (cz(él)) UF*(CL(B,). Now By c Cl(B,)
and B, c Cl(B,). By Theorem 3.2 [27] (e) and (DF*(B,) c F*(Cl(B,)) and
F~(B,) c F~(CI(B,)).

Consequently, sint( CL(F~(B,)) UF*(B,)) c F~ (Cl(él)) U F*(CI(By).

(d)  (e): Suppose (d) hold. Since BCI(A) = AU sInt(CI(A)) for
each subset A of X, it follows that,
aCl(F~(By) UF*(B;)) = (F~(By) UF*(By)) Usint(CL(F~(B,) UF*(B,)))
c (F-(By) UF*(By))u (F~(CiB,)) UF*(ClB,)) c F~ (cz(él)) U F*(CL(By).
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©  (: (BInt (F(By) n F*(B,) )¢ = BCI((F~(By) 0 F*(B2))°)
= BCI((F~ (B U (F*(B,)") = BCL (F*(B,) U F~(B,)")
c FHci(B,)) uF(CU(B,)") = F*((Int(Bn)°) u F~((Int(B)°)
= (F~(IntB,))° u (F*(IntB,))¢ = (F~(IntB,)) n F*(IntB,))° .
and thus, BInt(F~(B,) n F*(B,)) o F~(IntB;y) n F*(IntB,).
(@) (g): Let x€X,V, is a neighbourhood of F(x) andV, is a

g-neighbourhood of F(x). Then 3 U, U, € IFO(Y) such that F(x) c U, c V; and
F(x) qU, c V,. Therefore, x € F*(U,) n F~(U,). Therefore, by hypothesis

x € F*(U)nF(0,) =
F*(Int(0,)) n F~ (Int (T,))
c BInt (F*(Uy) n F~(0,)) < BInt(F* () n F~(7%,))
c (F*(7,) n F~(%,)). 1t follows that F*(¥,) n F~(7%,) is
B-neighbourhood of x.

(g) (a): Obvious.

Definition 3.4: An intuitionistic fuzzy multifunction F: (X,7) — (Y,T) is
called :

(a) intuitionistic fuzzy strongly lower semi- continuous F~(B) is a open set
in X if for each intuitionistic fuzzy set B of Y .

(b) intuitionistic fuzzy strongly upper semi-continuous if F*(B) is a open
set in X if for each intuitionistic fuzzy set B of Y .

Theorem 3.4: Let F: (X,7) — (Y,I)be an intuitionistic fuzzy upper
[-continuous and intuitionistic fuzzy strongly lower semi-continuous intuitionistic
fuzzy multifunction then F is intuitionistic fuzzy -continuous.

Proof: Let G;,G, € IFO(Y) Now F being intuitionistic fuzzy upper
[ continuous, and G, € IFO(Y), F*(G;) € BO(X) by Theorem 4.1 [28]. Again F
being intuitionistic fuzzy strongly lower semi-continuous,F ~(G,) is an open set in X.
Hence, F*(G,) N F~(G,) € BO(X) and by Theorem 3.3, F is intuitionistic fuzzy
B continuous.
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Theorem 3.5: Let F: (X,7) — (Y,I)be an intuitionistic fuzzy lower
p-continuous and intuitionistic fuzzy strongly upper semi-continuous intuitionistic
fuzzy multifunction then F is intuitionistic fuzzy f-continuous.

Proof: Obvious.
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1. Introduction

After the introduction of fuzzy sets by Zadeh [30] in 1965 and fuzzy
topology by Chang [7] in 1967, several researches were conducted on the
generalizations of the notions of fuzzy sets and fuzzy topology. The concept of
intuitionistic fuzzy sets was introduced by Atanassov [3, 4, 5] as a generalization of
fuzzy sets. In the last 27 years various concepts of fuzzy mathematics have been
extended for intuitionistic fuzzy sets. In 1997 Coker [8] introduced the concept of
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces.
In 1999, Ozbakir and Coker [24] introduced the concept intuitionistic fuzzy
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity
from a topological space to an intuitionistic fuzzy topological space. Abd El-Monsef
et al. [1] defined f-continuous functions as a generalization of semi-continuity [16]
and precontinuity [18]. In the present paper we introduce the concepts of
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intuitionistic fuzzy upper(lower) f-continuous multifunctions and obtain some of
their characterizations and properties.

2. Preliminaries

Throughout this paper (X,7) and (¥, T') represents a topological space and
an intuitionistic fuzzy topological space respectively. A subset A of a topological
space (X,T) is called Semi open [12] (resf-open[20]) if AC Cl(Int(A))(resp.AC

Int (C l(lnt(A))). The complement of a semi open (resp. S-open) set is called semi

closed (resp. f-closed). Every open (resp. closed) set is f-open (resp. S-closed) and
every $-open (resp. f-closed) set is semi open ( resp. semi closed) ,but the converses
may not be true..The family of all S-open (resp.S-closed) subsets of topological
space(X,T) is denoted by BO(X) (resp. SC(X)). The intersection of all B-closed
(resp. semi closed) sets of X containing a set A of X is called the S-closure [15 ]
(resp. semi closure ) of A. It is denoted by SCI(A) ( resp. sCI(A)). The union of all
[-open (resp. semi open) sub sets of A of X is called the S-interior [15] (resp. semi
interior) of A. It is denoted by BInt(A) ( resp. sInt(A)) . A subset A of X is -closed
(resp. semi closed) if and only if A D Cl(Int(Cl(A))) (resp.A > Int(Cl(A)). A
subset N of a topological space (X, T) is called a f-neighborhood [15] of a point x of
X if there exists a f-open set O of X such thatx € O € N. Aisa ff -open in X if and
only if it is a B-neighborhood of each of its points. A subset V of X is called a
[-neighborhood of a subset A of X if there exists U € FO(X) suchthat Ac U c V.
A mapping f from a topological space (X, T°) to another topological space (X*,T )
is said to be fS-continuous [16, 17] if the inverse image of every open set of X* is
[-open in X. Every continuous mapping is f-continuous but the converse may not be
true [16]. A multifunction F from a topological space (X, T") to another topological
space (X*, T ) is said to be lower [-continuous [19] (resp. upper [-continuous[18])
at a point x, € X if for every a-neighborhood U of x, and for any open set W of X*
such that F(xg) N W % (resp. F(xy) € W) there is a f-neighborhood U of x, such
that F(x) N W #  (resp. F(x) € W) for every x € U.

Lemma 2.1 [26]: Let A be a subset of a topological space (X, 7). Then:
(a) Aisf-closedin X  sInt(CI(A) C A;
(b) sInt(CI(A)) = Cl(Int(CI(A)));

(¢) BCLA)=A Cl(Int(Cl(A))).

Lemma 2.2 [26]: Let A be a subset of a topological space (X, T'). Then the
following conditions are equivalent :
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(a) A€ BOX)

(b) U c A c Int(CL(U)) for some open set U.

(¢) U c A c sCI(U) for some open set U.

(d) A c sCl(Int(A)).

Definition 2.1 [3, 4, 5]: Let Y be a nonempty fixed set. An intuitionistic
fuzzy set A inY isan object having the form

A= {<xpz(y), va(y) >yeY }

where the functions pz:Y — I and vz:Y — I denotes the degree of membership
(namely p 5 (y)) and the degree of non membership (namely v 5 (y)) of each element
y € Y to the set A respectively, and 0 < pz(x) + vz(x) <1l foreachy e Y.

Definition 2.2 [3, 4, 5]: Let Y be a nonempty set and the intuitionistic
fuzzy sets A and B be in the form A= {<vy, uz(y), vz(y) > : y €r},
B = {<y, ug(y),vg(y) >:y € ¥} and let {Ka :B € } be an arbitrary family of
intuitionistic fuzzy sets in Y. Then:

>1
N
os)i

(a) if vy e Y[ pz(y) < pg(y) and vz(y) = vg()];

andﬁgg;

>
I

ovl]
>
o

(b) if Ac
(© A= {<y,vz(¥),ua(y) > :y € ¥}

(d 0 ={<y,0,l>:yeY}and T={<y,1,0>:y€EY}
© N A,=1{<y, A g, VVal) >y e¥};

M UA, =1{<y V), Avg(y) >y e ¥}

Definition 2.3 [9]: Two Intuitionistic Fuzzy Sets A and B of Y are said to
be quasi coincident (Kqﬁ for short) if 3 y € Y such that

ua () > vg(y) or vx(y) < pg(y)-
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~

Lemma 2.3 [9]: For any two intuitionistic fuzzy sets A and B of
Y, (AqB) < A c B-.

Definition 2.4 [8]: An intuitionistic fuzzy topology on a non empty set Y is a
family I" of intuitionistic fuzzy sets in Y which satisfy the following axioms:

©O). 0,TeT,

(0y). ;‘1 N Kz e T, for anygl,xz el

(03). v Ka for any arbitrary family {Ka aeA}el.

In this case the pair (¥, T) is called an intuitionistic fuzzy topological space
and each intuitionistic fuzzy set in I, is known as an intuitionistic fuzzy open set in Y.

The complement B © of an intuitionistic fuzzy open set B s called an intuitionistic
fuzzy closed set in Y.

Definition 2.5 [8]: Let (Y, I') be an intuitionistic fuzzy topological space and

A be an intuitionistic fuzzy set in Y. Then the interior and closure of A are defined
by:

cl( K) = n{K : K is an intuitionistic fuzzy closed set in ¥ and Ack }s
int(g) = U{G : G is an intuitionistic fuzzy open setin Yand G < G}.

Definition 2.6 [24]: Let X and Y are two non empty sets. A function
F: X — Y is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy

setinY, Vx eX.

Definition 2.7 [28]: Let F : X—Y is an intuitionistic fuzzy multifunction and
A beasubset of X. Then F(A)= ,caF(x).

Definition 2.8 [24]: Let F : X — Y be an intuitionistic fuzzy multifunction.
Then the upper inverse F+(K) and lower inverse F_(K) of an intuitionistic fuzzy
set A inY are defined as follows:

F'(A)={xeX:Fx)c A}

F (A)={xe X: F(x)qA}.
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Lemma 2.9 [28]: Let F:(X,t)— (Y,I) be an intuitionistic fuzzy
multifunction and A, B be intuitionistic fuzzy sets in Y. Then:

(@) F* (1) =F (D) =X,

(b) F*(4) € F~(4)

©[F~(@)]" = F*(A)]

(@ [F*(A)" = [F~(A)

(e) IfA € B,then F*(A) c F(B)

(HIf A< B,thenF~(A) S F (B)

Definition 2.10 [24]: An Intuitionistic = fuzzy  multifunction
F:(X,T)—Y,I) (is said to be:

(a)

(b)

(©)

Intuitionistic fuzzy upper B-continuous [28] (Intuitionistic fuzzy upper
semi continuous [23] ) at a point x, € X if for any intuitionistic fuzzy
open set W < Y such that F(x,) € W there exists an U € BO(X) (resp.
open set U € X ) containing x, such that F(U) c W.

Intuitionistic fuzzy lower S-continuous (resp. Intuitionistic fuzzy lower
semi continuous) at a point xo € X if for any intuitionistic fuzzy open
set W < Y such that F(x,)qW there exists an U € BO(X) (resp. open set
U c X) containing x, such that F(x)qW ,vx € W.

Intuitionistic fuzzy upper f-continuous (resp. intuitionistic fuzzy lower
[-continuous Intuitionistic fuzzy upper semi-continuous, intuitionistic
fuzzy lower semi-continuous) if it is intuitionistic fuzzy upper
[-continuous (resp. intuitionistic fuzzy lower f-continuous intuitionistic
fuzzy upper semi-continuous, intuitionistic fuzzy lower semi-continuous)
at each point of X.

3. Upper B Continuous Intuitionistic Fuzzy Multifunctions

Definition 3.1: An Intuitionistic fuzzy multifunction F: (X,T) — (Y,I") is

said to be:

(a) intuitionistic fuzzy Upper f-continuous at a point x, € X if for any

intuitionistic fuzzy open set W of Y such that F(x,) W there exists U € BO(X)

containing x,, such that F(U) c W
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(b) intuitionistic fuzzy upperf-continuous if it has this property at each point
of X.

Theorem 3.2: For an intuitionistic fuzzy multifunction F : (X,7) — (Y,I)
and a point x € X the following conditions are equivalent:

(a) F is intuitionistic fuzzy upper f-continuous at x.

(b) For each intuitionistic fuzzy open set G of Y, F(x) c G, there results
the relation x € sCl(Int (F+(5))).

(c) For any semi-open set U € X containing x and for any intuitionistic
fuzzy open set G of Y, F(x) c G, there exists a non-empty open set
V c U such that F(V) c G.

Proof: (a)  (b): Let x € X and B be any intuitionistic fuzzy open set of Y
such that F(x) € B, thereisa U € BO(X) suchthatx € Uand F(v) c B,Vv € U.
Thus,x € U € F*(B). Since, U € BO(X), U c sCl(Int(U)) c sCl(Int (F*(B))).
Hence, x € sCl(Int (F*(B))).

(b) (c): Let B be any intuitionistic fuzzy open set of Y such that
F(x) c B, then x € sCl(Int (F+(E’))). Let U € X be any semi-open set such that

x €U, then UNnInt(F*(B)) # ¢. Put V =UnInt (F*(B)), then V is an semi-
opensetinX,V cU, V+¢ and F(V) c B.

(c) (a): Let {U,} be the system of the semi-open sets in X containing x.
For any semi-open set U c X such that x € U and B be any intuitionistic fuzzy
open set of Y such that F(x) c B, there exists a non empty open set By c U

~ U
such that F(By) € B. Let W = Ueu By, then W is open, x € sCl(W) and
X

F(w)cB,vyweW. Put S = WU {x}, then W € S c sCL (W). Thus, SE B(X),
x € Sand F(w) € B, Vw € S. Hence, F is intuitionistic fuzzy upper f continuous
at x.

Theorem 3.3: For an intuitionistic fuzzy multifunction F: (X,7) — (Y,I)
the following conditions are equivalent:

(a) F is intuitionistic fuzzy upper f continuous.

(b) F*(G) € BO(X), for every intuitionistic fuzzy open setG of Y.
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(¢) F~(B) € BC(X) for each intuitionistic fuzzy closed set B of Y.

(d) For each point x € X and for each neighborhood V of F(x) inY , F+ (V)
is a [-neighborhood of x.

(e) For each point x € X and for each neighborhood V of F(x) inY, there
is an f-neighborhood U of x such that F(U) c V.

(f) BCL(F~(B)) c F~ (C Z(E’)) for each intuitionistic fuzzy set B of Y.
(g) sint(Cl (F‘(E’))) c F~(CY(B)) for any intuitionistic fuzzy set B of Y.

Proof: (a) (b): Let ¥ be any intuitionistic fuzzy open set of Y and
x € F*(7). By Theorem 3.2, x € sCl(Int F*(B)). Therefore, we obtain
F*() c sCl(Int F*(B)). Hence by Lemma 2.2, F*(V) € BO(X).

(b)  (a): Let x be arbitrarily chosen in X and G be any intuitionistic fuzzy
open set of Y such that F(x) C G, so x € F*(G). By hypothesis F*(G) € BO(X),
we have x € F*(G) c sCl(Int (F*(G))) and thus, F is intuitionistic fuzzy upper
[-continuous at x according to Theorem 3.2 As x was arbitrarily chosen, F is
intuitionistic fuzzy upper -continuous.

(b)  (¢): This follows from Lemma 2.6 that [F (A )]=F " (A ).

(¢) (H: Let B be any intuitionistic fuzzy open set of Y. Then by (c),
F~(CI(B)) is an B closed set in X. Thus by Lemma 2.1 we have

F~(CU(B)) o sint (CI (F— (cz(é)))) > sint(CI(F~(B))) 3 F~(B) U
sint(CL(F~(B))) = et (F~(B))-

® (g): Let B be any intuitionistic fuzzy open set of Y. By Lemma 2.1,
we have 5CL(F~(B)) = F~(B) U sint(CL(F~(B)))  F~(CL(B)).

(8  (c): Let B be any intuitionistic fuzzy closed set of Y. Then by (g) we
have, sint (Cl (F‘(B))) c F~(B)Usint (Cl (F‘(E’))) c F~(ci(B)) = F~(B).

Hence, By Lemma 2.1, F'(E) € BC(X).
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(b) = (d): Let x € X and V be a neighborhood of F(x) in Y. Then there is
an intuitionistic fuzzy open set G of Y such that F(x) € G c V. Hence,
x € F*(G) c F*(V). Now by hypothesis F*(G) € BO(X), and thus F*(V)is an
B-neighborhood of x.

(d)= (e): Let x€X and V be a neighborhood of F(x)in Y. Put
U = F* (V). Then U is an 8 -neighborhood of x and F(U) c V.

(e)= (a): Let x € X and V be an intuitionistic fuzzy set in Y such that
F(x) c V. V, being an intuitionistic fuzzy open set in Y , is a neighborhood of
F(x) and according to the hypothesis there is a f-neighborhood U of x such that
F(U) c V. Therefore, there is A € BO(X) such that x € Ac U and hence,
F(A) cFU) cV.

Corollary 3.4 [27]: For a fuzzy multifunction F: (X,7) — (Y,0) the
following conditions are equivalent:

(a) Fis fuzzy upper f continuous.
(b) F*(G) € BO(X), for every fuzzy open set G of Y.
(¢) F~(B) € BC(X) for each fuzzy closed set B ofY.

(d) For Vx € X and for each neighborhood V of F(x)inY ,F*(V) is a
B-neighborhood of x.

(e) For Vx € X and for each neighborhood V of F(x)inY, there is a
pB-neighborhood U of x suchthat F(U) c V.

(f) BCU(F~(B)) c F~(CI(B)) for each fuzzy set B of Y.

(g) sInt(CL(F~(B))) € F~(CI(B)) for any fuzzy set B of Y.

Corollary 3.5 [26]: For a multifunction F from a topological space (X,T)
to another topological space (Y, ) the following conditions are equivalent:

(a) Fisupper f continuous.

(b) F*(G) € BO(X), for every open set G of Y.
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(¢) F~(B) € BC(X) for each closed set B ofY.

(d) For ¥ x € X and for each neighborhood V of F(x)inY, F*(V) is a
[-neighborhood of x.

(e) For Vx € X and for each neighborhood V of F(x)inY, there is a
B-neighborhood U of x suchthat F(U) c V.

() BCU(F~(B)) c F~(CI(B)) for each set B of Y.
(2) sInt(Cl(F‘(B))) c F~(CL(B)) for any set B of Y.
3. Lower f-Continuous Intuitionistic Fuzzy Multifunctions

Definition 4.1: An Intuitionistic fuzzy multifunction F : (X,7) — (Y,I) is
said to be:

(a) Intuitionistic fuzzy lower [-continuous at a point x, € X, if for any
Intuitionistic  fuzzy open set W <Y such that F (x, )qVI7 there exists
U € O(X) containing x, such that F (x)qW VxelU.

(b) Intuitionistic fuzzy lower f-continuous if it is intuitionistic fuzzy lower
[-continuous at every point of X.

Definition 4.2: Let A be an intuitionistic fuzzy set of an intuitionistic fuzzy
topological space (Y,I'). Then V is said to be a neighbourhood of A in Y if there

exists an intuitionistic fuzzy open set U of Y suchthat A < {J c V.

Theorem 4.3: Let F: (X,7)— (Y,T") be an intuitionistic fuzzy multifunction
and let x € X. Then the following statements are equivalent:

(a) F is intuitionistic fuzzy lower f-continuous at x.

(b) For each intuitionistic fuzzy open set B of Y with F(x)qB, implies
x € sCl(Int( F~(B))

(c) For any semi-open set U of X containing x and for any intuitionistic fuzzy
open set B of Y with F(x)qB, there exists a non empty open set V c U such
that F(v)qB, Vv EV.
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Proof: (a) (b): Let x € X and B be any intuitionistic fuzzy open set of Y
such that F(x)gB. Then by (a) 3 U € BO(X) such that x € U and F(v)qB ,vYv € U.
Thus,x € U © F~(B). Now U € BO(X) implies U c sCI(Int(U)).
Hence, x € sCl(Int F~(B)).

(b)  (c): Let B be any intuitionistic fuzzy open set of Y such that F(x)qB,
then x € sCI(intF _(E)). Let U be any semi-open set of X containing x. Then
Uun Int(F‘(E)) #@¢. Put V=UnInt (F~(B)), then V is an semi-open set of X,
VcU V+¢ andF(v)qB, Vv EV.

(¢) (a): Let {U,} be the system of the semi-open sets in X containing X.
For any semi-open set U € X such that x € U and any intuitionistic fuzzy open set
B of Y such that F(x)qB, there exists a non empty open set B, € U such that

~ U
F(v)qB,Vv € By. Let W = U e v.Bus then W is open in X, x € sCI(W) and
X

F(v)gB, VveW.Put S=WU{x}, then W c S c sClL (W). Thus, S € BO(X),
x €S and F(v)qB, Vv € S. Hence, F is intuitionistic fuzzy lower B-continuous
at x.

Definition 4.4 [25]: Let X and Y are two non empty sets. A function
F: X — Y is called fuzzy multifunction if F(x) is a fuzzy setin Y, V xe X

Theorem 4.5: Let F: (X,7)—(Y,I') be an intuitionistic fuzzy multifunction,
Then the following statements are equivalent:

(a) F is intuitionistic fuzzy lower -continuous.
(b) F~(G) € BO(X), for every intuitionistic fuzzy open set G of Y.
(c) F*(V) € BC(X) for every intuitionistic fuzzy closed set V of Y.

(d) sint(CL(F*(B))) c F*(CI(B)), for each intuitionistic fuzzy set B
of Y.

(e) F(sInt (Cl(A))) C CI(F(A)), for each subset A of X.
(f) F(BCL(A)) c CL(F(A)), for each subset A of X,
(g) BCL(F*(B)) c F*(CI(B)), for each Intuitionistic fuzzy set B of Y .

(h) F(Cl (Int(Cl(A)))) C CI(F (A)) for any subset A of X.
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Proof: (a) (b): Let G be any intuitionistic fuzzy open set of Y and
X€EF _(6), so F(x)qG, since F is Intuitionistic Fuzzy lower S-continuous, by
Theorem 4.3 it follows that x € sCl(Int F~(B)). As x is chosen arbitrarily in
F~(G), we have F~(G) c sCl(Int F~(G)) and thus, F~(G) € BO(X).

(b)  (a): Let x be arbitrarily chosen in X and G be any intuitionistic fuzzy
open set of Y such that F(x)qG, so x € F‘(@). By hypothesis F‘(G) € LO(X), we
have x € F _(5) c sCl(Int (F _(6))) and thus, F is intuitionistic fuzzy lower
p-continuous at x according to Theorem 4.3 As x was arbitrarily chosen, F is
intuitionistic fuzzy lower f-continuous.

(b)  (c): Obvious.

(¢) (d): Let B be any arbitrary intuitionistic fuzzy set of Y. Since C Z(E’ ) is
intuitionistic fuzzy closed set in Y by hypothesis, F*(Cl (B)) € BC(X). Hence, by
Lemma 2.1, we obtain

F*(CI(B)) > sint (C (F+ (CZ(E)))) > sInt(CL(F*(B))).

(d) (e): Suppose that (d) holds, and let A be an arbitrary subset of X.
Let us put B =F(A), thenA c F*(B). Therefore, by hypothesis, we have
sint (CI(A)) c sInt(CI(F*(B))) € F*(CL(B)). Therefore,

F(sInt(CI(A))) < F(F* (CL(B))) < CL(B) = CI(F(A)).

()  (c): Suppose that (e) holds, and let B be any intuitionistic fuzzy closed
set of Y. PutA = F*(B), then F(A) c B. Therefore, by hypothesis, we have
F(sInt(Cl(A))) c CI(F(A)) c CY(B) =B and F*(F(sInt (CI(A)))) c F*(B).
Since we always have F* (F(slnt(Cl(A)))) D sint(Cl(A)), we obtain
F*(B) o sint(CL(F*(B))). Hence, by Lemma, 2.1, F*(B) € BC(X).

(c) (f): Since A c FT(F(A)), we have A c F*(CL(F(A))). Now
Cl(F(4)) is an intuitionistic fuzzy closed set in Y and so by hypothesis
F*(Cl(F(A))) e BC(X).  Thus, PBCIL(A) c F*(CI(F(A))). Consequently,
F(BCI(A)) c F(FT(CL(F(A)))) c CI(F(A)).

®) (c): Let B be any intuitionistic fuzzy closed set of Y. Replacing
A by F*(B) we get by (. F(BCL(F*(B))) < CI(F (F*(B))) < CI(B) = B.
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Consequently, BCL(F*(B)) c F*(B). But F*(B) c BCI(F*(B)). And so,
BCL(F*(B)) = F*(B). Thus, F*(B) € BC(X).

® (2): Let B be any intuitionistic fuzzy set of Y. Replacing A by
F*(B) we get by (0, F(BCI(F*(B))) < CI(F (F*(B)))  CL(B). Thus,
BCL(F*(B)) c F*(CI(B)).

(@  (D: Replacing B by F(A), where A is a subset of X, we get by (g),
pei(a) < pet(F*(F4))) = pet(F+(B)) = F* (CU(B)) = F*(CLF(A)).
Thus, F(BCL(A))  F (F+(Cl(F(A))) c CL(F(A)).

(e)  (h): Follows from by Lemma 2.9.

(h) (a): Let x € X and V be any intuitionistic fuzzy open set in Y such
that F(x)qV. Then x € F~ (V). We shall show that F~(") € B(X). By the hypothesis,
we have F(CIInt(CI(F*(V¢)))) c Cl (F (F+(I7C))> c (7€), which implies
that Cl(In(CI(F* (V) c F+(V¢) c (F~(V))°. Therefore, we obtain
F=(7)  Int(Cl <1nt (F—(V)))) . Hence, F~(V) € B(X). Put U = F~(V). Then
x € U € BO(X) and F(u)qgV for every u € U thus, F is intuitionistic fuzzy lower

B continuous.

Corollary 4.6[27]: For a fuzzy multifunction F:(X,T) — (Y,0) the
following statements are equivalent:

(a) F is fuzzy lower a-continuous.

(b) F~(G) € BO(X), for every fuzzy open set G of Y.

(c) FT(V) € BC(X) for every fuzzy closed set V of Y.

(d) sint(Cl( F*(B))) c F*(CI(B)), for each fuzzy set B of Y.
(e) F(sInt (Cl(A))) C CI(F(A)), for each subset A of X.

(f) F(BCL(A)) c CI(F(A)), for each subset A of X,

(g) BCI(F*(B)) c F*(CL(B for each fuzzy set B of Y .

(h) F(Cl (Int(Cl(A)))) c CIL(F(A)) for any subset A of X.
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Corollary 4.7 [26]: For a multifunction F: (X,7) — (Y,0) the following
statements are equivalent:

(a) F islower -continuous.

(b) F~(G) € BO(X), for every open set G of Y.

(c) FY*(V) € BC(X) for every closed set V of Y.

(d) sInt(Cl(F*(B))) c F*(CI(B)), for each set B of Y.
(e) F(sInt (Cl(A))) C CI(F(A)), for each subset A of X.
(f) F(BCL(A)) c CI(F(A)), for each subset A of X,

(g) BCI(F*(B)) c F*(CL(B for each set B of Y .

(h) F(Cl (Int(Cl(A)))) C CI(F(A)) for any subset A of X.
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