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Abstract: We explore the extension of the Catalan-like identity 

2 1 2( 1)n k
n k n k n kg g g f 
     [6] and its ramifications to the Pell, 

Jacobsthal, Vieta, and Chebyshev families, and give graph-theoretic 
confirmations of the Gibonacci and Jacobsthal versions. 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

1 2( ) ( ) ( ) ( )( )n n nz a x z x b x zx x   , where x is a complex variable; 

0( ) ( ) ( ),   ,  x xa z xb  and 1( )z x  are arbitrary complex polynomials; and 2n  . 

 
 Fibonacci, Lucas, Pell-Lucas, Vieta, Vieta-Lucas, and Chebyshev 

polynomials belong to the family  ( )nz x ; they are denoted by ( )nf x , ( )nl x , ( )np x , 

( )nq x , ( )nJ x , ( )nV x , ( )nv x , ( )nT x , and ( )nU x , respectively [7, 8]. The nth 

Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and Jacobsthal Lucas numbers  

are denoted by nF , nL , nP , nQ , nJ , and nj , respectively; they are given by
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(1)n nF f , (1)n nL l , (1) (2)n n nP p f  , (1)2 (1)n n nQ q l  , (2)n nJ J , 

and (2)n nj j , [7, 8]. 

 
 These subfamilies are linked by the following relationships [1, 7, 8]: 
 

 
( 1)/2 /2(1/ ) ( ) (1( ) / )n n

n n n nJ x f x jx x x l x    

 1 ( )( ) ( ) ( )n n
n n n nV i f ix v i ixx x l      

 1( /2) ( ) 2 /) ( 2( )n n n nV U x v x Tx x  , 

 

where 1.i    
 

 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x ; we also 

let n ng f  or nl , n nb p  or nq , ( )n nc J x  or ( )nj x , and correspondingly, 

n nG F  or ,nL  n nB P  or  ,nQ  and  n nC J  or   nj . 

 
2. Gibonacci Extensions of a Catalan Delight 
 
 The charming identity [4] 
 

2 1 2( 1)n k
n k n k n kF F F F 
      

has a gibonacci extension [6, 7], where n k : 

 
2 1 2( 1)n k

n k n k n kg g g µf 
      , 

where 

 
  

 
2

( )
( )

1 if

if .4

n n

n n

g f
µ µ x

g lx
 

 
 This identity has a delightful extension [6]: 
 

  11( )n k
m k n k m n k m n kg g g g µf f 
      .                                  (1) 
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 We can establish this using the Binet-like formulas 
 

  
n n

nf
 

 





       and       n n

nl    , 

 

where ( )x   and ( )x   are the solutions of the equation  2 1 0t xt   . 
 

 For example, 
 

2( ) ( ( )1 4) )(n k m m n n
m n k m n kl l x f f    

         

     ( ) ( )  ( )n k k k m n k m n k             
 

       m n m k n k n k m k m n                

       ( )( )m k m k n k n k           

       m k n kl l  . 
 

 This gives identity (1) when n ng l . Its Fibonacci counterpart follows 

similarly. 
 
 It follows from identity (1) that 
 

  1( )1 (1)n k
m k n k m n k m n kG G G G µ F F 
      ;    (2) 

        1( )2) (1 n k
m k n k m n k m n kb b b b µ x p p 
      ; 

   1( )1 (2)n k
m k n k m n k m n kB B B B µ P P 
       . 

 

 Identity (2) with n nG F  is the d’Ocagne identity [4, 6]. 
 

 Next we explore the consequences of identity (1) to the Jacobsthal family. 
 

 2.1 Jacobsthal Implications: Replacing x with 1/ x  in identity (1), we get 
 

  1( ) (  1/ )1 n k
m k n k m n k m n kg g g g µ x f f 
      ,                     (3) 

 

where   (1 )/n ng g x . 
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 Suppose n ng f . Multiplying the resulting equation with 2( )/2m nx   , we get 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )n k
m k n k m n k m n kJ x J x J x J x x J x J x
       . 

 

 Likewise, when n ng l , multiplying the corresponding equation with 

/( ) 2m nx    yields 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) (4 1 )n k
m k n k m n k m n kj x j x j x j x x x J x J x
       . 

 
 Combining the two cases, we get 
 

        ( ) ( )n k
m k n k m n k m n kc c c c x x J J       ,                (4) 

where 
 

 
(1 if

4 1 if

)
( )

( ) ( ).
n n

n n

c J x
x

x c j x


 
 

  
   

 

 This can be confirmed independently using the Binet-like formulas for ( )nJ x  

and ( )nj x . 

 
 Identity (4) implies 
 

( )2 n k
m k n k m n k m n kC C C C J J       , 

 

where   
1 if

9 if .
n n

n n

c J

c j


 
 

 
 

 
 2.2 Vieta and Chebyshev Implications: Identity (1) has Vieta and 
Chebyshev consequences as well. In the interest of brevity, we omit the details. 
 

( )m k n k m n k m n kd d d d x V V     , 

where 

   
2

1 if

if .4
( )

n n

n n

d V
x

d vx
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 Since 1( ) ( )2n nU x V x   and  2 ( ) ( )2n nT x v x , it then follows that 

 

   1 1( )m k n k m n k m n ke e e e x U U       , 

 
where 

   
2

1 if

if .
)

1
(

n n

n n

e
e U

x
e Tx

 
 



 

 
 Next we confirm identities (1) and (4) using graph-theoretic tools. 
 
3. Graph-theoretic Confirmations 
 
 In order to confirm identity (1), first we present some basic facts. 
 

 Consider the weighted digraph 1D  with vertices 1v  and 2v  in Figure 1. A 

weight is assigned to each edge. 

 

 
Figure 1: Weighted Digraph 1D   

 

 Its weighted adjacency matrix is the Q-matrix 

 

1
,

1 0

x
Q

 
   
  

 

 

where ( )Q Q x . It then follows by induction that 
 

1

1

,
n nn

n n

f f
Q

f f




 
   
  

 

where 1n   [3]. 
 



154 THOMAS KOSHY   

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . The walk is closed if i jv v ; otherwise, it is 

open. The length of a walk is the number of edges in the walk. The weight of a walk 

is the product of the weights of the edges along the walk. 

 

 The following theorem provides a powerful tool for computing the weight of 

a walk of length n from iv  to jv  [2, 3]. 

 

 Theorem 1: Let A be the weighted adjacency matrix of a weighted  

and connected digraph with vertices 1 2,   ,  . . . ,   kv v v . Then the ijth entry of 

the matrix nA gives the sum of the weights of all walks of length n from iv  to 

jv , where 1n  .            □ 

 
 The next result follows from this theorem. 
 

 Corollary 1: The ijth entry of nQ gives the sum of the weights of all 

walks of length n from iv  to jv  in the weighted digraph 1D , where 

1 ,  i j n  .                           □ 

 

 Consequently, the sum of the weights of all closed walks of length n 

originating at 1v  is 1nf  , and that of walks of length n originating at 2v  is 1nf  . So 

the sum of the weights of all closed walks of length n is 1 1n n nf f l   . These 

facts play a pivotal role in our graph-theoretic proofs.  
 

 3.1 Proof of Identity (1): Let A, B, C, and D be the sets of closed walks of 

lengths 1m k  , 1n k  ,  1k   and 1m n k    from 1v  to 1v , 

respectively. The sum 1S  of the weights of pairs ( ),v w  in A B  is given by

1 m k n kS f f  , and the sum 2S  of the weights of elements ( ),v w  in C D  is given 

by  

2 k m n kS f f   . So  1 1
1 2( ) 1)1 (n k n k

m k n k k m n kS S f f f f   
        . 
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 We will now compute this sum in a different way. Let ( ),v w  be an arbitrary 

element of A B . If both v and w begin with a loop, the sum of the weights of such 

pairs is 2
1 1 1 1( )( )m k n k m k n kxf xf x f f        ; if v begins with a loop and w does 

not, the corresponding sum is 1 2 1 2( ) 1 1( )· ·m k n k m k n kxf f xf f        ; if v does 

not and w does, the corresponding sum is 2 1 2 1( )( )1 · 1 · m k n k m k n kf xf xf f         

and if neither does, the resulting sum is

2 2 2 2( )( )1 · 1 · 1 · 1 ·m k n k m k n kf f f f        . 

 
 Thus, by identity (1), we have 
 

 2
1 1 1 1 2 2 1 2 2m k n k m k n k m k n k m k n kS x f f xf f xf f f f                     

      1 2 1 2( )( )m k m k n k n kxf f xf f            

                  m k n kf f    

                  ( )1 n k
m n k m n kf f f f

    . 

 

 To re-compute 2S , let ( ),v w  be an arbitrary element of C D . If both v and 

w begin with a loop, the sum of the weights of such pairs is

2
1 1 1 1( )( )k m n k k m n kxf xf x f f        ; if v does and w does not, the corresponding 

sum is 1 2 1 2( )( )1 · 1 ·k m n k k m n kxf f xf f        ; if  v  does not and w does, then 

the sum is  2 1 2 1( )(1 · 1 · )k m n k k m n kf xf xf f        ; and if neither does, then  

the sum is  2 2 2 2( )1 · 1 · 1 ·( 1 · )k m n k k m n kf f f f        . So 
 

        2
2 1 1 1 2 2 1 2 2k m n k k m n k k m n k k m n kS x f f xf f xf f f f                     

 1 2 1 2( )( )k k m n k m n kxf f xf f            

 k m n kf f   . 

 

 Thus, 
 

1 1
1 2( ) (1 [ 1 ] 1) ( )n k n k n k

m n k m n k k m n k m nS S f f f f f f f f    
           . 
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 Equating the two sums yields identity (1) when  n ng f , as desired. 

 

 Now let n ng l . Let A and B be the sets closed walks of length m k  

originating at 1v  and 2v , respectively; and C and D the sets closed walks of length 

n k  originating at 1v  and 2v , respectively. Then A B  and C D  denote the 

sets of closed walks of lengths m k  and n k  in the digraph, respectively.  

The sum 1S  of the weights of the pairs ( ),v w  of walks in ( ) ( )A B C D    is given 

by 1 m k n kS l l  . Let R  and S  be the sets of closed walks of lengths  

1k   and 1m n k    from 1v  to 1v , respectively. The sum 2S  of the  

weights of elements (v, w)  in  R S  is given by 2 k m n kS f f   . Then 

 
2 2

1 2( ) ( ) ( ) (1 4)4 1n k n k
m k n k k m n kS x S l l x f f 
          . 

 
 We will now compute this sum in a different way. To this end, let ( ),v w  be 

an arbitrary element of  ( ) ( )A B C D   . 

 

 Case 1: Suppose v A  and w C . If both v and w begin with a loop, the 

sum of the weights of such pairs ( ),v w  is 2( )( )m k n k m k n kxf xf x f f    ; if v does 

and w does not, the corresponding sum is 1 1( ) 1 ·( )· 1m k n k m k n kxf f xf f      ; if 

v does not and w does, the resulting sum is 1 11 · 1 ·( )( )m k n k m k n kf xf xf f      ;  

and if neither does, the corresponding sum is

1 1 1 1( )( )1 · 1 · 1 · 1 ·m k n k m k n kf f f f        . 

 

 Case 2: Suppose v A  and w D . If v begins with a loop, the sum of the 

weights of such pairs is 1 1( )m k n k m k n kxf f xf f      ; and if v does not, the 

corresponding sum is 1 1 1 11 ·( · )1 m k n k m k n kf f f f        . 

 

 Case 3: Suppose v B  and w C . If w  begins with a loop, the sum of the 

weights of such pairs is 1 1( )m k n k m k n kf xf xf f      ; and if w does not, the 

corresponding sum is 1 1 1 1( )1 · 1 ·m k n k m k n kf f f f        . 
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 Case 4: Suppose v B  and w D . The sum of the weights of such pairs is

1 1m k n kf f    . 

 

 Combining the four cases, by identity (1) we have 
 

 1 1 1 1 1( )( ) ( )m k m k n k n k m k m k n kS xf f xf f xf f f                 

    1 1 1 1( )m k n k n k m k n kf xf f f f             

      1 1 1 1( )( )m k m k n k n kf f f f            

      m k n kl l    

      2( ) (1 4)n k
m n k m n kl l x f f

      . 
 

 With the sets R and S above, we have 2 k m n kS f f    . Thus, 
 

 2 2
1 2( ) ( ) ( ) (1 4 [ 4)1 ]n k n k

m n k m n kS x S l l x f f 
         

     2( ) ( )1 4n k
k m n k m nx f f l l
     . 

 

 This, coupled with the earlier sum, gives the desired result. 
 

 Next we confirm the Jacobsthal delight in (4) using graph-theoretic tools. 
 
4. Graph-theoretic Confirmation of Identity (4) 
 

 Consider the weighted digraph 2D  in Figure 2 with vertices 1v  and 2v . Its 

weighted adjacency matrix is given by 
 

 
Figure 2: Weighted Digraph 2D   

 

1
.

1 0

x
M
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 Since, 

1

( ) 1( )

( ) ( )
,

n nn

n x n x

J x xJ x
M

J xJ




 
   
  

 

 

by induction [5], it follows that the sum of the closed walks of length n from 1v  to 

itself is 1( )nJ x , and that from 2v  to itself is 1( )nxJ x . Consequently, the sum of 

the weights of all closed walks of length n is 1 1( ) ( ) ( )n n nJ xJx x xj   . 

 We are now ready to confirm identity (4). We begin with ( )n nc J x . Let A, 

B, C, and D  be the sets of closed walks of lengths 1m k  , 1n k  , 1k  , and 

1m n k    from 1v  to 1v , respectively. The sum 1S  of the weights of pairs of 

walks in A B  is 1 ( ) ( )m k n kS J x J x  ; and the sum 2S  of the weights of pairs of 

walks in C D  is 2 ( ) ( )k m n kS J x J x  . Then 

 

1 2( ) ( ) ( ) ( ) ( ) ( )n k n k
m k n k k m n kS x S J x J x x J x J x 
        . 

 

 We will now compute this sum in a different way. To re-compute 1S , we let 

( ),v w  an arbitrary element of A B . If both v and w begin with a loop, the sum of 

the weights of such pairs is 1 1 1 1[ ( )][ (  1 )] (· 1 · ) ( )m k n k m k n kJ x J x J x J x        ; 

if v does and w does not, the corresponding sum is

1 2 1 2[ ( )][ (1 · · 1 )] (· ) ( )m k n k m k n kJ x x J x xJ x J x        ; if v does not and w does, 

the corresponding sum is 2 1 2 1[ ( )][ (· 1 · 1 ) ( )· ] ) (m k n k m k n kx J x J x xJ x J x         

and if neither does, the resulting sum is
2

2 2 2 2· 1 · · 1 ·[ ( )][ ( )] ( ) ( )m k n k m k n kx J x x J x x J x J x        . Then, by identity 

(4), we have 
 

  1 1 2 1 2[ ( ) ( )][ ( ) ( )]m k m k n k n kS J x xJ x J x xJ x            

            ( ) ( )m k m kJ x J x    

            ( ) ( ) ( ) ( ) ( )n k
m n k m n kJ x J x x J x J x

    . 
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 We will now re-compute 2S . Let ( ),v w   be an arbitrary element of C D . 

If both v and w begin with a loop, the sum of the weights of such pairs is

1 1 1 1[ ( )][ (1 · 1 · )] ( ) ( )k m n k k m n kJ x J x J x J x        ; if v does and w does not, the 

corresponding sum is 1 2 1 2[ ( )][ ( )] ( ) (· · )1 · 1k m n k k m n kJ x x J x xJ x J x        ;  

if v does not and w does, the corresponding sum is

2 1 2 1[ ( )][ ( )] ( ) (· · )· 1 1k m n k k m n kx J x J x xJ x J x        ; and if neither does, the 

resulting sum is 2
2 2 2 2[ ( )][· 1 · · 1 · ( )] ( ) ( )k m n k k m n kx J x x J x x J x J x        . 

Then 
 

   2 1 2 1 2[ ( ) ( )][ ( ) ( )]k k m n k m n kS J x xJ x J x xJ x            
 

        ( ) ( )k m n kJ x J x   . 

 Thus, 

  1 2( ) [ ( ) ( ) ( ) ( ) ( )]n k n k
m n k m n kS x S J x J x x J x J x 

        

      ( ) ( ) ( )n k
k m n kx J x J x

    

      ( ) ( )m nJ x J x . 

 

 Equating this with the earlier sum yields identity (4) with ( )n nc J x . 

 

 Finally, consider the case ( )n nc j x . Let A and B be the sets of closed 

walks of length m k  originating at 1v  and 2v , respectively; and R and S the sets 

closed walks of length n k  originating at 1v  and 2v , respectively. Let C and D 

denote the sets of closed walks of lengths 1k   and 1m n k   , originating at 

1v , respectively. The sum 1S  of the weights of pairs of walks in ( ) ( )A B R S     

is given by 1 ( ) ( )m k n kS j x j x  ; and the sum 2S  of the weights of pairs of walks 

in C D  is 2 ( ) ( )k m n kS J x J x  . So 

 

1 2( )( ) ( ) (4 1 4) ( )( ) ( ) ( )1n k n k
m k n k k m n kS x x S j x j x x x J x J x 
          . 

 
 We will now compute this sum in a different way. Let ( ),v w  be an arbitrary 

element of ( ) ( )A B R S   . 
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 Case 1: Suppose v A  and w R . If both v and w begin with a loop,  

the sum of the weights of such pairs ( ),v w  is

[ ( )][ ( )]1 · 1 · ( ) ( )m k n k m k n kJ x J x J x J x    ; if v does and w does not, the 

corresponding sum is 1 1[ ( )][ ( )]1 · )· 1 · ( ) (m k n k m k n kJ x x J x xJ x J x      ; if v 

does not and w does, the resulting sum is

1 1[ ( )][ ( )]· 1 ) (· )1 · (m k n k m k n kx J x J x xJ x J x      ; and if neither does, the 

corresponding sum is 2
1 1 1 1[ ( )][ ( )] ( ) (· 1 · · 1 ).·m k n k m k n kx J x x J x x J x J x          

Their sum is 
 

1 1 1 1[ ( ) ( )][ ( ) ( )] ( ) ( )m k m k n k n k m k n kJ x xJ x J x xJ x J x J x            . 

 

 Case 2: Suppose v A  and w S . If v begins with a loop, the sum of  

the weights of such pairs is 1 1[ ( )][ ( )]1 ( ) )· (m k n k m k n kJ x xJ x xJ x J x      ;  

and if v does not, the corresponding sum is

2
1 1 1 1[ ( )][ ( )]· ( ) (1 )· m k n k m k n kx J x xJ x x J x J x        . Their sum is  

 

1 1 1 1[ ( ) ( )][ ( )] ( ) ( )m k m k n k m k n kJ x xJ x xJ x xJ x J x          . 

 

 Case 3: Suppose v B  and w R . If w begins with a loop, the sum of  

the weights of such pairs is 1 11 ·[ ( )][ ( )] ( ) ( )m k n k m k n kxJ x J x xJ x J x      ;  

and if w does not, the corresponding sum is

2
1 1 1 1· 1 ·[ ( )][ ( )] ( ) ( )m k n k m k n kxJ x x J x x J x J x        . Their sum is 

 

1 1 1 1( )[ ( ) ( )] ( ) ( )m k n k n k m k n kxJ x J x xJ x xJ x J x           . 

 
 Case 4: Suppose v B  and w S . The sum of the weights of such pairs is 
 

2
1 1 1 1[ ( )][ ( )] ( ) ( )m k n k m k n kxJ x xJ x x J x J x        . 

 
 Combining the four cases, by identity (4) we have 
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  1 1 1 1 1[ ( ) ( )][ ( ) ( )]m k m k n k n kS J x xJ x J x xJ x            

       ( ) ( )m k n kj x j x    

       ( ) ( ) ( )4 1 ( ) ( ) ( )n k
m n k m n kj x j x x x J x J x

     . 

 

 Earlier, we found that 2 ( ) ( )k m n kS J x J x  .  

 
 Consequently, 
 

    1 ( )( ) [ ( ) ( ) ( )(4 1 ) ( ) ( ]4 )2 1n k n k
m n k m n kS x x S j x j x x x J x J x 

          

                                                                    ( )( ) ( ) (4 1 )n k
k m n kx x J x J x

      

         ( ) ( )m nj x j x . 

 
 Equating the two sums yields the desired result. 
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1. Introduction 
 

 Gibonacci polynomials ( )nz x  are defined by the recurrence 

2 1( ) ( ) ( ) ( ) ( )n n nz x a x z x b x z x   , where x is an arbitrary complex variable; 

( )a x , ( )b x , 0( )z x , and 1( )z x  are arbitrary complex polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  , 

)( ) (n nz fx x , the nth Fibonacci polynomial; and when 0( ) 2z x   and 1( )z x x , 

( ) ( )n nz x l x , the nth Lucas polynomial. 

 

 Clearly, (1)n nf F , the nth Fibonacci number; and (1)n nl L , the nth 

Lucas number [1, 6, 8]. 
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 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We let 

n ng f  or nl , and omit a lot of basic algebra. 

 

 A gibonacci polynomial product of order m is a product of gibonacci 

polynomials n kg   of the form 
sj
n k

k

g 




, where 
1
j

sj

s m


  [9, 10]. 

 
 1.1 Sums of Gibonacci Polynomial Products of Orders 2 and 3: Table 1 
shows some well known gibonacci polynomials involving sums of products of orders 

2 and 3, where 2 2 4x     [5, 6, 8]. 
 

Table 1 
Sums of Gibonacci Polynomial Products of Orders 2 and 3 

 

                            
2 2

1 2 1n n nf f f     
                       

2 2 2
1 2 1n n nl l f      

                       
2 2 3

2 2 2( 2 )n n nf f x x f   
                     

2 2 3 2
2 2 2( 2 )n n nl l x x f       

           
3 3 3

1 1 3n n n nf xf f xf      
          

3 3 3 2
1 1 3n n n nl xl l x l       

3 2 3 3 2 2
2 2 3( 2) ( 2)n n n nf x f f x x f     

 

3 2 3 3 2 2 2
2 2 3( 2) ( 2)n n n nl x l l x x l      

 

 
 With this background, we now investigate a family of similar formulas for

3ng , 3 1ng  , 3 1ng  , and 3 2ng   
as sums of gibonacci polynomial products of order 3. 

 
2. A Family of Sums of Gibonacci Polynomial Products of Order 3 
 
 The development of the desired formulas hinges on gibonacci recurrence, 

identities 2
2 2 ( 2)n n nf f x f    , 2 2n n nf f xl   , 1 1n n nf f l   ,  

2
2 3( 1)n n nf x f xf    , 2n n nf f l , 2 2

2 1 1n n nf f f   , and the gibonacci 

addition formula [8] 
 

1 1 a b a b a bg f g f g    . 
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 We begin our exploration with 2
3 2nx f  . 

 

 2.1 A Gibonacci Sum for 2
3 2nx f  : By the Fibonacci addition formula, 

we have 
 

 2 2
3 2 2 1 2 1( )( )n n n n n nx f x f f f xl xf       

  2 2
2 1 2 2 2 [( )2 ] ( ( ))n n n n n n n nf xf x f f f f f f           

  2 2 2
2 2 2 2 2[( ) ] ( () )n n n n n n n n nf f f x f f f f f f            

  3 2 2 2 2
2 2 2 2 2 2( )n n n n n n n n n nf f f x f f f f f f f             

  3 2 2
2 2 2 2 2( )n n n n n n n nf f f f f x f f f           

  3 2 2 2
2 2 2[( 2) ]n n n n n n nf f f x f x f f f         

             3 2 2
2 2 22n n n n nf f f f f     .                                                           (1) 

 
 It then follows that 
 

                                 3 2 2
3 2 2 2 22n n n n n nF F F F F F      ;                                 (2) 

 
see [2, 7] for a graph-theoretic proof of this using path graphs. 
 

 Next we find a similar formula for 3
3 1nx f  . 

 

 2.2 A Gibonacci Sum for 3
3 1nx f  : Again by the addition formula, we get 

 

 3 3
3 1 2 1 1 2n n n n nx f x f f f f      

  2 2 2 2 2
1 1[( ) ] ( ) ( )n n n n nxf x f xf x f xl      

  2 2 2 2 2
2 2 2 2[( ) [( ) ( )n n n n n n n nf f x f f f x f f f           

            3 2 2 2 2 3 2 2
2 2 2 23 (2 3) ( 1)n n n n n n n nf f f x f f x f x f f          .    (3) 
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 This yields 
 

                       3 2 2 3 2
3 1 2 2 2 23 5 2n n n n n n n nF F F Fn F F F F F         .                (4) 

 Next we explore a formula for 3
3 1nx f  . 

 

 2.3 A Gibonacci Sum for 3
3 1nx f  : Since 3 1 2 1 1 2 2n n n n nf f f f f     ,  

we have 
 

 3 2 2 2 2
3 1 1 1 2[( ) [( ) ( )n n n n n n nx f xf x f xf x f f xl        

  2 2 2 2
2 2[( ) ][ ( 1) ]n n n n nf f x f f x f        

    2
2 2 2( )n n n nx f f f f     

  3 2 2 2 2 2
2 2 2 2 2( 3) 3( 1)n n n n n n n nf x f f x f f x f f f            

    2 2 3 2 2
2( 1) n n nx f x f f    .                                     (5) 

 
 Consequently, 
 

       3 2 2 3 2
3 1 2 2 2 2 2 24 6 4n n n n n n n n n n n nF F F F F F F F F F F F            .       (6) 

 

 Identity (1) can be used to find a gibonacci sum for 5
3 1nx f  . 

 

 2.4 A Gibonacci Sum for 5
3 1nx f  : It follows from identity (1) that 

 

  2 3 2 2
3 1 1 1 1 1 3 2n n n n n nx f f f f f f          

  5
3 1nx f A B   , 

where 

  3
1( )nA xf    

      3
2( )n nf f    

      3 2 2 3
2 2 23 3n n n n n nf f f f f f      ; 
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2

1 1 3( ) [ 2( ) ( )]n n nB xf xf xf       

      
2 2

2 2 2( ) { 2( ) [ ( 1)  ]}n n n n n nf f f f f x f           

      2 2 2
2 2 2 2( 2 )[ 2 3 ( 1) ]n n n n n n nf f f f f f x f            

      2 2 2 2 2
2 2 2 2 2 22 4 2 3 ( 7)n n n n n n n n n nf f f f f f f f x f f              

    2 2 2 3
2 2(2 5) ( 1)n n nx f f x f     . 

 Thus, 
 

 5 3 2 2 2 3
3 1 2 2 2 2 2 2 23 4 2 2n n n n n n n n n n n nx f f f f f f f f f f f f               

   2 2 2 2 2 3
2 2 2( 7) (2 5) ( 1)n n n n nx f f x f f x f        .        (7) 

 

 This gives an alternate formula for 3 1nF  : 

 

      3 2 2 2 3
3 1 2 2 2 2 2 23 2 4 2 2n n n n n n n n n n n nF F F F F F F F F F F F               

     2 2 3
2 2 2 8 7 2n n n n nF F F F F     .                                                (8) 

 
 It follows from formulas (6) and (8) that 
 

  3 3 2 2
2 2 2 2 23 6 8 5n n n n n n n n nF F F F F F F F F          

   2 2 3
2 2 2 22 8 2n n n n nF F F F F      ; 

 
this can be confirmed independently. 
 

 2.5 A Gibonacci Sum for 2
3nx f : Using identities (1) and (3), we can 

develop a sum of Fibonacci polynomial products of order 3 for 
 

    2 2 3
3 3 2 3 1n n nx f x f x f     

  3 2 2
2 2 2( 2 )n n n n nf f f f f       

        3 2 2 2 2 3 2 2
2 2 2 2 [ 3 (2 3) ( 1) ]n n n n n n n nf f f x f f x f x f f            

            2 2 2 2 3 2 2
2 2 23 (2 5) ( 1) ( 1) .n n n n n n nf f x f f x f x f f                (9) 
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 An Alternate Method: By the addition formula, we have 
 

              3 2
1 2 1n n n n nf f f f f     

         2 2 2 2
3 1 1[( ) ]  ( )( )n n n n n n nx f xf x f f f xf xl      

               2 2 2 2
2 2 2 2[( ) ]  [ ( 1) ][ ]n n n n n n n n nf f x f f f f x f f f            

               2 2 2
2 2 2 22 ( 3)n n n n n n nf f x f f f f f        

                                                                2 3 2 2
2( 1) ( 1)n n nx f x f f      .              (10) 

 Since 
 

2 2 2 2 2
2 2 2 2 2 2 2 22 ( 3) 3  [ ( 3) ]n n n n n n n n n n n n n nf f x f f f f f f f f f f f x f                

            2 2 2
2 23 [( 2) ( 3) ]n n n n n nf f f f x f x f        

                                                            2 2 2
2 23 (2 5)n n n nf f x f f    , 

it follows that identities (9) and (10) are equivalent. 
 
 Identities (9) and (10) yield the following results: 
 

 2 2 3 2
3 2 2 23 7 2 2n n n n n n n nF F F F F F F F      ;                                     (11) 

 

         2 2 3 2
2 2 2 2 22 4 2 2n n n n n n n n n nF F F F F F F F F F         .            (12) 

 

 Next we explore a gibonacci sum for 3
3nx l . 

 

 2.6 A Gibonacci Sum for 3
3nx l : Using identities (3) and (5), we get 

 

 3 3 3 3 3
3 1 1n n nx l x f x f     

           3 2 2 2 2 3 2 2
2 2 2 2[ 3 (2 3) ( 1) ]n n n n n n n nf f f x f f x f x f f           

                                3 2 2 2 2 2
2 2 2 2 2( 3) 3 1)[ (n n n n n n n nf x f f x f f x f f f            

                    2 3 2 2
2 ]( 1)2 n n nx f x f f      
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           3 2 2 2 2 2
2 2 2 2 22 ( 6) (5 6)n n n n n n n nf x f f x f f x f f f            

                                    2 2 3 2 2 2 2
2 2( 1)( 2) n n n n nx x f x f f x f f      .                    (13) 

 

 An Alternate Formula: Since 12n n nxf f l  , it follows by formulas (5) 

and (10) that 
 

3 2 2 3
3 3 3 1( ) 2( )n n nx l x x f x f     

          2 2 2 2 2 3 2 2
2 2 2 2 2[2 ( 3) ( 1) ( 1) ]n n n n n n n n n nx f f x f f f f f x f x f f              

                          3 2 2 2 2 2
2 2 2 2 22 ( 3)[ 3( 1)n n n n n n n nf x f f x f f x f f f            

                          2 3 2 2
2 ]( 1)2 n n nx f x f f      

          3 2 4 2 2 2
2 2 2 2 22 6 ( 3 6)n n n n n n n nf f f x x f f x f f f            

                       2 2 3 2 2 2 2 2
2 2( 1)( 2) ( 1) 2n n n n nx x f x x f f x f f       .                 (14) 

 
 Since 
 

2 2 4 2 2 4 2 2 2 2
2 2 2 2( ) ( )n n n n n n n nx f f x x f f x x f f x f f          

  2 2 2 2
2 2 2 2[ ( 2) ] [( 2) ]n n n n n n n nx f f f x f x f f x f f           

  2 2 2 2
2 1 2 1[ ( 1) ] [( 1) ]n n n n n n n nx f f xf x f x f f x f xf           

   2 2
2 1 2 1( ) [ ]n n n n n n n n nx f f xf f x f f x xf f f          

  2 2
2 2 2 1( )n n n n n n nx f f f x f f xf f         

  2 2
2 2 2 2n n n n nx f f x f f f        

  0 , 

 
it follows that identities (13) and (14) are indeed equivalent, as expected. 
 
 It then follows that 
 

 3 2 2
3 2 2 2 2 22 7 11n n n n n n n n nL F F F F F F F F         

    3 2 2
2 26 n n n n nF F F F F    ;                                (15) 
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          3 2 2 3
2 2 2 2 22 6 8 6n n n n n n n n nF F F F F F F F F           

                                                                 2 2
2 22 2n n n nF F F F   .                          (16) 

 

 2.7 A Gibonacci Sum for 2
3 1nx l  : Since 1 1n n nf f l   , it follows by 

identities (1) and (9) that 

   2 2 2
3 1 3 2 3n n nx l x f x f    

                3 2 2
2 2 2( 2 )n n n n nf f f f f       

                          2 2 2 2 3 2 2
2 2 2[3 (2 5) ( 1) ( 1) ]n n n n n n nf f x f f x f x f f           

                3 2 2 2 2 3 2 2
2 2 2 23 (2 7) ( 1) ( 2)n n n n n n n nf f f x f f x f x f f           . (17) 

 
 In particular, 
 

              3 2 2 3 2
3 1 2 2 2 23 9 2 3n n n n n n n n nL F F F F F F F F         .         (18) 

 

 2.8 A Gibonacci Sum for 2
3 1nx l  : By identities (13) and (17), we have 

 

        2 2 3
3 1 3 1 3n n nx l x l x l     

                     3 2 2 2 2 3 2 2
2 2 2 2[ 3 (2 7) ( 1) ( 2) ]n n n n n n n nf f f x f f x f x f f             

                     3 2 2 2 2 2
2 2 2 2 22 ( 6) (5[ 6)n n n n n n n nf x f f x f f x f f f             

                                       2 2 3 2 2 2 2
2 2( ]2)( 1) n n n n nx x f x f f x f f        

                     3 2 2 2 2 2
2 2 2 2 2( 9) (7 13)n n n n n n n nf x f f x f f x f f f             

                                   2 2 3 2 2 2 2
2 2( 1)( 3) 2( 1)n n n n nx x f x f f x f f       .         (19) 

 
 It then follows that 
 

  3 2 2
3 1 2 2 2 2 210 20n n n n n n n n nL F F F F F F F F            

    3 2 2
2 28 4n n n n nF F F F F     .                            (20) 
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 Next we express 3
3 2nx l   as a sum of gibonacci polynomial products of  

order 3. 
  

 2.9 A Gibonacci Sum for 3
3 2nx l  : Using identities (13) and (17), we get 

 
3 4 3

3 2 3 1 3n n nx l x l x l     

  2 3 2 2 4 2 2 4 2 3
2 2 2[ 3 (2 7 ) ( )n n n n n nx f x f f x x f f x x f          

                                             
4 2 2 3 2 2

2 2 2( 2 ) ] 2 ([ 6)n n n n nx x f f f x f f      
                                                         

                                 
2 2 2 2 2 3

2 2 2(5 6) ( 1)( 2)n n n n n nx f f x f f f x x f       
  

                                             
2 2 2 2

2 2 ]n n n nx f f x f f    

                           2 3 2 2 4 2 2
2 2 2( 2) 2( 3) 2( 3)n n n n nx f x f f x x f f        

 

                               2 2 3
2 2 2( 1)n n n nx f f f x f     

                                           4 2 2 2 2
2 2( ) n n n nx x f f x f f    .                                  (21) 

 This implies 
 

 3 2 2 3
3 2 2 2 2 2 23 4 2 4n n n n n n n n n nL F F F F F F F F F            

                2 2
2 22 n n n nF F F F   .                 (22) 

 

 With these tools, we now express 2 2
3 ,nx f  2 3

3 1nx f  , 2 3
3 1nx f  , and 

2 2
3 2nx f   as gibonacci sums with the desired properties. 

 

 2.10 A Gibonacci Sum for 2
2 3nx f : Since 2

1 1n n nl l f    , it follows 

from identities (17) and (19) that 
 

2 2 2 2
3 3 1 3 1n n nx f x l x l      

   3 2 2 2 2 3 2 2
2 2 2 2[ 3 (2 7) ( 1) ( 2) ]n n n n n n n nf f f x f f x f x f f             

   3 2 2 2 2 2
2 2 2 2 2( 9) (7 13)[ n n n n n n n nf x f f x f f x f f f             

       2 2 3 2 2 2 2
2 2( 1)( 3) 2( 1 ])n n n n nx x f x f f x f f         



172 THOMAS KOSHY  

   2 2 2 2 2
2 2 2 2( 12) (9 20)n n n n n n nx f f x f f x f f f          

       2 2 3 2 2 2 2
2 2( 1)( 4) (3 4)n n n n nx x f x f f x f f       .            (23) 

 Consequently, 
 

2 2 3 2 2
3 2 2 2 2 2 25 13 29 10 7n n n n n n n n n n n n nF F F F F F F F F F F F F           .   (24) 

 

 2.11 A Gibonacci Sum for 2 3
3 1nx f  : Using the identities

2
2 1n n nl l f    , and (1) and (21), we have 

 

 2 3 3 3
3 1 3 2 3n n nx f x l x l      

        2 3 2 2 4 2 2
2 22 2( 3) 2( 2( 3)[ ) n n n n nx f x f f x x f f           

            2 2 3 4 2 2 2 2
2 2 2 22( 1) ( ) ]n n n n n n n nx f f f x f x x f f x f f           

            3 2 2 2 2 2
2 2 2 2 22 ( 6) (5 6)[ n n n n n n n nf x f f x f f x f f f            

            2 2 3 2 2 2 2
2 2 ]( 1)( 2) n n n n nx x f x f f x f f        

                                 2 3 2 2 4 2 2
2 2 2( 4) ( 12) (2 3 12)n n n n nx f x f f x x f f           

                                                 2 2 2 3
2 22 ( 1)( 4)n n n nx f f f x x f      

            4 2 2 2
2 22n n n nx f f x f f   .                                        (25) 

 It then follows that 
 

 3 2 2 3
3 1 2 2 2 2 25 5 11 13 2 10n n n n n n n n n nF F F F F F F F F F           

                                                                                   2 2
2 22n n n nF F F F   .           (26) 

 

 2.12 A Gibonacci Sum for 2 3
3 1nx f  : It follows by gibonacci recurrence, 

and identities (23) and (25) that 
 

2 3 2 3 2 4 3
3 1  3 1n n nx f x f x f       

                    2 3 2 2 4 2 2
2 2 2[( 4 ( 12) (2 3) 12)n n n n nx f x f f x x f f          
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                          2 2 2 3 4 2 2 2
2 2 2 22 ( 1)( 4) 2 ]n n n n n n n nx f f f x x f x f f x f f           

                           2 2 2 2 2 2
2 2 2 212 (9 2[( ) 0)n n n n n n nx x f f x f f x f f f          

                           2 2 3 2 2 2 2
2 2( 1)( 4) (3 4 ])n n n n nx x f x f f x f f        

         2 3 4 2 2 4 2 2
2 2 2( 4) ( 11 12) (7 23 12)n n n n nx f x x f f x x f f             

                           4 2 2 2 2 3
2 2( 2 ) ( 1) ( 4)n n n nx x f f f x x f         

               4 2 2 4 2 2
2 2 2( 2 ) ( 2 )n n n nx x f f x x f f     .                                  (27) 

 
 This yields 
 

 3 2 2
3 1 2 2 2 2 25 5 24 42 3n n n n n n n n nF F F F F F F F F           

     3 2 2
2 2 20 6 3n n n n nF F F F F    .               (28) 

 

 2.13 A Gibonacci Sum for 2 2
3 2nx f  : Using identities (23) and (25),  

we have 
 

2 2 2 3 2 2
3 2 3 1 3n n nx f x f x f       

      2 3 2 2 4 2 2
2 2 2[( 4 ( 12) (2 3) 12)n n n n nx f x f f x x f f           

  2 2 2 3 4 2 2 2
2 2 2 22 ( 1)( 4) 2 ]n n n n n n n nx f f f x x f x f f x f f           

  2 2 2 2 2
2 2 2 2  12) (9 20[( )n n n n n n nx f f x f f x f f f          

  2 2 3 2 2 2 2
2 2( 1)( 4) (3 4 ])n n n n nx x f x f f x f f         

                  2 3 2 2 4 2 2 2
2 2 2 2 2 2( 4) 2 ( 3 4)n n n n n n n nx f x f f x x f f x f f f             

  4 2 2 2 2
2 2 ( 3 4) n n n nx x f f x f f     .                                           (29) 

 
 In particular, we have 
 

 3 2 2
3 2 2 2 2 2 25 5 2 16n n n n n n n n nF F F F F F F F F           

      2 2
2 2 8 n n n nF F F F   .              (30) 
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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence  

2 1( ) ( ) ( ) ( ) ( )n n nz x a x z x b x z x   , where x is an arbitrary complex variable;

0( ) ( ) ( ), ,x xa z xb , and 1( )z x  are arbitrary complex polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  , 

)( ) (n nz fx x , the nth Fibonacci polynomial; and when 0( ) 2z x   and 1( )z x x , 

)( ) (n nz x l x , the nth Lucas polynomial. Clearly, (1)n nf F , the nth Fibonacci 

number; and (1)n nl L , the nth Lucas number [1, 6, 8]. 
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 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

( ) (2 )n np x f x  and ( ) (2 )n nq x l x , respectively. In particular, the Pell numbers  

nP  and Pell-Lucas numbers nQ  are given by (1) (2)n n nP p f   and

2 (1) (2)n n nQ q l  , respectively [8]. 

 

 Suppose ( ) 1a x   and ( )b x x . When 0( ) 0z x   and 1( ) 1z x  , 

( ) ( )n nz x J x , the nth Jacobsthal polynomial; and when 0( ) 2z x   and 1( ) 1z x  , 

( ) ( )n nz x j x , the nth Jacobsthal-Lucas polynomial [3, 6]. Correspondingly, 

(2)n nJ J  and (2)n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively. Clearly, (1)n nJ F  and (1)n nj L . 

 

 Let ( )a x x  and ( ) 1b x   . When 0( ) 0z x   and 1( ) 1z x  , 

( ) ( )n nz x V x , the nth Vieta polynomial; and when 0( ) 2z x   and 1( )z x x , 

( ) ( )n nz x v x  , the nth Vieta-Lucas polynomial [4, 6]. 

 

 Finally, let ( ) 2a x x  and ( ) 1b x   . When 0( ) 1z x   and  1( )z x x , 

)( ) (n nz Tx x , the nth Chebyshev polynomial of the first kind; and when 

0( ) 1z x  and 1( ) 2z x x , ( ) ( )n nz x U x , the nth Chebyshev polynomial of the 

second kind [4, 6]. 

 
 The Jacobsthal, Vieta, and Chebyshev subfamilies are closely linked by the 

relationships in Table 1, where 1i    [4, 6]. 
 
 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x . We also 

let n ng f  or nl , n nb p  or nq , ( )n nc J x  or ( )nj x , n nd V  or nv , and 

n ne T  or nU ; and correspondingly, n nG F  or  nL , n nB P  or nQ , and 

n nC J  or nj . We also omit a lot of basic algebra. 

 

 A gibonacci polynomial product of order m is a product of gibonacci 

polynomials n kg   of the form sj
n k

k Z

g 

 , where 

1
j

sj

s m


  [9, 11]. 
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Table 1: Links Among the Subfamilies 
 

  
( 1)/2( ) (1 )n

n nJ x f xx     
/2( ) (1 / )n

n nj x x l x   

  
1 ( )( ) n

n nV i ix f x     ( ) ( )n
n nv x i l ix    

1( )(2 )n nV U xx    (2 ) 2 ( ).n nv x T x   

 
 1.1 Sums of Gibonacci Polynomial Products of Order 3: In [10], we 
studied the following sums of gibonacci polynomial products of order 3: 
 

2 2 2 2 2 3 2 2
3 2 2 23 (2 5) ( 1) ( 1)n n n n n n n nx f f f x f f x f x f f         ;     (1) 

 

 
3 3 2 2 2 2 2

3 1 2 2 2 2 2( 3) 3( 1)n n n n n n n n nx f f x f f x f f x f f f             

  2 3 2 2
2( 1)2 n n nx f x f f    .       (2) 

 
3 3 2 2 2 2 3 2 2

3 1 2 2 2 23 (2 3) ( 1)n n n n n n n n nx f f f f x f f x f x f f           ;               (3) 

 
2 3 2 2

3 2 2 2 22n n n n n nx f f f f f f      ;                      (4) 

 

 
3 3 2 2 2 2 2

3 2 2 2 2 22 ( 6) (5 6)n n n n n n n n nx l f x f f x f f x f f f            

  2 2 3 2 2 2 2
2 2( 1) 2( ) n n n n nx x f x f f x f f      ;     (5) 

 

 2 3 2 2 2 2 2
3 1 2 2 2 2 2( + 9) (7 13)n n n n n n n n nx l f x f f x f f x f f f             

  2 2 3 2 2 2 2
2 2( 1) 3 2( 1)( ) n n n n nx x f x f f x f f       ;                   (6) 

 
2 3 2 2 2 2 3 2 2

3 1 2 2 2 23 (2 7) ( 1) ( 2)n n n n n n n n nx l f f f x f f x f x f f            ;     (7) 

 
3 2 3 2 2 4 2 2

3 2 2 2 2 2( 2) 2( 3) ( 3)n n n n n nx l x f x f f x x f f            

                        2
2 2n n nx f f f  2 3 4 2 2 2 2

2 2 2( 1) ( )n n n n nx f x x f f x f f      ;     (8) 
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2 2 2 2 2 2 2
3 2 2 2 2( 12) (9 20)n n n n n n n nx f x f f x f f x f f f           

  2 2 3 2 2 2 2
2 2( 1)( 4) (3 4)n n n n nx x f x f f x f f       ;                  (9) 

 

2 3 2 3 4 2 2 4 2 2
3 1 2 2 2( 4) ( 11 12) (7 23 12)n n n n n nx f x f x x f f x x f f             

    4 2 2 2 2 3
2 2( 2 ) ( 1) ( 4)n n n nx x f f f x x f        

  4 2 2 4 2 2
2 22( 2 ) ( 2 )n n n nx x f f x x f f     ;                                   (10) 

 

2 3 2 3 2 2 4 2 2
3 1 2 2 2( 4) ( 12) (2 3 12)n n n n n nx f x f x f f x x f f             

         2 2 2 3 4 2 2 2
2 2 2 22 ( 1)( 4) 2n n n n n n n nx f f f x x f x f f x f f         ;    (11) 

 

2 2 2 3 2 2 4 2 2 2
3 2 2 2 2 2 2( 4) 2 2( 3 4)n n n n n n n n nx f x f x f f x x f f x f f f               

  4 2 2 2 2
2 2( 3 4) n n n nx x f f x f f     ,                                            (12) 

where ( )n ng g x . 

 

 With this background, we now explore the implications of this family of 
gibonacci sums to the Pell, Jacobsthal, Vieta, and Chebyshev subfamilies. 
 
2. Sums of Pell Polynomial Products of Order 3 
 

 Since ( ) (2 )n nb x g x , it follows from identities (1) through (12) that 
 

2 2 2 2 2 3 2 2
3 2 2 24 3 (8 5) (4 1) (4 1)n n n n n n n nx p p p x p p x p x p p         ; 

 

3 3 2 2 2 2 2
3 1 2 2 2 2 28 (4 3) 3(4 1) 4n n n n n n n n nx p p x p p x p p x p p p             

    2 2 3 2 2
2(4 1) 4n n nx p x p p    ; 

 

3 3 2 2 2 2 3 2 2
3 1 2 2 2 28 3 (8 3) (4 1) 4n n n n n n n n nx p p p p x p p x p x p p           ; 

 

2 3 2 2
3 2 2 2 24 2n n n n n nx p p p p p p      ; 

 
3 3 2 2 2 2 2

3 2 2 2 2 2 24 (2 3) (10 3)n n n n n n n n nx q p x p p x p p x p p p         
 

  
2 2 3 2 2 2 2

2 2(2 1) 4 1( 2) 2n n n n nx x p x p p x p p      ; 
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4 3 2 2 2 2 2
3 1 2 2 2 2 24 (4 9) (28 13) 4n n n n n n n n nx q p x p p x p p x p p p              

   2 2 3 2 2 2 2
2 2(4 1) 4 3 2(4 1) 4( ) n n n n nx x p x p p x p p       ; 

 

2 3 2 2 2 2 3 2 2
3 1 2 2 2 23 (8 7) (4 1) 2(2 1)n n n n n n n n nx q p p p x p p x p x p p            ; 

 

3 2 3 2 2 4 2 2
3 2 2 2 28 2(2 1) 2(4 3) 2(16 4 3)n n n n n nx q x p x p p x x p p            

          2 2 3
2 24 2(4 1)n n n nx p p p x p   

 

   
4 2 2 2 2

2 24(4 ) 4n n n nx x p p x p p    ; 

 

4 2 2 2 2 2 2
3 2 2 2 24( ) ( 3) (9 5)n n n n n n n nx x p x p p x p p x p p p           

       2 2 3 2 2 2 2
2 2( 1)(4 1) (3 1)n n n n nx x p x p p x p p       ; 

 

5 3 2 3 4 2 2
3 1 2 232( ) 4( 1) 4(4 11 3)n n n nx x p x p x x p p          

                     4 2 2
2(144 92 5) n nx x p p   4 2

2 2+8(2 ) n n nx x p p p     

                     2 2 2 34( 1) (4 1) nx x p    4 2 2
216(2 ) n nx x p p    

   
4 2 2

28(2 ) n nx x p p   ; 

 

4 2 2 3 2 2 4 2 2
3 1 2 2 216( ) 4( 1) 4( 3) 4(8 3 3)n n n n n nx x p x p x p p x x p p                                

       2 2 2 3
2 28 4( 1)(4 1)n n n nx p p p x x p    

 

   
4 2 2 2

2 216 8n n n nx p p x p p   ; 

 

4 2 2 3 2 2 4 2 2
3 2 2 2 216( ) 4( 1) 8 8(4 3 1)n n n n n nx x p x p x p p x x p p            

                                     + 2 4 2 2 2 2
2 2 2 24 4(4 3 1) 4n n n n n n nx p p p x x p p x p p       , 

where ( )n nb b x . 
 

 Consequently, we have 
 

2 2 3 2
3 2 2 24 3 13 5 5n n n n n n nP P Pn P P P P P      ; 

 

3 2 2 3 2
3 1 2 2 2 2 2 28 7 15 4 25 4n n n n n n n n n n n nP P P P P P P P P P P P            ; 
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3 2 2 3 2
3 1 2 2 2 28 3 11 5 4n n n n n n n n nP P P P P P P P P         ; 

 

3 2 2
3 2 2 2 24 2n n n n n nP P P P P P      ; 

 

3 2 2 3
3 2 2 2 2 28 5 13 2 15n n n n n n n n n nQ P P P P P P P P p          

                     2 2
2 22 2n n n nP P P P    ; 

 
3 2 2 3

3 1 2 2 2 2 28 13 41 4 35n n n n n n n n n nQ P P P P P P P P P             

               2 2
2 210 4n n n nP P P P   ; 

 
3 2 2 3 2

3 1 2 2 2 22 3 15 5 6n n n n n n n nQ P P P P P P P P         ; 

 
3 2 2 3

3 2 2 2 2 2 216 6 2 34 4 10n n n n n n n n n nQ P P P P P P P P P            

                             2 2
2 220 4n n nP P P P   ; 

 
2 2 3 2 2

3 2 2 2 2 2 28 4 14 10 4n n n n n n n n n n n n nP P P P P P P P P P P P P           ; 

 
3 2 2 3

3 1 2 2 2 2 264 8 72 241 24 80n n n n n n n n n nP P P P P P P P P P            

                           2 2
2 248 24n n n nP P P P   ; 

 
3 2 2 3

3 1 2 2 2 2 232 8 8 8 8 40n n n n n n n n n nP P P P P P P P P P            

                           2 2
2 216 8n n n nP P P P   ; 

 
3 2 2 2 2

3 2 2 2 2 2 2 2 232 8 8 64 4 32 4n n n n n n n n n n n n nP P P P P P P P P P P P P            . 

 
 Next we explore the Jacobsthal implications of the gibonacci sums. 
 
3. Sums of Jacobsthal Polynomial Products of Order 3 
 
 The identities (1) through (12), coupled with the gibonacci-Jacobsthal 
relationships in Table 1, can be established the following results involving Jacobsthal 
polynomial products of order 3: 
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2 2 2 3 3 2 2
3 2 2 23 (5 2) ( ) ( )n n n n n n n nJ J J x J J x x J x x J J         ;                 (13) 

 

3 2 2 2 2
3 1 2 2 2 2 2(3 1) 3( )n n n n n n n n nxJ J x J J x x J J x J J J             

    3 2 3 4 2
2( 2 ) n n nx x x J x J J     .                       (14) 

 

3 2 2 2 3 2 3 2
3 1 2 2 2 23 (3 2 ) ( ) 3n n n n n n n x n nJ J xJ J x x J J x x J J J           ;       (15) 

 

3 2 2 4 2
3 2 2 2 22n n n n n nJ J x J J x J J      ;                                                             (16) 

 
3 2 2 2 2

3 2 2 2 2 22 (6 1) (6 5 )n n n n n n n n nj J x J J x x J J x J J J            

                        3 2 3 3 2 4 2
2 2(2 3 ) n n n n nx x x J x J J x J J      ;                             (17) 

 

3 2 2 2 2
3 1 2 2 2 2 2(9 1) (13 7 )n n n n n n n n nxj J x J J x x J J x J J J              

                          3 2 3 4 3 2 4 2
2 2(3 4 ) 2( )n n n n nx x x J x x J J x J J       ;            (18) 

 

3 2 2 2 3 2 3
3 1 2 2 23 (7 2 ) ( )n n n n n n nj J xJ J x x J J x x J          

   4 3 2
2(2 ) n nx x J J   ;                                                                   (19) 

 

3 2 2 3 2 2
3 2 2 2 2 2(2 1) 2(3 ) (3 )n n n n n nj x J x x J J x x x J J            

                3 4 3 3 4 3 2 5 2
2 2 2 22( ) ( )n n n n n n n nx J J J x x J x x J J x J J         ;      (20) 

 

2 2 2 2 2
3 2 2 2 2(12 1) (20 9 )n n n n n n n nD J x J J x x J J x J J J          

                      3 2 3 4 3 2 4 2
2 2(4 5 ) (4 3 )n n n n nx x x J x x J J x J J       ;              (21) 

 

2 2 3 2 2 3 2 2
3 1 2 2 2(12 11 1) (12 23 7 )n n n n n nD xJ D J x x J J x x x J J            

                     3 2 2 2 3 4 3 2
2 2 2(2 ) ( 1) (4 ) 2(2 )n n n n n nx x J J J x x x J x x J J           

                      2 2
2(2 ) n nx x J J   ;                                                                       (22) 

 

2 2 3 2 2 3 2 2
3 1 2 2 2(12 ) (12 3 2 )n n n n n nD J D J x x J J x x x J J          

          3 4 3 2 3 3 2 5 2
2 2 2 22 (4 5 ) 2n n n n n n n nx J J J x x x J x J J x J J         ;  (23) 
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2 2 3 2 3 2 2 3
3 2 2 2 2 2 22 2(4 3 )n n n n n n n n nD J D J xJ J x x x J J x J J J             

                               5 4 3 2 5 2
2 2(4 3 ) n n n nx x x J J x J J     ,                              (24) 

where ( )n nc c x . 

 

 To establish identity (13), for example, replace x with 1 x  in equation (1) 

and multiply the resulting equation with  (3 1)/2nx  . We then get 
 

2 2
3 1 ( 1)/2 ( 1)/2 ( 1)/2 ( 1)/2

3 2 23  (5 2) n n n n n
n n n n nx f x f x f x x f x f    

 
                       

                                 

                 
3 2

2 ( 1)/2 3 2 ( 1)/2 ( 3)/2
2( ) ( )n n n

n n nx x x f x x x f x f  


                 
  

 

2 2 2 3 3 2 2
3 2 2 23 (5 2) ( ) ( )n n n n n n n nJ J J x J J x x J x x J J         , 

 

as desired, where (1 )n nf f x  and ( )n nJ J x . 

 
 The other results can be confirmed similarly. 
 
 It follows from equations (13) through (24) that 
 

2 2 3 2
3 2 2 23 12 6 12n n n n n n n nJ J J J J J J J      ;                                                  (25) 

 

3 2 2 3 2
3 1 2 2 2 2 22 7 2 18 4 18 16n n n n n n n n n n n nJ J J J J J J J J J J J            . 

 
3 2 2 3 2

3 1 2 2 2 26 16 12 8n n n n n n n n nJ J J J J J J J J         ; 

 
3 2 2

3 2 2 2 28 16n n n n n nJ J J J J J       ;                                                               (26) 

 

3 2 2 3
3 2 2 2 2 22 13 34 4 30n n n n n n n n n nj J J J J J J J J J           

               2 2
2 28 16n n n nJ J J J   ;                                                              (27) 

 

3 2 2 3
3 1 2 2 2 2 22 19 66 4 42n n n n n n n n n nj J J J J J J J J J             

                   2 2
2 248 16n n n nJ J J J   ; 



 GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 3 183 

3 2 2 3 2
3 1 2 2 2 26 32 12 40n n n n n n n n nj J J J J J J J J         ; 

 

3 2 2 3
3 2 2 2 2 25 20 36 2 8 48n n n n n n n n n nj J J J J J J J J J            

  2 2
2 224 32n n n nJ J J J    ;                                                          (28) 

2 2 3 2 2
3 2 2 2 2 29 25 98 4 54 88 16n n n n n n n n n n n nJ J J J J J J J J J J J J          ; 

 
3 2 2 3

3 1 2 2 2 2 218 9 71 202 20 162n n n n n n n n n nJ J J J J J J J J J            

  2 2
2 2 80 80n n n nJ J J J   ; 

 
3 2 2 3

3 1 2 2 2 2 29 9 46 104 16 108n n n n n n n n n nJ J J J J J J J J J            

  2 2
2 2 8 64n n n nJ J J J   ; 

 
3 3 2 2

2 2 2 2 2 29 9 4 92 8n n n n n n n n nJ J J J J J J J J           

  2 2
2 2184 32n n n nJ J J J   , 

 

 It follows from identities (25), (26), and (28) that 2
3 23n n nJ J J  (mod 6), 

3 3
2 2n nJ J   (mod 8), and 3 3

2 2n nj J   (mod 8), respectively. 

 
 Next we pursue the Vieta and Chebyshev consequences. 
 
4. Vieta and Chebyshev Consequences 
 
 4.1 Vieta Implications: Using the gibonacci-Vieta relationships in Table 1, 
equations (1) through (12) yield the following results. In the interest of brevity, we 
omit their proofs. 
 

2 2 2 2 2 3 2 2
3 2 2 23 (2 5) ( 1) ( 1)n n n n n n n nx V V V x V V x V x V V         ; 

 
3 3 2 2 2 2 2

3 1 2 2 2 2 2( 3) 3( 1)n n n n n n n n nx V V x V V x V V x V V V              

  2 2 3 2 2
2( 1) n n nx V x V V    . 

 
3 3 2 2 2 2 3 2 2

3 1 2 2 2 23 (2 3) ( 1)n n n n n n n n nx V V V V x V V x V x V V           ; 
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2 3 2 2
3 2 2 2 22n n n n n nx V V V V V V      ; 

 
3 3 2 2 2 2 2

3 2 2 2 2 22 ( 6) (5 6)n n n n n n n n nx v V x V V x V V x V V V            

  2 2 3 2 2 2 2
2 2( 1)( 2) n n n n nx x V x V V x V V      ; 

 
2 3 2 2 2 2 2

3 1 2 2 2 2 2( 9) (7 13)n n n n n n n n nx v V x V V x V V x V V V              

  2 2 3 2 2 2 2
2 2 2( 1)( 3) ( 1)n n n n nx x V x V V x V V       ; 

 
2 3 2 2 2 2 3 2 2

3 1 2 2 2 23 (2 7) ( 1) ( 2)n n n n n n n n nx v V V V x V V x V x V V            ; 

 
3 2 3 2 2 4 2 2

3 2 2 2 2( 2) 2( 3) 2( 3)n n n n n nx v x V x V V x x V V            

    2 2 3 4 2 2 2 2
2 2 2 2 2( 1) ( )n n n n n n n nx V V V x V x x V V x V V         ; 

 
4 2 2 2 2 2 2

3 2 2 2 2( 4 ) ( 12) (9 20)n n n n n n n nx x V x V V x V V x V V V           

      2 2 3 2 2 2 2
2 2( 1)( 4) (3 4)n n n n nx x V x V V x V V       ; 

 
5 3 2 3 4 2 2

3 1 2 24 ( 4) ( 11( 12)) n n n nx x V x V x x V V           

        4 2 2 4 2
2 2 2(7 23 12) ( 2 )n n n n nx x V V x x V V V        

                    2 2 2 3 4 2 2
2( 1) ( 4) 2( 2 )n n nx x V x x V V       

        
4 2 2

2( 2 ) n nx x V V   ; 

 

7 3 2 3 2 2
3 1 2 24 (( )) 4) ( 12n n n nx x V x V x V V         

  4 2 2 2 2 2 3
2 2 2(2 3 12) 2 ( 1)( 4)n n n n n nx x V V x V V V x x V           

  4 2 2 2
2 2 2n n n nx V V x V V   ; 

 

4 2 2 3 2 2 4 2 2
3 1 2 2 24 ( 4( ) ) 2 2( 3 4)n n n n n nx x V x V x V V x x V V            

  2 4 2 2 2 2
2 2 2 2 ( 3 4)n n n n n n nx V V V x x V V x V V        , 

 

where ( )n nd d x . 
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 4.2 Chebyshev Implications: Using the Vieta-Chebyshev relationships, 
these Vieta properties yield the following Chebyshev factoids; again, in the interest 
of brevity, we omit their justifications. 
 

2 2 2 2 2 3 2 2
3 2 2 24 3 (8 5) (4 1) (4 1)n n n n n n n nx U U U x U U x U x U U         ; 

 
3 3 2 2 2 2

3 1 2 2 28 (4 3) 3(4 1)n n n n n nx U U x U U x U U           

  2 2 2 3 2 2
2 2 24 (4 1) 4n n n n n nx U U U x U x U U      . 

 
3 3 2 3 2 2 3 2 2

3 1 2 2 2 28 3 (8 3) (4 1) 4n n n n n n n n nx U U U U x U U x U x U U           ; 

 
2 3 2 2

3 2 2 2 24 2n n n n n nx U U U U U U      ; 

 
3 3 2 2 2 2

3 1 1 1 18 (2 3) 1 (10 3)n n n n n nx T U x U U x U U           

  2 2 2 3
1 1 3 12 (2 1)(4 1)n n n nx U U U x x U        

  2 2 2 2
1 3 1 32 2n n n nx U U x U U     ; 

 
2 3 2 2 2 2

3 1 1 1 1 1 18 (4 9) (28 13)n n n n n nx T U x U U x U U             

  2 2 2 3
1 1 3 1 4 (4 1)(4 3)n n n nx U U U x x U         

  2 2 2 2
1 3 1 32(4 1) 4n n n nx U U x U U      ; 

 

2 3 2 2 2 2 3
3 1 1 1 1 1 1 18 3 (8 7) (4 1)n n n n n n nx T U U U x U U x U              

  2 2
1 32(2 1) n nx U U   ; 

 

3 2 3 2 2 4 2 2
3 2 1 1 1 1 18 (2 1) (4 3) (16 4 3)n n n n n nx T x U x U U x x U U              

  2 2 3 4 2 2
1 1 3 1 1 3 2 (4 1) 2(4 )n n n n n nx U U U x U x x U U            

  2 2
1 32 n nx U U  ; 

 

4 2 2 2 2 2 2
3 2 2 2 24( ) ( 3) (9 5)n n n n n n n nx x U x U U x U U x U U U           

    2 2 3 2 2 2 2
2 2( 1)(4 1) (3 1)n n n n nx x U x U U x U U       ; 
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5 3 2 3 4 2 2
3 1 2 28( ) ( 1) (4 11 3)n n n nx x U x U x x U U           

  4 2 2 4 2
2 2 2(28 23 3) 2(2 )n n n n nx x U U x x U U U         

                 2 2 2 4 2 2 4 2 2
2 2 ( 1) 4 1 3 4(2 ) 2(2 )( ) n n n nx x U n x x U U x x U U        ; 

 
7 3 2 3 2 2 4 2 2

3 1 2 2 28(4 ) ( 4) ( 3) (8 3 3)n n n n n nx x U x U x U U x x U U             

   2 2 2 3
2 2 2 ( 1)(4 1)n n n nx U U U x x U       

   4 2 2 2
2 2 4 2n n n nx U U x U U   ; 

 
4 2 2 3 2 2 4 2 2

3 2 2 2 24( ) ( 1) 2 2(4 3 1)n n n n n nx x U x U x U U x x U U            

   2 4 2 2 2 2
2 2 2 2 (4 3 1)n n n n n n nx U U U x x U U x U U        , 

 

where ( )n ne e x . 
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1. Introduction and Definitions 
 
 Let  �� denote the class of functions �(�) normalized by 

 

�(�) = �� + � ��������

∞

���

                                                  (1.1) 

 

which are analytic in the open unit disc U = {z � C; |z| < 1}. 

 
For two functions f and g analytic in U, we say that the function f  is 

subordinate to� in U (denoted by� �), if there exists a function ω(z) analytic in U 
with ω(0) = 0 and |ω(z)| < 1 (z ∈ U), such that f(z) = � (ω(z)) in U. Also, if � and 
 � analytic in U with f(0) = �(0) and g(z) is univalent in U, we say then f(z) �(z) in 
U provided that f(U) ⊂ g(U). 
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 A function f(z)∈��is called starlike in U if it satisfies � �
��′(�)

�(�)
� > 0  (� ∈ �) 

 
 A function f(z)∈�� is called starlike function of order α in U if it satisfies 

� �
��′(�)

�(�)
� > �. 

A function f(z)∈�� is called strongly starlike of order α (0< α ≤ 1) if it 
satisfies 

�arg�
��′(�)

�(�)
�� <

��

2
 

 A function f(z)∈�� is called strongly starlike of order α  and type �if it 
satisfies 

�arg�
��′(�)

�(�)
��� <

��

2
                                                       (1.2) 

 
 In this present paper we shall derive certain sufficient condition for p-valent 
strongly starlike functions. In order to prove main results, we need the following 
Lemma. 
 
 Lemma 1.1: Let the function �(�) be analytic and univalent in U and let the 
function �(�) and �(�) be analytic in domain U containing �(�) with �(�) ≠

0, � ∈ �(�). Set �(�) = ��′(�)�(�(�))  and (�) = ���(�)� + �(�) and suppose 
that  

i. �(�) is univalently starlike in U and 
 

ii. � �
��′(�)

�(�)
� = � �

�′(�(�))

�(�(�))
+

��′(�)

�(�)
� > 0     (� ∈ �) 

 
 If �(�) is analytic in U with �(0) = �(0), �(�) ⊂ � and 
 

���(�)� + ��′(�)���(�)� ���(�)� + ��′(�)���(�)� = (�)     �(�) ∈ �     (1.3) 
 
then      �(�) �(�),        (� ∈ �) 
 
and �(�) is the best dominant of (1.3). 
 
2. Sufficient Conditions for Strongly Starlike Functions of Order � and Type � 

 
In this section, we assume that  �, ��, �, � ∈ � and  � ∈ � 
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 Theorem 2.1: Let 
 

 0 < � ≤ 1, ��� ≥ 0, |� + 1| ≤
�

�
, |� � 1| ≤

�

�
, �� �(�) ∈ ��  

satisfies  
 �(�). � ′(�) ≠ 0           (� ∈ �{0})                                     (2.1) 

 
and 

     �� �
�

�(���)
�

��′(�)

�(�)
���

�

+ �
�

�(���)
�

��′(�)

�(�)
���

′

�
�

�(���)
�

��′(�)

�(�)
���

�

(�) 

                                                                                                                                (2.2) 
where 

(�) = �� �
1 + ��

1 �
�

��

+
�(1 + �)�(1 + ��)�(���)��

(1 �)�(���)��
                 (2.3) 

 
then the function �(�) is p-valent strongly starlike of order � and type � in U. The 
number � is sharp for the function �(�) defined by 
 

1

�(1 �)
�

�� ′(�)

�(�)
�� = �� �

1 + ��

1 �
�

�

                           (2.4) 

 

 Proof: We choose �(�) =
�

�(���)
�

��′(�)

�(�)
��  

and 

   �(�) = �
����

���
�

�
, �(�) = ���� ��� �(�) = ��  in Lemma. 

 
 Clearly the function �(�) is analytic and univalently convex in U and 
 

|arg (�(�))| <
�

2
� ≤

�

2
, (� ∈ �), (0 < � ≤ 1, 0 < � ≤ 1)             (2.5) 

 
 The function �(�) is analytic in U with �(0) = �(0) = 1 and �(�) ≠ 0, 
(� ∈ �) and the function �(�) and �(�) are analytic in a domain D containing 

�(�) and  �(�), with  �(�) ≠ 0  when  � ∈ �(�).  For 
��

�
≤ � + 1 ≤

�

�
. 

 
 Then function �(�) is given by 
 

�(�) = ��′(�)���(�)� =
�(1 + �)�(1 + ��)�(���)��

(1 �)�(���)��
 

is univalently starlike in U because 
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� �
��′(�)

�(�)
� = � �1 + (�(1 + �) 1)(1 + ��) + (�(1 + �) + 1)

�

1 �
�        (2.6) 

 

>
(1 + 3|�|)(1 �|(1 + �)|)

2(1 + |�|)
 

 

 Now   � �
��′(�)

�(�)
� > 0,   provided that    

(���|�|)(���|(���)|)

�(��|�|)
> 0 

 

or  |� + 1| ≤
�

�
 

 
 Further, we have 
 

���(�)� + �(�) = �� �
1 + ��

1 �
�

��

+
�(1 + �)�(1 + ��)�(���)��

(1 �)�(���)��
= (�) 

 
where (�) is given by (2.3), and so  
 

� ′(�)

�(�)
=

� ′(�(�))

�(�(�))
+

��′(�)

�(�)
                                                  (2.7) 

 

= �����(�)�
�����

+
��′(�)

�(�)
 

 

 Also for |� � 1| ≤
�

�
 

 

�arg (�(�)�����)� ≤ |� � 1|
�

2
� ≤

�

2
                        (2.8) 

 
 Therefore, it follows from (2.1) and (2.5)-(2.8) that 
 

� �
� ′(�)

�(�)
� > 0        (� ∈ �) 

 
 The other condition of lemma are also satisfied, hence we conclude that 
 

�(�) =
1

�(1 �)
�

�� ′(�)

�(�)
�� �

1 + ��

1 �
�

�

= �(�)(� ∈ �) 
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and �(�) is the best dominant of (2.2). by (2.5) we see that the function �(�) is 
univalent stronglystarlike of order � and type � in U. Furthermore, for the function 
�(�)  defined by (2.4) we have 
 

����(�)�
�

+ ��′(�)��(�)�
�

= (�) 
 
which shows that the number � is sharp, the proof of theorem is now completed. 
 
 Theorem 2.2: Let  
 

0 < � ≤ 1, ��(� + 2) ≥ 0, (� + 1)�{�} ≥ 0, |� + 1| ≤
1

�
if �(�) ∈ �� 

satisfies 
    �(�). � ′(�) ≠ 0   (� ∈ �\0) 
 

and            �� �
�

�(���)
�

��′(�)

�(�)
���

(���)

+ � �
�

�(���)
�

��′(�)

�(�)
���

���

 

 

+� �
1

�(1 �)
�

�� ′(�)

�(�)
���

′

�
1

�(1 �)
�

�� ′(�)

�(�)
���

�

(�)       (2.10) 

where 
 

(�) = �
1 + ��

1 �
�

(���)�

�� + � �
1 + ��

1 �
�

�

+
�(1 + ��)�

(1 �)(1 + ��)
�,             (2.11) 

 
then the function �(�) is p-valent strongly starlike of order � and type � in U. The 
number � is sharp for the function �(�) defined by (2.4). 
 

 Proof: Let  �(�) =
�

�(���)
�

��′(�)

�(�)
��  and �(�) = �

����

���
�

�
, �(�) = ���� 

and   �(�) = �� in Lemma, clearly the function �(�), �(�), �(�), �(�)   and 
�(�) = ��′(�)�(�(�)) satisfies the condition of Lemma respectively. Further we 
have: 
 

�(�(�)) + �(�) = �
1 + ��

1 �
�

(���)�

�� + � �
1 + ��

1 �
�

�

+
�(1 + ��)�

(1 �)(1 + ��)
� 

 
where (�) is given by (2.11) and so on 
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� ′(�)

�(�)
=

�(�(�))

�(�(�))
+

��′(�)

�(�)
= �(� + 2)�(�) + �(� + 1) +

��′(�)

�(�)
 

 
 Now for 

�(� + 2) ≥ 0 and �(� + 1)�{�} ≥ 0   
 We have  

� �
��′(�)

�(�)
� > 0       (� ∈ �) 

 
 The other condition of lemma is also satisfied. Hence we obtain the desired 
result of theorem. Further, for the function �(�) defined by (2.4), we have 
 

���(�)�
(���)

+ ���(�)�
(���)

+ ��′(�)��(�)�
�

= (�) 
 
which shows that the number �is sharp. The proof of theorem 2.2 is now completed. 
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Abstract: Some common fixed point theorems in complete complex valued 
metric spaces satisfying rational inequality are established by using the 
notion of compatibility and weak compatibility of mappings. Results of this 
paper generalize the result of Azam [1] and some earlier results. 
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Complex Valued Metric Spaces. 
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1. Introduction 

 
 Banach contraction principle (BCP) is a benchmark result established by 
Banach [2] in fixed point theory. According to this principle, a contraction map on a 
complete metric space always possesses a unique fixed point. After this interesting 
result and its various applications, number of generalization of this result are 
available in the literature by using different types of contractive conditions in various 
abstract spaces. 
 
 By generalizing   the Banach contraction principle, Jungck [7] set out 
tradition of common fixed point of mappings for two commuting mappings on 
complete metric space. After the result of Jungck [7] many authors introduced many 
concepts namely weak commutativity, compatibility, weak compatibility of maps 
(Sessa [12], Jungck [6, 8], Jungck and Rhoades [9] etc.) and established results 
regarding common fixed point. In fact commutativity of maps ⇒ weak commutativity 
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of maps ⇒ compatibility of maps ⇒ weak compatibility of maps, ⇒ but the converse 
of these implications are not true. 
 

 In 2011, Azam et. al [1] introduced a generalization of classical metric space 
which is known as complex valued metric space. He established sufficient condition 
for the existence of some common fixed point for a pair of maps satisfying rational 
inequality. 
 

 In this article we prove some results regarding common fixed point of maps, 
by using the notion of compatibility and weak compatibility of maps in complex 
valued metric space satisfying contractive conditions involving rational expression. 
We apply our result to find the solution of Uryshon’s integral equations as an 
application. 

 

2. Preliminaries 
 

We recall some basic definition and results which will utilize in our 
subsequent discussion. 

 

 Definition 2.1 [1]: Let   be the set of complex numbers and  ��,�� ∈  . 

Define a partial order  on  as : �� ��  iff ��(��)≤ ��(��),��(��)≤ �� (��). It 
follows that  �� ��  if one of the following conditions hold: 
 

(i) ��(��)= ��(��) and  ��(��)= �� (��) 
 

(ii) ��(��)< ��(��) and  ��(��)= �� (��) 
 

(iii) ��(��)= ��(��) and  ��(��)< �� (��) 
 

(iv) ��(��)< ��(��) and  ��(��)< �� (��) 
 

 We write �� ��  if  �� ≠ ��  and one of (ii) and (iii) is satisfied and we 
write �� ��  if only (iv) is satisfied. 
 

 Here we note the following holds trivially: 
 

 (i)        If   �� ��  then  |��|< |��|; 
 

 (ii)       If �� �� and �� �� then �� ��; 
 

 (iii)      If �,� ∈   and  � ≤ � then �� �� for all � ∈ ; 
 

(iv)       If �,� ∈  and 0 ≤ � ≤ � and  �� �� implies ��� ���. 
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 Definition 2.2 [1]: Let � be a nonempty set. A function �:� × � →   is 
called a complex valued metric on � if for all ��,��,�� ∈ � the following conditions 
are satisfied. 
 

(CVM 1)    0 �(��,��)  and  �(��,��)= 0 if and only if �� = ��; 
 
(CVM 2)   �(��,��)= �(��,��); 
 
(CVM3)    �(��,��) �(��,��)+ �(��,��). 
 
Then the pair (�,�) is called a complex valued metric space. 
 
Example 2.3 [5]: Let  � = . Define the mapping �:� × � →   by 
 

�(��,��)= �|�� ��|,∀ ��,�� � �. 
 
Then (�,�)  is  a  complex valued metric space. 
 

 Example 2.4 [11]: Let  � = . Define the mapping �:� × � →   by 
 

�(��,��)= ���|�� ��|,    where    � �  , ∀ ��,��  ∈ � . 
 

 Then (�,�) is a complex valued metric space. 
 
 Example 2.5: Let  � = [0,1]. Define the mapping �:� × � →   by 
 

�(�,�)= |� �| +  �|� �| 
 
then  (�,�) is a complex valued metric space. 
 

Example 2.6 [13]:  Let  � = . Define a function �:� × � →    such that 
 
                 �(��,��)= |�� ��|  +  �|�� ��| ,∀ ��,�� ∈  �, 
 

where               
�� = �� + ��� , �� = �� + ���. 

 
then (�,�) is a complete complex valued metric space. 
 

Definition 2.7 [10]:  Let (�,�) be a complex valued metric space. Consider 
the following,   
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(i) A point � � � is called interior point of a set � ⊆ �  whenever there exists 
0 � ∈   such that �(�,�)= {� ∈ � ∶�(�,�) �} ⊆  �. 

 
(ii) A point � ∈ � is called a limit point of a set A whenever, for every 

0 � ∈  , �(�,�) ∩ (� �) ≠ .  
 
(iii) A subset � ⊆ � is called open whenever each element of A is an interior 

point of A. 
 
(iv) A subset � ⊆ � is called closed whenever each limit point of A belongs 

to A. 
 
(v) The family � = {�(�,�): � � �, and 0 �} is a sub basis for a topology 

on �.This topology is denoted by ��. Indeed, the topology �� is 
Hausdorff. 

 
Definition 2.8 [4]: Let (�,�) be a complex valued metric space and {��} a 

sequence in � and  � ∈ �. Consider the following: 
 

 (i) If for every � ∈  with 0 � there is N ∈  such that, for all  
� ≥ �,�(��,�) �, then {��} is said to be convergent, {��}  converges to � and � is 
the limit point of  {��}. We denote this  lim�→ ∞ �� = �  or  �� → � as � →  ∞. 
 
 (ii) If for every � ∈  with 0 � there is N ∈  such that, for all � >
�,�(��,���� ) �,  where m ∈ , then {��} is said to be a Cauchy sequence. 
 
 (iii) If every Cauchy sequence in (�,�) is convergent, then (�,�) is said to 
be a complete complex valued metric space. 
 
 Lemma 2.9 [10]: Let (�,�) be a complex valued metric space and let {��} 
be a sequence in �. Then {��} converges to � if and only if 
|�(��,�)|→ 0, as  � → ∞. 
 
 Lemma 2.10 [10]: Let (�,�) be a complex valued metric space and let {��} 
be a sequence in �. Then {��} is a Cauchy Sequence if and only if 
 |�(��,���� )|→ 0 as � → ∞,  where � ∈ �. 
 
 Definition 2.11: Two self maps � and �  of a complex valued metric space 
(�,�) are weakly commuting iff  |�(���,���)|≤ |�(��,��)|, ∀ � ∈ �.   
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Definition 2.12: Two self-maps � and �  of a complex valued metric space 
(�,�) are compatible iff lim�→ ∞|�(����,����)|→ 0 whenever {��} is a sequence 
in � such that 

 
lim�→ ∞ ��� = lim�→ ∞ ��� = �  for some  � ∈ �. 

 
 Definition 2.13 [3]: Two self maps � and � of a complex valued metric 
space (�,�) are weakly compatible iff  �� = ��  implies that ��� = ���. 
 
 Definition 2.14: A function � defined on a complex valued metric space 
(�,�) is called continuous at a point �� ∈ � if for every � > 0 there exist � > 0 such 
that |�(��,���)|<  � for all z ∈ � with |�(�,��)| < �. i.e. lim�→ ��

|�(��,���)|= 0. 

 
 Proposition 2.15: Let � and �  be two self mappings defined on a complex 
valued metric space (�,�).Then the commutativity of  � and �  implies weak 
commutativity but the converse is not always true. 
 
 Proof: If S and T are two self maps on a complex valued metric space (�,�) 
If S and T are commuting maps then   ��� = ���  ∀ � ∈ �,  therefore 
|�(���,���)|= 0. Then we have  
 

0 = |�(���,���)|≤ |�(��,��)| 
 
is true, i.e. S and T are weakly commuting maps. 
 

For the converse part, we consider the following example: 
 
Let  (�,�) be a complex valued metric space, where  � = [0,1] and 

 �:� × � →    defined  by  �(�,�)=  |� �|   +  �|� �|,   ∀  �,� � � . 
 

  Define self maps  � and  � on �   by   �� =
�

���
  and  �� =

�

���
  ∀ � ∈ � ,  

 

Then we see that  �(��)= � �
�

���
� =

�

����
   and  �(��)= � �

�

���
� =

�

����
 . 

 
Therefore, �� ≠ ��  i.e. the mappings S and T are not commuting. Now  
 

 �(���,���)= �
�

����

�

����
�+ � �

�

����

�

����
�= �

�

����

�

����
�(1 + �). 

 

 ⇒  |�(���,���)|=
�

�
��

���

(����)(���)
�(1 + �)� . 
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Also,   �(��,��)= �
�

(���)

�

(���)
�+ � �

�

(���)

�

(���)
�    

                      

 ⇒ |�(��,��)|=  �
�

(���)

�

(���)
�|1 + �|= ��

��

(���)(���)
�(1 + �)� 

 
 Hence, |�(���,���)|≤ |�(��,��)| ∀ � ∈ �. i.e. S and T are weakly 
commuting maps. Therefore weakly commutativity does not imply commutativity  
of maps. 
 

Proposition 2.16: Let � and �  be two self mappings defined on a complex 
valued metric space (�,�). 
 

 Proof: If S and T are two self maps of a complex valued metric space (�,�). 
If S and T are weakly commuting maps then  |�(���,���)|≤ |�(��,��)|, ∀ � ∈ �. 
 

Now we take a sequence {��} such that ���,��� → � as � → ∞  for some 
� ∈ �. Then 

  
 |�(����,����)|≤ |�(���,���)|→ 0 as � → ∞ . i.e. S and T are compatible 
maps. 

For the converse part, we consider the following example: 
 
Let (�,�) be a complex valued metric space where � = [0,1]  and  

 �:� × � →    defined by   
 

�(�,�)=  |� �| +  �|� �|,   ∀ �,� � �. 
 
 Define self maps � an � on �  by  
 

�� = ��  and   �� = 2��  ∀ � ∈ �. 
 

 Then we see that  
 
 �(��)= �(2��)= 4��  and  �(��)= �(��)=   2�� 
 

�(���,���)= �(2��,4��)= |2�� 4��|+ �|2�� 4��|= | 2��|(1 + �) 
 

 |�(���,���)|= 2√2��.  
  

�(��,��)= �(��,2��)= |�� 2��|+ �|�� 2��|=  | ��|(1 + �)  
 

            |�(��,��)|= √2�� .  
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 Therefore we have |�(���,���)| |�(��,��)| i.e. S and T are not weakly 
commuting. 
 

But if we take a sequence defined by  �� =
�

�
  then �� → 0  as  � → ∞ .  

Now  

 ��� = 2( ��)� =  2 �
�

�
�

�
→ 0 as � → ∞   and  ��� = ( ��)� = �

�

�
�

�
→ 0 as  � → ∞  

 
 �(����,����)= |2��

� 4��
�|+ �|2��

� 4��
�|= | 2��

�|(1 + �)   
 

|�(����,����)|=
��√�

�� → 0 as � → ∞ .  
 

 Hence, S and T are compatible maps. 
 

 Proposition 2.17: Let � and �  be two self mappings defined on a complex 
valued metric space (�,�). Then the compatibility of  � and �  implies weak 
compatibility but the converse is not always true. 
 

 Proof: Let � and �  be two self maps defined on a complex valued metric 
space (�,�).Suppose that � and �  are compatible maps and �� = �� for some 
� � �. For every � � �, consider the constant sequence �� = � for all � � . 
then  ��� = ��� → ��  or �� as � → ∞   and by the compatibility of � and �  we 
have |�(���,���)|= |�(����,����)|→ 0 as � → ∞ . Hence ��� = ���   i.e. � 
and � are weakly compatible maps, for the converse part   we consider the following 
example. 
 

Let (�,�) be a complex valued metric space with the mapping where 
� = [0,2] and 

 
 �:� × � →    defined by   �(�,�) =  |� �|+  �|� �|  , ∀ �,� � �. 
 
 Define self maps � and � on � by  
 

            �� = �
1, � = 1

  2,�� ������
�     and       �� =    �

 1,   � = 1,2
  �,�� ������

� 

 
Then 1 is the only coincidence point of � and �  i.e. �(1) = 1 = �(1) and 

we see that 
 

 ��(1)= �(1)= 1,   ��(1)= �(1)= 1 
 

 i.e. ��(1)= ��(1) the maps � and � are weakly compatible. 
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On the other hand, if we take a sequence {��}, defined by �� = �2
�

�
� → 2 

as � → ∞  and  
��� → 2 , ��� = �� → 2 as  � → ∞  . 

 But, 

���� = � �2
�

�
� = 2  and   ���� = �(2)= 1  and so 

 

|�(����,����)|= |2 1|+ �|2 1|= √2  0   as  � → ∞ . 
 

            Hence, � and � are not compatible maps. 
 
           Also one cannot find a sequence {��} such that 
 

lim�→ �  ��� = lim�→ � ��� = � � �   for some  � � �, 
 
such that 

|�(����,����)|→ 0   as  � → ∞  . 
 

 Hence, � and � are not compatible maps. 
 
 Lemma 2.18: Let � and � be compatible mappings from a complex valued 
metric space (�,�) into itself. Suppose that  lim�→ � ��� = � for some � ∈ � and if  
�  is continuous. Then  lim�→ �� ��� = ��. 
 
            Proof: If  lim�→ � ��� = �,  lim�→ �� ��� = �� by continuity of �. But if  
 lim�→ � ��� = �. 
 
            Then since �(����,��) [�(����,����)+ �(����,��)]  implies that 
 
            |�(����,��)|≤ [|�(����,����)|+ |�(����,��)|]                                   (i) 
 
            Now by the compatibility of  � and � we have  
 
            |�(����,����)|→ 0  as � → ∞ ,   and    lim�→ ��� �� = ��.  
 
            Then   letting � → ∞  in (i) ,we have |�(����,��)| → 0  yields that  
 

 lim
�→ �

� ��� = ��. 

 
              Azam et al. [1] proved the following result. 
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 Theorem 2.19 [1]: Let (�,�) be a complete complex valued metric space 
and �,�:� → �  be mapping satisfying 
 

�(�� ,��)  ��(�,�)+ μ
�(�,��) �(�,��)

1 + �(�,�)
 

 
for all �,� � �,where �,� are non negative real numbers with � + � < 1. then �,� 
have a unique common fixed point in �. 

 
3. Main Results 

 
 Here by using the notion of compatibility and weak compatibility of maps, 
we generalize the above results by taking four maps as opposed to two maps. 

 
 Theorem 3.1: Let (�,�) be a complete complex valued metric space and 
mappings �,�,�  and  � satisfying. 

 
(3.1.1)     �(�)⊆ �(�) , �(�) ⊆ �(�) 

 

(3.1.2)       �(�� ,��) α�(��,��)+ �
�(��,��)�(��,��)

1 + �(��,��)
 

 

+ �
�(��,��)�(��,��)+ �(��,��)�(��,��)

�(��,��)+ �(��,��)
 

 

where,  �(��,��)+ �(��,��) ≠ 0 
 
  �(�� ,��)= 0 if  �(��,��)+ �(��,��)= 0. 
 

for all �,� in � where �,�,� are non negative reals with � + � + � < 1. 
 
 (3.1.3) suppose that A   is continuous, pair (�,�) is compatible and (�,�) is 
weakly compatible.  OR 
 

(3.1.4)  �  is continuous, pair (�,�) is weakly compatible and (�,�) is 
compatible. 

 

 Then �,�,� and � have unique common fixed point in   �. 
 

      Proof:  Suppose �� be an arbitrary point in � we define a sequence {���}  
in �  such that 
 
  ��� = ���� =  ������;  �����= ������ =  ������,  for  � = 0,1,2,                (3.1) 
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          Now from (3.1.2), we have 
 

�����,������ = �(����,������) 
 

��(����,������)+ �
�(����,����)�(������,������)

1 + �(����,������)
 

 

+ � 
�(����,����)�(����,������)+ �(������,����)�(������,������)

�(����,������)+ �(������,����)
 

 
 Since 
 
         �(����,������)+ �(������,����) = �(�����,�����)+ �(���,���)≠ 0. 
 
which implies that 
 

|�(���,�����)|≤ �|�(�����,���)|+ �
|�(�����,���)||�(���,�����)|

|1 + �(�����,���)|
 

 

+ �
|�(�����,���)||�(�����,�����)|+ |�(���,���)||�(���,�����)|

|�(�����,�����)+ �(���,���)|
 

                                                                
           |�(���,�����)|≤ �|�(�����,���)|+ �|�(���,�����)| 
 

+ �|�(�����,���)| 
 

           |�(���,�����)|≤ �
���

���
�|�(�����,���)|.  

 
     Similarly 
 

�������,������ ��(������,������)+ �
�(������,������)�(������,������)

1 + �(������,������)
 

 

+ �  
�(������,������)�(������,������)+ �(������,������)�(������,������)

�(������,������)+ �(������,������)
 

 

            Since 
 
 �(������,������)+ �(������,������) 
 

= �(���,�����)+ �(�����,�����)≠ 0. 
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��������,������� ≤  �|�(���,�����)|+ �
|�(���,�����)||�(�����,�����)|

|1 + �(���,�����)|
 

 

+ �
|�(���,�����)||�(���,�����)|+ |�(�����,�����)||�(�����,�����)|

|�(���,�����)+ �(�����,�����)|
 

 

            ��������,������� ≤  �|�(���,�����)|+ �|�(�����,�����)| 
 

+ �|�(���,�����)| 
 

           ��������,������� ≤  �
���

���
�|�(���,�����)|. 

 

  Since   if � + � + � < 1,   then  
 (���)

  ���
< 1    or  � < 1  �� =

 ���

  ���
�,  

 
 Therefore for all   � ≥ 0, we have 
 

     ��������,�������  ≤ �|�(���,�����)| ≤ ��|�(�����,���)| 
 
         ≤ ….≤ �����|�(��,��)|                                           (3.2)     
                    
        By using (3.2) for all �,�  �  and � > � we have 
 

������,��� �� ≤ ���|�(��,��)|+ �����|�(��,��)|+  �����|�(��,��)|+  
 
                                                                                                ...+  ��� ��|�(��,��)|   
    
                          ≤ ∑ �������|�(��,��)|�� ���

��� = ∑ ��|�(��,��)|�� ��
����    

                                                                                                                                                                                    

                          ≤  ∑ (�)�|�(��,��)|�
���� ≤  

(�)��

(���)
|�(��,��)|→ 0   as  � ,� → ∞  

(since � < 1) 
 
 Hence, {���} is a Cauchy sequence in �. Since � is complete, therefore 
{���} converges to point � in � and its subsequences 
{����} ,{������} ,{ ������} ,{ ������} are also converge to �. 
 
             Case I:   Suppose that  � is continuous. Then ����� =   ����� → ��.  
 
             Also by the compatibility of  �  and  �, from Lemma (2.18)   ����� → ��.   
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             Using (3.1.2), we have 
 

�(�����,������) α�(�����,������)+ �
�(�����,�����)�(������,������)

1 + �(�����,������)
 

 

+  �
�(�����,�����)�(�����,������)+ �(������,�����)�(������,������)

�(�����,������)+ �(������,�����)
 

 
             Since,  �(�����,������)+ �(������,�����)= �(�� ,�)+ �(�� ,�)≠ 0.    
   

|�(�����,������)|≤ α|�(�����,������)|+ �
��������,�������|�(������,������)|

|���(�����,������)|
   

 

 +  �
��������,���������������,���������|�(������,�����)||�(������,������)|

|�(�����,������)��(������,�����)|
 

 
               Letting  � → ∞ , we get 
 

 |�(��,�)|≤ �|�(��,�)|+ �
|�(�� ,��)||�(� ,�)|

|���(��,�)|
+ �

|�(�� ,��)||�(�� ,�)|�|�(� ,��)||�(� ,�)|

|�(�� ,�)��(� ,��)|
   

 
 ⇒ (1 �)|�(��,�)|≤ 0    yields     �� = �. 
 

Again using (3.1.2), we get 
 

�(��,������) ��(��,������)+ �
�(��, ��)�(������ ,������)

1 + �(��,������)
 

 

+ �
�(��,��)�(��,������)+ �(������,��)�(������,������)

�(��,������)+ �(������,��)
 

 
 Since, �(��,������)+ �(������,��)=  �(�,�)+ �(�,��) ≠ 0.  
 

Letting � → ∞ , we have 
 

 |�(��,�)|≤ �|�(�,�)|+ �
|�(�,��)||�(�,�)|

|���(�,�)|
+ �

|�(�,��)||�(�,�)|�|�(�,��)||�(�,�)|

|�(�,�)��(�,��)|
 

 
 ⇒ |�(��,�)|≤ 0   yields     �� = � = ��. 

 
Now from (3.1.1) since  �(�) ⊆ �(�), there exists a point � in � such that 

� = �� = �� = ��.  
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Then from (3.1.2), we have 
 

|�(�,��)|= |�(��,��)|≤ �|�(��,��)|+ �
|�(��,��)||�(��,��)|

|1 + �(��,��)|
 

 

+ �
|�(��,��)||�(��,��)|+ |�(��,��)||�(��,��)|

|�(��,��)+ �(��,��)|
 

 
 ⇒ |�(�,��)|≤ 0     yields     � = �� = �� = �� = ��. 
 

Now by weak compatibility of  �  and  �, we have ��� = ���  ⇒ �� = ��. 
 
Again from (3.1.2), we get 
 

 �(�� ,��) α�(��,��)+ �
�(��,��)�(��,��)

���(��,��)
 + �

�(��,��)�(��,��)��(��,��)�(��,��)

�(��,��)��(��,��)
 

 

|�(�,��)|= |�(��,��)|≤ �|�(��,��)|+ �
|�(��,��)||�(��,��)|

|1 + �(��,��)|
 

 

+ �
|�(��,��)||�(��,��)|+ |�(��,��)||�(��,��)|

|�(��,��)+ �(��,��)|
 

 
            ⇒ |�(�,��)|≤ �|�(�,��)|  or  (1 �)|�(�,��)|≤ 0    yields   �� = �. 
 
  Hence,   �� = �� = �� = �� = � , i.e.  � is the common fixed point of  
�,�,� and �.  
 

Case II:   For the ‘or’ part, let  �  is continuous. Then  �����= ����� → ��.  
 
Also by the compatiblility of  � and  �, from Lemma (2.18)  ����� → ��. 
 
 Using (3.1.2), we have       
  

�(����,�����) ��(����,�����)+ �
�(����,����)�(�����,�����)

1 + �(����,�����)
 

 

+ �
�(����,����)�(����,�����)+ �(�����,����)�(�����,�����)

�(����,�����)+ �(�����,����)
 

 
  Since,  �(����,�����)+ �(�����,����) = �(�,��)+ �(�,��)≠ 0.         
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⇒ |�(����,�����)|≤ �|�(����,�����)|+ �
|�(����,����)|��������,�������

|���(����,�����)|
 

 

+ �
|�(����,����)||�(����,�����)|+ |�(�����,����)||�(�����,�����)|

|�(����,�����)+ �(�����,����)|
 

 
          Letting � → ∞ , we have 

 

|�(�,��)|≤ �|�(�,��)|+ �
|�(�,�)||�(��,��)|

|���(�,��)|
+ �

|�(�,�)||�(�,��)|�|�(��,�)||�(��,��)|

|�(�,��)��(��,�)|
 

 
 ⇒ (1 �)| �(�,��)| ≤ 0    yields   �� = �.    
  
Now from (3.1.1) since �(�) ⊆ �(�), there exist a point � in � such that 

� = �� = ��. 
 
Then from (3.1.2), we have 
 

�(��,�����) ��(��,�����)+ �
�(��,��)�(�����,�����)

1 + �(��,�����)
 

 

+ �
�(��,��)�(��,�����)+ �(�����,��)�(�����,�����)

�(��,�����)+ �(�����,��)
 

 
 Since, �(��,�����)+ �(�����,��)=  �(�,��)+ �(��,��)≠ 0. 
 

|�(��,�����)|≤ �|�(����,�����)|+ �
|�(��,��)||�(�����,�����)|

|1 + �(��,�����)|
 

 

+ �
|�(��,��)||�(��,�����)|+ |�(�����,��)||�(�����,�����)|

|�(��,�����)+ �(�����,��)|
 

 
Letting � → ∞ ,   we have 
 

|�(��,��)|≤ �|�(�,��)|+ �
|�(�,��)||�(��,��)|

|1 + �(�,��)|
 

 

+ �
|�(�,��)||�(�,��)|+ |�(��,��)||�(��,��)|

|�(�,��)|+ |�(��,��)|
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|�(��,�)|≤ �|�(�,�)|+ �
|�(�,��)||�(�,�)|

|1 + �(�,�)|
 

 

+ �
|�(�,��)||�(�,�)|+ |�(�,��)||�(�,�)|

|�(�,�)|+ |�(�,��)|
 

 
 ⇒ |�(��,�)|≤ 0,  yields    �� = � = ��. 
 
 Since, � and  �  are weakly compatible on � and �� = �� and 
��� = ��� ⇒ �� = ��. 

 
Using (3.1.2), we have 
 

�(��,������) α�(��,������)+ �
�(��,��)�(������,������)

1 + �(��,������)
 

 

+ �
�(��,��)�(��,������)+ �(������,��)�(������,������)

�(��,������)+ �(������,��)
 

 
 Since,  �(��,������)+ �(������,��) = �(��,�)+ �(�,��) ≠ 0. 
 

|�(��,������)|≤ α|�(��,������)|+ �
|�(��,��)||�(������,������)|

|1 + �(��,������)|
 

 

+ �
|�(��,��)||�(��,������)|+ |�(������,��)||�(������,������)|

|�(��,������)+ �(������,��)|
 

 
Letting � → ∞ , we have 

 

|�(��,�)|≤ �|�(��,�)|+ �
|�(��,��)||�(�,�)|

|1 + �(��,�)|
 

 

+ �
|�(��,��)||�(��,�)|+ |�(�,��)||�(�,�)|

|�(��,�)|+ |�(�,��)|
 

 
 ⇒ (1 �)|�(��,�)|≤ 0,   yields  �� = � = �� = �� = ��. 
 

 Since,  �(�) ⊆ �(�),  there exists a point  � in � such that � = �� = ��. 
 
Now, from (3.1.2), we have  
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             �(�,��)= �(��,��) 
 

��(��,��)+ �
�(��,��)�(��,��)

1 + �(��,�� )
 

 

+ �
�(��,��)�(��,��)+ �(��,��)�(��,��)

�(��,��)+ �(��,��)
 

 

|�(�,��)|≤ �|�(�,�)|+ �
|�(��,�)||�(�,��)|

|1 + �(��,�)|
 

 

+ �
|�(��,�)||�(��,��)|+ |�(�,�)||�(�,��)|

|�(��,��)|+ |�(�,��)|
 

 

|�(�,��)|≤ �|�(�,�)|+ �
|�(�,�)||�(�,��)|

|1 + �(�,�)|
 

 

+ �
|�(�,�)||�(�,��)|+ |�(�,�)||�(�,��)|

|�(�,��)|+ |�(�,��)|
 

 
 ⇒ |�(�,��)|≤ 0,   yields  � = ��. Hence, � = �� = �� = �� = �� = ��. 
 

Since � and  �  are compatible on � and �� = �� = � then by proposition 
(2.18),  �(���,���)= 0. 

 
This implies �� = ��� = ��� = ��. Hence, �� = �� = �� = �� = �. 
 
Therefore, �  is a common fixed point of  �,�,� and �.  
 
Now for the uniqueness of   �, suppose that  � ≠ � be another common fixed 

point of  �,�,� and �.  
 
Then, from (3.1.2), we have 
 

�(�,� ) = �(��,�� ) ��(��,�� )+ �
�(��,��)�(�� ,�� )

1 + �(��,��)
 

 

+ �
�(��,��)�(��,�� )+ �(�� ,��)�(�� ,�� )

�(��,�� )+ �(�� ,��)
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|�(�,� )|≤ �|�(�,� )|+ �
|�(�,�)||�(� ,� )|

|1 + �(�,� )|
 

 

+ �
|�(�,�)||�(�,� )|+ |�(� ,�)||�(� ,� )|

|�(�,� )|+ |�(� ,�)|
 

 
 ⇒ (1 �)|�(�,� )|≤ 0   which is contradiction. Hence  � = � . 
 
i.e.  �  is the unique common fixed point of  �,�,� and �. 

 
 On setting � = � = � and  � = 0 in the inequality (3.1.2), we have the 
following results (Theorem 4 of [1]) as a corollary 
 
 Corollary 3.2: Let (�,�) be a complete complex valued metric space and  
�,�:� → �  be mapping satisfying 
 

�(�� ,��)  ��(�,�)+ β 
�(�,��) �(�,��)

1 + �(�,�)
 

  

for all �,� � �,  where  � ,� are non negative real numbers with � + � < 1. then �,� 
have a unique common fixed point in �. 
 
 On setting � = � = � and  � = � = 0 in the inequality (3.1.2), we have the 
following result. 
 
 Corollary 3.3: Let (�,�) be a complete complex valued metric space and 
let �,�:� → � be mappings satisfying: 

 

�(�� ,��) γ 
�(�,��) �(�,��)+ �(�,��) �(�,��)

 �(�,��)+ �(�,��)
 

 
for all �,� � �, where  γ  non negative real number with γ ∈ [0,1). Then �,� have a 
unique common fixed point in �. 

 

Example 3.1: Let � = [0,1] and  �:� × � →    defined by  
 

�(�,�)=  |� �|+ �|� �|   ∀  � ,� � �. 
 

 Then (�,�) be a complete complex valued metric space.  Now, we define the 
self mappings �,�,�,�:� → �  by 

 

     �� =
�

�
,  �� = �  and  �� =

�

�
,  �� =

��

�
  for all �,� � �. 
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�(�) = �0,
�

�
� ⊆ [0,1]= �(�), �(�) = �0,

�

�
� ⊆ �0,

�

�
� = �(�). 

 
 By the definition of self mappings we get condition (3.1.1) of the  
Theorem 3.1. 

 
Now consider  
 

�(��,��)=   |�� ��|(1 + �)=  �
�

�

�

�
�(1 + �)  

 

�(��,��)=  |�� ��|(1 + �) =   �
��

�
��(1 + �)  

 

�(��,��)=   |�� ��|(1 + �)=  �
��

�

�

�
�(1 + �)  

 

�(��,��)=   |�� ��|(1 + �) =  ��
�

�
�(1 + �)  

 

�(��,��)=   |�� ��|(1 + �) =  �
��

�

�

�
�(1 + �)  

 

�(��,��)=  |�� ��|(1 + �)= ��
�

�
�(1 + �)  

 

 For the verification of inequality (3.1.2), it sufficient to show that 
�(��,��) ��(��,��)  

 

At � = 0 and � = 0 the result is obvious. 
 

At � = 0 and  � = 1,  �(��,��)=
�

�
= 0.25  and   �(��,��)= 1. 

 

At � = 1 and  � = 0,  �(��,��)=
�

�
= 0.5  and   �(��,��)=

�

�
= 0.66. 

 

At � = 1 and   � = 1,  �(��,��)=
�

�
= 0.25  and  �(��,��)=

�

�
 = 0.33. 

 

Hence, the inequality  
 

�(�� ,��) α�(��,��)+ �
�(��,��)�(��,��)

1 + �(��,��)
  

 

+ �
�(��,��)�(��,��)+ �(��,��)�(��,��)

�(��,��)+ �(��,��)
 

 

holds good for all �,� in � where � =
�

�
,� =

�

���
  and  � =

�

���
 . i.e.  � + � + � < 1. 
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 Since the commutativity of pairs (�,�) and (�,�) yields the compatibility of 
(�,�) and weak compatibility of (�,�). 

 
4. Urysohn Integral Equations 

 
 In this section, we applied our main result (Theorem 3.1) to the existence and 
uniqueness of a common solution of the system of the Urysohn’s integral equations. 
 

                             �(�) = ��(�)+ ∫ ��(�,�,�(�))��
�

�
                                           (4.1) 

 
where � = 1,2,3,4,�,� ∈  with � ≤ �,� ∈ [�,�], �,�� ∈ �([�,�], �) and 
��:[�,�]× [�,�]×  � → � is a given mapping for each � = 1,2,3,4. 
 
 Throughout this section, for each � = 1,2,3,4 and �� in equation (4.1) we 
make use the following symbols  
 

����(�)� = � ��(�,�,�(�))��
�

�

 

 
       Theorem 4.1: Consider the Urysohn’s integral equation (4.1). Assume the 
following conditions hold for each  � ∈ [�,�]: 
 

(i) � + � + � < 1,   
 

(ii) ���(�)+ ��(�)+ ��(�) ��[���(�)+ ��(�)+ ��(�)]= 0 and 
 
���(�)+ ��(�)+ ��(�) ��[���(�)+ ��(�)+ ��(�)]= 0  
 

(iii) ������(�)+ ��(�)� +  ��(�) � ������(�)+   ��(�)� + ��(�)� = 0 
and 

������(�)+ ��(�)� +  ��(�) � ������(�)+   ��(�)� + ��(�)� = 0  
 

(iv)  ��(�)+ 3��(�)+ ���2�(�) ��(�)� + 2���(�) 

+ ���2�(�) ���(�) ��(�)� = 4�(�)  and 
 
��(�)+ 3��(�)+ ��[���(�)+ ��(�)]+ 2���(�)

+ ��[2�(�) ���(�) ��(�)]= 4�(�) 
 
(v) 2�(�) ���(�) ��(�) ���(�) ��(�)≠ 0  and 

 2�(�) ���(�) ��(�) ���(�) ��(�)≠ 0 
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where, 
 

���(�)= ‖���(�)+ ��(�) ���(�) ��(�)‖�√1 + ���� ����� � ; 
 

���(�)=  ‖2�(�) ���(�) ��(�) 2�(�)+ ���(�)+ ��(�)‖�√1 + ���� ����� � 
 
���(�)=
 

[‖��(�)����(�)���(�)����(�)���(�)‖�‖��(�)����(�)���(�)����(�)���(�)‖�]√������ ����� �

��‖��(�)����(�)���(�)���(�)����(�)���(�)‖�√������ ����� �
    

       
 ���(�) =  
 

�
‖��(�)����(�)���(�)����(�)���(�)‖� ‖��(�)����(�)���(�)����(�)���(�)‖�

�‖��(�)����(�)���(�)����(�)���(�)‖�‖��(�)����(�)���(�)����(�)���(�)‖�
�√������ ����� �

[‖��(�)����(�)���(�)����(�)���(�)‖��‖��(�)����(�)���(�)����(�)���(�)‖�]√������ ����� �
  

 
 Then the system of equations (4.1)  have a unique common solution. 
 
        Proof:  Let � = �([�,�], �), � > 0 and �:� × � →  be defined by  
 

  �(�,�)= max �∈[�,�]‖�(�) �(�)‖�√1 + ���� ����� �              (4.2) 
 

 Then (�,�) be a complete complex valued metric space. 
 

           Define mappings �,�,�, and  � : � → � by 
 

          ��(�) =  ���(�)+ ��(�)= ∫ ����,�,�(�)��� + ��(�);
�

�
  

 

           ��(�) =  ���(�)+ ��(�)= ∫ ����,�,�(�)��� + ��(�)
�

�
;  

 

           ��(�) =  2�(�) ���(�) ��(�)= 2�(�) ∫ ����,�,�(�)��� + ��(�)
�

�
;  

 

           ��(�) =  2�(�) ���(�) ��(�)= 2�(�) ∫ ����,�,�(�)��� + ��(�)
�

�
;  

  
            Let �,� ∈ �, then we get  
           

�(��,��)= max �∈[�,�]‖���(�)+ ��(�) ���(�) ��(�)‖�√1 + ���� ����� �  
           
�(��,��)=

max �∈[�,�]‖2�(�) ���(�) ��(�) 2�(�)+ ���(�)+ ��(�)‖�√1 + ���� ����� �      
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�(��,��)=

max �∈[�,�]‖2�(�) ���(�) ��(�) ���(�) ��(�)‖�√1 + ���� ����� �  

          
�(��,��)=

max �∈[�,�]‖2�(�) ���(�) ��(�) ���(�) ��(�)‖�√1 + ���� ����� �  
           
�(��,��)=

max �∈[�,�]‖2�(�) ���(�) ��(�) ���(�) ��(�)‖�√1 + ���� ����� �                  

        
�(��,��)=

max �∈[�,�]‖2�(�) ���(�) ��(�) ���(�) ��(�)‖�√1 + ���� ����� �      (4.3) 
 
        From Theorem (3.1) for  � ∈ [�,�], we have  
 

 Max�∈[�,�]��� (�) � max �∈[�,�]��� (�)+ � max �∈[�,�]��� (�) 

           + � max �∈[�,�]��� (�)  
 
      By the above equation we get  

         
�(��,��)�

��(��,��)+ �
�(��,��)�(��,��)

���(��,��)
+ + �

�(��,��)�(��,��)��(��,��)�(��,��)

�(��,��)��(��,��)
   

 
         Now we shall show that  �(�)⊆ �(�). For this 
 

����(�)+ ��(�)� = 2[��(�)+ ��(�)] ��[��(�)+ ��(�)] ��(�)  
 
                               = ��(�)+ ��(�)+ ��(�) ��[��(�)+ ��(�)] 
 
                              =��(�)+ ���(�)+ ��(�)+ ��(�) ��[���(�)+ ��(�)+ ��(�)] 
 
             Using the given condition of Theorem (4.1) we get 
 

����(�)+ ��(�)� = ��(�) 
which shows that  
 

�( �)⊆ �(�). 
 

 Similarly we show that  �(�)⊆ �(�). 
 
 Now, we shall prove that the pair (�,�) and (�,�) are compatible. 
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 Let {��} be a sequence such that 
 

lim�→ � ���(�)= lim�→ � ���(�) = � (�)  for some  �(�) ∈ �, 
 
for each � ∈ [�,�]. Then we have, 

 
‖����(�) ����(�)‖ = ���2��(�) ����(�) ��(�)� ������(�)+ ��(�)�� 

 
                                           = ����2��(�) ����(�) ��(�)� +  ��(�)

                                                         2�����(�)+ ��(�)� �����(�)+   ��(�)� ��(�)�  

 
                                                = ����2�(�) ���(�) ��(�)� +  ��(�)

                                                                                                    2����(�)+ ��(�)� ��(�)�  

 
‖����(�) ����(�)‖ = �������(�)+ ��(�)� +  ��(�)  ������(�)+   ��(�)�

                                                                                                                                   ��(�)� . 

 
From condition (iii) we get ‖����(�) ����(�)‖ = 0 whenever  
 

lim
�→ �

���(�)= lim
�→ �

���(�)= �(�)   

 
for some �(�) ∈ �, for each  � ∈ [�,�]. 

 
 Hence, the pair (�,�) is compatible. Similarly we can show that (�,�) is 
compatible. 

 
 Next we shall prove that the pair (�,�) and (�,�) are weakly compatible. 
 
 For each � ∈ [�,�], we get  
 
‖���(�) ���(�)‖ = ������(�)+ ��(�)� ��2�(�) ���(�)  ��(�)��  

               

       =�2����(�)+ ��(�)� ������(�)+ ��(�)� ��(�)

                                ���2�(�) ���(�)   ��(�)� +  ��(�)�          (4.4)                                                                                                                        
          
 If  �� = �� for some � ∈ �, then we have  
 

���(�)+ ��(�)= 2�(�) ���(�) ��(�) for � ∈ [�,�] 
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       Therefore, from the (4.4), we get  
 

 ‖���(�) ���(�)‖ = �4�(�) 2���(�) 3��(�) ���2�(�) ���(�)

��(�)� ���2�(�) ��(�)�  ��(�)�   for all  � ∈ [�,�].  
 

From condition (iv) ‖���(�) ���(�)‖ = 0, that is  ���(�) = ���(�) for 
all � ∈ [�,�]. 

 
Therefore, ��� = ���  whenever  �� = ��. 
 
Hence, the pair (�,�) is weakly compatible. Similarly we can show that 

(�,�) is weakly compatible. 
 

 Thus, all the conditions of Theorem (3.1) are satisfied. Therefore there exists 
a unique common fixed point of  �,�,� and  � in � and consequently there exist a 
unique common solution of the system (4.1). 
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1. Introduction 
 
 After the introduction of fuzzy sets by Zadeh [65] in 1965 and fuzzy 
topology by Chang [17], several research studies were conducted on the 
generalization of the notions of fuzzy sets and fuzzy topology. The concept of 
intuitionistic fuzzy sets was introduced by Atanassov [2], [3], [4] as a generalization 
of fuzzy sets. In the last 32 years various concepts of fuzzy mathematics have been 
extended for intuitionistic fuzzy sets. In 1997 Coker [18] introduced the concept of 
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces.  
 
 In 1999, Ozbakir and Coker [46] introduced the concept intuitionistic fuzzy 
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity 
from a topological space to an intuitionistic fuzzy topological space.  
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 Recently many weak and strong forms of upper and lower semi continuous 
Intuitionistic fuzzy multifunctions such as Intuitionistic fuzzy lower and upper 
�-continuous [31] Intuitionistic fuzzy lower and upper quasi continuous [59] 
Intuitionistic fuzzy lower and upper irrosolute Intuitionistic fuzzy upper and lower 
 �-irresolute [63] have been appeared in the liturecture.  
 
 In this present paper we introduce and characterize the concepts of upper and 
lower contra �-continuous intuitionistic fuzzy multifunctions   from a topological 
space to an intuitionistic fuzzy topological space.  
 
2. Preliminaries 
 
 Through out this paper (�, �) and (�, Γ) represents a topological space and 
an intuitionistic fuzzy topological space respectively.  
 
 Definition 2.1 [30], [45]: A subset a of a topological space(�, �) is called:  
 
 (a) Semi-open if A ⊂ Cl(Int(A)). 
  
 (b) Semi-closed if its complement is semi-open.  
 
 (c) �-open if A ⊂ Int(Cl(Int(A))).  
 
 (d) �-closed if its complement is �-open.  
 
 Remark 2.1 [40]: Every open (resp.closed) set is �-open (resp.�-closed) and 
every �-open (resp.�-closed) set is semi-open (resp.semi-closed) but not the 
converse may not be true.  
 
 The family of all �-open (resp. semi-open) subsets of a topological space 
(�, �) is denoted by �O(X)(resp.SO(X)), similarly for the family of all �-closed 
(resp.semi-closed,) subsets of topological space (�, �) is denoted by �C(X)(resp. 
SC(X)). The intersection of all �-closed (resp. semi-closed) sets of X containing a set 
A of X is called the �-closure [32](resp. semi-closed) of A. It is denoted by �Cl(A) 
(resp.sCl(A)).The union of all �-open (resp.semi-open) subsets of A of X is called 
the �-interior [16] (resp. semi-interior) of A. It is denoted by �-Int(A)(resp.sInt(A)). 
A subset A of X is �-closed(resp.semi-closed) if and only if  
A ⊃ Cl(Int(Cl(A))), (resp.A ⊃ Int(Cl(A)). A subset N of a topological space (�, �) is 
called a �-neighborhood [31] of a point x of X if there exits an �-open set O of X 
such that � ∈ � ⊂ �. A is an �-open in X, if and only if it is a �-neighborhood of 
each of its points. A subset V of X is called an �-neighbourhood of a subset a of X if 
there exists U ∈ � OX such that  ���� ⊂ �.  A mapping f from a topological space 
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(�, �) to another topological space (� , � ) is said to be �-continuous [31], [32] if the 
inverse image of every open set of �  is �-open in X.  
 
 Lemma 2.1 [52]: The following properties hold for a subset A of a 
topological space(�, �): 
  
 (a) A is �-closed in X ⇔ sInt(Cl(A)) ⊂ A ;  
 
 (b) sInt(Cl(A)) = Cl(Int(Cl(A)));  
 
 (c) �Cl(A) = A ∪Cl(Int(Cl(A))).  
 
 Lemma 2.2 [52]: The following properties hold for a subset A of a 
topological space(�, �):  
 
 (a)    A ∈ �O(X),  
 
 (b)    U ⊂ � ⊂ Int(Cl(U)) for open set U of X.  
 
 (c)    U ⊂ A ⊂ sCl(U) for some open set U of X.  
 
 (d)    A ⊂ sCl(Int(A)). 
 
 Definition 2.2 [2], [3], [4]:  Let Y be a nonempty fixed set.  An intuitionistic 
fuzzy set �� in Y is an object having the form �� = {< �, ���(�), ���(�) > ∶ � ∈ �}. 
where the functions ���(�) : Y → I and ���(�) : Y → I denotes the degree of 
membership (namely ���(�)) and the degree of non membership (namely ���(�)) of 
each elemently � ∈ � to the set �� respectively, and 0 ≤ ���(�) + ���(�) ≤ 1  
for each  y ∈ Y.  
 
 Definition 2.3 [2], [3], [4]: Let Y be a non-empty fixed set. An intuitionistic 
fuzzy set �� in Y is an object having the form 

 �� = ���, ���(�), ���(�)� : � ∈ ��  where the functions ���(�) ∶ � → � and 

���(�) ∶ � → � where I = [0, 1], denotes the degree of membership (namely ���(�)) 
and the degree of non membership (namely ���(�)) of each element � ∈ � to the set 
�� respectively, and 0 ≤ ���(�) + ���(�) ≤ 1 for each � ∈ Y. 
 
 Definition 2.4 [2], [3], [4]: Let Y be a non- empty set and the intuitionistic 
fuzzy sets �� and ��  be in the form �� = {(�, ���, ���) ∶ � ∈ �},  
��  = {(�, ��� (�)), ��� (�): � ∈ �} and let {���: � ∈ } be an arbitrary family of 

intuitionistic fuzzy sets in Y, then :  
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 (a)     �� ⊆ ��  if  ∀ y ∈ Y [���(y) ≤ ��� (y)   and  ���(y) ≥ ���(y) ≥  ��� (y) 
 
 (b)    �� = �� if �� ⊆ ��  and � � ⊆ � � ;  
 
 (c)     ���={  < �,    ���(y), ���(y) > ∶ � ∈ �; 
 

 (d)     0� = {< �, 0,1 > ∶ � ∈ �}  and 1� = { < �, 1.0 > ∶ � ∈ �} 
 

 (e)     ∩ ��� = { < �, ∨ ���(y),      ∨  ���(y) > ∶ � ∈ �} 

 
 (f)      ∪ ��� = { < �, ∨  ���(y),    ∧  ���(y) > ∶ � ∈ � 

 
 Definition: 2.5 [19]: Two intuitionistic fuzzy sets � �  and � � of Y are said to 
be quasi-coincident � � ��� for short) if   ∃ � ∈ �  such that  
 

��� (y) > ��� (y) 
 

���(y) < ��� (y). 
 
 Lemma 2.3 [19]: For any two intuitionistic fuzzy sets � � and �� of Y, 
 

~(��q�� ) � � ⊂  �� �. 
 

 Definition 2.6 [18]: An intuitionistic fuzzy topology on a non-empty set Y is 
a family � of intuitionistic fuzzy sets in Y which satisfy the following axioms:  
 
 (a)    ��, 1� ∈ Γ, 
 
 (b)    ��� ∩ � �

� ∈ �  for any   ���, ��� ∈ Γ, 
 
 (c)    ��� ∈ Γ for arbitrary family  {���: � ∈ �} ∈ � . 

 
 In this case the pair (Y, �) is called an intuitionistic fuzzy topological  
space and each intuitionistic fuzzy set in Γ, is known as an intuitionistic fuzzy open 
set in Y.  
 
 The complement ��� of an intuitionistic fuzzy open set �� is called an 
intuitionistic fuzzy closed set is Y. 
 
 Definition 2.7 [19]: Let  Y  be a non- empty set and   c ∈ � a fixed element 
in Y, if � ∈ ( �, �] and � ∈ [�, �) are two real numbers such that � + � < 1  then,  
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(a) c(�, �) =  ( �, �� , ��_�) is called an intuitionistic fuzzy point (IFP in short) 

in Y, where � denotes the degree of membership of c(�, �), and � denotes 
the degree of non membership of  c(�, �). 
 

(b) c(�) = ( �, 0,1 ����)  is called a vanishing intuitionistic fuzzy point (VIFP 

in short) in Y, where � denotes the degree of non membership of c(�). 
 
 Definition 2.8 [18]: Let (Y, �) be an intuitionistic fuzzy topological space 

and � �  be an intuitionistic fuzzy set in Y. Then the interior and closure of �� are 
defined by:  
 
 (a) cl(��)  = {��: ��is an intuitionistic fuzzy closed set in Y and � �  ⊆  ��}. 
 
 (b) Int(��) = { �:� � � is an intuitionistic fuzzy open set in Y and �� ⊆  ��}. 
 
 Lemma 2.4 [17]: For any intuitionistic fuzzy set  in ��in  (Y, �) we have:  
 
 (a)   �� is an intuitionistic fuzzy closed set in � ��( ��)=(��) 
 
 (b) �� is an intuitionistic fuzzy open set in  Y ���( � � ) =�� 
 
 (c)  Cl (  ���) = (�����)^� 
 

 (d) Int(���) = ��� ���
�
 

 
 Definition 2.9 [46]: Let X and Y are two non- empty sets. A function    
F : (X, �) → ( � , Γ)  is called intuitionistic fuzzy multifunctions, if  F( �)   is an 
intuitionistic fuzzy set in Y,  ∀  � ∈ �. 
 
 Definition 2.10 [58]: Let F : ( X, �) → (�, � ) is an intuitionistic fuzzy 
multifunction and A be a subset of  X, then  F(A) =   �(�).  �∈�  
 
 Definition 2.11 [58]: Let F: (X, �)  →  (Y,  Γ)  be an intuitionistic fuzzy 
multifunction. Then  
 
(a)  A ⊆ � ⇒ �(�) ⊆ �(�) for any subsets A and B of X.  
 
(b)  �(� ∩ �) ⊆ �(�) ∩ �(�) for any subsets A and B of X.  
 
(c)  F( )�� = { �(��): ���}���  for any family of subsets in  X. {(��): � � Λ} in X. 
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 Definition 2.12 [46]: Let � ∶ (�, �) → (�, �) is an intuitionistic fuzzy 
multifunction, then the upper inverse ��( �� ) and lower ��( �� ) of an intuitionistic 
fuzzy set ��   in Y are defined as follows:  
 
 (a) ��(� � ) ={  � ∈ �: �(�) ⊆ (��  )} 
 

 (b) ��(� � )  = { � ∈ � ∶ �(�)� �}� 
 
 Lemma 2.5 [58]: Let �: ( �, �) → (�, �) be an intuitionistic fuzzy 
multifunction and � � , ��  be intuitionistic fuzzy  sets  in  Y. Then 
  
 (a)    ��(1�) = ��(1�) = X , 
 

 (b)    ������ ⊆ ��(��) 
 

 (c)    ����� � ��
�

= [������
�
]  

 

 (d)    [������
�

= [������
�
 

 

 (e)    If �� ⊆ ��, then  ������ ⊆ ��(��) 
 

 (f)    If   �� ⊆ � � , then  ������ ⊆ ��(� � ) 
 
 Definition 2.13 [58]: An Intutionistic  fuzzy multifunction �(�, � ) → (�, �) 
is said to be:  
 

(a) Intuitionistic fuzzy upper semi -continuous at a point �� ∈ �, if for any 
intuitionistic fuzzy open set �� ⊂ � such that�(��) ⊂ �� there exists an open 
set   U⊂ � containing �� such �(�) ⊂ �.�  
 

(b) Intuitionistic fuzzy lower semi continuous at a point �� ∈ � ,if for any 
intuitionistic fuzzy open set �� ⊂ � such that �(��)��� there exists an open 
set � ⊂ � containing  �� such that �(�)���,  ∀ � ∈ �. 

 
(c)  Intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semi-

continuous) if it is intuitionistic fuzzy upper semi-continuous (Intuitionistic 
fuzzy lower semi-continuous) at each point of X.  
 

 Definition 2.14 [12]: An Intuitionisic fuzzy multifunction  F (�, �) → (�, �) 
is said to be: 



  UPPER LOWER CONTRA �-CONTINUOUS INTUITIONISTIC  225 

(a) Intuitionistic fuzzy upper �-continuious at a point �� ∈ �, if for any 
intuitionistic fuzzy open set �� ⊂ � such that �(��) ⊂ �� there exists   
U ∈ �O(X) containing �� such that  F(U) ⊆ �.�  
 

(b) Intuitionistic  fuzzy   lower �-continuous at a point  �� ∈ �, if for any 
intuitionistic fuzzy open set �� ⊂ �   such that �(��)��� there exists  
U∈ �O(X)    containing ��    such that    F(�)��� ,   ∀ � ∈ �. 

 
(c) Intuitionistic fuzzy upper �-continuous (resp. Intuitionistic fuzzy lower 

 �-continuous) if it is intuitionistic fuzzy upper �-continuous  
(resp. intuitionistic fuzzy lower �-continuous)    at   every point of X.  

 
 Remark 2.2 [12]: Every intuitionistic fuzzy lower semi-continuous (resp. 
intuitionistic upper semi continuous) multifunction is intuitionistic fuzzy lower 
 �-continuous (resp.intuitionistic fuzzy upper �-continuous) but the converse may 
not be true.  
 
 Definition 2.15 [9]: An Intuitionistic fuzzy multifunction F : (X,�) → (�, Γ)  
is said to be:  
 

(a) Intutionistic fuzzy upper contra continuous at a point  �� ∈ �, if for any 
intuitionistic fuzzy closed set �� ⊂ �  of Y such that F (��) ⊂ ��  there exist 
an open set Uof X containing ��such  that  F(U)⊂ �.�  
 

(b) Intuitionistic fuzzy lower contra continuous at a point �� ∈ �, if for any 
intuitionistic fuzzy closed set �� ⊂ � of Y such that �(��)���  there exist an 
open set U of X containing �� such that F(�)��� ,   ∀ � ∈ �. 
 

(c) Intuitionistic fuzzy upper contra continuous (intuitionistic fuzzy lower contra   
continuous) if it is intuitionistic fuzzy upper contra �-continuous 
(Intuitionistic fuzzy lower contra �-continuous)at each point of X.  
 

3. Upper(lower) Contra β-continuous Intutionistic Fuzzy Multifunctions 
 
 Definition 3.1 [10]: An Intuitionistic fuzzy multifunction F : (X, �) → (Y, �) 
is said to be:  
 

(a) Intutionistic   fuzzy upper contra   �-continuous at a point �� ∈ X, if for any 
intuitionistic fuzzy closed set �� ⊂ � of Y such that F(��) ⊂ ��  there exist 
an �-open set U of  X containing �� such that F(U) ⊂ �.�  
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(b) Intuitionistic fuzzy lower contra �-continuous at a point �� ∈ �, if for any 
intuitionistic fuzzy closed set �� of Y such that �(��)���  there exist an 
�-open set U of X containing �� such that  F(�)��,�   ∀ � ∈ �. 

 
(c) Intuitionistic fuzzy upper contra �-continuous (intuitionistic fuzzy lower 

contra �-continuous) if it is intuitionistic fuzzy upper contra �-continuous 
(Intuitionistic fuzzy lower contra  �-continuous) at each point of  X.  
 

 Remark 3.1 [12]: Every intuitionistic fuzzy lower (resp.upper) contra 
continuous multifunction is intuitionistic fuzzy lower (resp.upper) contra  
�-continuous. But the converse may be not true.  
 
 The concepts of intuitionistic fuzzy lower (resp. upper) �-continuous and 
intuitionistic fuzzy lower (upper) contra �-continuous multifunctions are 
independent.  
 
 Theorem 3.1: Let �: (�, �) → (�, �), be an intuitionistic fuzzy multifunction 
then following conditions are equivalent:  
 

(a)  F is intuitionistic fuzzy upper contra �-continuous. 
  

       (b)  For each point � ∈ � and any intuitionistic fuzzy closed set �� of Y, such  

that �( �) ⊆ ��  , ∃ an �-neighborhood U of  � such that � ⊆ ������. 
 

(c)   ��(��) is an �-open set in X for every intuitionistic fuzzy closed set �� of Y.  
 

(d)  ��(��) is  an  �-closed set in X for every intuitionistic fuzzy open set �� in Y.  
 
 Proof: (a)  (b): Obvious. 
 
 (b)  (c): Let �� be any intuitionistic fuzzy closed set of Y and let 
 � ∈ �� (��.)    Then �(�) ⊂  �� and so by (b) an �-neighboubhood  U of �  such  that 

U ⊂ �� ( ��). It follows that   ������   is the union of � open sets of X   is �-open 
in X.  
 
 (c)  (b): Let � ∈X and �� be an intuitionistic fuzzy closed set of Y such 

that  ��(��). Then U = ������ is an �-neighborhood of  � such that � ⊆ ������.    
Hence, F is intuitionistic fuzzy upper contra �-continuous. 
 

(c)  (d):   It follows from the fact that [������]� = [������]�. 
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 Definition 3.2: The kernel of an intuitionistic fuzzy set �� in intuitionistic 

fuzzy topological space (�, �) given by Ker���� = ∩ {� ∶� �� ∈ Γ and �� ⊆ ��} 
 

 Lemma 3.1 [11]: For an intuitionistic fuzzy set �� in an intuitionistic fuzzy 
topological space (�, �), if  �� ∈ �, then  �� = Ker(��) 
 
 Theorem 3.2: Let F:(�, �) → (�, �) be an intuitionistic fuzzy multifunction, 
if  

���(������ ⊆ ��(���(��)) 
 

for any intuitionistic fuzzy set ��  of Y, then F is intuitionistic fuzzy upper contra 
 �-continuous multifunction. 
 

 Proof: Suppose that ��� �������� ⊆ ��(�������) for any  

intuitionistic fuzzy set �� of Y. Let �� ∈ �, then hypothesis and lemma 3.1 

��� �������� ⊆ ��(���(��) = ��(��). This implies that ��� �������� ⊆ ��(��), 

but we know ������ ⊆ ��� (������), Hence, ��(��) is �-closed set in X. Thus, by 
Theorem 3.1, F is intuitionistic fuzzy upper contra �-continuous.  
 

 Theorem 3.3: Let F be an intuitionistic multifunction �: (�, �) → (�, �), 
then following conditions are equivalent:  
 
 (a) F is intuitionistic fuzzy lower contra �-continuous.  
 

(b) For any intuitiontistic fuzzy closed set �� of Y such that �(�)���, ∃ an 

 �-neighbourhood U of   �  such that � ⊆ ������. 
 
 (c) ��(��) is �-open in X for every intuitiontistic fuzzy closed set �� of Y.  
 
 (d) ��(��) is an �-closed in X for every intuitionistic fuzzy open set ��  in Y.  
 
 Proof: (a)  (b): Obvious.  
 

 (a)  (c): Let �� be any intuitiontistic fuzzy closed set of Y and let 
� ∈ ��(��). Then  �(�) ⊂ �� and so an �-neighborhood U of � such that  
U ⊂ ��(��). It follows that ��(��) is the union of �-open sets of X is �-open in X.  
 
 (c)  (a): Let � ∈ � and �� be  an  intuitionistic fuzzy closed set of Y such 
that ��(��) is �-open in X. Then � = ��(��)is  a�-neighbourhood of   �  such that    

U ⊂ ������.   
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 Hence, F is intuitionistic fuzzy lower contra �-continuous.  
  

(�)  (d): It follows from the fact that  ��������
�

= [������
�
. 

 
 Theorem 3.4: Let � ∶ (�, �) → (�, �) be an intuitiontistic fuzzy 

multifunction. If   ��� �������� ⊆ �� ��������� for any   intuitiontistic  fuzzy  set   

��  of  Y, then  F  is intuitiontistic fuzzy lower contra �-continuous multifunction.  
 

 Proof: Suppose that ��� ������� ⊆ ���������� for  any   intuitionistic 

fuzzy set �� of Y. Let �� ∈ �, by lemma 3.1 ��� �������� ⊆ ��(������� = ������.   

 

 This implies that ��� �������� ⊆ ������.  

 

 But we know ������ ⊆ ���(������), Hence, ��(��)   is�-closed set in X. 
Thus, by Theorem 3.2, F is  an  intuitionistic fuzzy lower contra �-continuous.  
 

 Definition 3.2:  Given a family {��: (�, �) → (�, �): � ∈ �}, of intuitionistic 

fuzzy multifunction, we define the union ����Λ  and intersection �����   as, 
 

(a) ��: (�, �) → (�, Γ), ( ��)(�) = ��(�).��Λ��Λ��Λ  
 

       (b)  ��: (�, �) → (�, Γ), ( ��)(�) = ��)(�).��Λ��Λ��Λ  
 

 Theorem 3.5: If �� : (�, �) → (�, �),   for  � ∈ �  � = 1,2,3,...n   is  an  

intuitionistic fuzzy upper contra �-continuous then �����  is intuitionistic fuzzy 

upper �-continuous. 
  

 Proof: Let ��  be an intuitionistic fuzzy closed set in Y. To show  

that �∪���
� ���

�
(��) = {� ∈ � ∶  ∪���

� ��(�) ⊆ ��   }  ��  � -open in X. Let 

� ∈ �∪���
� ���

�
(��)   then ��(�) ⊆ (��) for � = 1,2 ,3...n , Since ��: (�, �) → (�, �)   

is an  intuitionistic fuzzy upper contra �-continuous multifunction, for � = 1,2,3,..., 
then  ∃   �-open set U containing � such that ∀� ∈ ��, ��(�) ⊆ �.�   let   U=∪���

� �, 

then � ⊂ �∪���
� ���

�
(��) . Therefore �∪���

� ���
�

(��) is  �-open. 
 

 Hence, ����� is  an intuitionistic fuzzy upper contra �-continuous. 
 

 Theorem 3.6: If �� ∶ (�, �) → (�, �), for � = 1, 2, 3,...n    is an  

intuitionistic fuzzy upper contra �-continuous then �����  is  an  intuitionistic 

fuzzy lower �-continuous.  
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 Proof: Let �� be an intuitionistic fuzzy closed set in Y. To show that 

�∪���
� ���(��)� = {� ∈ �:∪���

� ��(�)��}� is �-open in X. Let � ∈ �∪���
� ���

�
(��) 

then ��(�)����� for � = 1,2 ,3...n . Since ��: (�, �) → (�, �) is  an intuitionistic 

fuzzy lower contra �-continuous multifunction, for  �  = 1,2,3,..., then ∃�-open set 
U containing � such that ∀� ∈ ��, ��(�)���. let U =  ∪���

� ��U, then  

U⊂ �∪���
� ���

�
����. Therefore �∪���

� ���
� 

(��)is  �-open. Hence, ���∈�   is   an   

intuitionistic fuzzy lower contra �-continuous. 
 
 Theorem 3.7: Let {��: �� �} be an �-open cover of a topological space 

(�, �). An intuitionistic fuzzy mulifuntion  �: (�, �) → (�, �) is an  intuitionistic 
fuzzy  upper contra �-continuous if and only if   restriction �\��: �� → �  is an  

intuitionistic fuzzy upper contra �-continuous for each � ∈ Λ.  
 
 Proof: Necessity: Suppose that F is an intuitionistic fuzzy upper 
�-continuous. Let  � � Λ , � ∈ ��  and   ��   be any intuitionistic fuzzy closed set  
in Y such that (�\��(�) ⊆ �.�  Since F is intuitionistic fuzzy upper contra 

 �-continuous and �(�) = (F\��)(�), there exists �-open set G of X containing �  

such that �(�) ⊆ ��. Let � = � ��,  then � ∈ �  is �-open set in X and  

(�\��)(U) = F(U) ⊆ ��. Therefore, it follows that ��\���   is an intuitionistic fuzzy 

upper contra �-continuous.  
 
 Sufficiency: Let � ∈ � and �� be any intuitionistic fuzzy closed set in Y such 
that �(�) ⊆ �� there exists � ∈ � and � ∈ ��. Since �\��: �� → �is  

anintuituionistic fuzzy upper contra �-continuous. and �(�) = (�\��)(�), there 

exists �-open set  U∈ �� containing   � such that ��\���(�) ⊆ ��. We have �-open 

set � ∈ �� containing � and �(�) ⊆ ��. Therefore F is  an  intuitionistic fuzzy upper 

contra   �-continuous.  
 
 Theorem 3.8: Let {��: � ∈ Λ} be an  � -open cover of a topological space   

(X, �). An Intuitionistic fuzzy multifunction �: (�, �) → (�, �) is an intuitionistic 
fuzzy lower contra �-continuous  if and only if  the restriction �\��: �� → � is 

intuitionistic fuzzy lower contra �-continuous for each � ∈ �. 
 
 Proof: Necessity: Suppose that F is intuitionistic fuzzy lower contra  
�-continuous. Let � ∈ � and � ∈ �� , let  �� be any intuitionistic fuzzy closed set in 

Y such that ��\���(�)���. Since F is intuitionistic fuzzy lower contra  �-continuous 

and �(�)(�\��)(�), there exists �-open set �� of X containing � such that 

F(��)���. Let � = �� ∩ ��, then � ∈ � is �-open in X and (F\��)(U) = F(U)q��. 
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 Therefore, it follows that (�\��) is an intutionistic fuzzy lower contra 

 �-continuous.  
  

 Sufficiency: Let � ∈ �  and �� be any intuitionistic fuzzy closed set in Y 
such that �(�)��� there exists � ∈ � and ∈ ��. Since �\�� : �� → �  is an  

intutionistic fuzzy lower contra �-continuous and �(�) = (�\��)(�),there exists 

open set �� ∈ �� containing � such that ��\���(��)���, we have open set �� ∈ � 

containing � and �(��)���. Therefore F is an intuitionistic fuzzy lower contra 
 �-continuous.  
 
 Definition 3.3: An intuitionistic fuzzy multifunction  �: (�, �) → (�, �), then 
the intuitionistic fuzzy multifunction ����: (�, �) → (�, �) is defined by  

(����)(�) = �����(�)� for every � ∈ �.  
 
 Lemma 3.2 [31]: For an intuitionistic fuzzy multifunction �: (�,�) → (�, �) 

it follows that ����(�)�
�

(�� ) = ��(��), for each intuitionistic fuzzy open set ��  of Y.  
 
 Theorem 3.9: An intuitionistic fuzzy multifunction �: (�, �) → (�, �) is 
intuitionistic fuzzy lower contra �-continuous if and only if ���(�): (�, �) → (�, �) 
is intuitionistic fuzzy lower contra �-continuous.  
 
 Proof: Necessity: Suppose that F is an intuitionistic fuzzy lower  
�-continuous. Let � ∈ � and let ��  be any intuitionistic fuzzy open set of Y such that    

�����(�)���� . By lemma 3.2 we have � ∈ ���(�)�
�

���� = ��(��) and hence,   

�(�)��� . Since F is intuitionistic fuzzy lower contra �-continuous, there exists a  
�-closed set U of X containing � such that �(�)���, ∀� ∈ �.  
 
 Hence,  Cl(F)(u)q�� for each � ∈ � . 
 
 This show that  Cl(F) is  an intuitionistic fuzzy  lower contra �-continuous. 
  
 Sufficiency: Suppose �Cl(F) is   an  intuitionistic fuzzy lower contra �-
continuous. Let � ∈ � and let ��  be any intuitionistic fuzzy open set of Y such that 

�(�)���, by lemma 3.2, we have � ∈ ������ = ����(�)�
�

(��) and Hence,   

���(�)(�)��� . Since �Cl(F) is an  intuitionistic fuzzy lower contra �-continuous, 

there exists a �-closed set U of X containing � such that �����(�)��� �   

for each � ∈ �. Since �� be  an intuitionistic fuzzy open set of Y, hence �(�)��  � for 
each � ∈ �. 
 
 This shows that F is intuitionistic fuzzy lower contra �-continuous.  
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 Definition 3.4: An intuitionistic fuzzy set �� in intuitionistic fuzzy 
topological space (�, Γ)i s called cl-neighbourhood of an intuitionistic fuzzy set �� in 
Y, if there exists an intuitionistic fuzzy closed set �� in Y such that �� ⊆ � � ⊆ �.�  
 
 Theorem 3.10: If �: (�, �) → (�, �) is an intuitionistic fuzzy upper contra 
�-continuous multifunction then for each point � ∈ � and each intuitionistic fuzzy 
cl-neighbourhood �� of �(�), ��(��) is an �-neighbourhood of �. 
 
 Proof: Let � ∈ � and �� be an intuitionistic fuzzy cl-neighbourhood of �(�), 
then ∃ an intuitionistic fuzzy closed set �� in Y such that �(�) ⊆ �� ⊆ ��. We have 

� ∈ ������ ⊆ ��(��) and Since ��(��) is �-open set, ��(��) is a �-neighbourhood  
of  �. 
 Theorem 3.11: For an intuitionistic fuzzy multifunction  F : (X,�) → (�, Γ) 
the following are equivalent:  
 

 (a) F is intuitionistic fuzzy lower contra �-continuous.  
 

 (b) For any and any net � ∈ �  and any net (��)�∈�is  β-eventually in ������. 
 

 Proof: (a) ⇒ (b): Let  (��)�∈� be net  (��)�∈�    �-coverging  to �  in X and �� 

be any intuitionistic fuzzy closed set Y with � ∈ ��( ��). Since F is intuitionistic 
fuzzy lower contra  β-continuous ∃an β-open set � ⊂ � containing � such that 
� ⊂ ��(��) . Since �� → � , ∃ an index �� ∈ �   such that �� ∈ �   for every � ≥ �� we 
have �� ∈ � ⊂ ��(��) , ∀  � ≥ �� .  Hence, (��)�∈�  is  β-eventually in   ��(��). 
 

 (b) ⇒ (a): Suppose that F is not intuitionistic fuzzy lower contra β-
continuous ∃ a point � ∈ � and an intuitionistic fuzzy closed set �� with 
 � ∈ ��(�� )such that  B ��(��)for any  β-open set B ⊂ �  containing  �. Let 
(��) ∈ �  and (��) ��(��) for each β-open set B ⊂ X containing �. Then the   
β-neighbourhood net  (��)  β -converges to �  but (��)�∈�

  is not  β-eventually    in 

��(��). Thus, is a contradiction.   
 

 Theorem 3.12: For an intuitionistic fuzzy multifunction  F : ((X, �) → (Y, �)   
the following are equivalent:  
 

 (a) F is intuitionistic fuzzy upper contra β-continuous. 
  
 (b) For any � ∈ � and any net (��)�∈�    �-converging to � in X and each 

intuitionistic fuzzy closed set  � �  of Y with � ∈ ������, the net(��)�∈�  is  

β-eventually in ��( �� ). 
  
 Proof: The proof of this theorem is similar to that of Theorem 3.3. 
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1. Introduction and Preliminaries 

 
After the introduction of fuzzy sets by Zadeh [29] in 1965 and fuzzy 

topology by Chang [6] in 1967, several researches were conducted on the 
generalizations of the notions of fuzzy sets and fuzzy topology. The concept of 
intuitionistic fuzzy sets was introduced by Atanassov [2, 3, 4] as a generalization of 
fuzzy sets. In the last 27 years various concepts of fuzzy mathematics have been 
extended for intuitionistic fuzzy sets. In 1997 Coker [7] introduced the concept of 
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. 
In 1999, Ozbakir and Coker [23] introduced the concept intuitionistic fuzzy 
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity 
from a topological space to an intuitionistic fuzzy topological space. In the present 
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paper we introduce the concepts of intuitionistic fuzzy �-continuous multifunctions 
and obtain some of their characterizations and properties. 

Throughout this paper (�, �) and (Y, Γ) represents  a topological space and  
an intuitionistic fuzzy topological space respectively. A subset A of a topological 
space (�, �) is called Semi open [11] (res�-open [19]) if A⊂ ��(���(�)) (resp.A⊂

��� �������(�)��. The complement of a semi open (resp. �-open) set is called semi 

closed (resp. �-closed). Every open (resp. closed) set is �-open (resp. �-closed) and 
every �-open (resp. �-closed) set is semi open ( resp. semi closed) ,but the converses 
may not be true. The family of all �-open (resp. �-closed) subsets of topological 
space(�, �) is denoted by ��(X) (resp. �C(X)). The intersection of all �-closed 
(resp. semi closed) sets of X containing a set A of X is called the �-closure [14] 
(resp. semi closure) of A. It is denoted by �Cl(A) (resp. sCl(A)). The union of all 
 �-open (resp. semi open) sub sets of A of X is called the �-interior [14] (resp. semi 
interior) of A. It is denoted by �Int(A) ( resp. sInt(A)). A subset A of X is �-closed 

(resp. semi closed) if and only if A ⊃ ��(���(��(�))) (����. � ⊃ ������(�)�. A 
subset N of a topological space (�, �) is called a �-neighborhood [14] of a point x of 
X if there exists a �-open set O of X such that x ∈ � ⊂ N.  A is a �-open in X if and 
only if it is a �-neighborhood of each of its points. A subset V of X is called a 
 �-neighborhood of a subset A of X if there exists � ∈ �O(X)  such that � ⊂ � ⊂ �. 
A mapping f from a topological space (X, �) to another topological space (X*, � )  
is said to be �-continuous [15, 16] if the inverse image of every open set of X* is 
 �-open in X. Every continuous mapping is�-continuous but the converse may not be 
true [15]. A multifunction F from a topological space (X, �) to another topological 
space (X*, � ) is said to be lower �-continuous [18] (resp.upper 
 �-continuous [18]) at a point  �� ∈ � if for every �-neighborhood U of �� and for 
any open set W of X* such that F(��) ∩ � ≠  (resp. F(��) ⊂ �) there is a 
 �-neighborhood U of  �� such that F(�) ∩ � ≠  (resp. F(�) ⊂ �) for every x ∈ �. 

 
 Lemma 2.1 [25]: Let A be a subset of a topological space (X, �). Then: 

(a) A is �-closed in X  sInt(Cl(A) ⊂ A; 
 

(b) sInt(Cl(A)) = Cl(Int(Cl(A))); 
 

(c) �Cl(A) = A Cl(Int(Cl(A))). 

 Lemma 2.2 [25]: Let A be a subset of a topological space (X, �). Then the 
following conditions are equivalent: 

(a) A ∈ ��(X) 
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(b) � ⊂ � ⊂ ���(��(�)) for some open set U. 
 

(c) � ⊂ � ⊂ ���(�) for some open set U. 
 

(d) � ⊂ ���(���(�)). 

 Definition 2.1 [2, 3, 4]: Let Y be a nonempty fixed set. An intuitionistic 

fuzzy set 
~

 in Y is an object having the form  


~

= {< �, μ�� (y),  υ�� (y) > yY } 

where the functions μ�� : Y  I and  υ�  � : Y  I denotes the  degree of membership 

(namely  

~ (y)) and the degree of non membership (namely υ


~ (y)) of each element 

y  Y to the set 
~

 respectively, and  0  μ�� (x) +  υ�� (x)   1 for each y  Y.  

 Definition 2.2 [2, 3, 4]: Let Y be a nonempty set and the intuitionistic  

fuzzy sets 
~

 and 
~

 be in the form 
~

= {< �, μ�� (y),  υ�� (y) > : y  Y},  


~

= {< �, μ��(y), υ��(y) > :  y  Y} and let  

{ 
~

 : β  } be an arbitrary family of intuitionistic fuzzy sets in Y. Then: 

(a) 
~
 

~
if y  Y [ μ�� (y) ≤ μ��(y)  and   υ�� (y) ≥ υ��(y)];  

 

(b) 
~

= 
~

if 
~
 

~
 and 

~


~
; 

 

(c)  Ã c = { < �, υ�� (y), μ�� (y) >  : y  Y}; 
 

(d) 0
~

 = { y, 0,1  : y ∈ Y} and 1
~

= { y, 1,0  : y ∈ Y} 
 

(e)  
~

= {< �, ∧ μ�� (y),  ∨ υ�� (y) > : y  Y}; 

 

(f)  
~

 = {< �, ∨ μ�� (y),  ∧ υ�� (y) > : y  Y};    

 

 Definition 2.3 [8]: Two Intuitionistic Fuzzy Sets 
~

 and 
~

 of Y are said to 

be quasi coincident (
~

q
~

 for short)  if  ∃ � ∈ �  such that 

μ�� (y) >  υ��(y)   or   υ�� (y) < μ��(y). 
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 Lemma 2.3 [8]: For any two intuitionistic fuzzy sets 
~

 and 
~

 of  
Y,  (����� )  �� ⊂ �� c. 

 Definition 2.4 [7]: An intuitionistic fuzzy topology on a non empty set Y is a 
family Γ of intuitionistic fuzzy sets in Y  which satisfy the following axioms: 
 

 (O1).  0
~

, 1
~
 Γ, 

 

 (O2). 1

~
  2

~
  Γ, for any 1

~
 , 2

~
  Γ, 

 

 (O3).   
~

 for any arbitrary family {   :
~

} Γ. 

 
 In this case the pair (Y, Γ) is called an intuitionistic fuzzy topological space 
and each intuitionistic fuzzy set in Γ, is known as an intuitionistic fuzzy open set in Y. 

The complement 
~ c  of an intuitionistic fuzzy open set 

~
  is called an intuitionistic 

fuzzy closed set in Y. 

 Definition 2.5 [7]:  Let (Y, Γ  be an intuitionistic fuzzy topological space 

and 
~

 be an intuitionistic fuzzy set in Y. Then the interior and closure of
~

 are 
defined by: 

 cl(
~

) = {�� : �� is an intuitionistic fuzzy closed set in Y and 
~

  ��}, 

int(
~

) = {�� : �� is an intuitionistic fuzzy open set in Y and ��  ��}. 

 Definition 2.6 [23]: Let X and Y are two non empty sets. A function 
F: X → Y is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy 

set in Y,   x  X.  

 Definition 2.7 [27]: Let F : X → Y is an intuitionistic fuzzy multifunction 
and A be a subset of X. Then   F(A) = �(�)�∈�  . 

 Definition 2.8 [23]:  Let F : X → Y be an intuitionistic fuzzy multifunction. 

Then the upper inverse F  (
~

) and lower inverse F  (
~

)  of an intuitionistic fuzzy 

set 
~

 in Y are defined as follows: 

       F  (
~

) ={x :  F(x)   
~

} 

       F  (
~

) = {x :  F(x)q
~

}. 
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 Definition 2.9 [23]: An Intuitionistic fuzzy multifunction F: (�, �) → (�, Γ)  
is said to be: 

(a) Intuitionistic fuzzy upper �-continuous [28] (Intuitionistic fuzzy upper 
semi continuous [23]) at a point �� ∈ �  if for any intuitionistic  fuzzy 
open set �� ⊂ � such that �(��) ⊂ ��  there exists an � ∈ ��(�) (resp. 
open set � ⊂ � ) containing �� such that �(�) ⊂ �� . 

 
(b) Intuitionistic fuzzy lower �-continuous ( resp. Intuitionistic fuzzy lower 

semi continuous) at a point �� ∈ �  if for any intuitionistic  fuzzy  open 
set �� ⊂ � such that �(��)���  there exists an � ∈ ��(�) (resp. open set 
� ⊂ �) containing �� such that �(�)���  , ∀ � ∈ �� . 

 
(c) Intuitionistic fuzzy upper �-continuous (resp. intuitionistic fuzzy lower 

 �-continuous Intuitionistic fuzzy upper semi-continuous, intuitionistic 
fuzzy lower semi-continuous) if it is intuitionistic fuzzy upper  
�-continuous (resp. intuitionistic fuzzy lower �-continuous intuitionistic 
fuzzy upper semi-continuous, intuitionistic fuzzy lower semi-continuous) 
at each point of X. 

 
 �-Continuous  Intuitionistic Fuzzy Multifunctions 

 Definition 3.1: An Intuitionistic fuzzy multifunction F: (�, �) → (�, Γ) is 
said to be:  

(a) Intuitionistic fuzzy �-continuous at a point Xx 0  if for any 

���, ��� ∈ ���(�) such that �(��) ⊂ ��� and �(��)���� there exists 
� ∈ ��(�) containing �� such that �(�) ⊂ ��� and  �(�)����, ∀ � ∈ �. 

 
(b) Intuitionistic fuzzy �-continuous if it has this property at each point of 

X. 

 Theorem 3.1: If F : (�, �) → (�, Γ) is intuitionistic fuzzy �-continuous then 
F is intuitionistic fuzzy upper �-continuous and intuitionistic fuzzy lower  
�-continuous . 

 Proof: Obvious. 

 Theorem 3.2: Let F: (�, �) → (�, Γ) be an intuitionistic fuzzy multifunction, 
Then the following statements are equivalent: 

(a) F is intuitionistic fuzzy �-continuous at a point � ∈ �; 
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(b) for any  ���, ��� ∈ ���(�)  such that �(�) ⊂ ��� and  �(�)����, there 

result the relation � ∈ ���( ���(������� ∩ �������)). 
 

(c) for every ���, ��� ∈ ���(�)  such that �(�) ⊂ ��� and �(�)����, and for 
any semi-open set U of  X containing x, there exists a non-empty open 
set  GU U, such that �(��) ⊂ ��� and �(�)����, ∀ � ∈ ��. 

 Proof: (a)  (b): Let ���, ��� ∈ ���(�) with �(�) ⊂ ��� and 
�(�)���� , ∃ � ∈ �O(X) containing x such that �(�) ⊂ ��� and �(�)����, ∀ � ∈ �. 
Thus, � ∈ � ⊂ ��(���) and � ∈ � ⊂ ��(���). Therefore � ∈ � ⊂ ��(���) ∩ ��(���). 
Since � ∈ ��(�). By Lemma 2.2 we have 

� ∈ � ⊂ ���(����) ⊂ ���(��� �������� ∩ ��������). 

 (b)  (c): Let ���, ��� ∈ ���(�) with �(�) ⊂ ��� and �(�)����. Then 

� ∈ ��� ���� �������� ∩ ���������. Let � be any semi-open subset of X containing x. 

Then U ��� �������� ∩ �������� ≠ . Put �� = ���(���(������� ∩ �������) ∩ �), 

then �� ≠ �, GU U, G ���(�������) ⊂ ������� and GU ���(�������) ⊂ �������. 

And thus,  �(��) ⊂ ��� and �(�)����, ∀� ∈ ��. 
 
 (c)  (a): Let {��} be the family of semi-open sets of X containing x. For 
any semi-open set � of � containing x and for every ���, ��� ∈ ���(�) with 
 �(�) ⊂ ��� and �(�)����, there exists a non-empty open set GU U such that 

�(��) ⊂ ��� and  �(�)����, ∀� ∈ ��.  Let W= { ��: � ∈ ��}. Then W is open in 

X, xsCl(W), F(w)  ��� and F(w)q���, for every wW. Put S = W { x}, then 

� ⊂ � ⊂ ���(�) thus, � ∈ ��(�), � ∈ �, �(�) ⊂ ��� and �(�)����, ∀ � ∈ �. 
Hence, F is intuitionistic fuzzy �-continuous at x. 

 Definition 3.2: Let �� be an intuitionistic fuzzy set of an intuitionistic fuzzy 
topological space (�, Γ). Then ��  is said to be a neighbourhood of �� in Y if there 
exists an intuitionistic fuzzy open set � �� �  such that �� ⊂ �� ⊂ �� . 

 Definition 3.3: Let (�, Γ) be an intuitionistic fuzzy topological space, an 
intuitionistic fuzzy set ��  is called a semi q-neighbourhood of an intuitionistic fuzzy 
set ��  of  Y  if   ∃ � �� ∈ ����(�) such that  ����� ⊂ �� . 

 Theorem 3.3: Let F: (�, �) → (�, Γ)be an intuitionistic fuzzy multifunction, 
Then the following statements are equivalent: 

(a) F is intuitionistic fuzzy �-continuous. 
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(b) ������� ∩ ������� ∈ ��(�), for every ���, ��� ∈ ���(�)   
 

(c) ������� ∪ ������� ∈ ��(�), for any  ���, ��� ∈ ���(�) . 
 

(d) ����(��(������� ∪ �������)) ⊂ ��������� ∪ ��(�����), for any pair of 

intuitionistic fuzzy sets ���, ��� of �. 
 

(e) ���(������� ∪ �������) ⊂ ��������� ∪ ���������, for any pair of 

intuitionistic fuzzy sets ���, ��� of �. 
 

(f) ����( ������� ∩ �������)) ⊃ �� ���������� ∩ ��(���(���)), for any 

pair of intuitionistic fuzzy sets ���, ��� of �. 
 

(g) For each point x of X for each neighbourhood ��� of F(x) and for each  

q-neighbourhood ��� of F(x) , ������� ∩ ������� is a �-neighbourhood  
of x. 

 Proof: (a)  (b): Let any ���, ��� ∈ ���(�) and  � ∈ ������� ∩ �������, 

thus, �(�) ⊂ ��� and �(�)����, Since F being intuitionistic fuzzy �-continuous 
according to the theorem 3.2 (b). There follows that � ∈ ���(���(������� ∩ �������)). 

And as x is chosen arbitrarily in ������� ∩ �������, we have 

 ������� ∩ ������� ⊂ ���(��� �������� ∩ ��������) and thus, ������� ∩ ������� ∈ ��(�) 

by Lemma 2.2. 
  

 (b)  (c): It follows from Theorem 3.2 [27] (c) and (d).  
 

 (c)  (d): Suppose that (c) holds and let  ���, ���  be two intuitionistic fuzzy 

sets of �. Then ������� ∈ ���(�), ������� ∈ ���(�) and thus, by  

(c)  ��(�������) ∪ ��(�������) ∈ ��(�). Hence, by Lemma 2.1(a), 

����[ ��(�����(���)� ∪ �� ���������] ⊂ �� ��������� ∪ ��(��(���). Now ��� ⊂ �������  

and ��� ⊂ �������. By Theorem 3.2 [27] (e) and (f)��(���) ⊂ ��(�������) and 

 ��(���) ⊂ ��(�������). 

Consequently, ����( ��(�������) ∪ �������) ⊂ �� ��������� ∪ ��(��(���). 

 

 (�)  (e): Suppose (d) hold. Since  ���(�) = � ∪ �������(�)� for  
each subset A of X, it follows that, 

 ���(������� ∪ �������) = (������� ∪ ��(���)) ∪ ����( ��(������� ∪ �������)) 

⊂ (��(���) ∪ ��(���)) ∪ (���������) ∪ ���������) ⊂ �� ��������� ∪ ��(��(���). 
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 (e)  (f): (���� �������� ∩ ��������)� = ���((������� ∩ �������)�) 

= ���((�������
�
) ∪ (�������

�
) = ��� (�������

�
∪ �������

�
) 

 ⊂    ����������
�
� ∪ ����������

�
� = �������(���)�

�
� ∪ �������(���)�

�
�                                  

 = (����������)� ∪ (����������)� = (����������) ∩ ����������)� . 

and thus , ����(������� ∩ �������) ⊃ ��(������) ∩ ��(������). 

(�)  (g): Let � ∈ �,  ��� is a neighbourhood of F(x) and ��� is a  
q-neighbourhood of F(x).  Then   ∃ ���, ��� ∈ ���(�)  such that  �(�) ⊂ ��� ⊂ ��� and 

F(x) q��� ⊂ ���.  Therefore,  � ∈ ������� ∩ �������. Therefore, by hypothesis 
 

 � ∈ ������� ∩ ������� = 

������(���)� ∩ �� ���� ������

⊂ ���� (������� ∩ �������) ⊂ ����(������� ∩ �������) 

⊂ (������� ∩ �������). It follows that ������� ∩ ������� is 

 �-neighbourhood of x. 
 
 (g)  (a):  Obvious.  

 Definition 3.4: An intuitionistic fuzzy multifunction F: (�, �) → (�, Γ)  is 
called :  

(a) intuitionistic fuzzy strongly lower semi- continuous ��(��) is a open set 
in X if for each intuitionistic fuzzy set �� �� � . 
 

(b) intuitionistic fuzzy strongly upper semi-continuous  if  ��(��) is a open 
set in X if for each intuitionistic fuzzy set �� �� � . 

 Theorem 3.4: Let F: (�, �) → (�, Γ) be an intuitionistic fuzzy upper 
�-continuous and  intuitionistic fuzzy strongly lower semi-continuous intuitionistic 
fuzzy multifunction then F is intuitionistic fuzzy �-continuous. 

 Proof: Let  ���, ��� ∈ ���(�) Now F being intuitionistic fuzzy upper 
� continuous, and ��� ∈ ���(�), ��(���) ∈ ��(�) by Theorem 4.1 [28]. Again F 
being intuitionistic fuzzy strongly lower semi-continuous,��(���) is an open set in X. 
Hence, ��(���) ∩ ��(���) ∈ ��(�) and by Theorem 3.3, F is intuitionistic fuzzy  
� continuous. 
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 Theorem 3.5: Let F: (�, �) → (�, Γ) be an intuitionistic fuzzy lower  
�-continuous and intuitionistic fuzzy strongly upper semi-continuous intuitionistic 
fuzzy multifunction then F is intuitionistic fuzzy �-continuous. 

 Proof: Obvious. 
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1. Introduction  
 

After the introduction of fuzzy sets by Zadeh [30] in 1965 and fuzzy 
topology by Chang [7] in 1967, several researches were conducted on the 
generalizations of the notions of fuzzy sets and fuzzy topology. The concept of 
intuitionistic fuzzy sets was introduced by Atanassov [3, 4, 5] as a generalization of 
fuzzy sets. In the last 27 years various concepts of fuzzy mathematics have been 
extended for intuitionistic fuzzy sets. In 1997 Coker [8] introduced the concept of 
intuitionistic fuzzy topological spaces as a generalization of fuzzy topological spaces. 
In 1999, Ozbakir and Coker [24] introduced the concept intuitionistic fuzzy 
multifunctions and studied their lower and upper intuitionistic fuzzy semi continuity 
from a topological space to an intuitionistic fuzzy topological space. Abd El-Monsef 
et al. [1] defined β-continuous functions as a generalization of semi-continuity [16] 
and precontinuity [18]. In the present paper we introduce the concepts of 
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intuitionistic fuzzy upper(lower) �-continuous multifunctions and obtain some of 
their characterizations and properties.  

 
2. Preliminaries 
 

Throughout this paper (�, �) and (Y, Γ) represents  a topological space and  
an intuitionistic fuzzy topological space respectively. A subset A of a topological 

space (�, �) is called Semi open [12] (res�-open[20]) if A⊂ ������(�)�(resp.A⊂

��� �������(�)��. The complement of a semi open (resp. �-open) set is called semi 

closed (resp. �-closed). Every open (resp. closed) set is �-open (resp. �-closed) and 
every �-open (resp. �-closed) set is semi open ( resp. semi closed) ,but the converses 
may not be true..The family of all �-open (resp. �-closed) subsets of topological 
space(�, �) is denoted by ��(X) (resp. �C(X)). The intersection of all �-closed 
(resp. semi closed) sets of X containing a set A of X is called the �-closure [15 ] 
(resp. semi closure ) of A. It is denoted by �Cl(A) ( resp. sCl(A)). The union of all  
�-open (resp. semi open) sub sets of A of X is called the �-interior [15] (resp. semi 
interior) of A. It is denoted by �Int(A) ( resp. sInt(A)) . A subset A of X is �-closed 

(resp. semi closed) if and only if A ⊃ ��(���(��(�))) (����. � ⊃ ������(�)�. A 

subset N of a topological space (�, �) is called a �-neighborhood [15] of a point x of 
X if there exists a �-open set O of X such that x ∈ � ⊂ N.  A is a � -open in X if and 
only if it is a �-neighborhood of each of its points. A subset V of X is called a 
�-neighborhood of a subset A of X if there exists � ∈ �O(X)  such that � ⊂ � ⊂ �. 
A mapping f from a topological space (X, �) to another topological space (X*, � )  
is said to be �-continuous [16, 17] if the inverse image of every open set of X* is 
�-open in X. Every continuous mapping is �-continuous but the converse may not be 
true [16]. A multifunction F from a topological space (X, �) to another topological 
space (X*, � ) is said to be lower  �-continuous [19] (resp. upper  �-continuous[18]) 
at a point  �� ∈ � if for every �-neighborhood U of �� and for any open set W of X* 
such that F(��) ∩ � ≠  (resp. F(��) ⊂ �) there is a �-neighborhood U of  �� such 
that F(�) ∩ � ≠  (resp. F(�) ⊂ �) for every x ∈ �. 

 
 Lemma 2.1 [26]: Let A be a subset of a topological space (X, �). Then: 
 

(a) A is �-closed in X  sInt(Cl(A) ⊂ A; 
 

(b) sInt(Cl(A)) = Cl(Int(Cl(A))); 
 

(c) �Cl(A) = A Cl(Int(Cl(A))). 

 Lemma 2.2 [26]: Let A be a subset of a topological space (X, �). Then the 
following conditions are equivalent : 
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(a) A ∈ ��(X) 
 

(b) � ⊂ � ⊂ ���(��(�)) for some open set U. 
 

(c) � ⊂ � ⊂ ���(�) for some open set U. 
 

(d) � ⊂ ���(���(�)). 

 Definition 2.1 [3, 4, 5]: Let Y be a nonempty fixed set. An intuitionistic 

fuzzy set 
~

 in Y is an object having the form  


~

= {< �, μ�� (y),  υ�� (y) >yY } 

where the functions μ�� :Y  I and  υ�� :Y  I denotes the  degree of membership 

(namely 

~ (y)) and the degree of non membership (namely υ


~ (y)) of each element 

y  Y to the set 
~

 respectively, and  0  μ�� (x) +  υ�� (x)   1 for each y  Y.  

 Definition 2.2 [3, 4, 5]: Let Y be a nonempty set and the intuitionistic  

fuzzy sets 
~

 and 
~

 be in the form 
~

= {< �, μ�� (y),  υ�� (y) > : y Y},  


~

= {< �,  μ��(y), υ��(y) > : y  Y} and let { 
~

 : β  } be an arbitrary family of 

intuitionistic fuzzy sets in Y. Then: 

(a) 
~
 

~
if y  Y [ μ�� (y) ≤ μ��(y) and  υ�� (y) ≥ υ��(y)];  

 

(b) 
~

= 
~

if 
~
 

~
 and 

~


~
; 

 

(c)  Ã c = {< �, υ�� (y), μ�� (y) >  : y  Y}; 
 

(d) 0
~

 = { y, 0,1  : y ∈ Y} and 1
~

={ y, 1 , 0  : y ∈ Y} 
 

(e)  
~

= {< �, ∧ μ�� (y),  ∨ υ�� (y) > : y Y}; 

 

(f)  
~

 = {< �, ∨ μ�� (y),  ∧ υ�� (y) >: y  Y};    

 

 Definition 2.3 [9]: Two Intuitionistic Fuzzy Sets 
~

 and 
~

 of Y are said to 

be quasi coincident  (
~

q
~

 for short)  if  ∃ � ∈ � such that 

μ�� (y) >  υ��(y)   or   υ�� (y) < μ��(y). 
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 Lemma 2.3 [9]: For any two intuitionistic fuzzy sets 
~

 and 
~

 of  
Y, (����� )  �� ⊂ �� c. 

 Definition 2.4 [8]: An intuitionistic fuzzy topology on a non empty set Y is a 
family Γ of intuitionistic fuzzy sets in Y  which satisfy the following axioms: 

(O1).  0
~

, 1
~
 Γ, 

(O2). 1

~
  2

~
  Γ, for any 1

~
 , 2

~
  Γ, 

(O3).   
~

 for any arbitrary family {   :
~

} Γ. 

 In this case the pair (Y, Γ) is called an intuitionistic fuzzy topological space 
and each intuitionistic fuzzy set in Γ, is known as an intuitionistic fuzzy open set in Y. 

The complement 
~ c  of an intuitionistic fuzzy open set 

~
  is called an intuitionistic 

fuzzy closed set in Y. 

 Definition 2.5 [8]:  Let (Y, Γ be an intuitionistic fuzzy topological space and 


~

 be an intuitionistic fuzzy set in Y. Then the interior and closure of 
~

 are defined 
by: 

 cl(
~

) = {�� : �� is an intuitionistic fuzzy closed set in Y and 
~

  ��}, 

int(
~

) = {�� : �� is an intuitionistic fuzzy open set in Y and ��  ��}. 

 Definition 2.6 [24]: Let X and Y are two non empty sets. A function  
F: X → Y is called intuitionistic fuzzy multifunction if F(x) is an intuitionistic fuzzy 

set in Y,  x X.  

 Definition 2.7 [28]: Let F : X→Y is an intuitionistic fuzzy multifunction and 
A be a subset of X. Then   F(A) = �(�)�∈�  . 

 Definition 2.8 [24]:  Let F : X → Y be an intuitionistic fuzzy multifunction. 

Then the upper inverse F  (
~

) and lower inverse F  (
~

)  of an intuitionistic fuzzy 

set 
~

 in Y are defined as follows: 

      F  (
~

) = {x :  F(x)   
~

} 

      F  (
~

) = {x :  F(x)q
~

}. 
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 Lemma 2.9 [28]: Let �: ( �, �) → (�, �) be an intuitionistic fuzzy 
multifunction and � � , ��   be intuitionistic fuzzy sets in Y. Then:  

(a) ��(1�) = ��(1�) =X, 
 

(b) ������ ⊆ ��(��) 
 

(c) ����� � ��
�

= [������
�
]  

 

(d) [������
�

= [������
�
 

 

(e) If �� ⊆ ��, then  ������ ⊆ ��(��) 
 

(f) If   �� ⊆ � � , then ������ ⊆ ��(� � ) 
 

 Definition 2.10 [24]: An Intuitionistic fuzzy multifunction  
F : (�, �) → �, Γ) (is said to be: 

(a) Intuitionistic fuzzy upper �-continuous [28] (Intuitionistic fuzzy upper 
semi continuous [23] ) at a point �� ∈ �  if for any intuitionistic  fuzzy 
open set �� ⊂ � such that �(��) ⊂ ��  there exists an � ∈ ��(�) (resp. 
open set � ⊂ � ) containing �� such that �(�) ⊂ �� . 
 

(b) Intuitionistic fuzzy lower �-continuous (resp. Intuitionistic fuzzy lower 
semi continuous) at a point �� ∈ �  if for any intuitionistic  fuzzy  open 
set �� ⊂ � such that �(��)���  there exists an � ∈ ��(�) (resp. open set 
� ⊂ �) containing �� such that �(�)���  , ∀ � ∈ �� . 
 

(c) Intuitionistic fuzzy upper �-continuous (resp. intuitionistic fuzzy lower 
�-continuous Intuitionistic fuzzy upper semi-continuous, intuitionistic 
fuzzy lower semi-continuous) if it is intuitionistic fuzzy upper  
�-continuous (resp. intuitionistic fuzzy lower �-continuous intuitionistic 
fuzzy upper semi-continuous, intuitionistic fuzzy lower semi-continuous) 
at each point of X. 
 

3. Upper � Continuous Intuitionistic Fuzzy Multifunctions 
 

 Definition 3.1: An Intuitionistic fuzzy multifunction F: (�, �) → (�, Γ) is 
said to be: 
 

(a) intuitionistic fuzzy Upper �-continuous at a point Xx 0   if for any 

intuitionistic fuzzy open set  ��  of Y such that WxF
~

)( 0  there exists � ∈ ��(�) 

containing 0x
 
such that WUF

~
)(   
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(b) intuitionistic fuzzy  upper�-continuous if it has this property at each point 
of X. 
 
 Theorem 3.2: For an intuitionistic fuzzy multifunction F : (�, �) → (�, Γ)  
and a point � ∈ � the following  conditions are equivalent: 
 

(a) F is intuitionistic fuzzy upper �-continuous at x. 
 

(b) For each intuitionistic fuzzy open set �� ��  � , �(�) ⊂ ��, there results 

the relation � ∈ ���(��� ��������). 

 
(c) For any semi-open set � ⊂ � containing x and for any intuitionistic 

fuzzy open set  � �  �� �, �(�) ⊂ ��, there exists a non-empty open set 
� ⊂ � such that �(�) ⊂ ��. 

 
 Proof: (a)  (b): Let � ∈ � and ��  be any intuitionistic fuzzy open set of Y 
such that �(�) ⊂ �� , there is a   � ∈ ��(�)  such that � ∈ � and �(�) ⊂ �� , ∀ � ∈ �. 

Thus, � ∈ � ⊂ ��(��). Since, � ∈ ��(�),  � ⊂ ���(���(�)) ⊂ ���(��� (������)).      

Hence,  � ∈ ���(��� (������)). 
 
 (b)  (c): Let ��  be any intuitionistic fuzzy open set of Y such that 

�(�) ⊂ �� , then � ∈ ���(��� ��������). Let  � ⊂ �  be any semi-open set such that 

 � ∈ �, then � ∩ ���( ������) ≠ �. Put  � = � ∩ ��� (��(��)), then V is an semi-

open set in X, � ⊂ �, � ≠ �  and  �(�) ⊂ �� . 
 
 (c)  (a): Let {��} be the system of the semi-open sets in X containing x. 
For any semi-open set  � ⊂ �  such that � ∈ � and ��   be any intuitionistic fuzzy 
open set of Y  such that  �(�) ⊂ �� , there exists a non empty open set �� ⊂ �  

such that �(��) ⊂ �� . Let W = 
∪

� ∈ ��
��, then W is open, � ∈ ���(�) and 

 �(�) ⊂ �� , ∀ � ∈ �. Put S = W ∪ {�}, then � ⊂ � ⊂ ��� (�). Thus, S∈ �(�), 
� ∈ � and �(�) ⊂ �� , ∀ � ∈ �. Hence, F is intuitionistic fuzzy upper � continuous 
at x. 
 
 Theorem 3.3: For an intuitionistic fuzzy multifunction F: (�, �) → (�, Γ)  
the following conditions are equivalent: 
 

(a) F is intuitionistic fuzzy upper � continuous. 
 

(b) ������ ∈ ��(�), for every intuitionistic fuzzy open set�� of Y. 
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(c) ������ ∈ ��(�) for each intuitionistic fuzzy closed set   ��  of �. 
 

(d) For each point   � ∈ � and for each neighborhood ��  of �(�) in � , ��(��) 
is a  �-neighborhood of x. 
 

(e)  For each point  � ∈ � and for each neighborhood ��  of �(�) in �, there 
is an �-neighborhood U of  x such that �(�) ⊂ ��  . 
 

(f) ���(��(��)) ⊂ �� �������� for each intuitionistic fuzzy set �� of �. 

 

(g) ����(�� ��������) ⊂ ��(������) for any intuitionistic fuzzy set �� of �. 

 

 Proof: (a)  (b): Let ��  be any intuitionistic fuzzy open set of Y and 
� ∈ ��(�� ). By Theorem 3.2, � ∈ ���(��� ��(�� )). Therefore, we obtain                                              
��(��) ⊂ ���(��� ��(�� )). Hence  by Lemma 2.2,  ��(��) ∈ ��(�). 
 

 (b)  (a): Let x be arbitrarily chosen in X and � �  be any intuitionistic fuzzy 

open set of Y such that �(�) ⊂ ��, so � ∈ ������. By hypothesis ������ ∈ ��(X),  

we have � ∈ ������ ⊂ ���(��� (������)) and thus, F is intuitionistic fuzzy upper 
�-continuous at x according to Theorem 3.2 As x was arbitrarily chosen, F is 
intuitionistic fuzzy upper �-continuous. 
 

 (b)  (c): This follows from Lemma 2.6 that [F  (
~

)]c= F  (
~ c ). 

 
 (c)  (f): Let ��  be any  intuitionistic fuzzy  open set of Y. Then by (c), 
��(��(��)) is an � closed set in X. Thus by Lemma 2.1 we have 

 �����(��)� ⊃ ���� (�� ��� ���������) ⊃ ����(��(������)) ⊃ ��(��) ∪

����(�� ��������) ⊃ ��� ��������. 

 

 (f)  (g): Let ��  be any intuitionistic fuzzy open set of Y. By Lemma 2.1, 

we have ��� �������� = ��(��) ∪ ����(�� ��������) ⊂ �����(��)�. 

 

 (g)  (c): Let ��  be any intuitionistic fuzzy closed set of Y.  Then by (g) we 

have, ���� ��� ��������� ⊂  ������ ∪ ���� ��� ��������� ⊂ �����(��)� = ������.  

 

 Hence,  By Lemma 2.1, ������ ∈ ��(�). 
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 (b) ⇒ (�): Let � ∈ � and ��  be a neighborhood of �(�) in Y. Then there is 
an intuitionistic fuzzy open set  �� of Y such that �(�) ⊂ �� ⊂ �� . Hence, 

 � ∈ ��(��) ⊂ ��(��). Now by hypothesis ������ ∈ ��(�), and thus ������ is an 
�-neighborhood of x. 
 
 (d) ⇒ (�): Let � ∈ � and ��  be a neighborhood of  �(�) in  �. Put 
� = ��(�� ). Then U is an � -neighborhood of x and �(�) ⊂ �� . 
 
 (e) ⇒ (�): Let � ∈ � and ��  be an intuitionistic fuzzy set in Y such that 
�(�) ⊂ �� . �� , being an  intuitionistic fuzzy open set in Y , is a neighborhood of  
F(x) and according to the hypothesis there is a �-neighborhood U of x such that 
�(�) ⊂ �� . Therefore, there is  � ∈ ��(�) such that � ∈ � ⊂ � and hence, 
�(�) ⊂ �(�) ⊂ �� . 
 
 Corollary 3.4 [27]: For a fuzzy multifunction F: (�, �) → (�, �)  the 
following conditions are equivalent: 
 

(a) F is fuzzy upper � continuous. 
 

(b) ��(�) ∈ ��(�), for every fuzzy open set G of Y. 
 

(c)  ��(�) ∈ ��(�) for each fuzzy closed set   � of �. 
 

(d) For ∀ � ∈ � and for each neighborhood V of �(�) in � , ��(�) is a 
 �-neighborhood of x. 
 

(e)  For ∀ � ∈ � and for each neighborhood V of  �(�) in � , there is a 
�-neighborhood U of  x such that �(�) ⊂ � . 
 

(f) ���(��(�)) ⊂ �����(�)� for each fuzzy set � of �. 
 

(g) ����(�����(�)�) ⊂ ��(��(�)) for any fuzzy set � of �. 

 
 Corollary 3.5 [26]:  For a multifunction F from a topological space  (�, �)  
to another topological space (�, �)  the following conditions are equivalent: 
 

(a) F is upper � continuous. 
 

(b) ��(�) ∈ ��(�), for every open set G of Y. 
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(c) ��(�) ∈ ��(�) for each closed set   � of �. 
 

(d) For ∀ � ∈ � and for each neighborhood V of �(�) �� �,  ��(�) is a  
�-neighborhood of x. 
 

(e)  For ∀ � ∈ � and for each neighborhood V of �(�) �� � , there is a 
 �-neighborhood U of  x such that �(�) ⊂ � . 
 

(f) ���(��(�)) ⊂ �����(�)� for each set � of �. 
 

(g) ����(�����(�)�) ⊂ ��(��(�)) for any set � of �. 
 

3. Lower �-Continuous Intuitionistic Fuzzy Multifunctions 
 
 Definition 4.1: An Intuitionistic fuzzy multifunction F : (�, �) → (�, Γ) is 
said to be:  

(a) Intuitionistic fuzzy lower �-continuous at a point Xx 0 , if for any 

Intuitionistic  fuzzy open set YW 
~

 such that WqxF
~

)( 0  there exists 

� ∈ ��(�) containing �� such that WqxF
~

)( Ux .  

 
(b) Intuitionistic fuzzy lower �-continuous if it is intuitionistic fuzzy lower 

�-continuous at every point of X. 

 Definition 4.2: Let 
~

 be an intuitionistic fuzzy set of an intuitionistic fuzzy 

topological space (�, Γ). Then ��  is said to be a neighbourhood of 
~

 in Y if there 

exists an intuitionistic fuzzy open set � �� �  such that 
~

⊂ �� ⊂ �� . 
 
 Theorem 4.3: Let F: (�, �)→ (�, Γ)  be an intuitionistic fuzzy multifunction 
and let � ∈ �. Then the following statements are equivalent: 
 

(a) F is intuitionistic fuzzy lower �-continuous at �. 
 

(b) For each intuitionistic fuzzy open set ��  of Y with �(�)��� , implies                                
� ∈ ���(���( ��(��)) 
 

(c) For any semi-open set � �� �  containing � and for any  intuitionistic fuzzy 
open set ��  of Y with �(�)��� , there exists a non empty open set � ⊂ � such 
that �(�)��� ,  ∀ � ∈ �. 
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 Proof: (a)  (b): Let � ∈ � and ��  be any intuitionistic fuzzy open set of Y 
such that �(�)��� . Then by (a) ∃ � ∈ ��(�) such that � ∈ � and �(�)��� , ∀ � ∈ �. 

Thus, � ∈ � ⊂ ������.  Now � ∈ ��(�) implies � ⊂ �������(�)�.   

Hence, � ∈ ���(��� ������). 
 

 (b)  (c): Let ��  be any intuitionistic fuzzy open set of Y such that  �(�)��� ,                

then � ∈ ���(���������). Let U be any semi-open set of X containing x. Then                             

� ∩ ���(������) ≠ �.  Put � = � ∩ ��� (��(��)), then V is an semi-open set of X, 

� ⊂ �, � ≠ �  and �(�)��� , ∀ � ∈ �. 
 

 (c) (�): Let {��} be the system of the semi-open sets in X containing x. 
For any semi-open set  � ⊂ �  such that � ∈ � and  any intuitionistic fuzzy open set 
��  of Y such that  �(�)��� ,  there exists a non empty open set �� ⊂ � such that 

�(�)��� , ∀� ∈ ��. Let W = 
∪

� ∈ ��
��, then W is open in X, � ∈ ���(�) and 

�(�)���  , ∀ � ∈ �. Put  S = W ∪ {�}, then � ⊂ � ⊂ ��� (�). Thus,  � ∈ ��(�), 
� ∈ � and �(�)���  , ∀ � ∈ �. Hence, F is intuitionistic fuzzy lower �-continuous  
at x. 
 

 Definition 4.4 [25]: Let X and Y are two non empty sets. A function  

F : X → Y is called fuzzy multifunction if F(x) is a fuzzy set in Y,   x   X.  
 
 Theorem 4.5: Let F: (�, �)→(�, Γ)  be an intuitionistic fuzzy multifunction, 
Then the following statements are equivalent: 
 

(a) F is intuitionistic fuzzy lower �-continuous. 
 

(b) ������ ∈ ��(�), for every intuitionistic fuzzy open set G� of �.  
 

(c) ��(��) ∈ ��(�)  for every intuitionistic fuzzy closed set  ��  of Y. 
 

(d)  ����(��� ��(��)�) ⊂ �����(�)� �, for each intuitionistic fuzzy set  ��   
of Y. 
 

(e) �(���� ���(�)�) ⊂ ��(�(�)), for each subset � of �. 
 

(f) �(���(�)) ⊂ ��(�(�)), for each subset � of �,  
 

(g) ���(������) ⊂ ��(��(��)), for each Intuitionistic fuzzy set ��  of � . 
 

(h) �(�� �������(�)��) ⊂ ��(�(�)) for any subset A of  X. 
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 Proof: (a)  (b): Let � �  be any intuitionistic fuzzy open set of Y and  

� ∈ ������, so  �(�)���, since F is Intuitionistic Fuzzy lower �-continuous, by 

Theorem 4.3 it follows that � ∈ ���(��� ��(�� )). As x is chosen arbitrarily in 

������, we have  ��(��) ⊂ ���(��� ��(��)) and thus,  ��(��) ∈ ��(�). 
 
 (b)  (a): Let x be arbitrarily chosen in X and � �  be any intuitionistic fuzzy 

open set of Y such that �(�)���, so � ∈ ������. By hypothesis ������ ∈ ��(X), we 

have � ∈ ������ ⊂ ���(��� (������)) and thus, F is intuitionistic fuzzy lower 
�-continuous at x according to Theorem 4.3 As x was arbitrarily chosen, F is 
intuitionistic fuzzy lower �-continuous. 
 
 (b)  (c): Obvious. 
 

 (c)  (d): Let ��  be any arbitrary intuitionistic fuzzy set of Y. Since ������ is 

intuitionistic fuzzy closed set in Y by hypothesis, ��(�� (��)) ∈ ��(�). Hence, by 
Lemma 2.1, we obtain 
 

�����(��)� ⊃ ���� (�� ��� ���������) ⊃ ����(��(������)). 

 
 (d)  (e): Suppose that (d) holds, and let A be an arbitrary subset of X.  
Let us put  �� = �(�),  then � ⊂ ��(��). Therefore, by hypothesis, we have 

���� (��(�)) ⊂ ����(��(������)) ⊂ ��(��(��)). Therefore, 

�(����(��(�))) ⊂ �(�� ��������) ⊂ ��(��) = ��(�(�)). 

 
 (e)  (c): Suppose that (e) holds, and let ��  be any intuitionistic fuzzy closed 
set of Y. Put � = ��(��), then �(�) ⊂ �� . Therefore, by hypothesis, we have 

�(����(��(�))) ⊂ ����(�)� ⊂ ������ = ��  and  ��(������ (��(�))�) ⊂ ��(��). 

Since we always have  �� �������(��(�))�� ⊃ ����(��(�)), we obtain 

 ������ ⊃ ����(��(������)). Hence, by Lemma, 2.1, ��(��) ∈ ��(�). 
 
 (c)  (f): Since � ⊂ ��(�(�)), we have � ⊂ ��(��(�(�))). Now 
Cl(F(A)) is an  intuitionistic fuzzy closed set in Y and so by hypothesis 
��(��(�(�))) ∈ ��(�). Thus, ���(�)  ⊂ ��(��(�(�))). Consequently, 
�(���(�)) ⊂ �(��(��(�(�)))) ⊂ ��(�(�)). 
 
 (f)  (c): Let ��  be any intuitionistic fuzzy closed set of Y. Replacing  

A by ��(��) we get by (f), �����(������)� ⊂ ��(� ��������) ⊂ ��(��) = �� . 
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Consequently, ���(��(��)) ⊂ ��(��). But  ��(��) ⊂ ���(������). And so, 

���(������) = ��(��). Thus, ��(��) ∈ ��(�). 
 
 (f)  (g): Let ��  be any intuitionistic fuzzy set of Y. Replacing A by 

 ��(��) we get by (f), �(���(������)) ⊂ ��(� ��������) ⊂ ��(��). Thus, 

 ���(������) ⊂ ��(��(��)). 
 
 (g)  (f): Replacing ��  by F(A), where A is a subset of X, we get by (g), 

���(�)  ⊂ ��� �����(�)��  = ��� �������� =  �� ��������  =  ��(��(�(�))). 

Thus, �(���(�)) ⊂ � ������(�(�)�� ⊂ ��(�(�)). 

 
 (e)  (h): Follows from  by Lemma 2.9.  
 
 (h)  (a): Let � ∈ � and ��  be any intuitionistic fuzzy open set in Y such 

that F(x)q�� . Then � ∈ ��(��). We shall show that ������ ∈ �(�). By the hypothesis, 

we have F(Cl(Int(Cl(����� ��)))) ⊂ �� �� ������ ���� ⊂ ��� ��, which implies   

that  Cl(Int(Cl(����� ��)))) ⊂ ����� �� ⊂ (������)�. Therefore, we obtain 

������ ⊂ ���(�� ���� ���������) . Hence, ������ ∈ �(�). Put U = ����� �. Then                   

� ∈ � ∈ ��(�) and F(u)q��  for every � ∈ � thus, F is intuitionistic fuzzy lower 
� continuous. 
 
 Corollary 4.6[27]: For a fuzzy multifunction F: (�, �) → (Y, �) the 
following statements are equivalent: 
 

(a) F is fuzzy lower �-continuous. 

(b) ��(�) ∈ ��(�), for every fuzzy open set G of �.  

(c) ��(�) ∈ ��(�)  for every fuzzy closed set  ��  of Y. 

(d)  ����(��� ��(�)�) ⊂ ��(��(�)), for each fuzzy set � of �. 

(e) �(���� ���(�)�) ⊂ ��(�(�)), for each subset � of �. 

(f) �(���(�)) ⊂ ��(�(�)), for each subset � of �,  

(g) ���(��(�)) ⊂ ��(��(� for each fuzzy set ��  of � . 

(h) �(�� �������(�)��) ⊂ ��(�(�)) for any subset A of X. 
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 Corollary 4.7 [26]: For a multifunction F: (�, �) → (Y,�) the following 
statements are equivalent: 
 

(a) F is lower �-continuous. 

(b) ��(�) ∈ ��(�), for every  open set G of �.  

(c) ��(�) ∈ ��(�)  for every closed set  ��  of Y. 

(d)  ����(��� ��(�)�) ⊂ ��(��(�)), for each set � of �. 

(e) �(���� ���(�)�) ⊂ ��(�(�)), for each subset � of �. 

(f) �(���(�)) ⊂ ��(�(�)), for each subset � of �,  

(g) ���(��(�)) ⊂ ��(��(� for each set ��  of � . 

(h) �(�� �������(�)��) ⊂ ��(�(�)) for any subset A of X. 
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