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1. Introduction 
 

 Extended gibonacci polynomials ( )nz x  are defined by the recurrence

1 2( ) ( ) ( ) ( )( )n n nz a x z x b x zx x   , where x is a complex variable; 

0( ) ( ) ( ),   ,  x xa z xb  and 1( )z x  are arbitrary complex polynomials; and 2n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  , 

)( ) (n nz fx x , the nth Fibonacci polynomial; and when 0( ) 2z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. 
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Clearly, ( )n nf x F , the nth Fibonacci number; and  (1)n nl L , the nth Lucas 

number [5, 8]. 
 

 Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  are defined by 

(2( ))n np fx x  and (2( ))n nq lx x , respectively. The Pell numbers nP  and Pell-

Lucas numbers nQ  are given by (1) (2)n n nP p f   and 2 (1) (2)n n nQ q l  , 

respectively [5, 8]. 

 Finally, let ( ) 1a x   and ( )b x x . When 0( ) 0z x   and  1( ) 1z x  , 

)( ) (n nz Jx x , the nth Jacobsthal polynomial; and when 0( ) 2z x   and 1( ) 1z x  , 

( ) ( )n nz x j x , the nth Jacobsthal-Lucas polynomial [5, 8]. Correspondingly, 

(2)n nJ J  and (2)n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively. Clearly, (1)n nJ F ; and (1)n nj L . 

 
 Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas 

polynomials are closely related by the relationships ( 1)/2 (1( ) / )n
n nxJ x f x  and 

/2( )) (1 /n
n nj x lx x  [5, 8]. 

 
 Fibonacci and Lucas polynomials can also be defined explicitly by the Binet-
like formulas 

( )
n n

nf x
 

 





     

and    

( ) n n
nl x    , 

 

where ( )
2

x
x 


    and  ( )

2

x
x 


   are the solutions of the 

equation 2 1 0,t xt    and 2( ) 4x x           [7]. 

 
 Jacobsthal and Jacobsthal-Lucas polynomials also can be defined explicitly: 
 

( )
n n

n
u v

J x
u v





     and     ( ) n n

nj x u v  , 
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where 
1

( )
2

D
u u x


   and 

1
( )

2

D
v v x


   are the solutions of the equation  

2 0t t x   , and   ( ) 4 1D D x x u v       [7]. 

 

 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( )nz x ; we also 

let n ng f  or nl , n nb p  or nq , ( )n nc J x  or ( )nj x ; and correspondingly, 

n nG F  or ,nL  n nB P  or  ,nQ  and  n nC J  or   nj . 

 
 Using the Binet-like formulas, we can easily establish the following results: 
 

            1 1n n nl f f                     1 1( ) ( ) ( )n n nj x J x xJ x    

  2 2
2 2( 1)nn nl f                2 2

2 ( ) ( ) 2( )nn nj x D J x x    

  2
2 2( 1)nn nl l      2

2 ( ) ( ) 2( ) .n
n nj x j x x    

 
2. Gibonacci Extensions of a Catalan Delight 
 
 In 1879, the Belgian mathematician, E. C. Catalan established the charming 
identity 
 

2 1 2( 1)n k
n k n k n kF F F F 
     , 

 

where n k ; it is a generalization of the Cassini’s formula 2
1 1 ( 1)nn n nF F F      

[4]. Its Lucas companion is 
 

2 25( 1)n k
n k n k n kL L L F
      . 

 
 Their gibonacci extensions are given by the identity 
 

  
1 2

2
2 2

( 1) if 

( 1) if  .

n k
k n n

n k n k n n k
k n n

f g f
g g g

f g l

 

  

    
   

                   (1) 

 

 We can establish this using the Binet-like formulas for nf  and nl . 
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3. Graph-theoretic Confirmations 
 
 Next we confirm identity (1) using graph-theoretic techniques. First, we 
present some basic facts. 
 

 Consider the weighted digraph 1D  with vertices 1v  and 2v  in Figure 1. A 

weight is assigned to each edge. 

 

 
Figure 1: Weighted Digraph 1D   

 

 Its weighted adjacency matrix is the Q-matrix 

 

1
,

1 0

x
Q

 
   
  

 

 

where ( )Q Q x . It then follows by induction that 
 

1

1

,
n nn

n n

f f
Q

f f




 
   
  

 

where 1n   [3]. 
 

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . The walk is closed if i jv v ; otherwise, it is 

open. The length of a walk is the number of edges in the walk. The weight of a walk 

is the product of the weights of the edges along the walk. 

 

 The following theorem provides a powerful tool for computing the weight of 

a walk of length n from iv  to jv  [2, 3]. 
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 Theorem 1: Let A be the weighted adjacency matrix of a weighted  

and connected digraph with vertices 1 2,   ,  . . . ,   kv v v . Then the ijth entry of 

the matrix nA gives the sum of the weights of all walks of length n from iv  to 

jv , where 1n  .            □ 

 
 The next result follows from this theorem. 
 

 Corollary 1: The ijth entry of nQ gives the sum of the weights of all 

walks of length n from iv  to jv  in the weighted digraph 1D , where 

1 ,  i j n  .                           □ 

 

 Consequently, the sum of the weights of all closed walks of length n 

originating at 1v  is 1nf  , and that of walks of length n originating at 2v  is 1nf  . So 

the sum of the weights of all closed walks of length n is 1 1n n nf f l   . These 

facts play a pivotal role in our graph-theoretic proofs. So does the “weighted” version 

of Fubini’s principle: Two different ways of adding the elements of a finite set 

yields the same result [1]. 
 
 3.1: Proof of Identity (1): The proof depends on the next lemma. 
 
 Lemma 1:  Let n k . Then 
 

2 2( 1)n k
n k n k n kg g g f      , 

 

where     
2

1 if

otherwise.

n ng f

 



  

 

 Proof: Let n ng f . Using the Binet-like formula for nf  and the identity

2 2
2 2( 1)nn nl f   , we have 

 

   2 ( )( )n k n k n k n k
n k n kf f       
      

           2 ( 1) ( )n k k k k
nl           
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           2 2( 1)n k
n kl l    

           2 2 2 2[ 2( 1) ] ( 1) [ 2( 1) ]n n k k
n kf f           

           2 2 2[ ( 1) ]n k
n kf f      

                                2 2( 1) .n k
n k n k n kf f f f
       

 

 The case n ng l  follows similarly, using the Binet-like formula for nl , and 

the identities 2
2 2( 1)nn nl l    and  2 2

2 2( 1)nn nl f    .      □ 

 
 We are now ready for the graph-theoretic confirmations. 
 

 Part I: Suppose n ng f . Let A, B, and C be the sets of closed walks  

of lengths 1,   1n k n k    , and 1k   originating at 1v , respectively. By 

Corollary 1, the sums of the weights of the walks in A, B, and C are n kf   , n kf  , and

kf , respectively. Consequently, the sums 1S  and 2S  of the weights of the elements 

in A B  and C C  are n k n kf f   and 2
kf , respectively.  

 

 Let  1 ( 1)n k
sS S S   . 

 

 Then    
2( 1)n k

n k n k kS f f f
     .                                             (2) 

 

 We will now compute S in a different way. 

 

 Suppose ( ),v w  be an arbitrary element of A B . If both v and w  

begin with a loop, the sum of the weights of such pairs ( ),v w  is

2
1 1 1 1( )( )n k n k n k n kxf xf x f f        ; if v begins with a loop and w does not, the 

corresponding sum is 1 2 1 2( )(1 · · ) 1   n k n k n k n kxf f xf f         ; if v does not 

begin with a loop and w does, the resulting sum is

2 1 2 11 · 1 ·( ( )  )n k n k n k n kf xf xf f        ; and if neither begins with a loop, the 

resulting sum is 2 2 2 21 · 1 ·  1 · 1 ( )( )· n k n k n k n kf f f f        . 
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 Using Lemma 1, the sum 1S  of the weights of all elements in A B  is then 

given by 

 2
1 1 1 1 2 2 1 2 2n k n k n k n k n k n k n k n kS x f f xf f xf f f f                    

      1 1 2 2 1 2( ) ( )n k n k n k n k n k n kxf xf f f xf f                 

      1 2( )n k n k n kxf f f        

      n k n kf f    

      2 2( 1)n k
n kf f   . 

 

 Now let ( ),v w  be an arbitrary element of  C C . If both v and w begin  

with a loop, the sum of the weights of such pairs is 2 2
1 1 1( )( )k k kxf xf x f   ;   

if v begins with a loop, but w does not, the corresponding sum is 

1 2 1 21 · 1 · ( )( )k k k kxf f xf f    ; if v does not begin with a loop, but w does, the 

resulting sum is 2 1 1 21 · 1 · ( )( )k k k kf xf xf f    ; and if neither does, the resulting 

sum is  2
2 2 21 · 1 ·  1 · 1 ( ) )· (k k kf f f   . 

 

 Thus, the sum 2S  of the weights of all elements in C C  is given by 

 

  2 2 2
2 1 1 2 22k k k kS x f xf f f        

       2
1 2( )k kxf f     

            2
kf . 

 Thus, 
 

  1 2( 1)n kS S S     

      2 2 2[ ( 1) ] ( 1)n k n k
n k kf f f        

      2
nf . 

 

 The desired result now follows by equating the two values of S. 
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 Part II: Suppose n ng l . Let A and B  be the sets of closed walks of 

lengths n k  originating at 1v  and 2v , respectively; and R and S the sets of closed 

walks of lengths n k  originating at 1v  and 2v , respectively. Let E be the set of 

closed walks of length 1k   originating at 1v . Then the sum 1S  of the weights of all 

elements in B) )( (A R S    is 1 n k n kS l l  , and the sum 2S  of the weights of all 

elements in E E  is 2
2 kS f . Let 2

1 2( 1)n kS S S     . Then 

 

   2 2( 1)n k
n k n k kS l l f
      .                                          (3) 

 

 We now compute 2
1 2( 1)n kS S S     in a different way. To this end, 

Let ( ),v w  be an arbitrary element of B) )( (A R S   . 

 

 Case 1: Suppose v A  and w R . If both v and w begin with a loop, the 

sum of the weights of such pairs ( ),v w  is 2( )( )n k n k n k n kxf xf x f f    ; if  

v begins with a loop and w does not, the sum of the weights of the pairs is

1 11 ·( )( ) 1 · n k n k n k n kxf f xf f      ; if v does not begin with a loop, but w does, 

the resulting sum is 1 11 · 1 · ) ( )(n k n k n k n kf xf xf f      ; and if neither does, the 

resulting sum is 1 1 1 11 · 1 ·  1 · 1 ( )( )· n k n k n k n kf f f f        . Thus, the sum 1T  

of the weights of all pairs ( ),v w in Case 1 is given by 

 
2

1 1 1 1 1.n k n k n k n k n k n k n k n kT x f f xf f xf f f f                

 

 Case 2: Suppose v A  and w S . If v begins with a loop, the sum of the 

weights of such pairs is 1 1( )n k n k n k n kxf f xf f      ; and if v does not, the 

resulting sum is 1 1 1 11 · 1 ·( ( )  )n k n k n k n kf xf xf f        . So the sum 2T  of all 

pairs in Case 2 is 
 

2 1 1 1n k n k n k n kT xf f f f         . 

 

 Case 3: Suppose v B  and w R . If w begins with a loop, the sum of the 

weights of such pairs is 1 1( )n k n k n k n kf xf xf f      ; and if v does not, the  
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resulting sum is 1 1 1 1(1 · 1 ·  )n k n k n k n kf f f f         . So the sum 2T  of all pairs 

in Case 3 is 
 

   3 1 1 1n k n k n k n kT xf f f f        .                                   (4) 

 
 Case 4: Suppose v B  and w S . The sum of the weights of such pairs is

4 1 1n k n kT f f     . 

 
 By combining all four cases and Lemma 1, we have 
 

 1 1 2 3 4S T T T T      

 

      2
1 1 1 12 2 4n k n k n k n k n k n k n k n kx f f xf f xf f f f                 

 

      1 1 1( ) ( )n k n k n k n k n k n kxf xf f f xf f              

                       1 1 1 1(2 )n k n k n k n k n kf xf f f f             

 

      1 1 1 1 1 1 12n k n k n k n k n k n k n k n kxf f f f f f f f                    

 

      1 1 1 1 1 1 1( ) ( )n k n k n k n k n k n k n k n kxf f f f f f f f                  
 

  

      1 1 1 1 1n k n k n k n k n k n kf f l f f f               

 

      1 1 1 1( )n k n k n k n k n kf f f l f             

 

      1 1n k n k n k n kl f l f         

 

      1 1( )n k n k n kl f f        

 

      n k n kl l    

 

      2 2 2  ( 1)n k
n kl f    . 
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 Now let ( ),v w  be an arbitrary element of E E . The sum 2S  of the 

weights of the pairs of elements in E E  is 2
2 kS f . 

 
 Thus, 

   2
1 2( 1)n kS S S      

       2 2 2 2 2[ ( 1) ] ( 1)n k n k
n k kl f f         

       2
nl . 

 

 Equating this with the value of S in equation (3) gives the desired result.     □ 

 
 Next we explore the Jacobsthal companion of the gibonacci extension (1). 
 
4. Jacobsthal Counterparts 
 

 Let n ng f  in identity (1), and 1/u x . Multiplying the resulting 

equation with 1nx   yields 
 

2
( 1)/2 ( 1)/2 ( 1)/2 2 1 ( 1)/2   · ( 1)n k n k n n k n k k

n k n k n kx f x f x f x x f        
 

                       
  

 

            2 2( ) ( ) ( ) ( ) ( ),n k
n k n k n kJ x J x J x x J x
        

 

where   ( )n nf f u . 

 

 On the other hand, let n ng l . Multiplying the corresponding equation with

nx , we get 
 

22 2
( )/2 ( )/2 /2 ( 1)/2  ( 1)  n k n k n n k n k k

n k n k n k
D

x l x l x l x x x f
x

    
 

                            
 

 

                       2 2 2( ) ( ) ( ) ( ) ( ),n k
n k n k n kj x j x j x D x j x
      

 

where     ( )n nf f u    

and       ( )n nl l u . 
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 We thus, have 
 

  
2

2
2 2

( ) ( ) ( )

( ) (

if 

   i) ( )f  .

n k
k n n

n k n k n n k
k n n

J c J
c c c

D J c j

x x x

x x x



  

 


 


                (5) 

 
 Obviously, this can be established independently. 
 
 In particular, we have 
 

  
2

2
2

if 

9

( 2)

( 2)      if  .

n k
k n n

n k n k n n k
k n n

J C J
C C C

J C j



  

   
 

 

 

 For example, 2 19 7 2
17 7 12 5139, 392 ( 1)  · 9 · 2  · j j j J      . 

 

 Next we confirm the Jacobsthal delight in (5) using graph-theoretic tools. 
 
5. Graph-theoretic Confirmation of Identity (5) 
 

 Consider the weighted digraph 2D  in Figure 2 with vertices 1v  and 2v . Its 

weighted adjacency matrix is given by 
 

 
Figure 2: Weighted Digraph 2D   

 

1
.

1 0

x
M

 
   
  

 

 
 Since, 

1

( ) 1( )

( ) ( )
,

n nn

n x n x

J x xJ x
M

J xJ
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by induction [6], it follows that the sum of the closed walks of length n from 1v  to 

itself is 1( )nJ x , and that from 2v  to itself is 1( )nxJ x . Consequently, the sum of 

the weights of all closed walks of length n is 1 1( ) ( ) ( )n n nJ xJx x xj   . As can 

be expected, these facts play a central role in our graph-theoretic proofs. 
 
 In addition, the proofs hinge on equation (5). 
 
 We are now ready for the proofs. 
 

 Part I: Suppose ( )n nc J x . Let A, B, and C  be the sets of closed walks of 

length 1,   1n k n k    , and 1k  , all originating at 1v . Then the sum 1S  of 

the pairs of walks in A B  is given by 1 ( ) ( )n k n kS J x J x  ; and the sum 2S  of 

the pairs of walks in C C  is given by 2
2 ( )kS J x . Then 

 

  2
1 2( ) ( ) ( ) ( ) ( )n k n k

n k n k kS x S J x J x x J x 
      .                   (6) 

 

 Next we compute 1 2( )n kS x S   in a different way. We begin with 1S . Let 

( ),v w  be an arbitrary element ofA B . If both v and w begin with a loop, the sum of 

the weights of such pairs is 1 1 1 1( )1 ·  ( ) 1 ·  ( ) ( )n k n k n k n kJ x J J x J xx       
   
      ;  

if v begins with a loop and w does not, the corresponding sum is

1 2 1 21 · ( ) · 1 · ( ) ( ) ( )n k n k n k n kJ x x J x xJ x J x       
   
  

  
; if v does not  

begin with a loop and w does, the corresponding sum is

2 1 2 1· 1 · ( ) 1 · ( (( )) )n k n k n k n kxx J x J xJ x J x       
   
    


 

; and if neither does, the 

resulting sum is    2
2 2 2 2· 1 · · 1 · ( )) ( ) ( )(n k n k n k n kx J x J x J Jx x x x       

  
     

. 

 

 Using equation (5), the sum 1S  of the weights of such pairs is given by 

 

1 1 1 1 2 2 1( ) ( ) ( ) ( ) ( ) ( )n k n k n k n k n k n kS J x J x xJ x J x xJ x J x                

                      2
2 2  ( ) ( )n k n kx J x J x      

     1 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( )n k n k n k n k n k n kJ x J x xJ x xJ x J x xJ x                
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     1 2() ) ( )(n k n k n kJ xJ x J xx    
 
      

     ( ) ( )n k n kJ x J x    

     2 2( ) ( ) ( )n k
n kJ x x J x    . 

 

 To compute 2S , assume ( ),v w  is an arbitrary element of C C . If both  

v and w begin with a loop, the sum of the weights of such pairs is

2
1 1 1(1 · )( ) 1 · ( )k k kJ x J J xx  

   
  

   
; if v begins with a loop and w does not, the 

corresponding sum is 1 2 1 21 · ( ) · 1 · ( )( ) ( )k k k kxJ x x J xJ x J x   
   
    


 

; if v does  

not begin with a loop and w does, the corresponding sum is

2 1 1 2· 1 · ( ) 1 · ( ) ( ) ( )k k k kx J x J x xJ x J x   
   
 

   
; and if neither does, the resulting 

sum is  2 2
2 2 2 · 1 ·  ( )  · 1 ( ) ·  ( )k k kxx J x x J x J x    

     .  

 

 So 

   2 2 2
2 1 1 2 2( ) 2 ( ) ( ) ( )k k k kS J x xJ x J x x J x       

        
2

1 2( ) ( )k kJ x xJ x   
     

        2( )kJ x . 

 Thus, 
 

  2 2 2
1 2( ) ( ) ( ) ( ) ( ) ( )n k n k n k

n k kS x S J x x J x x J x           
  

     2( )nJ x . 
 

 This, together with the sum in equation (6), confirms the identity. 
 

 Part 2: Suppose ( )n nc j x . Let A and B be the sets of closed walks of 

length n k  originating at 1v  and 2v , respectively; let R and S  be the sets of closed 

walks of length n k  originating at 1v  and 2v , respectively; and let E be the set of 

closed walks of length 1k   originating at 1v . Then the sum 1S  of the weights of 

pairs in ( )  ( )A B R S    is 1 ( ) ( )n k n kS j x j x  ; and the sum 2S  of the weights 

of pairs in E E  is 2
2 kS J .  
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 Then 
 

  2 2 2
1 2( ) ( ) ( ) ( ) ( )n k n k

n k n k kS D x S j x j x D x J x 
      .          (7) 

 

 We now compute the sum 1 2 2( )n kS D x S   in a different way. 
 

 First, let ( ),v w  be any element of ( )  ( )A B R S   . 
 

 Case 1: Suppose v A  and w R . If both v and w begin with a loop, the 

sum of the weights of such pairs is 1 ·  1 ·  ( ) ( )( ) ( )n k n k n k n kJ J x J x J xx      
       ; if 

v begins with a loop and w does not, the corresponding sum is

1 11 · ( ) · 1 · ( ) ( ) ( )n k n k n k n kJ x x J x xJ x J x     
   
 

   
; if v does not begin  

with a loop and w does, the corresponding sum is

1 1(· 1 ·  ( ) )1 · ( ) ( )n k n k n k n kxx J x J xJ x J x     
          

; and if neither does, the 

resulting sum is   2
1 1 1 1· 1 · ( ) · 1 · ( )   ( )=n k n k n k n kx J x x J x x J x J       

  
    

. 

 

 So the sum of the weights of all elements in Case 1 is ( ) ( )n k n k nJ x J x xJ  

2
1 1 1 1  ( ) ( ) ( ) ( ) ( )n k n k n k n k n kk x J x xJ x J x x J x J           . 

 

 Case 2: Suppose v A  and w S . If v begins with a loop, the sum of  

the weights of such pairs is 1 11 ·  ·  ( )) ( )( ) (n k n k n k n kx xJ x J xJ x J x     
   

 
  

;  

and if v does not, the resulting sum is

2
1 1 1 1( · 1 ·   ·  ( ) ( )) ( )n k n k n k n kx J x J x J xx xx J       

   
        . Thus, the sum of the 

weights of all elements in Case 2  is  2
1 1 1( ) ( ) ( ) ( )n k n k n k n kJ x J x x J x J x       . 

 

 Case 3: Suppose v B  and w R . If w begins with a loop, the sum  

of the weights of such pairs is 1 1( ) 1 ·  ( ) ( ) ( )n k n k n k n kxJ x J x xJ x J x     
   
        ;  

and if w does not, the resulting sum is

2
1 1 1 1 ·   · 1 ·  ( ) ( )( () )n k n k n k n kx J xx J x x J x J x       

   
        . So the sum of the 

weights of all elements in Case 3 is 2
1 1 1  ( ) ( ) ( ) ( )n k n k n k n kxJ x J x x J x J x       . 
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 Case 4: Suppose v B  and w S . The sum of the weights of such pairs is  
2

1 1 1 1 ·  ( )  ·  ( ) ( ) ( )n k n k n k n kx J x x J x x J x J x       
   
         . 

 

 Combining these cases and using equation (5), the sum 1S  is given by 

 

1 1 1( ) ( ) 2 ( ) ( ) 2 ( ) ( )n k n k n k n k n k n kS J x J x xJ x J x xJ x J x            

              2
1 14 ) ( )(n k n kx J x xJ   

 
 

     1 1 1( ) ( ) ( ) ( ) ( ) ( )n k n k n k n k n k n kJ x J x xJ x xJ x J x xJ x        
   
           

                             2
1 1 1 1 2 ( ) ( ) ( )) )( (n k n k n k n k n kxxJ x J x xJ x J x J x           
     

 

     1 1 1 1 1(( ) ( ) ( ) 2 ( ) ( ))n k n k n k n k n k n kJ x J xJ x J x xx J x J x               

   2
1 1  ( ) ( )n k n kx J x J x      

 

     1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n k n k n k n k n k n kJ x xJ x J x xJ x J x xJ x                
         

                                       1 1  ( ) ( )n k n kxJ x J x      

 

     1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n k n k n k n k n k n kJ x J x xJ x j x xJ x J x            
 

  

     1 1 1 1  ( ) ( ) ( ) ( )( )n k n k n k n k n kJ x xJ J x xJ x jx x        
 
      

 

     1 1( ) ( ) ( ) ( )n k n k n k n kj x J x xJ x j x         

 

     1 1( ) ( ) ( )n k n k n kj x J x xJ x      
     

 

     
( ) ( )n k n kj x j x    

 

     
2 2 2( ) ( ) ( )n k
n kj x D x J x   . 

 

 Now let ( ),v w   be any element of  E E . If both v and w begin with a loop, 

the sum of the weights of such pairs is 2
1 11 · ( ) 1 · 1( ) ( )k kJ x Jk x J x    

      
 ;  
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if v begins with a loop and w does not, the corresponding sum is

1 2 1 21 · ( )  · 1 · ( ) ( () )k k k kJ x x J xx xJ J x   
   
      

 ; if v does not begin with a loop and 

w does, the corresponding sum is 2 1 1 2· 1 · ( ) 1 · ( ) ( ) ( )k k k kx J x J x xJ x J x   
   
 

   
; 

and if neither does, the resulting sum is  2 2
2 2 2· 1 · · 1 ·( ) ( )( )k k kx J x Jx xx J x  

      
. 

 

 Consequently, the sum 2S  of the weights of all elements in E E is given 

by 

  2 2 2
2 1 1 2 2( ) 2 ( ) ( ) ( )k k k kS J x xJ x J x x J x        

       
2

1 2( ) ( )k kJ x xJ x   
      

           2( )kJ x . 

 Thus, 
 

 2 2 2 2 2 2
1 2( ) ( ) ( ) ( ) ( ) ( )n k n k n k

n k kS D x S j x D x J x D x J x           
 

         2( )nj x . 

 
 This, coupled with the sum in equation (7), yields the required result.          □ 
 
 
6. Additional Byproducts 
 
 Identities (1) and (5) have additional implications. It follows from equation 
(1) that 
 

 
2

2 1
1 1 2 2

2 1

2 ( 1)   if 

2 ( 1)   if  ;

n k
n k k n n

n k n k n k n k n k
n k k n n

g f f g f
g g g g

g f f g l


 

      
 

     
    

  

 

 
2 1

1 1 2
2 1

( 1)   if 

( 1) if  ;

n k
k n n

n k n k n k n k n k
k n n

f g f
g g g g

f g l




      


    
   

 

 

 For example, 2 13 5
19 7 18 8 13 7 4542,  687 2 ( 1) 5L L L L L F F     ; and

13 5
19 7 18 8 11445 ( 1) 5L L L L F      . 
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 These results have Jacobsthal companions: 
 

2 1 2 2
1

1 1 2 2 1 2 2
1

2 ( ) [ ( ) ( )]  if  ( )

2 ( ) [ ( ) ( )]  if  ( );

n k
n k k n n

n k n k n k n k n k
n k k n n

c x J x xJ x c J x
c c c c

c D x J x xJ x c j x

 


       


      
    

 

 

1 2 2
1

1 1 2 1 2 2
1

( ) [ ( ) ( )]  if  ( )

( ) [ ( ) ( )]  if  ( ).

n k
k k n n

n k n k n k n k n k
k k n n

x J x xJ x c J x
c c c c

D x J x xJ x c j x

 


       


    
     

 

 For example, 2 6 2 2
14 6 13 7 10 4 32,105,282 2 9( 2) ( 2 )j j j j j J J       and

13 5 1 2 2
19 7 18 8 6 5786, 816 9 (( 2) 2 )j j j j J J      . 
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Abstract: We employ a gibonacci extension of the Catalan identity 
2 1 2( 1)n k

n k n k n kF F F F 
      to extract its implications to the 

gibonacci, Pell, Pell-Lucas, Jacobsthal, Vieta, and Chebyshev polynomials; 
and give graph-theoretic interpretations of the gibonacci and Jacobsthal 
versions. 
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Jacobsthal-Lucas Polynomials, Jacobsthal-Lucas Numbers, 
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1. Introduction 
 

 Extended gibonacci polynomials ( )ng x  are defined by the recurrence

2 1( ) ( ) ( ) ( ) ( )n n nz a x z x bx x z x   , where x is a complex variable; ( ),a x  ( ),b x  

0( )z x  and 1( )z x  are arbitrary complex polynomials; and 0n  . 

 

 Suppose ( )a x x  and ( ) 1b x  . When 0( ) 0z x   and 1( ) 1z x  , 

)( ) (n nz fx x , the nth Fibonacci polynomial; and when 0( ) 2z x   and 1( )z x x , 

)( ) (n nz lx x , the nth Lucas polynomial. 
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 Clearly, (1)n nf F , the nth Fibonacci number; and  (1)n nl L , the nth 

Lucas number [1, 9, 10]. 
 

 In particular, Pell polynomials ( )np x  and Pell-Lucas polynomials ( )nq x  

are defined by (2( ))n np fx x  and (2( ))n nq lx x , respectively. The Pell numbers 

nP  and Pell-Lucas numbers nQ  are given by (1) (2)n n nP p f   and 

2 (1) (2)n n nQ q l  , respectively [5, 9, 10]. 

 

 Let ( ) 1a x   and ( )b x x . When 0( ) 0z x   and  1( ) 1z x  , 

)( ) (n nz Jx x , the nth Jacobsthal polynomial; and when 0( ) 2z x   and 1( ) 1z x  , 

( ) ( )n nz x j x , the nth Jacobsthal-Lucas polynomial [3, 9]. Correspondingly, 

(2)n nJ J  and (2)n nj j  are the nth Jacobsthal and Jacobsthal-Lucas numbers, 

respectively.  Clearly, (1)n nJ F ;  and (1)n nj L . 

 

 Suppose ( )a x x  and ( ) 1b x   . When 0( ) 0z x   and 1( ) 1z x  , 

)( ) (n nz Vx x , the nth Vieta polynomial; and when 0( ) 2z x   and 1( )z x x , 

( ) ( )n nz x v x , the nth Vieta-Lucas polynomial [4, 7]. 

 

 Let ( ) 2a x x  and ( ) 1b x   . When 0( ) 1z x  and 1( )z x x , 

)( ) (n nz Tx x , the nth Chebyshev polynomial of the first kind; and when 

0( ) 1z x   and 1( ) 2z x x , ( ) ( )n nz x U x , the nth Chebyshev polynomial of the 

second kind [5, 9]. 

 
 1.1 Bridges Among the Subfamilies: Fibonacci, Pell, and Jacobsthal 
polynomials, and Chebyshev polynomials of the second kind are closely linked; and 
so are Lucas, Pell-Lucas, and Jacobsthal-Lucas polynomials, and Chebyshev 
polynomials of the first kind [4, 9, 10]: 
 

 ( 1)/2 /2(1 / ) ( ) (1( ) / )n n
n n n nJ x f x jx x x l x    

 1 ( )( ) ( ) ( )n n
n n n nV i f ix v i ixx x l      

 1( / 2) ( ) 2 /) ( 2( )n n n nV U x v x Tx x   , 
 

where 1.i     
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 In the interest of brevity, clarity, and convenience, we omit the argument in 

the functional notation, when there is no ambiguity; so nz  will mean ( ).nz x  We also 

let n ng f  or nl , n nb p  or nq , ( )n nc J x  or ( )nj x , n nd V  or  nv , and 

n ne T  or nU ; correspondingly, n nG F  or ,nL  n nB P  or  ,nQ  and  n nC J  

or   nj . 

 
2. Polynomial Extensions of the Catalan Identity 
 
 In 1879, E.C. Catalan established the delightful identity  
 

2 1 2( 1)n k
n k n k n kF F F F 
      [8, 10]. 

 
 More generally, we have [9, 10] 
 

2 1 2( 1)n k
n k n k n kg g g f 
     , 

where 

2

1  if 
( )

( 4)  if  .

n n

n n

g f
x

x g l
 

   
  

  

 

 It then follows that 
 

   2 2( 1)n k
n k n k k ng g f g       

 

   2 2
1 1 1( 1)n k

n k n k k ng g f g        . 

 
 Consequently, 
 

 2 2 2
1 1 2 1( 1) ( 1)n k

n k n k n k n k k k nx g g g g f f x g              

 

 2 2 2 2 2 2
1 1 1( 1) ( ) ( 1)n k

n k n k n k n k k k nx g g g g f x f x g             . 

 
 In particular, 

   2 2 2
1 1 2 2 ( 1)n n n n nx g g g g x g        

 

   2 2 2 2
1 1 2 2 ( 1) 2( 1) .n

n n n n nx g g g g x g x          
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 These two identities imply that 
 

2 2 2 2 2 2 4 2 2 2 2
2 2 1 12( ) ( 1) [( 1) 2( 1) ]n

n n n n n ng g g g x g x g x                    (1) 

 

 2 2 2 4 2 2 2 2
2 1 1 24 ( 1) [( 1) 2( 1) ]n

n n n n n nx g g g g x g x g x          .        (2) 

 
 It then follows from that 
 

             2 2 2 2 4 2
2 2 1 1 2[ (1)];n n n n nG G G G G                                                        (3) 

                 4 2
2 1 1 2 (1);n n n n nG G G G G         

      2 2 4 2 2 2 2 4 2 2 2 2
2 2 1 12( 16 ) (4 1) [(4 1) 8( 1) (2 ) ] ;n

n n n n n nb b x b b x b x b x x            

     2 2 2 2 4 2 2
2 2 1 12( 16 ) 25 [3 8( 1) (2)] ;n

n n n n n nB B B B B B           

                2 2 2 4 2 2 2 2
2 1 1 216 (4 1) [(4 1) 8( 1) (2 ) ]n

n n n n n nx b b b b x b x b x x          ; 

               4 2 2
2 1 1 216 25 [3 8( 1) (2)]n

n n n n n nB B B B B B          . 

 

 G. E. Ganis discovered identity (3) with n nG F  in 1959 [2, 9]. 

 
 Next we explore the Jacobsthal implications of identities (1) and (2). 
 
3. Jacobsthal Implications 
 

 Replacing  x  with 1/ x , equation (1) yields 

 

 2 2 2 2 2 2 4 2 2
2 2 1 12( ) ( 1) [(1 ) 2( 1) (1/ )]n

n n n n n nx g g g g x g x g x          ,       (4) 

 

where  (1/ )n ng g x . 

 

 Suppose n ng f . Multiplying both sides with 2 2nx  , we get 

 
2 2 2 2 2 2 4 2 1 2

2 2 1 12[ ( ) ( ) ( ) ( )] ( 1) ( ) [(1 ) ( ) 2( ) ]n
n n n n n nx J x J x J x J x x J x x J x x 
           . 
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 When  n ng l , multiply both sides of equation (4) with 2nx . This yields 

 

 2 2 2 2 2 2 4
2 2 1 12[ ( ) ( ) ( ) ( )] ( 1) ( )n n n n nx j x j x j x j x x j x        

            2 1 2[(1 ) ( ) 2(4 1)( ) ]n
nx j x x x       . 

 
 Combining the two cases, we get 
 

 2 2 2 2 2 2 4 2 1 2
2 2 1 12( ) ( 1) [( 1) 2 ( ) ]n

n n n n n nx c c c c x c x c c x 
          ,        (5) 

 
where 

1  if  ( )

(4 1)  if  ( ).
n n

n n

c J x
c

x c j x

  
  

 

 In particular, we have 

2 2 2 2 4 2 2
2 2 1 12(4 ) 9 [ ( 2) (2)]n

n n n n n nC C C C C C c         . 

 

 Now consider identity (2). Replacing x  with 1/ x , it yields 

 
2 4 2 2

2 1 1 24 ( 1) [(1 ) 2( 1) (/ )]n
n n n n n nxg g g g x g x g x          , 

 

where  (1/ )n ng g x . 

 Suppose n ng f . Multiplying the resulting equation with 2 2nx  ,  we get 

 
2 4 2 1 2

2 1 1 24 ( ) ( ) ( ) ( ) ( 1) ( ) [( 1) ( ) 2( ) ]n
n n n n n nxJ x J x J x J x x J x x J x x 
          . 

 

 Now let n ng l . Multiplying the corresponding equation with 2nx  yields 

 
2 4 2 1 2

2 1 1 24 ( ) ( ) ( ) ( ) ( 1) ( ) [( 1) ( ) 2(4 1)( ) ]n
n n n n n nxj x j x j x j x x j x x j x x x 
            . 

 
 Combining the two cases, we get 
 

 2 4 2 1 2
2 1 1 24 ( 1) [( 1) 2( ) ]n

n n n n n nxc c c c x c x c x c           .                (6) 
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 This implies 
 

4 2 2
2 1 1 28 9 [ ( 2) (2)]n

n n n n n nC C C C C C c         . 

 
 Next we investigate the consequences of identities (1) and (2) to the Vieta 
and Chebyshev subfamilies. In the interest of brevity, we omit all details. 
 
4. Vieta and Chebyshev Implications 
 

 Using the relationships 1 ( )( ) n
n nV i ix f x   and ( ) ( )n

n nv x i l ix  , they 

yield 
 

 2 2 4 1 2 2 4 2 2 2 2
2 2 12( ) ( 1) [( 1) 2 ]n

n n n n nd d x d d x d x d x d
        ; 

 2 2 2 4 2 2 2 2
2 1 1 24 ( 1) [( 1) 2 ]n n n n n nx d d d d x d x d x d          ; 

 2 2 4 2 2 2 4 2 2 2 2
2 2 1 12( 16 ) (4 1) [(4 1) 8 ]n n n n n ne e x e e x e x e x e         ; 

 2 2 2 4 2 2 2 2
2 1 1 216 (4 1) [(4 1) 8 ]n n n n n nx e e e e x e x e x e          , 

where 
 

2 2

1  if  1  if 

4  if  ; 4   if  ;

n n n n

n n n n

d V d V
d d

x d v x d v


       
       

 

 

2 2

1  if  1  if 

1  if  ; 1   if  .

n n n n

n n n n

e U e U
e e

x e T x e T


       
       

 

 
5. Graph-theoretic Interpretations 
 
 Next we interpret identities (1), (2), (5), and (6) using digraphs. To this end, 
first we lay some basic ground work. 
 

 5.1 Fibonacci Digraph: Consider the digraph 1D  in Figure 1 with two 

vertices 1v  and 2v , where a weight is assigned to each edge [9, 10]. Its weighted 

adjacency matrix Q is given by 
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Figure 1: Weighted Digraph 1D   

 

1
,

1 0

x
Q

 
   
    

 
where  ( )Q Q x . It then follows by induction that 

 
 

1

1

,
n nn

n n

f f
Q

f f




 
   
  

 

where 1n   . 

 

 A walk from vertex iv  to vertex jv  is a sequence 

1 1 1· · ·i i i j j jv e v v e v         of vertices kv  and edges ke , where edge ke  is 

incident with vertices kv  and 1kv  . The walk is closed  if i jv v ; otherwise, it is 

open. The length of a walk is the number of edges in the walk. The weight of a walk 

is the product of the weights of the edges along the walk. 
 
 The following theorem gives a mechanism for computing the weight of a 

walk of length n from any vertex iv  to any vertex jv
 
[5, 10]. 

 

 Theorem 1: Let A be the weighted adjacency matrix of a weighted  

and connected digraph with vertices 1 2,   ,  . . . ,   kv v v . Then the ijth entry of 

the matrix nA gives the sum of the weights of all walks of length n from iv  to 

jv , where 1n  .             □ 

  
 The next result follows from this theorem. 
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 Corollary 1: The ijth entry of nQ gives the sum of the weights of all 

walks of length n from iv  to jv  in the weighted digraph 1D , where 

1 ,  i j n  .                           □ 

 

 It then follows that the sum of the weights of all closed walks of length n 

originating at 1v  is 1nf  , and that of walks of length n originating at 2v  is 1nf  . So 

the sum of the weights of all closed walks of length n is 1 1n n nf f l   . 

 
 We are now ready for the interpretations. 
 

 5.2 Identities (1) and (2): Case 1: Let n ng f . By Corollary 1, the sum of 

weights of the closed walks x of length n from 1v  to 1v  is 1nf  , and that of the walks 

y of length 1n   from 1v  to 2v  is 1nf  . So the sum of the weights of pairs ( ),x y  of 

such walks is 1 1 1n nS f f  . 

 

 Similarly, let v be an arbitrary closed walk of length 1n   originating at 1v , 

and w an arbitrary walk of length 2n   from 1v  to 2v . Then 2 2 2n nS f f   gives 

the sum of the weights of pairs ( ),v w  of such walks. 

 
 Thus, by the Catalan identity, we have 
 

         
4 2 2 4 2

1 2 1 1 2 2( ) ( )2n n n nx S S x f f f f        

   
4 2 2 2 2 2[ ( 1) ] [ ( 1 ])n n

n nx f f x        

   
4 4 2 2 2 4( 1) 2( 1) ( 1) 2n

n nx f x x f x        

    
4 2 2 4 4 2 2 2 4

1 22( ) 2( 1) 4( 1) ( 1) 4n
n nx S S x f x x f x         

   
2 4 2 2 2 2( 1) [( 1) 2( 1) ]n

n nx f x f x      ; 

                   1 2 1 1 2 2( )( )n n n nS S f f f f      

   
2 2 2[ ( 1) ][ ( 1) ]n n
n nf f x       
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4 2 2 2( 1) ( 1)n
n nf x f x       

             
2 2 4 2 2 2 4

1 24 4 4( 1) ( 1) 4n
n nx S S x f x x f x       

   
2 2 4 2 2 2 2( 1) [( 1) 2( 1) ]n

n nx f x f x       , 

as expected. 
 

 Case 2: Let n ng l . Again, by Corollary 1, the sum of the weights of the 

closed walks x of length 1n   in the digraph is 1nl  , and that of those y of length  

1n   is 1nl  . So the sum of the weights of the pairs ( ),x y  of such walks is  

1 1 1n nS l l  . Likewise, 2 2 2n nS l l   gives the sum of the weights of pairs ( ),v w   

of closed walks v of length 2n   at 1v  and closed walks w of length 2n   at 2v . 

 
 Then 
 

         4 2 2 4 2 2
1 2 1 1 2 2( ) ( )n n n nx S S x l l l l       

   
4 2 2 2 2 2[ ( 1) ] [ ( 1) ]n n

n nx l l x         

   
4 4 2 2 2 2 4( 1) 2( 1) ( 1) 2n

n nx l x x l x         

                4 2 2 4 4 2 2 2 2 4
1 22( ) 2( 1) 4( 1) ( 1) 4n

n nx S S x l x x l x          

   
2 2 4 2 2 2 2( 1) [( 1) 2( 1) ] ;n nx l x l x       

      1 2 1 1 2 2( )( )n n n nS S l l l l      

   
2 2 2[ ( 1) ][ ( 1) ]n n
n nl l x       

   
4 2 2 2 2( 1) ( 1)n
n nl x l x        

             
2 2 4 2 2 2 2 4

1 24 4 4( 1) ( 1) 4n
n nx S S x l x x l x        

   
2 2 4 2 2 2 2( 1) [( 1) 2( 1) ]n nx l x l x      , 

as desired. 
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 Next we give graph-theoretic interpretations of identities (5) and (6). To 
interpret them, we employ an appropriate digraph. 
 

 5.3 Jacobsthal Digraph: Consider the weighted digraph 2D  in Figure 2 

[10]. Its weighted adjacency matrix is 
 

 
Figure 2: Jacobsthal Digraph 2D  

 

1
,

1 0

x
M

 
   
    

 Then 

1

1

( ) ( )
,

( ) ( )
n nn

n n

J x xJ x
M

J x xJ x




 
   
  

 

where 1n   . 
 

 The sum of the weights of the closed walks of length n originating at 1v  in 

2D  is 1( )nJ x , and that of those originating at 2v  is 1nxJ  . Consequently, the sum 

of all closed walks of length n in the digraph is 1 1( ) ( ) ( )n n nJ x xJ x j x   . As 

before, these facts play a pivotal role in the graph-theoretic pursuits. 
 

 5.4 Identities (5) and (6): Case 1: Suppose ( )n nc J x . The sum of the 

weights of the walks   of length 1n   from 2v  to 1v  is 1( )nJ x , and that of closed 

walks   of length n originating at 1v  is 1( )nJ x . So the sum of the weights of pairs 

( , )   of such walks is 1 1 1  ( ) ( )n nS J x J x  . 

 

 The sum of the weights of the walks v of length 2n   from 2v  to 1v  is

2( )nJ x , and that of walks w of length 1n   from 1v  to itself is 2( )nJ x . 

Consequently, the sum of the weights of pairs ( ),v w  of such walks is

2 2 2( ) ( )n nS J x J x  . 
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 By the Catalan-like identity 2 2( ) ( ) ( )n k
n k n k n kJ x J x J x J
       , we then 

have 

         
2 2 2 2 2 2
1 2 1 1 2 2[ ( ) ( )] [ ( ) ( )]n n n nS x S J x J x x J x J x       

   
2 1 2 2 2 2 2[ ( ) ( ) ] [ ( ) ( ) ]n n
n nJ x x x J x x         

   
2 4 1 2 2 2( 1) ( ) 2( 1)( ) ( ) 2n n

n nx J x x x J x x         

                2 2 2 2 4 1 2 2 2
1 22( ) 2( 1) ( ) 4( 1)( ) ( ) 4n n

n nS x S x J x x x J x x          

   
2 4 2 1 2( 1) ( ) [( 1) ( ) 2( ) ] ;n

n nx J x x J x x        

      1 2 1 1 2 2( ) ( ) ( )[ ( )][ ]n n n nS S J x J x J x J x      

   
2 1 2 2[ ( ) ( ) ][ ( ) ( ) ]n n
n nJ x x J x x       

   
4 2 2 2 3( ) ( 1)( ) ( ) ( )n n
n nJ x x x J x x         

             
4 1 2 2 2

1 24 4 ( ) 4( 1)( ) ( ) 4( )n n
n nxS S xJ x x x J x x         

   
2 4 2 1 2( 1) ( ) [( 1) ( ) 2( ) ]n

n nx J x x J x x       , 

as desired. 
 

 Case 2: Let ( )n nc j x . The sum of the weights of closed walks   of length 

1n   in 2D  is 1( )nj x , and that of those   of length 1n   is 1( )nj x . So the sum 

of the weights of pairs ( , )   of such walks is given by 1 1 1( ) ( )n nS j x j x  . 

Likewise, the sum of the pairs ( ),v w  of closed walks is 2 2 2( ) ( )n nS j x j x  ,  

where v is an arbitrary closed walk of length 2n   and w an arbitrary closed walk  

of length n  2. 
 

 By the Catalan-like identity  2 2( ) ( ) ( )n k
n k n k n kj x j x j c x J
       , we  

then have 

         2 2 2 2 2 2
1 2 1 1 2 2[ ( ) ( )] [ ( ) ( )]n n n nS x S j x j x x j x j x       

   
2 1 2 2 2 2 2[ ( ) ( ) ] [ ( ) ( ) ]n n
n nj x c x x j x c x         
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2 4 1 2 2 2 2( 1) ( ) 2 ( 1)( ) ( ) 2n n

n nx j x c x x j x c x         

                2 2 2 2 4 1 2 2 2 2
1 22( ) 2( 1) ( ) 4 ( 1)( ) ( ) 4n n

n nS x S x j x c x x j x c x          

   
2 4 2 1 2( 1) ( ) [( 1) ( ) 2 ( ) ] ;n

n nx j x x j x c x        

      1 2 1 1 2 2( ) ( ) ( )[ ( )][ ]n n n nS S j x j x j x j x      

   
2 1 2 2[ ( ) ( ) ][ ( ) ( ) ]n n
n nj x c x j x c x       

   
4 2 2 2 2 3( ) ( 1)( ) ( ) ( )n n
n nj x c x x j x c x         

             
4 1 2 2 2 2

1 24 4 ( ) 4 ( 1)( ) ( ) 4 ( )n n
n nxS S xj x c x x j x c x         

   
2 4 2 1 2( 1) ( ) [( 1) ( ) 2 ( ) ]n

n nx j x x J x c x       , 

 
again as expected, where (4 1)c x  . 
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FIBONACCI SEQUENCES 
 

 

 

Abstract: Sequence has been most interesting and fascinating topic for 
Mathematician and research scholars for centuries. The Fibonacci sequence 
is the source of many acceptable interesting identities. In this paper, 
Coupled Fibonacci Sequences involve two sequences of integers in which 
the elements of one sequence are part of the generalization of the other  and 
vice-versa .We present some results of multiplicative triple Fibonacci 
Sequences of second order under one specific schemes. 
 
Keywords: Fibonacci sequence, Multiplicative Triple Fibonacci Sequence. 
 
Mathematical Subject Classification: 11B39, 11B37. 

 
1. Introduction 
 
 Triple Fibonacci Sequence gave a new path in generalization of coupled 
Fibonacci Sequences. It is most interesting and fascinating topic and much work has 
been done on  Fibonacci sequence. Fibonacci sequence first introduced by J. Z. Lee 
and J. S. Lee [1]. He described new ideas for Fibonacci-Triple Sequence involves 
three sequences or 3-F Sequences. 
 
 The Fibonacci–Triple Sequence involves three sequences of integers in 
which the elements of one sequence are part of the generalization of the other and 
vice-versa. J. Z. Lee and J. S. Lee first introduced additive triple Fibonacci sequence. 
He described specific scheme and derived recurrent formula. In [2] and [3], B. Singh 
and O. Sikhwal have studied multiplicative coupled Fibonacci Sequences and 
additive Fibonacci triple sequences with some fundamental properties. 
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2. Fibonacci-triple Sequence of Second Order 
 

 Fibonacci Triple sequence is the explosive development in the region of 

Fibonacci sequence. Let  
0iiP ,  

0iiQ
 
and   

0iiR , be three infinite sequences  

and six arbitrary real numbers a, b, c, d, e and f be given. Then J. Z. Lee and  
J. S. Lee [2] defined following nine deferent schemes of multiplicative triple 
Fibonacci sequences are as follows:   
 

 First scheme      Second Scheme       Third Scheme 
 

 nnn

nnn

nnn

QPR

PRQ

RQP

12

12

12













              

nnn

nnn

nnn

PQR

RPQ

QRP

12

12

12













                  

nnn

nnn

nnn

PRR

RQQ

QPP

12

12

12













 

 

 Fourth Scheme       Fifth Scheme         Sixth Scheme 
 

 nnn

nnn

nnn

RPR

QRQ

PQP

12

12

12













             

nnn

nnn

nnn

QRR

PQQ

RPP

12

12

12













                   

nnn

nnn

nnn

RQR

QPQ

PRP

12

12

12













 

 

 Seventh Scheme      Eighth Scheme           Ninth Scheme 
 

 nnn

nnn

nnn

RRR

QQQ

PPP

12

12

12













              

nnn

nnn

nnn

PPR

RRQ

QQP

12

12

12













                 

nnn

nnn

nnn

QQR

PPQ

RRP

12

12

12













 
 

 Now we obtain some results of multiplicative triple Fibonacci sequence of 
second order for Eighth scheme. 
 

3. Main Results 
 

 First few terms of eighth schemes are as follows: 
n 

nP  nQ  nR  

0 a b c 

1 d e f 

2 be cf Ad 

3 cef adf Bde 

4 acdf2 abd2e bce2f 

5 a2bd2e b2cde3f ac2df3e 
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 If we set     a = b = c   and  d = e = f  then the following result is true. 
 

 Theorem (3.1): For every integer 0n  
 

(a) 3
3226   nnnn RQPP , 

(b) 3
3226   nnnn PRQQ  

(c) 3
3226   nnnn QRPR

 
 
 Proof: We prove the above results by induction method. 
 
 (a)  If n = 0 then 
 

                  
     2

2
342334456 .... RRRRRRRQQP               (By Eighth Scheme) 

 

                        =     01

2

1223 .... PPPPPP                                        (By Eighth Scheme) 

 

                        =    0

2

12123 ... PPPPPP                                             (By Eighth Scheme) 

 

                        =   0
3
312 ... PRQQ                                                      (By Eighth Scheme) 

 

                        =   0
3
312 ... QRQQ                                                    (By Induction hypo.) 

 

                        =   ... 3
3012 RQQQ                                                     (By Eighth Scheme) 

 

                        = 3
322 .. RPQ

 
 

                  
3
3226 .. RQPP 

 
 
 Thus, the assume that the result is true for some integer 0n . 
 

 Let us assume that the result is true for some integer 1n .  
  

 Then 
 

              
     3

2
453445567 ....   nnnnnnnnnn RRRRRRRQQP

       

                   
(By Eighth Scheme) 
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                        =     12

2

2334 ....  nnnnnn PPPPPP
                     

(By Eighth Scheme) 

 

                        =    1

2

23234 ...  nnnnnn PPPPPP
                        

(By Eighth Scheme) 

 

                        =   1
3

423 ...  nnnn PRQQ
                                          

(By Eighth Scheme) 

 

                        =   ... 3
4123  nnnn RPQQ

                                         
(By Eighth Scheme) 

 

                        =   ... 3
4123  nnnn RQQQ

                                        
(By Induction hypo.) 

 

                       
... 3

433  nnn RPQ
                                                   

(By Eighth Scheme) 

 

               
3

4337   nnnn RQPP
 

 

 Hence result is true for all integers n ≥ 0  similar proofs can be given for 

remaining parts (b) and (c). 
 

 Theorem (3.2): For every integer 0n  
 

  nn FF
nnn RQPRQPRQP 111000 .)( 1

. 
 

 Proof: To prove this, we shall use induction method. 
 

              If n = 1 the result is obviously true, since 

 

                   11 1
1 1 1 0 0 0 1 1 1 1 1 1( ) . .

FFPQ R PQ R PQ R PQ R 
  

 

 Now suppose that the result is true for some integer n ≥ 0 .  Then 

 

          
   111111   nnnnnnnnn PPRRQQRQP

                        
(By Eighth Scheme)  

                          

                                  nnnnnn RQPRQP .111 
 

 

                                
        nnnn FFFF

RQPRQPRQPRQP 111000111000
112 .. 

  

                  
(By Induction hypo.)
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    112

111000 .  
 nnnn FFFF

RQPRQP
 

 

                                
    1

111000 .  nn FF
RQPRQP

 
 

 Hence, by induction method result is true for all 1n . 
 
 Theorem (3.3): For every integer 0n  
 

   11120001222 . RQPFRQPFRQP nnnnn  
 

 

 Proof: The statement is obviously true if n = 0 and n = 1. let us assume that 

the statement is true for all integers less than or equal to some integer n ≥ 0.  Then by 

(ninth scheme): 
 

      121212333   nnnnnnnnn PPRRQQRQP                       (By Eighth scheme) 
 

                           =   111222  nnnnnn RQPRQP
 

 

                           =         111100011120001 ......].......[ RQPFRQPFRQPFRQPF nnnn    
                (By ind. hypo.) 
 

       00021113333 ..... RQPFRQPFRQP nnnnn  
 

 

 Hence, the statement is true for all integers n ≥ 0. 

 
4. Conclusion 
 
 Much work has been done on multiplicative coupled and triple Fibonacci 
sequences. In this paper, we have described some results of multiplicative triple 
Fibonacci sequence of second order under one specific scheme. 
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STUDY OF SOME ASPECTS  
OF GRAPH ISOMORPHISM  
 

 

 

 
Abstract: Mathematical modeling and simulation for the graph 
isomorphism problems is to apply whether two graphs are isomorphic or not 
isomorphic. Finding a simple and efficient criterion for detection of 
isomorphism is still actively pursued and is an important unsolved problem 
in graph theory. In this paper, we will present a review in the form of a 
general comparative study of some aspects of graph isomorphism [1, 3, and 
5]. We will also discuss graph isomorphism problem with impetus of 
Markovian property [1, 4] using MATLAB. 
 
Keywords: Graph Isomorphism, Mathematical Modeling and Simulation, 

Markovian Property. 
 
Mathematical Subject Classifications (2010) No.: 60A05, 60C05, 60E05, 

68R10, 05C10, 97K30. 
 

1. Introduction 
 
 Two graphs H1 and H2 are isomorphism or not can be determined by the 
many methods. There is some necessary and sufficient condition for graph 
isomorphism. Necessary condition for two isomorphism- (1) V (H1) = V (H2),  
E (H1) = E (H2), Degree sequence of H1 and H2 are same (The degree sequence of a 
graph is the sequence of the degrees of the vertices in ascending order). Sufficient 
condition is [3, 5] 
 

(1) Adjacency matrix of H1 and H2 are same. 
 

(2) All column vector of ��
� [x] are different in Probability Distribution Matrix. 
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2. Illustrative Example 
 
 Example 1: Show the graphs H1 and H2 are isomorphism or not. 

 
���� 

 

Now check above given all condition [2, 5] 
 

(i) V(H1) = (1, 2, 3, 4, 5, 6),  E(H1) = (9) 
 
(ii) V(H2) = (1, 2, 3, 4, 5, 6),  E(H2) = (9) 
 
(ii) Degree sequence  �� = (3,3,3,3,3,3) 
 

  �� = (3,3,3,3,3,3) 
 

(iii) Adjacent matrix of both graphs 
  
(iv) A1 = PA2P

-1, where P is the permutation matrix. 
 

�� =   

0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 1 0
1 0 1 0 0 1
1 0 1 0 0 1
0 1 0 1 1 0

   and  �� =    

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 

 
 Now we find permutation matrix, cycle of the given graphs are: 
 

α = (1 2 3 4 6 5), (1 4 3 6 2 5) 
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� =  

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0

    and    ��� =  

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

 

 
 We get the result by given formula: 

 
�� = ����

�� 
 By use the MATLAB, 

 
 Now check above given all condition [2, 5] 

 
(i) V(H1) = (1, 2, 3, 4, 5, 6), E(H1) = (9) 

 
         V(H2) = (1, 2, 3, 4, 5, 6), E(H2) = (9) 
 

(ii) Degree sequence– �� = (3,3,3,3,3,3) 
 

�� = (3,3,3,3,3,3) 
 

(iii) Adjacent matrix of both graphs- 
  
(iv) A1 = PA2P

-1, where P is the permutation matrix. 
 

�� =   

0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 1 0
1 0 1 0 0 1
1 0 1 0 0 1
0 1 0 1 1 0

      and   �� =   

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

 

 
 Now we find permutation matrix, cycle of the given graphs are: 
 

α = (1 2 3 4 6 5), (1 4 3 6 2 5) 
 

� =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0

     and   ��� =  

1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
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 We get the result by given formula: 
 

�� = ����
�� 

  
 By use the MATLAB, 
 

PA�P
�� =    

0 1 0 1 1 0
1 0 1 0 0 1
0 1 0 1 1 0
1 0 1 0 0 1
1 0 1 0 0 1
0 1 0 1 1 0

 

 
 We get that the given graphs H1 isomorphic to H2. 

 

(v) Now by ��� =  
���

��
�  

         When using the degree invariance, the multisets of  
dgr(H1) = {{3, 3, 3, 3, 3, 3}} respectively dgr(H2) = {{3, 3, 3, 3, 3, 3}}, we get  
dgr(H1) = dgr(H2). According to the degree invariance the graphs are isomorphic. 

 PAU1 = (Q1, ∑, M1, Γ1) by graph H1 and the probability distribution matrix 
D1 is shown below: 

D1 =  

0
�

�
0

�

�

�

�
0

�

�
0

�

�
0 0

�

�

0
�

�
0

�

�

�

�
0

�

�
0

�

�
0 0

�

�
�

�
0

�

�
0 0

�

�

0
�

�
0

�

�

�

�
0

 

 
 

 Let state 2 of U1 is selected as the initial state. 
 
 Then the initial state distribution vector Γ1 is,   
 

Γ1 =  �
�

�

�

�

�

�

�

�

�

�

�

�
� 
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 The probability distribution vector ��
�(x) for some string x are computed as 

follows: 
 

��
�(ε) = ��

�.M1 (ε) 

��
�(α) = ��

�.M1 (α) 

��
�(α2) = ��

�.M1(α
2) 

.

.

.
 

 

 If ��
�,�

[x] ≠ ��
�,�[x] for a fixed i, where 1 ≤ i, k ≤ n and j ≠ �. The entire 

column vectors of ��
� [x] are different. Since all the states in U1 are “distinguishable” 

after PAU1 reach string a3, we only to compute ��
�[��] 

 
 

��
�[��] =

0

1

1

1

0

1

0

1

0

1

0

1
1

3

0

3

1

3

0

3

0

3

1

3
0

3

1

3

0

3

1

3

1

3

0

3
1

3

0

3

1

3

0

3

0

3

1

3

 

 

 
�� 

 

 Similarly to the approach taken as above, the corresponding  
PAU2 = (Q2, ∑, M2, Γ2) and its probability matrix is computed. Suppose that state 2 
in U2 is selected as the initial state [1, 4]. 
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��
�[��] =

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

 

 

 
U2 

 We can find that the ��
�[��] is isomorphic to ��

�[��] . 
 
3. Conclusion 
 
 In this paper we have presented an invariant for graphs. This 
invariantconsists simultaneously of information about the adjacency condition and 
degrees of vertices using this invariant. In this direction, the generalized heuristic 
program by using probability propagation matrix invariance criterion will decrease 
the existence of graphs for which the invariances will not work [1, 4]. 
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Abstract: In this note we give an equivalent condition for Transitive 
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deduce it by using important results in classical complex function theory. 
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1. Introduction 
 
 Let   be a plane domain of finite connectivity. Further we assume that   is 
also a smooth and bounded open set in  . Therefore, by our assumption the 

complement of   in   contains n-connected components and the boundary of 

( )   is the union of n-smooth 1C  Jordan curves.  

 
 A conformal automorphism on   is a one-to-one and on-to holomorphic 

map :    with 1 . Under the composition of mappings, the automorphisms 

of   form a group. We denote it by ( )Aut  . This is a topological group with the 

topology of uniform convergence on compact sets. 
 

 Let 0z    . The isotropy group 0zI  of 0z  in ( )Aut  , is defined by 

 

0 0 0( ) : ({ ) }zI Aut z z     
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 Here 0z  is called a fixed point of the automorphism  . 

 
 The group of automorphisms of   is said to be transitive if ,  p q   , there 

is an automorphism   such that ( )p q  . 

 
 There are several interesting results in classical complex analysis, the 
conditions under which a given domain   is conformally equivalent to the unit disk. 
 
 In this note we relate these results to give an equivalent condition for 
transitive automorphism group of  . 
 
 We prove the following: 
 

 Theorem 1. Let   be a smooth and bounded domain of finite 

connectivity. Let z   . Then zI  is infinite if and only if Aut( ) is transitive 

group. 

 
2. Preliminaries 
 

 It is known that Aut( ) for a finitely connected domain with connectivity  

> 2 is finite. Therefore, for such domains neither zI  is infinite for z    nor  

Aut( ) is transitive. In fact, for such domains the number of proper holomorphic 

maps is also finite. For more details see [1], [2], [3]. So, It is enough to show  
it for the domains of connectivity 2 . Since   is bounded and simply  

connected domain in  , by Riemann mapping theorem it is conformally  
equivalent to the unit disc. If it is doubly connected then it is conformally equivalent 

an annulus ( , )A r R . Two annuli 1 1( , )A r R  and 2 2( , )A r R  are conformally  

equivalent if 1 1 2 2/ /R r R r . 

 
 The following result is proved by Aumann and Carathedory [5]. 
 

 Theorem 2: Let   be a bounded planar domain. Let 0z   . If 0zI  is 

infinite then   is conformally equivalent to the unit disk  . 

 
 The following is another interesting result stated with an elementary proof  
in [4]. 
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 Theorem 3: Let   be a smooth and bounded domain in   with finite 

connectivity. If   has transitive automorphism group then   is conformally 

equivalent to the unit disk  . 

 
 The extension of the Theorem 3 to higher dimensions known as Bun Wong-
Rosay Theorem. 
 
 First we see the automorphisms of   which have 0 as fixed point. This gives 

the description of the Isotropy group 0I  of Aut( ). 

 

 Theorem 4: Suppose   is an automorphism on   and  (0) 0  . Then 

 
( )z z   

for some     with 1  . 
 

 Proof: By Schwarz`s lemma (0) 1  . Since 1( ),Aut    also 

belongs to ( )Aut   and  1(0) 0  . Once again by Schwarz`s lemma 

 
1)( (0) 1    

 Since 
1( ) and ( ( )) ( )z z z z z     

 
 

 It follows that 

( )
1 for all z

z

z


   

 

 Then  ( )z z   for some     with 1   which is a rotation. 

 

 This can also be arrived by using chain rule on 
 

1( ( ))z z    

to obtain 

1 1
( ) (0)

(0)
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 So, we must have 
 

(0) 1   

 

Then  ( )z z   for some      with 1   which is a rotation.                      □ 

 

 It follows that 0I  is infinite in ( )Aut  . 

 
3. Proof of Theorem 1 
 
 Proof: Let   be a smooth and bounded plane domain with finite 

connectivity. Let z     and the Isotropy group zI , of z  is infinite. Then by 

Theorem 2,   is conformally equivalent to the unit disk. Let :f    be a 

biholomorphic map. 
 
 We know that the ( )Aut   consists of the rotations 
 

( ) , 0 2iz e z      

 
and the Moebious transformations of the form 
 

( ) , 0 1
1

a
z a

z a
az




  


 

 
and also the composition of the above mappings. 
 
 Let ,p q   . Suppose ( )f p a  and ( )f q b  with ,a b  . 
 

 Then there is an automorphism (for example) 1
b ag     maps a to b. 

 

 Then 1f g f    is an automorphism of   which maps p to q. Hence, it 

proves one part of the result. 
 
 Conversely, assume that ( )Aut   is transitive. This implies by Theorem 3,   

is  conformally equivalent to the unit disk. Let :f    be a biholomorphic map. 

Once again it is enough to prove that the Isotropy group aI  in ( )Aut   is infinite. Let 

0z    and 0( )f z a . We show that aI  in ( )Aut   is infinite. 
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 Since the automorphism group is transitive there are automorphisms ,    

which map a to 0 and 0 to a respectively. It is easy now to verify that there are 

infinitely many automorphisms of the form      where   is a rotation. All 

these automorphisms have a has a fixed point. This completes the proof of the 
theorem.            □ 
 

 The proof motivates to state separately the following point. 
 

 Let   be a bounded domain. Then ( )Aut   is transitive if and only if 

there is a point p    such that for every q     there is an automorphism   

of  , with ( ) .q p    

 
4. Concluding Remarks 
 
 These algebraic properties play a considerable role in studying some of the 
topological and geometric properties of automorphism groups. Here is an instance the 
transitive property of ( )Aut   can be applied to construct an example. 

 

 The following result was proved by H. Cartan, and quite useful to 
characterize a non-compact automorphism group of a bounded domain. The topology 
is understood to be the open compact topology or often analysts say it topology of 
uniformly convergence on compact sets. 
 

 Theorem 5: Let    be a bounded domain in  . The ( )Aut   is 

noncompact if and only if there exists a point p     and q on the boundary 

of    such that 

lim ( )k
k

p q



 

 

where k  is a sequence of automorphisms on  . 

 

 The automorphism group of the unit disk is non-compact. We can apply 
Theorem 5 and use the transitive property of the ( )Aut   to construct a sequence 

( )k  as follows: 

lim (0) 1k
k




  

where 

 
1

(0) 1k
k
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1. Introduction 
 

The concept of soft set theory was introduced by Molodtsov [10] as a general 
mathematical tool for dealing with problems that contains uncertainty. In 2011, 
Shabir and Naz [15] initiated the study of soft topological spaces and derived their 
basic properties. Singal and Arya [16] have introduced the concept of almost regular 
spaces and obtained several properties. Recently, Guler and Kale [3] introduced the 
notion of soft I-regular spaces. The main aim of this paper is to introduce a new soft 
separation axiom called soft almost I-regularity which is a weak form of soft  
I-regularity and investigate some of their properties and characterizations.       
 
2. Preliminaries 
 
   Throughout this paper X denotes a nonempty set, E denotes the set of 
parameters and  S(X, E) denotes the family of soft sets over X. For definition and 
basic properties of soft sets, reader should refer [1, 6, 8, 10, 12, 15, 17]. 
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 Definition 2.1: [15] A subfamily τ of S (X, E) is called soft topology on X if: 
 

 (a) ϕ�, X�  belongs to τ. 

 (b) The union of any number of soft sets in τ belongs to τ. 

 (c) The intersection of any two of soft sets in τ belongs to τ. 
 
 The triplet (X, τ, E) is called a soft topological space over X. The members of 
τ are called soft open sets in X and their complements called soft closed sets in X. 
 
 Lemma 2.1: [15] Let(X, τ, E) be a soft  topological space. Then the collection 
�� = {F (�) : (F, E)  (∈  τ)}  for each � ∈ E, defines a topology on X. 
 
 Definition 2.2: [15] In a soft topological space(X, τ, E)the intersection of all 
soft closed super sets of (F, E) is called the soft closure of (F, E). It is denoted by 
Cl(F, E). 
 
 Definition 2.3: [17] In a soft topological space(X, τ, E)the union of all soft 
open subsets of (F, E) is called soft interior of (F, E). It is denoted by Int (F, E). 
 
 Lemma 2.2: [15, 17] Let (X, τ, E) be a soft topological space and let 
(F, E), (G, E) ∈ S (X, E). Then: 
 

(a) (F, E) is soft closed if and only if (F, E) = Cl(F, E) 
 
(b) If (F, E) ⊆  (G, E), then Cl (F, E) ⊆ Cl(G, E). 
 
(c) (F, E) is soft open if and only if (F, E) =Int (F, E). 
 
(d) If (F, E) ⊆ (G, E), then Int (F, E) ⊆ Int (G, E). 
 
(e) (Cl (F, E))� = Int ((F, E)�). 
 

(f) �Int (F, E)�
�
= Cl ((F, E)�). 

 
 Definition 2.4: [4] Let (X, τ, E) be a soft topological space over X and Y be a 
nonempty subset of X. Then τ� = {(F�, E) : (F, E) ∈ τ } is said to be the soft relative 
topology on Y and (Y, τ�, E) is called a soft subspace of (X, τ, E). 
 
 Lemma 2.3: [4] Let (Y,τ�,E) be a soft subspace of a soft topological space 
(X, τ, E) and (F, E)  be a soft open set in Y. If Y� ∈ τ then (F, E) ∈ τ . 
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 Lemma 2.4: [4] Let (Y, τ� , E) be a soft topological subspace of a soft 
topological space (X, τ, E)and (F, E)  be a soft set over X, then: 
 

(a) (F, E) is soft open in Y if and only if (F, E) = Y� ∩(G, E) for some soft 
open set (G, E) in X. 

 
(b) (F, E) is soft closed in Y if and only if (F, E) = Y �∩(G, E) for some soft 

closed set (G, E) in X. 
 
 Lemma 2.5: [14] Let (X, τ, E) be a soft topological space and (Y, τ�, E) be a 
soft subspace of (X, τ, E),then a soft closed set (F� , E) of Y is soft closed in X if and 
only if Y� is soft closed in X. 
 
 Definition 2.5: [2, 7] The soft set (F, E) ∈  S(X, E). is called a soft point, if 
there exists x ∈  X and e ∈ E  such that F (e) = {x} and F (e�) = ϕ for each 
 e� ∈ E {e}, and the soft point (F, E)  is denoted by ��. We denote the family of all 
soft points over X by SP(X, E). 
 

 Definition 2.6: [17] The soft point �� is said to be in the soft set (G, E) 
denoted by  �� ∈ (G, E)  if   �� ⊆ (G, E). 
 

 Lemma 2.6: [2, 11] Let (F, E), (G, E) ∈ S(X, E) and �� ∈  SP(X, E). Then we 
have: 

(a) �� ∈ (F, E) if and only if  �� (F, E)�. 
 

(b) �� ∈ (F, E) ∪ (G, E) if and only if  �� ∈ (F, E) or �� ∈ (G, E). 
 

(c) �� ∈ (F, E) ∩ (G, E) if and only if  �� ∈ (F, E) and �� ∈ (G, E). 
 

(d) (F, E) ⊆ (G, E)  if and only if  �� ∈ (F, E) implies �� ∈ (G, E). 
 

 Definition 2.7: [9] A soft set (F, E) in a soft topological space ( X, τ, E) is 
said to be soft dense in X, if  Cl(F, E) = X�  . 
 

 Definition 2.8: [13]  Let I be a non-empty collection of soft sets over X with 
the same set of parameters E. Then I∈ S(X,E) is said to be a soft ideal on X if, 
 

 (a) (F, E) ∈ I and (G, E) ∈ I implies (F, E) ∪ (G, E) ∈ I . 

 (b) (F, E) ∈ I and (G, E) ⊆ (F, E) implies (G, E) ∈ I. 
 

 A soft topological space (X, τ, E) with a soft ideal I is called soft ideal 
topological space and is denoted by ( X, τ, E, I). 
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 Definition 2.9: [5] Let ( X, τ, E, I) be a soft ideal topological space over 
Xwith the same set of parameters E. Then, 
 

(F, E) (I, τ) = ∪�{�� ∈ X � : (U, E) ∩ (F, E) I, ∀ (U, E) ∈ τ  contaning ��} 
  

is called the soft local function of (F, E) with respect to I and τ. 
 
 Definition 2.10: [5]  Let ( X,τ,E, I) be a soft  ideal topological space with the 
same set of parameters E and Cl: S(X, E) → S(X, E) be the soft closure operator such 
that Cl(F, E) = (F, E) ∪ (F, E) . Then, there exists a unique soft topology over X with 
the same set of parameters E, finer than τ, called the -soft topology, denoted by τ . 
 
 Lemma 2.7: [6] If I be a soft ideal on X and Y is a subset of X, then 
 I� = {Y� ∩ (I, E) : (I, E) ∈ I} is a soft ideal on Y. 
 
 Definition 2.11: [5] Let ( X, τ, E, I) be a soft ideal topological space over X 
with the same set of parameters E. Then,  
 
   β(I, τ) = {(F, E)-(G, E) ∶ (F, E) ∈ τ,(G, E) ∈ I} is a soft basis for the soft topology τ  
 
 Definition 2.12: [3] A soft ideal topological space (X, τ, E, I) is said to be a 
soft I-regular, if for every soft closed set (G, E) of X such that for each soft point 
�� (G, E) there exists disjoint soft open sets (U, E) and (V, E) and  such that 
�� ∈ (U, E), (G, E)  (V, E) ∈ I . 
 

3. Soft Almost I–Regular Spaces 
 
 Definition 3.1: A soft ideal topological space (X, τ, E, I) is said to be soft 
almost I-regular, if for every soft regular closed set (G, E) of X such that for each  
soft point �� (G, E) there exists disjoint soft open sets (U, E) and (V, E) such 
that �� ∈ (U, E), (G, E)  (V, E) ∈ I . 
 

 Remark 3.1: Every soft I-regular space is soft almost I-regular but the 
converse may not be true. For, 
 
 Example 3.1: Let (X, τ, E, I) be a softideal topological space where 
 

     X = {a, b, c}, E = {e�, e�}  τ = {ϕ, X,{(e�, {a}), ( e�, {b})},{(e1, {a, c}), ( e2, {b, c})}, 
                                                     {(e1, {a, b}), ( e2, {a, b})}}  and  
 

      I = {ϕ, {(e1, {b}), ( e2, ϕ)}, {( e1, ϕ), ( e2, {a})}, {( e1, {b}), ( e2, {a})}}.  
 

 Then (X, τ, E, I) is soft almost I-regular but not soft I-regular. 
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 Theorem 3.1: A soft ideal topological space (X, τ, E, I) is soft almost  
I-regular if and only if  (X, τ , E, I) is a soft almost I-regular. 
 
 Proof: Let (X, τ, E, I) be a soft almost I-regular spacesand (F, E) be a soft 
-regular closed set over X such that  �� (F, E). Since (F, E)� is a soft -regular 

open set, (F, E)� = (H, E)  (I, E) where (H, E) is soft regular open and (I, E) ∈ I. 
Then (H, E)� is a soft regular closed set such that  �� (H, E)�. Since (X, τ, E, I) is a 
soft almost I-regular, there exists disjoint soft open sets (U, E) and (V, E) such that 
�� ∈ (U, E),(H, E)� (V, E) ∈ I.Then ((F, E)  (I, E))-(V, E) ∈ I. By definition of 
soft ideal, (F, E)  (V, E) ∈ I. 
 

Conversely let  (X, τ , E, I)  be a soft almost I-regular spaces and (F, E) be a 
soft regular closed set over X such that �� (F, E). Since, τ ⊆ τ , (F, E) is a soft 
-regular closed set over X. By hypothesis, there exists soft -regular open sets, 

(U, E) and (V, E) such that �� ∈ (U, E) and (F, E)  (V, E) ∈ I. Since (U, E) is a soft 
-regular open set, (U, E) = (H�, E) (I�, E) where (H�, E) ∈ τ and (I�, E) ∈ I.  Then 

�� ∈ (H�, E). Similarly, (V, E) = (H�, E) (I�, E) where (H�, E) ∈ τ and (I�, E) ∈ I.  
By hereditary of  I,(F, E)  (H�, E) ∈ I. So, (X, τ, E, I) is soft almost I-regular. 

 

 Theorem 3.2: Let (X, τ, E, I) be a soft ideal topological space. Then the 
following conditions are equivalent: 
 

 (i) (X, τ, E, I)is soft almost I-regular. 
 

(ii) For each y ∈ Y and soft regular open set (U, E)containing ��, there is a 
soft open set (V, E) containing  �� such that Cl(V, E)  (U, E) ∈ I. 

 

(iii) For each x ∈ X and soft regular closed set (F, E) not containing �� , there 
is a soft open set (V, E) containing  �� such that Cl(V, E) ∩�  (F, E) ∈ I. 

 

 Proof: (i) 
.

⇒ (ii) Let y ∈ Y, and (U, E) be a soft regular open set 
containing ��. Then there exists disjoint soft open sets (V, E) and (W, E) such 
that �� ∈ (V, E) and (U, E)�  (W, E) ∈ I. Then (U, E)�⊆  (W, E) ∪ (I, E). Now 
(V, E) ∩� (W, E) =  implies that (V, E)  ⊆ (W, E)�  and so Cl(V, E) ⊆ (W, E)�. 
Hence, Cl(V, E)  (U, E)  ⊆ (W, E)� ∩� ((W, E) ∪ (I, E)) = (W, E)�  ∈ I. 
 

(ii) 
.

⇒ (iii)Let (F, E) be a soft regular closed set on X such that �� (F, E) . 
Then, there exists a soft open set (V, E)  containing   ��  such that  
Cl(V, E) (F, E)� ∈ I, which implies that Cl(V, E)∩� (F, E) ∈  I. 

 
 (iii) 

.
⇒ (i) Let (F, E) be a soft regular closed set on X such that �� (F, E) .  
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 Then there exists a soft open set (V, E) containing �� such that 
 
   Cl(V, E)∩� (F, E) ∈ I. IfCl(V, E)∩� (F, E) = (I, E) ∈ I , then 
 
(F, E)  (Cl(V, E))� = (I, E) ∈ I.(V, E)  and (Cl(V, E))�  are the required disjoint soft 
open sets such that  �� ∈ (V, E) and (F, E)  (Cl(V, E))�  ∈ I.  
 
 Hence, (X, τ, E, I) is soft almost I-regular. 
 
 Lemma 3.1: If (Y, E) is a soft dense subspace of a soft ideal topological 
space (X, τ, E, I) then, Int�Cl�(A)= Int(Cl(A))∩ Y . 
 
 Proof: Obvious. 
 
 Theorem 3.3: Let (X, τ, E, I) is a soft almost I-regular spaces and (Y, τ�, E, I) 
be a dense subspace ofX then(Y, τ�, E, I)is a soft almost IY-regular space. 
 
 Proof: Let y ∈ Y and (U, E) be a soft regular open set of Y containing  ��. 
Then  by “Lemma 3.1”, (U, E) = Int�Cl�(U, E) =  Int(Cl(U, E))∩ Y. 
 
 Thus, Int(Cl(U, E)) is a soft regular open set of X containing  ��.  
 
 Since (X, τ, E, I) is soft almost I-regular there exists a soft open set (V, E) 
containing  ��  such that  Cl(V, E) (U, E) ∈ I.  
 
 Consequently, (Cl(V, E)∩ Y) (U, E) ∈ I.  Hence, (Y, τ�, E, I) is soft almost 
IY-regular. 
 
 Lemma 3.2: If Y is a soft regular open subspace of X then every soft regular 
open subset of Y is soft regular open in X. 
 
 Theorem 3.4: Let (X, τ, E, I) is a soft almost I-regular spaces and Y is a soft 
regular open subspace of  (X, τ, E, I)  then (Y, τ�, E, I)is soft almost IY-regular. 
 
 Proof: Let (X, τ, E, I)is a soft almost I-regular spaces and let (Y, τ�, E, I)be a 
soft  regular open subspace of (X, τ, E, I). Let  (U, E) be a soft regular openset of 
Ycontaining  ��. Then by “Lemma 3.2”,  (U, E) be a soft regular open set of 
Xcontaining ��. Since (X, τ, E, I) is soft almost I-regular by, “Theorem 3.2”, there 
exists a soft open set (V, E) containing ��  such that Cl(V, E) (U, E) ∈ I.  
 
 Consequently,  Cl�(V, E) (U, E) ∈ I. Hence, (Y, τ�, E, I) is soft almost  
IY-regular. 
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Abstract: In this paper we introduce the concepts of upper and lower  

 -precontinuous intuitionistic fuzzy multifunctions from a topological 
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1. Introduction 
 

 After the introduction of fuzzy sets by zadeh [30] in 1965 and fuzzy 
topology by Chang [7], several research studies were conducted on the generalization 
of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy 
sets was introduced by Atanassov [1, 2, 3] as a generalization of fuzzy sets. In the 
last 32 years various concepts of fuzzy mathematics have been extended for 
intuitionistic fuzzy sets. In 1997 Coker [8] introduced the concept of intuitionistic 
fuzzy topological spaces as a generalization of fuzzy topological spaces. In 1999, 
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Ozbakir and Coker [21] introduced the concept intuitionistic fuzzy multifunctions 
and studied their lower and upper intuitionistic fuzzy semi continuity from a 
topological space to an intuitionistic fuzzy topological space. 

 
 Recently many weak and strong forms of upper and lower semi continuous 

Intuitionistic fuzzy multifunctions such as Intuitionistic fuzzy lower and upper  
 -continuous [16], Intuitionistic fuzzy lower and upper quasi continuous [29], 
Intuitionistic fuzzy lower and upper  -irresolute multifunction [23], Intuitionistic 
fuzzy upper and lower  -irresolute fuzzy multifunction [23], have been appeared in 
the liturecture. 

 
In this  paper we introduce and characterize the concepts of upper and lower 

-precontinuous intuitionistic fuzzy multifunctions from a topological space to an 
intuitionistic fuzzy topological space. 

 
2. Preliminaries 

 
Throughtout this paper (X, ) and (Y, ) represents a topological space and 

an intuitionistic fuzzy topological space respectively. The  -interior [20] of a subset 
A of X is the union of all regular open sets of x contained in A and is denoted by 

 -intA. A subset A of X is called  -open [20] if A =  -intA , i.e., a set is  -open 

if it is the union of regular open sets. The complement of a  -open set is called 

 -closed. A set A of (X, ) is  -closed [20], iff A =  clA, where 
 

 -clA={ xX:A (intcl )= ,U∈ � , xU}. 

 

 A subse A  of a  topological space (X, �) is said to be  -preopen [22] in X 

if A⊆ (���� ���). The family of all  -preopen sets in X  is denoted by  

 -PO(X)[22] ). The  -preinterior of a subset A [22] of X is defined to be the union 

of all  -preopen sets contained in A and is denoted by  -IntA.  
 

The complement of a  -preopen set is called  -preclosed [22]. The 

intersection of all  -preclosed sets containing A in X is called  -preclosure of A 

[22] and is denoted by  -pclA. A set A is  -preopen( -preclosed ) iff A = -pint 

A(resp. A = -pclA) [22]. A subset U of X is called a  -preneighbourhood [22] of a 

point xX, if there exists a -preopen set V in X such that xVU. 

 

Lemma 2.1: [26] Let A be a subset of a space (X, ) . Then A -PO(X) 

iff A∩U -PO(X) for each regular open  -open set U of X. 
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Lemma 2.2: [26] Let A and 0X  be subset’s of a space (X, ).  

If A -PO(X) and 0X  is  -open in (X, ) , then A ∩ 0X  - )( 0XPO . 

 

Lemma 2.3: [26] Let A  0X   X, if 0X  is  -open in (X, ) and  

A  - )( 0XPO , then A  -PO(X). 

 
 Definition 2.4: [1], [2], [3]  Let Y be a nonempty fixed set. An intuitionistic 
fuzzy set �� in Y is an object having the form  
 

�� = {< �, ���(�), ���(�) > ∶ � ∈ �}. 
  
where the functions ���(�) : Y → I and ���(�): Y → I denotes the degree of 
membership (namely ���(�)) and the degree of non membership (namely ���(�)) of 
each elemently � ∈ � to the set �� respectively, and  
 

0 ≤ ���(�) + ���(�) ≤ 1 for each  y ∈ Y. 
 
 Lemma 2.5: [9] For any two intuitionistic fuzzy sets � � and �� of Y, 
 

~(��q�� ) � � ⊂  �� �. 
 
 Definition 2.6: [8] An intuitionistic fuzzy topology on a non-empty set Y is a 
family � of intuitionistic fuzzy sets in Y which satisfy the following axioms:  
 

(a)   ��, 1� ∈ Γ, 

(b)  ��� ∩  � �
� ∈ �  for any   ���, ��� ∈ Γ, 

(c) ��� ∈ Γ for arbitrary family  {���: � ∈ �} ∈ � . 

 
 In this case the pair  (Y, �) is called an intuitionistic fuzzy topological  
space and each intuitionistic fuzzy set in Γ, is known as an intuitionistic fuzzy open 
set in Y.  
 
 The complement ��� of an intuitionistic fuzzy open set �� is called an 
intuitionistic fuzzy closed set is Y. 
 
 Definition 2.7: [8]  Let (Y, �) be an intuitionistic fuzzy topological space 
and � �  be an intuitionistic fuzzy set in Y. Then the interior and closure of �� are 
defined by:  
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 (a) cl(��)  = {��: ��    is an intuitionistic fuzzy closed set in Y and � �  ⊆  ��}. 
 
 (b) Int(��) = { �:� � � is an intuitionistic fuzzy open set in Y and �� ⊆  ��}. 
 
 Definition 2.8: [23] Let X and Y are two non-empty sets. A function    
F : ( X, �) → ( � , Γ)  is called intuitionistic fuzzy multifunctions, if  F( �) is an 
intuitionistic fuzzy set in Y,  ∀  � ∈ �. 
 
 Definition 2.9: [34] Let F:( X, �) → (�, � ) is an intuitionistic fuzzy 
multifunction and A be a subset of X, then  F(A) =   �(�).�∈�  
 
 Definition 2.10: [34]  Let    F : ( X, �) → (Y, Γ) be an intuitionistic fuzzy 
multifunction, then 
 
 (a)  A ⊆ � ⇒ �(�) ⊆ �(�) for any subsets A and B of X.  
 
 (b) �(� ∩ �) ⊆ �(�) ∩ �(�)for any subsets A and B of X.  
 
 (c) F( �� = { �(��) ∶ � � �}���  for any family of subsets in X.  
     {(��) ∶ ��Λ} in X. 
 
 Definition 2.11: [23] Let �: (�, �) → (�, �) is an intuitionistic fuzzy 
multifunction, then the upper inverse ��( �� ) and lower ��( �� ) of an intuitionistic 
fuzzy set  �� in Y are defined as follows:  
 
 (a) ��(� � ) ={  � ∈ � ∶ �(�) ⊆ (��  )} 
 

 (b) ������ = { � ∈ � ∶ �(�)� �}� 
 
 Lemma 2.12: [34] Let �: ( �, �) → (�, �) be an intuitionistic fuzzy 
multifunction and � �  , � �  bean  intuitionistic fuzzy  sets  in  Y.  
 
 Then 
   (a) ��(1�) = ��(1�) = X , 
 

  (b) ������ ⊆ ��(��) 
 

  (c) ����� � ��
�

= [������
�
]  

 

  (d) [������
�

= [������
�
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  (e) If �� ⊆ ��, then  ������ ⊆ ��(��) 
 

  (f) If  �� ⊆ � � , then  ������ ⊆ ��(� � ) 
 
 Definition 2.13: [23] An Intutionistic  fuzzy multifunction �(�, � ) → (�, �) 
is said to be:  
 

(a) Intuitionistic fuzzy upper semi -continuous at a point �� ∈ �, if for any 
intuitionistic fuzzy open set �� ⊂ � such that  �(��) ⊂ �� there exists an 
open set   U ⊂ � containing �� such �(�) ⊂ �.�  
 

(b) Intuitionistic fuzzy lower semi continuous at a point  �� ∈ � ,if for any 
intuitionistic fuzzy open set �� ⊂ �such that �(��)��� there exists an open 
set � ⊂ �  containing �� such that  �(�)���,  ∀ � ∈ �. 

 
(c)  Intuitionistic fuzzy upper semi-continuous (intuitionistic fuzzy lower semi-

continuous) if it is intuitionistic fuzzy upper semi-continuous (Intuitionistic 
fuzzy lower semi-continuous) at each point of X. 
  

3. Intuitionistic Fuzzy Upper(Lower) �-Precontinuous Multifunctions 
 

Definitions 3.1: An Intuitionistic fuzzy multifunction F : XY is said to be: 
 
(a) An Intuitionistic fuzzy upper  -precontinuous at a point xX if for 

each intuitionistic fuzzy open set V of Y with F )(x ⊆ V, there exists U -PO(X) 

such that xU, F(U) ⊆ V, 
 
(b) An Intuitionistic fuzzy upper  -precontinuous at a point xX if for 

each intuitionistic fuzzy open set V of Y with F )(x qV, there exists U -PO(X) 

such that xU, F(u)q V for all u   U. 
 
(c) Intuitionistic fuzzy upper  -precontinuous multifunctions if F has this 

property at each point xX. 
 
Theorem 3.2: For an intuitionistic fuzzy multifunction F : XY, the 

following statements are equivalent: 
 

(a) F is an intuitionistic fuzzy upper  -precontinuous. 
 

(b) )(VF    -PO(X) for any intuitionistic open set V of Y. 
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(c) F (V) is  -Preclosed in X for any intuitionistic closed set V of Y. 
 

(d)  -pcl ))(( BF   F (clB) for any intuitionistic fuzzy open set B of Y. 

 

(e) For each point x  X and each intuitionistic fuzzy neighbourhood V of 

( x ), )(VF   is a  -preneighbourhood of x . 

 

(f) For each pint xX and each intuitionistic fuzzy neighbourhood V of  

F )(x , there exists a  -preneighbourhood U of x  such that F(U) ⊆ V . 

 

(g) F (int B)  -pint F( (B)),for any intuitionistic fuzzy set B of Y. 

 

(h) F ( B)  int( cl F( (B))),for any intuitionistic fuzzy open set B of Y. 

 
(i) For each point xX and each intuitionistic fuzzy neighbourhood V of  

F )(x ,  cl F( (V)) is a nbd of x . 

 
Proof: (a) (b): Let V be an intuitionistic fuzzy open set of Y and 

x F (V). Then F )(x ⊆ V by (a), there exists U -PO(X) such that xU and 

F(U) ⊆ V. Then U F (V). Again U -PO(X) U   int( clU) int( cl
F( (V))) xint( cl )))( (VF , we have F (V) int( cl F( (V))) and 

therefore, F (V) -PO(X). 
 
(b) (c): Follows from the fact that , for any intuitionistic fuzzy set V of Y. 
 
(c) (d): For any intuitionistic fuzzy set B of Y, clB is an intuitionistic 

fuzzy closed in Y. By (c), F (clB) is  -preclosed in X. Hence, 

 -pcl F( (V))  F (clV)  F (clV). 

 

(d) (c): Let V be any closed in, then V = clV. So by (d),  

 -pcl F( (V) F (V) and hence )(VF   is  -preclosed in X. 

 

(b) (e): Let xX and V be an intuitionistic fuzzy nbd of F )(x . Then 

there exists a fuzzy open set G in Y such that F )(x ⊆ G ⊆ V. Then  

x F (G) F (V) and since F (G) -PO(X) by (b), F (V) is a  

 -precontinuous neighbourhood of x . 
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(e)  (f): Let xX and V be any intuitionistics fuzzy nbd of F )(x , then by 

(e), F (V) is a  -pre-nbd of x , put U = F (V). Then F(U) ⊆ V. 
 
(f)  (a): Let xX and be any intuitionistic fuzy open set in Y such that  

F )(x ⊆ V. then V is an intuitionistic fuzzy nbd of F )(x . By (f), there exists a  

 -prenbd U of x  such that F(U) ⊆ V. Therefore, there exists W -PO(X) such 
that  xW ⊆ �  and hence, F(W) ⊆ F (U) ⊆ V. 

 
(b) (g): Let B be any intuitionistic fuzzy set in Y. Then intB, if 

intuitionistic fuzzy open set in Y. By (b), F (int B) -PO(X). Hence,  
F (intB)  -Pint F( (B)). 

 
(g) (b): Let V be any intuitionistic fuzzy open set in Y. Then by (g), 

F (V) = F (intV)   -pint F( (V))and hence, F (V) -PO(X). 

 
(b) (h): It follow from the definition of  -preopen set in X. 
 
(h) (i): Let xX and V be an intuitionistic fuzzy neighbourhood of F )(x . 

Then there exists an  intuitionistic fuzzy open set U in Y such that F )(x qV ⊆ U. 

Then x��(V)   int( -cl(��(V)))   -cl F( (V)) and hence,  -cl F( (V)) is 

a nbd of x . 
 

(i) (h): Let V be any intuitionistic fuzzy open set in Y and x F (V).  

By (i), -cl F( (V))is a nbd of x  and thus, xint( -cl(F(V))). Hence,  

)(VF    int( -cl F( (V))). 

 
Theorem 3.3: For an intuitionistic fuzzy multifunction F : X   Y, the 

following statements are equivalent: 
 

(a) F is an intuitionistic fuzzy lower  -precontinuous. 
 

(b) F (V) -PO(X) for any intuitionistic open set V of Y. 
 

(c) F (V) is  -Preclosed in X for any intuitionistic closed set V of Y. 
 

(d)  -pcl F( (B))  F (clB) for any intuitionistic fuzzy open set B of Y. 
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(e) For each point xX and each intuitionistic fuzzy neighbourhood V of  

F )(x , F (V) is a  -preneighbourhood of x . 

 
(f) For each point xX and each intuitionistic fuzzy neighbourhood V of  

F )(x , there exists a  -preneighbourhood U of x  such that F(u)qV. 

 

(g) F (intB)   -pint F( (B)),for any intuitionistic fuzzy set B of Y. 

 

(h) F ( B)  int( cl F( (B))), for any intuitionistic fuzzy open set B of Y. 

 
(i) For each point xX and each intuitionistic fuzzy neighbourhood q-nbd 

V of F )(x , -cl F( (V)) is a neighbourhood of x . 

 
Proof: (a) (b): Let V be an intuitionistic fuzzy open set of Y and  

x F (V). Then F )(x qV by (a), there exists U -PO(X), such that xU and 

F(U)qV, for each u U. Then U F (V).  

 

Since, U -PO(X), xU   int( clU) int( cl F( (V))) and so  

x  int( cl F( (V))) F (V) int( cl F( (V))). Hence, F (V) -PO(X). 

 
(b) (c): Follows from the fact that , for any intuitionistic fuzzy set V of Y. 
 
(c) (d): For any intuitionistic fuzzy set B of Y, clB is an intuitionistic 

fuzzy closed in Y. By (c), F (clB)is  -preclosed in X. Hence,  

 -pcl ))(( VF    -pcl( F (clB)) F (clB). 

 
(d) (c): Let V be any closed of Y. Then  -pcl F( (V) F (clV) = F (V) 

is  -preclosed in X. 
 
(b) (e): Let xX and U be a intuitionistic fuzzy q-nbd of F )(x . Then 

there exists a fuzzy open set V in Y such that F )(x qV ⊆ U. Then 

x F (U) -PO(X)(by(b)) and so x F (V) F (U) and F (U) is a  

 -prenbd of x . 
 
(e) (f): Let xX and V be any intuitionistics fuzzy q-nbd of F )(x . Then 

by (e), F (V) is a  -prenbd of x , put U = F (V). Then F(u)qV, for each uU. 
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(f) (a): Let xX and V  be any intuitionistic fuzy open set in Y such that 
F )(x ⊆V. Then V is an intuitionistic fuzzy neighbourhood of F )(x . By (f), there 

exists a  -prenbd U of x  such that F(U) ⊆ V. Therefore, there exists W -PO(X) 
such that xW ⊆ � and hence F(W) ⊆ F(U) ⊆ V. 

 

(b) (g): Let B be any intuitionistic fuzzy set in Y. Then intB is 

intuitionistic fuzzy open set in Y. By (b), F (intB) -PO(X). Hence,  
F (intB)  -Pint F( (intB))  - int F( (B)). 

 

(g) (b): Let V be any intuitionistic fuzzy open set in Y. Then by(g), 
F (V) = F (intV)  -pint F( (V)) and hence, F (V) -PO(X). 

 

(b) (h): It follow from the definition of  -preopen set in X. 
 

(h) (i): Let xX and V be an intuitionistic fuzzy q-nbd of F )(x . Then 

there exists an intuitionistic fuzzy open set U in Y such that F )(x qU ⊆ V. Then  

x F (U)  int ( -cl F( (U))) (by(h))  - cl F( (U)) and hence,  -cl F( (U)) 

is a neighbourhood of x . 
 

(i) (h): Let V be any intuitionistic fuzzy open set in Y and x F (V). 
Then F )(x qV and so V is an intuitionisic fuzzy open q-nbd of F )(x . So by (i), 

 -cl F( (V)) is a nbd of x  and so xint ( -cl F( (V)))S. Thus, 
F (V) int ( -cl F( (V))). 

 

Theorem 3.4: Let { U :  �} be a  -open cover of X. A an intuitionistic 

fuzzy multifunction F:XY is  an intuitionistic fuzzy upper  -precontinuous if  

and only if the restriction UF/ : U Y is  an intuitionistic fuzzy upper  

 -precontinuous for each  Λ. 

 

 Proof: Let  � and x U . Let V be any open set in Y containing 

))(/( xUF  . Since )/( UF )(x  = F )(x  and F is  an intuitionistic fuzzy upper  

 -precontinuous, there exists 0U  -PO(X) containing x  such that )( 0UF ⊆ V. 

Set U = 0U  U . By lemma 2.2 U -PO )( 0U  with xU and  

))(/( UUF   = F(U)⊆V. Therefore, )/( UF  is an intuitionistic fuzzy upper  

 -precontinuous. 
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Conversely: Let x  X and V be an intuitionistic fuzzy open set in Y  

such that F )(x  ⊆ V. Then there exists  � such that x U  and  

)/( UF )(x = F )(x ⊆V. Since )/( UF
 

: U   Y is an  intuitionistic fuzzy  

upper  -precontinuous, there exists U -PO )( U  with xU such that 

))(/( UUF  ⊆V. By lemma 2.3, U )(XOP  and F(U) = )/( UF (U) ⊆ V and 

Hence, F is an intuitionistic fuzzy upper  -precontinuous. 
 

 Theorem 3.5: Let { U :  �} be a  -open cover of X. An intuitionistic 

fuzzy multifunction F : X   Y is intuitionistic fuzzy lower -precontinuous iff  

the restriction UF/  : U   Y is intuitionistic fuzzy lower  -precontinuous for 

each  �. 

 

Proof: Let  � and x U . Let V be any  intuitionistic fuzzy open set in 

Y such that qVxUF ))(/(  . Since ))(/( xUF   = F )(x  and F is  an intuitionistic 

fuzzy lower  -precontinuous, there exists 0U  -PO(X) containing x  such that 

F(u)qV for all u  0U . Set U = 0U  U  . By lemma 2.2 U -PO )( 0U  with  

xU and qVuUF ))(/(   for all uU. Therefore )/( UF  is  anintuitionistic fuzzy 

lower  -precontinuous. 
 
Conversely: Let x  X and V be an intuitionistic fuzzy open set in Y with  

F )(x qV. As { :U  �} is a cover of X, there exists  � such that x U . 

Then ))(/( xUF   = qVxF )( . Since )/( UF : U Y is an intuitionistic fuzzy 

lower  -precontinuous, there exists U -PO )( U  with xU, such that

quUF ))(/(  ⊆ V for all uU. Since ��
� � are  -open, By lemma 2.3,  

U )(XOP  with xU. Moreover, we have F(u)qV, for all uU and hence, F is 

an intuitionistic fuzzy lower  -precontinuous. 
 
Definition 3.6: For an intuitionistic fuzzy multifunction F : X   Y, 

intuitionistic multifunction  -pcl F : X → Y is given by ( -pclF) )(x =  -pcl )(xF , 

for each x  X. 
 
Lemma 3.7: Let F : X   Y be an intuitionistic multifunction. Then we 

have ( -pcl )F (G) = )(GF  , for each G  -PO(Y). 
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Proof: Suppose that G is a  -preopen in Y. Let x( -pcl )() GF  . 

 

 Then ( -pclF) )(x  ⊆ GF )(x  ⊆ G  x )(GF  . Converse is obvious. 

 
Theorem 3.8: An intuitionistic fuzzy multifunction F:XY is intuitionistic 

upper -precontinuous iff  -pcl F : XY is so. 
 

 Proof: Suppose that F is an intuitionistic fuzzy upper  -precontinuous. Let 
xX and G be any intuitionistic fuzzy open set in Y such that ( -pclF) )(x ⊆(G). 

Then F )(x ⊆ G. Since F is  an intuitionistic fuzzy upper  -precontinuous, there 

exists U -PO(X) there exists U -PO(X) with xU such that F(u)qG, for all 

uU. Since, G is fuzzy  -preopen, by lemma 2.4, u  )(GF  = ( -pcl )() GF  , 

for all uU. Thus, ( ( -pclF)(u)q)G, for all u U  -pcl F is  an intuitionistic 

fuzzy lower  -precontinuous. 
 

Conversely: Suppose that  -pclF is an  intuitionistic fuzzy upper  

 -precontinuous Let xX and G be any intuitionistic fuzzy open set in Y such that 

F )(x ⊆ G x )(GF  . (as an intuitionistic fuzzy open sets are intuitionistic fuzzy 

 -preopen) we have by lemma 3.9 x ( -pcl )() GF   i.e.( -pclF) )(x ⊆ G, as  

 -pclF is an intuitionistic fuzzy lower  -precontinuous, there exists U PO(X) 
with xU such that ( -pclF)(U) ⊆ G, for all uU. Then F(U) ⊆ G. Hence, F is an 

intuitionistic fuzzy upper  -precontinuous. 
 
Lemma 3.9: Let F:XY be an intuitionistic fuzzy multifunction. Then we 

have ( -pcl )() GF   = )(GF  , for each G -PO(Y). 

 
Proof: Obvious. 
 
Theorem 3.10: An intuitionistic fuzzy multifunction  F : X   Y is  an 

intuitionitic fuzzy lower  -precontinuous if and only if -pcl F : X → Y is  an 

intuitionistic lower  -precontinuous. 
 
Proof: Suppose that F : X → Y  is  an intuitionitic fuzzy lower  

 -precontinuous. Let xX and G be any intuitionistic fuzzy open set in Y such that 

( -pclF) )(x qG. By Lemma 2.4, x(� ����)�(G) = )(GF   as every an  

intuitionistic fuzzy open set G of Y is  an intuitionistic fuzzy  -preopen in Y and 
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hence F )(x qG. By  an intuitionistic fuzzy lower  -precontinuouity of F, there exists 

U -PO(X) with xU such that F(u)qG, for all uU. Since G is fuzzy  

 -preopen, by lemma 2.4, u )(GF   = ( -pcl )F (G), for all uU. Thus,  

( ( -pclF)(u)q)G, for all uU  -pclF is  anintuitionistic fuzzy lower  

 -precontinuous. 
 
Conversely: Suppose that  -pclF is  an intuitionistic fuzzy lower  

 -precontinuous. Let xX and G be any intuitionistic fuzzy open set in Y such that 

F )(x qG. by lemma 2.4 we have x F (G) =  )( pclF (G ), (as intuitionistic 

fuzzy open sets are intuitionistic fuzzy -preopen) and hence ( -pclF) )(x qG. Since 

( -pclF) is  an intuitionistic fuzzy lower  -precontinuous, there exists U PO(X) 

with xU such that ( -pclF)(u)q)G, for all uU. Since G is an intuitionistic fuzzy 

 -preopen in Y, By lemma 2.4, u( -pcl )() GF   = )(GF  , for all uU. 

Therefore, F(u)qG, for all uU and Hence, F is  an intuitionistic fuzzy lower  

 -precontinuous. 
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1. Preliminaries  
 

 Throughtout this paper  (X, ) and (Y, ) represents a topological space and 
an intuitionistic fuzzy topological space respectively. 
 

Defintion 1.1: [13]  A subset A of a topological space (X, ) is called: 
 
(a) Semi-open if ACl(Int(A)). 

(b) Semi-closed if its complement is semi-open. 

 
Remark 1.1: [16] Every open (resp. closed) set is semi-open (resp. semi-

closed) but the converse may not be true. 
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The family of all (semi-open) subsets of a topological space (X, ) is denoted 
by SO(X)), similarly for the family of all  semi-closed) subsets of topological space 
(X, ) is denoted by SC(X)). The intersection of all (semi-closed) sets of  X 
containing a set A of  X is called the (semi-closure) of A. It is denoted by  Cl(A) 
(resp.sCl(A)). The union of all  -open (semi-open) subsets of A of X is called the 
(semi-interior) of A. It is denoted by sInt(A)). A subset A of X is (semi-closed) if and 
only if A Int(Cl(A)).  

 
Definition 1.2: [2, 3, 4] Let Y be a non-empty fixed set. An intuitionistic 

fuzzy set A
~

 in Y is an object having the form 
 

A
~

 = }>:)(),(,{< ~~ Yyyyx
AA


 

 

 where the functions )(~ y
A

 :Y I and )(~ y
A

 :Y I denotes the degree of 

membership (namely ))(~ y
A

  and the degree of non membership (namely ))(~ y
A

  of 

each elemently y Y to the set A
~

 respectively, and 0   )()( ~~ yy
AA

 1 for 

each y   Y. 

 
 Definition 1.3: [2, 3, 4] Let Y be a non-empty set and the intuitionistic 

fuzzy sets A
~

 and B
~

 be in the form A
~

 = {(
A

y ~, , )~
A


 
: y Y}, B

~
={ ))(,( ~ yy

B
 ,

)(~ y
B


 
: y Y} and let { A

~
 
:  Λ} be an arbitrary family of intuitionistic fuzzy 

sets in Y.  
 
Then 
 

(a) A
~
 B

~
 if  y Y 

)(
~[

yA
  )(~ y

B
  and )(~ y

A
  )](~ y

B
  

(b) A
~

= B
~

 if A
~
 B

~
 and B

~
 A

~
; 

(c) }:)(),(,{=
~

~~ YyyyyA
AA

c  ; 

(d) 0 = {( , 0,1) : }y y Y  and }:,1,0){( Yyy   

(e) A
~
  = {( , ( ), ( )) : }A Ay y y y Y      

(f) A
~
  = {( , ( ), ( ) : }A Ay y y y Y      
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Definition 1.4: [9] Two an intuitionistic fuzzy sets A
~

 and B
~

 of Y are said 

to be quasi-coincident BqA
~~

(  for short ) if  y Y such that )(> ~~ y
BA

  or 

)(<)( ~~ yy
BA


 

 

Lemma 1.5: [9] For any two an intuitionistic fuzzy sets A
~

 and B
~

 of Y, 
cBABqA

~~
)

~~
(  . 

 

 Definition 1.6:  [7] An intuitionistic fuzzy topology on a non-empty set Y is 
a family   of an  intuitionistic fuzzy sets in Y which satisfy the following axioms: 

 

(a) 0
~

, 1
~
  , 

(b) 1

~
A  2

~
A    for any 1

~
A , 2

~
A   , 

(c)  A
~
   for any arbitrary family A

~
{ :   } .  

 

In this case the pair (Y, ) is called an intuitionistic fuzzy topological  
space and each intuitionistic fuzzy set in  , is known as an intuitionistic fuzzy  
open set in Y. 

 

The complement cB
~

 of an intuitionistic fuzzy open set B
~

 is called an 
intuitionistic fuzzy closed set. 

 
 Definition 1.7: [7] Let (Y, ) be an intuitionistic fuzzy topological space 

and A
~

 be an intuitionistic fuzzy set in Y. Then the interior and closure of A
~

 are 
defined by: 

 

(a) cl )
~

(A ={ K
~

: K
~

 is an intuitionistic fuzzy closed set in Y and  

        A
~
 K

~
}. 

 

(b) Int )
~

(A ={G
~

: G
~

 is an intuitionistic fuzzy open set in Y and G
~
 A

~
}. 

 

 Lemma 2.8: [6] For any intuitionistic fuzzy set A
~

 in (Y, ) we have: 
 

(a) A
~

 is an intuitionistic fuzzy closed set in Y Cl )
~

(A = A
~

 

(b) A
~

 is an intuitionistic fuzzy open set in Y  Int )
~

(A = A
~
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(c) Cl )
~

( cA  = (Int cA)
~

 

(d) Int )
~

( cA = (Cl cA)
~

 
 

Definition 1.8: [11] A subset A
~

 of an intuitionistic fuzzy topological space 
(Y, ) is called: 

 

(a) intuitionistic fuzzy semi-open if A
~
Cl(Int ))

~
(A . 

(b) intuitionistic fuzzy semi-closed if its complements is semi-open. 

 

Remark 1.2: [16] Every IF-open (resp. IF-closed) set is IFsemi-open (resp. 
IFsemi-closed). 

  
The family of all intuitionistic fuzzy intuitionistic fuzzy semi-open sets of an 

intuitionistic fuzzy topological space (X, )is denoted by SO(X), Similarly the 
family of all intuitionistic fuzzy semiclosed) sets of intuitionistic fuzzy topological 
space (X, ) is denoted by IFSC(X). 

 
Definition 1.9: [6] Let (Y, ) be an intuitionistic fuzzy topological space 

and A
~

 be an intuitionistic fuzzy set in Y. Then the semi-interior and semi-closure of 

A
~

 are defined by:  
 

(a)  SCl )
~

(A  = { K
~

: K
~

 is an intuitionistic fuzzy closed set in Y and 

         A
~
 K

~
}. 

 

(b)  SInt )
~

(A  ={G
~

: G
~

 is an intuitionistic fuzzy  open set in Y and  

          G
~
 A

~
. 

 
 Definition 1.10: [17] Let X and Y are two non empty sets. A function  

F : X   Y is called intuitionistic fuzzy multifunctions, if F )(x  is an intuitionistic 

fuzzy set in Y,  xX. 
 
Definition 1.11: [22] Let F : (X, )   (Y, ) is an intuitionistic fuzzy 

multifunction and A be a subset of X. Then  F(A) =  Ax
F( x ). 

 
Definition 1.12: [22] Let F : (X, )   (Y, ) be an intuitionistic fuzzy 

multifunction. 
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 Then 
 

(a) A   B F(A)    F(B) for any subsets A and B of X. 
 

(b) F(A  B)   F(A)F(B) for any subsets A and B of X. 
 

(c) F( )~ 
A   

=   {F )( A : Λ} for any family of subsets 

      { )( A : Λ} in X. 

 

 Definition 1.13: [17] Let F : (X, )   (Y, ) is an intuitionistic fuzzy 

multifunction, Then the upper inverse )
~

(AF   and lower )
~

(AF   of an intuitionistic 

fuzzy set A
~

 in Y are defined as follows: 
 

(a) )
~

(AF 

 = { xX : F( x )  A
~

}. 

(b) )
~

(AF 

 = { xX : F( x )q A
~

}. 
   
 Definition 1.14: [17, 12] An Intuitionistic fuzzy multifunction 

 F : (X, )   (Y, ) is said to be: 
 

(a) Intutionistic fuzzy upper contra continuous  at a point 0x X, if for any 

intuitionistic fuzzy closed set W
~

 of Y such that F )( 0x  W
~

 there exist an open  set 

U of X containing 0x  such that F(U) W
~

. 

 

(b) Intuitionistic fuzzy lower contra continuous  at a point Xx 0 , if for any 

intuitionistic fuzzy closed set W
~

 of  Y such that WqxF
~

)( 0  there exist an open set U 

of X containing 0x  such that F qx)( W
~

,  xU. 

  
2. Upper(Lower) Contra Irresolute Intutionistic Fuzzy Multifunctions 

 
Definition 2.1:  An intuitionistic fuzzy multifunction F : (X, )   (Y, ) is 

said to be: 
 

(a) Intuitionistic fuzzy upper contra-irresolute at a point 0x X, if for any 

intuitionistic fuzzy  semi-closed set W
~

 of Y, such that F( )0x  W
~

 there exists  

USO(X) containing ox  such that F(U) W
~

. 
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(b) Intuitionistic fuzzy lower irresolute at a point 0x X, if for any 

intuitionistic fuzzy semi-closed set W
~

 of Y, such that F )( 0x qW
~

 there exists  

U∈ ��(�),  containing ox  such that F )(x qW
~
 xU. 

 
(c) Intuitionistic fuzzy upper contra irresolute (resp.Intuitionistic fuzzy lower 

contra irresolute) if it is has this property at each point of X. 
 
Theorem 2.2:  Let F : (X, )   (Y, ) be an intuitionistic fuzzy 

multifunction then following conditions are equivalent: 
 
(a)  F is an intuitionistic fuzzy upper contra irresolute. 
 

(b) For each point xX and any intuitionistic fuzzy  semi-closed set B
~

 of 

Y such that x F )
~

(B ,  an semi-neighbourhood  U of x  such that U F ( ).B  

 

(c) F )
~

(B  is  semi-open  set in X for every intuitionistic fuzzy semi-closed  

set B
~

 of  Y. 
 

(d) F )
~

(B  is an semi-closed set in X for every intuitionistic fuzzy semi-

open  set B
~

 in  Y. 
 
 Proof: (a) (b). Obvious. 
 

(b)   (c): Let B
~

 be any  an intuitionistic fuzzy  semi-closed set of Y and 

let x F )
~

(B . Then F )(x  B
~

. And so by (b)   is an semi-neighbourhood  U of 

x  such that U  F )
~

(B . It follows that F )
~

(B  is the union of semi-open  sets of 

X is semi-open in X. 
 

(c)   (b) Let xX and B
~

 be an intuitionistic fuzzy semi-closed  set of Y 

such that xF )(B . Then U = F )
~

(B  is an semi-neighbourhood of x  such that  

U F )
~

(B . 

 

(c)   (d) It follows from the fact that cBF )]
~

([   = cBF )]
~

([  . 
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Definition 2.3: The  semi-kernel of an intuitionistic fuzzy set B
~

 in  an 
intuitionistic fuzzy topological space (Y,  ) given by  

 

SKer )
~

(B =  { A
~

: A
~
  IFSO(X) and B

~
 A

~
}. 

 

Lemma 2.4: For an intuitionistic fuzzy set B
~

 in an intuitionistic fuzzy 

topological space (Y, ), if B
~
IFSO(X), then B

~
= S Ker )

~
(B . 

 
Proof: Obvious. 
 
Theorem 2.5: Let F : (X, )   (Y,  ) be an intuitionistic fuzzy 

multifunction. If SCl F( ))
~

(B  F (SKer ))
~

(B  for any intuitionistic fuzzy set B
~

 

of Y, then F is  an intuitionistic fuzzy upper contra  irresolute multifunction. 
 

 Proof: Suppose that SCl F( ))
~

(B  F SKer ))
~

(B  for any intuitionistic 

fuzzy set B
~

 of Y. Let A
~
IFSO(X), then by  hypothesis and lemma 3.4  

SCl F( ))
~

(A  F SKer ))
~

(A = F )
~

(A . This implies that SCl F( ))
~

(A  F )
~

(A

But we know F )
~

(A   SCl F( ( )).A  Hence, F )
~

(A  is semi-closed set in X. 

Thus, by theorem 2.2, F is an intuitionistic fuzzy upper contra-irresolute 
multifunction. 

 
 Theorem 2.6: Let F : (X, )   (Y,  ), be an intuitionistic fuzzy 

multifunction then following conditions are equivalent: 
 
(a)  F is an  intuitionistic fuzzy lower contra-irresolute. 
 

(b)  For any intuitiontistic fuzzy semi-closed set B
~

 of Y such that  

x F )
~

(B ,   an semi-neighbourhood U of x  such that U F )
~

(B . 

 

(c) F )
~

(B  is semi-open in X for every an intuitiontistic fuzzy semi-closed 

set B
~

 of Y. 
 

(d) F )
~

(B  is an semi-closed in X for every an intuitionistic fuzzy  semi-

open set ( )
~
B  in Y. 
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 Proof: (a) (b) Obvious. 
 

(b)   (c) Let B
~

 be any intuitiontistic fuzzy  semi-closed set of Y and  

x F )
~

(B . Then by (b) and there exists an semi-neighborhood U of x  such that 

U F )
~

(B . It follows that F )
~

(B  is the union of  semi-open sets of X is semi-

open in X. 
 

(c)   (a) Let 0x X and B
~

 be an intuitionistic fuzzy semi-closed set of Y 

such that )( 0xF q B
~

. Then 0x  F )
~

(B  and F )
~

(B  is semi-open in X. And so,  

U = F )
~

(B  is a semi-neighbourhood  of 0x  such that F )(x q )
~

(B  xU. Hence, F 

is  an intuitionistic fuzzy lower contra-irresolute. 
 

(c)  (d) It follows from the fact that F[ cB)]
~

(  = F[ ])
~

( cB . 

 

 Theorem 2.7: Let F : (X, )   (Y, ) be an intuitiontistic fuzzy 

multifunction. If SCl F( ))
~

(B  F (Ker ))
~

(B  for any intuitiontistic fuzzy set B
~

 of 

Y. Then F is an intuitiontistic fuzzy lower contra-irresolute multifunction. 
 

 Proof: Suppose that SCl F( ( ))
~
B  F (SKer ))

~
(B  for any intuitionistic 

fuzzy set B
~

 of Y.  
 

Let A
~
IFSO(X), by lemma 2.4  SCl F( ( ))

~
A  F (SKer ))

~
(A = F )

~
(A  

this implies that Cl F( ))
~

(A  F )
~

(A . But we know F )
~

(A Cl F( ))
~

(A , 

Hence, F )
~

(A  is semi-closed set in X. Thus, by theorem 2.6, F is  an  intuitionistic 

fuzzy lower contra -irresolute multifunction. 
 

 Definition 2.8: Given a family { F : (X, )   (Y,  ) :   },  

of an intuitionistic fuzzy multifunction, we define the union   F  and  

intersection  
 as, 

 

(a)   F
 
: (X, ) (Y, ),  

( )F )(x  =  
)(xF  

 

(b)   F
 
: (X, ) (Y, ),  

( )F )(x  =  
)(xF  



 UPPER (LOWER) CONTRA IRRESOLUTE INTUITIONISTIC FUZZY 83 

 Theorem 2.9: If F : (X, ) (Y, ) , for each    is  an intuitionistic 

fuzzy upper contra irresolute then   F  is  an intuitionistic fuzzy upper  

contra-irresolute. 
 

 Proof: Let B
~

 be an intuitionistic fuzzy  semi-closed set in Y. To show that 


n

1=
(



)F )
~

(B  ={ xX : 
n

1=
)(xF  B

~
} is semi-open in X. 

 

 Let x )(
1= 
F

n

 )
~

(B  then )(xF  )
~

(B  for   = 1, 2, 3...n,. Since 

 F
 

: (X, )   (Y, )  is  an intuitionistic fuzzy upper contra-irresolute 

multifunction , for   = 1, 2, 3,..., then   semi-open set U containing x  such that  

 y  xU , )( yF  B
~

. let U = U
n

 1=
, then U )(

1= 
F

n

 )
~

(B . Therefore 

)(
1= 
F )

~
(B  is semi-open. Hence,   F  is intuitionistic fuzzy upper 

contra-irresolute. 
 

 Theorem 2.10: If F : (X, )   (Y,  ), for   = 1, 2, 3,...n is  an 

intuitionistic fuzzy lower contra-irresolute then   F  is an intuitionistic fuzzy 

lower contra-irresolute. 
 

 Proof: Let B
~

 be an intuitionistic fuzzy semi-closed set in Y. To show that 


n

1=
(



)F )
~

(B  = { x    X : 
n

1=
)(xF q B

~
} is semi-open in X. 

 

 Let x 
n

1=
(


)

~
() BF 

  then )(xF q )
~

(B  for   = 1, 2, 3...n , Since, 

F
 
: (X, )   (Y,  ) is intuitionistic fuzzy lower contra -irresolute multifunction , 

for   = 1, 2, 3,..., then   semi-open set U containing x  such that  xUy , 

BqyF
~

)( . let UU
n

 1=
=


, then )

~
()(

1=
BFU

n   .  

 

Therefore )(
1= 
F )

~
(B  is open. Hence,   F  is  an intuitionistic 

fuzzy lower contra-irresolute. 
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Theorem 2.11: Let {  
:   }, be an  -open cover of a topological 

space (X, ). An intuitionistic fuzzy mulifuntion F : (X,  )   (Y,  ) is  an 
intuitionistic fuzzy upper contra -irresolute if and only if restriction  


|F

 
: 

  Y is  an intuitionistic fuzzy upper contra -irresolute for each 

   . 

 
Proof: Necessity: Suppose that F is intuitionistic fuzzy upper contra-

irresolute. Let   , x
 and V

~
 be any intuitionistic fuzzy semi-closed set 

in Y such that )|( 
F )(x  V

~
. Since F is  an intuitionistic fuzzy upper contra-

irresolute and  F )(x  = ))(|( xF 
, there exists semi-open set G of  X containing 

x  such that F(G) V
~

. Let U = G U , then xU∈ ��(�) in X and  

)|( UF (U) = F(U) V
~

. Therefore, it follows that )|( UF  is intuitionistic fuzzy 

upper contra -irresolute. 
 

Sufficiency: Let xX and V
~

 be any intuitionistic fuzzy semi-closed set in 

Y such that F )(x  V
~

 there exists    and x U . Since UF | : U Y is 

an  intuituionistic fuzzy upper contra -irresolute. and F )(x  = )|( UF )(x , there 

exists semi-open set U U  containing x  such that )|( UF (U) V
~

. We have 

semi-open set U U  containing x  and F(U)   V
~

. Therefore F is intuitionistic 

fuzzy upper contra-irresolute. 
 

Theorem 2.12: Let { U :   } be an  semi-open cover of a topological 

space (X, ). An Intuitionistic fuzzy multifunction F : (X,  )   (Y, )  is 

intuitionistic fuzzy lower contra-irresolute if and only if the  

restriction  UF | : U   Y is an intuitionistic fuzzy lower contra-irresolute for 

each   . 

 
Proof: Necessity: Suppose that F is intuitionistic fuzzy lower contra-

irresolute. Let    and x U . Let V
~

 be any intuitionistic fuzzy semi-closed 

set in Y such that VqxUF
~

))(|(  . Since F is  an intuitionistic fuzzy lower contra-



 UPPER (LOWER) CONTRA IRRESOLUTE INTUITIONISTIC FUZZY 85 

irresolute and F )(x  = ))(|( xUF  , there exists semi-open set oU  of X containing x  

such that )( oUF qV
~

. Let U = oU  U , then xU is semi-open in X and 

))(|( UUF   = F(U) and F(U) Vq
~

 for all  � ∈ �. Therefore it follows that )|( UF  

is  an intutionistic fuzzy lower contra-irresolute. 
 

Sufficiency: Let xX and V
~

 be any semi-closed set in Y such that  

F )(x qV
~

 there exists    and x U . Since UF | : U Y is  an 

intutionistic fuzzy lower contra  -irresolute and F )(x = ))(|( xUF  ,there exists open 

set oU  U  containing x  such that qVUUF o ))(|(  . we have  semi-open set  

oU  U  containing x  and .
~

)( VqUF o  Therefore  F  is  an intuitionistic fuzzy lower 

contra-irresolute. 
 
Definition 2.13: An intuitionistic fuzzy multifunction F : (X, )   (Y, ) , 

then the intuitionistic fuzzy multifunction SClF : (X, )   (Y, )  is defined by  

SCl(F) )(x  = S Cl(F ))(x  for every xY. 

 
Lemma 2.14:  For an intuitionistic fuzzy multifunction  F : (X, )   (Y, )  

it follows that  SCl )
~

()( VF   = F ))(
~

( V , for each intuitionistic fuzzy S-open set  

V
~

 of Y. 
 
Proof: Obvious. 
 
Theorem 2.15: An intuitionistic fuzzy multifunction F : (X, )   (Y, ) is 

intuitionistic fuzzy lower contra-irresolute if and only if  SCl(F) : (X, )   (Y, ) is  

an intuitionistic fuzzy lower contra irresolute. 
 
Proof: Necessity: Suppose that F is an intuitionistic fuzzy lower -irresolute. 

Let xX and V
~

 be any intuitionistic fuzzy semi-open set of such that  

 Cl(F) )(x qV
~

.Since F is  an intuitionistic fuzzy lower contra-irresolute, there exists 

semi-open set U of X containing x  such that F(u)qV
~

,  uU.  
 

Hence, SCl(F)(u)qV
~

 for each uU. This show that Cl(F) is  an  

intuitionistic fuzzy contra-irresolute. 
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 Sufficiency: Suppose SCl(F) is intuitionistic fuzzy lower contra-irresolute. 

Let xX and V
~

 be any intuitionistic fuzzy  semi-open set of Y such that F )(x qV
~

. 

by lemma 3.14, we have x F )
~

(V  = (���(�)� (��)   and hence SCl(F)(x)q�� . 

Since SCl(F) is an intuitionistic fuzzy  lower contra-irresolute, there exists a  semi-

closed set U of X containing x  such that SCl(F(u))qV
~

 for each uU. Since V
~

 be 

intuitionistic fuzzy semi-open set of Y, hence F(u)qV
~

 for each uU. This shows 
that F is an intuitionistic fuzzy lower contra -irresolute. 

 

 Definition 2.16: An intuitionistic fuzzy set A
~

 in intuitionistic fuzzy 
topological space (Y, ) is called cl-neighbourhood of an intuitionistic fuzzy set 

V
~

 in Y, if there exists an intuitionistic fuzzy  semi-closed set U
~

 in Y such that  

V
~
U

~
 A

~
. 

 
Theorem 2.17: If F : (X, )   (Y, ) is an intuitionistic fuzzy upper contra 

-irresolute multifunction, then for each point xX and each cl-neighbourhood of V
~

 

of F )(x , F )
~

(V  is an  semi-neighbourhood of x . 

 

 Proof: Let xX and V
~

 be an cl-neighbourhood of F )(x , then   an 

intuitionistic fuzzy  semi-closed set A
~

 in Y such that F )(x  A
~
 V

~
. We have  

x F )
~

(A  F )
~

(V  and since F )
~

(A  is an semi-open, F )
~

(V  is  an  semi-

neighbourhood of x . 
 
Theorem: 2.18 For an intuitionistic fuzzy multifunction F : (X, ) (Y, ) 

the following are equivalent: 
 
(a) F is an  intuitionistic fuzzy lower contra-irresolute. 
 

(b) For any xX and any net Iiix )(  -converging to x  in X and each an 

intuitionistic fuzzy  semi-closed set B
~

 of Y with x F )
~

(B , then the net Iiix )(  is 

eventually in F )
~

(B . 

 

Proof: (a) )(b . let Iiix )(  be net  -coverging to x  in X and B
~

 be any 

intuitionistic fuzzy  semi-closed set Y with x F )
~

(B . Since F is  an intuitionistic 

fuzzy lower contra-irresolute   an  -open set A of X containing x  such that 
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A F )
~

(B . Since ix  is converge to x   an index Ii 0  such that ix A for every 

0ii   we have ix A F )
~

(B  0ii  . Hence Iiix )(  is  eventually in )
~

(BF  . 

 
(b)   (a) Suppose that F is not intuitionistic fuzzy lower contra-irresolute   

a point xX and an intuitionistic fuzzy semi-closed set B
~

 with x F )
~

(B  such 

that B does not subset F )
~

(B  for any semi-open set B   X containing x . Let 

)( ix B and )( ix  does not belong to F B
~

( ) for each semi-open set B   X 

containing x . Then the semi-neighbourhood net )( ix  converges to x  but Iiix )(  is 

not  semi-eventually in F )
~

(B . This is a contradiction. 

 
 Theorem 2.19: For an intuitionistic fuzzy multifunction F : (X, ) (Y, )  

the following are equivalent: 
 
(a)  F is an intuitionistic fuzzy upper contra -irresolute. 
 

(b)  For any xX and any net Iiix )(  -converging to x  in X and each 

intuitionistic fuzzy  semi-closed  set B
~

 of  Y with x F )
~

(B , then the net Iiix )(  

is  eventually  in F )
~

(B . 

 
Proof: The proof of this theorem is similar to that of theorem 2.18. 
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Abstract: In the present paper, the concept of Fuzzy strongly quasi 
continuity has been introduced which is a generalization of Fuzzy quasi 
continuity for Fuzzy Bitopological spaces and some of their basic properties 
are studied. Fuzzy strongly quasi continuity is stronger than Fuzzy quasi 
continuity in Fuzzy Bitopological spaces. 
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1. Introduction 
  
 Zadeh [7] introduced the concept of Fuzzy set which formed the back bone 
of Fuzzy mathematics. In 1968, Chang [2] introduced the concept of Fuzzy 
Topological space as a generalization of Topological space. Later Kandil [3] 
introduced the concept of Fuzzy Bitopological space as a generalization of Fuzzy 
topological space. U. D. Tapi, S. S. Thakur and G. P. S. Rathore [5] and S. N. 
Maheshwari, G. I. Chai and P. C. Jain [4] introduced the concept of Fuzzy quasi open 
sets in Fuzzy Topological spaces. Recently U. D. Tapi, S. S. Thakur and G. P. S. 
Rathore [6] introduced the concept of Fuzzy quasi continuity in Fuzzy Bitopological 
space. 
 
 A Fuzzy set is a pair (�, �), where � is a set and � ∶ � → [0, 1] is a 
membership function. For each � ∈ �, �(�) is called the degree of membership of 
� in (�, �), �(�) is the membership function of the Fuzzy set  � = (�, �(�)). 
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A family τ of Fuzzy sets of X is called a Fuzzy topology on X if 0 null Fuzzy set and 
1 the whole Fuzzy set belong to τ and τ  is closed with respect to any supremum and 
finite infimum. The members of τ are called τ–Fuzzy open sets of X and their 
complements are τ–Fuzzy closed sets. For a Fuzzy set λ of X the closure of λ denoted 
by cl(λ) is the intersection of all Fuzzy closed super sets of λ and interior of λ 
denoted by int(λ) is the union of all Fuzzy open subsets of λ. A mapping 
 �: (X, τ) → (X , σ) is Fuzzy continuous (respectively Fuzzy open) if the inverse 
image (resp. image) of every Fuzzy open set of X (resp. X) is Fuzzy open set of X 
(resp. X ). A system (X, τ, σ) consists of a set X with two Fuzzy topologies τ and σ 
on X is called a Fuzzy Bitopological space. 
 
 In the present paper, we studied and modified the result of U. D. Tapi,  
S. S. Thakur and G. P. S. Rathore [6] and introduced the concept of Fuzzy strongly 
quasi continuity in Fuzzy Bitopological space, which is stronger than the concept of 
Fuzzy quasi continuity in Fuzzy Bitopological space. In the section 2, we present 
some basic definitions in Fuzzy Bitopological spaces, section 3 consists of our main 
results and section 4 comprises the discussion and conclusion.  
 
2. Preliminaries 
 
 In this section, we present some definitions in Fuzzy Bitopological spaces, 
which will be required in our main results. The definitions are as follows: 
 
 Definition 2.1: A mapping �: (X, τ, σ) → (X , τ , σ ) is said to be pairwise 
Fuzzy continuous if �: (X, τ) → (X , τ ) and �: (X, σ) → (X , σ ) are Fuzzy 
continuous. A mapping �: (X, τ, σ) → (X , τ , σ )  is said to be pair wise Fuzzy open if 
�: (X, τ) → (X , τ ) and �: (X, σ) → (X , σ )  are Fuzzy open. 
 
 Definition 2.2 [1]: Let (X, τ) be a Fuzzy topological space and λ be a Fuzzy 
set of (X, τ), then λ is called  
 
(i) A Fuzzy semi open set of X if there exists a �єτ such that � ≤ λ ≤ ��(�). 

(ii) A Fuzzy semi closed set of X if there exists a �′єτ such that ���(� ′) ≤ λ ≤ �′. 

 
 Definition 2.3 [1]: Let �: (X, τ) → (X , σ) be a mapping from a Fuzzy 
topological space X to Fuzzy topological space X , then the mapping � is called 
 
(i) A Fuzzy semi continuous mapping, if ���(λ) is a Fuzzy semi open set of X for 

each λєσ. 
 

(ii) A Fuzzy semi open mapping if  �(λ) is a Fuzzy semi open set for each λєτ. 



 FUZZY STRONGLY QUASI CONTINUITY 93 

(iii)  A Fuzzy semi closed mapping if �(λ) is a Fuzzy semi closed set for each Fuzzy 
closed set λ of X. 
 

 Definition 2.4 [5]: A Fuzzy set λ in a Fuzzy Bitopological space (X, τ, σ) is 
said to be Fuzzy quasi open if it is the union of a τ–Fuzzy open set and a σ Fuzzy 
open set. 
 
 Definition 2.5 [5]: A Fuzzy set � in a Fuzzy Bitopological space (X, τ, σ) is 
Fuzzy quasi closed if its complement is Fuzzy quasi open. 
 
 Definition 2.6 [6]: Let (X, τ, σ) and (X , τ , σ ) be Fuzzy Bitopological space 
and �: X → X  then f is Fuzzy quasi continuous if for every Fuzzy quasi set B in � , 
���(�) is Fuzzy quasi closed in X. 
 
 Definition 2.7 [6]: A mapping � from a Fuzzy Bitopological space (X, τ, σ) 
to a Fuzzy Bitopological space (X , τ , σ ) is pairwise Fuzzy semi continuous if the 
inverse image of every Fuzzy quasi open set in �  is Fuzzy quasi semi open in X. 
 
 Proposition 2.1: Every pair wise Fuzzy continuous mapping is Fuzzy quasi 
continuous. But the converse may not be true. 
 
 Example 2.1: Let X = {x, y}, �  = {a, b} and U, V, U′, V′ be the Fuzzy sets 
defined as follows: 
 
   U(x) = 0.3, U(y) = 0.6 

   V(x) = 0.7, V(y) = 0.3 

   U′ (a) = 0.7, U′ (b) = 0.6 

   V′ (a) = 0.7, V′ (b) = 0.3 

 
 Let τ = {0, U, 1},  σ = {0, V, 1} and τ = {0, U′, 1}, σ = {0, V′, 1}. Then the 
mapping �: (X, τ, σ) → (X , τ , σ ) defined by  �(�) = �, �(�) = � is Fuzzy quasi 
continuous, but not pairwise Fuzzy continuous. 
 
3. Main Results 
 
 In the following, we define Fuzzy strongly quasi continuity and prove some 
theorems in Fuzzy Bitopological Space by studying Fuzzy quasi continuity in  
Fuzzy Bitopological space, which was introduced by U. D. Tapi, S. S. Thakur and  
G. P. S. Rathore [6]. 
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 Definition 3.1: Let (X, τ, σ) and (X , τ , σ ) be Fuzzy Bitopological space 
and �: X → X   then f is Fuzzy strongly quasi continuous if for every Fuzzy quasi 
open set B in � , ���(�) is Fuzzy quasi open in X. 
 
 Theorem 3.1: Let (X, τ, σ) and (X , τ , σ ) be Fuzzy Bitopological space and 
�: X → X  then the following conditions are equivalent: 
 
a) � is Fuzzy strongly quasi continuous. 
 
b) For every Fuzzy quasi closed set B in � , ���(�) is Fuzzy quasi closed in X. 
 
c) For every Fuzzy point xβ of X and every Fuzzy quasi open set M such that 

 �(xβ) є M, there is a Fuzzy quasi open set A in X such that xβ є A and �(A) ≤ M. 
 

d) For every Fuzzy point xβ of X and every quasi neighbourhood M of  �(xβ), 
���(�) is a quasi neighbourhood of xβ. 
 

e) For every Fuzzy point xβ of X and every quasi neighbourhood M of �(xβ) there is 
 a quasi neighbourhood N of xβ in X such that �(N) ≤ M. 
 
f) For every Fuzzy point xβ of X and every Fuzzy quasi open set M of  X  such that  

�(xβ)qM there is a Fuzzy quasi open set A in X such that xβqM and �(A) ≤ M. 
 

g) For every Fuzzy point xβ of X and every quasi Q-neighbourhood M of  �(xβ), 
���(�) is a quasi Q-neighbourhood N of xβ. 
 

h) For every Fuzzy point xβ of X and every quasi Q-neighbourhood M of �(xβ), there 
 is a quasi Q-neighbourhood N of xβ such that �(N) ≤ M. 
 
i) �(���(�)) ≤ ���(�(�)) for every Fuzzy set A of X. 
 
j) ���(���(�)) ≤ ���(���(�)) for every Fuzzy set B of X . 
 
k) ���(����(�)) ≤ ����(���(�)) for every Fuzzy set B of X . 
 
 Proof: 
 

 ba       Obvious 
 

ca    Let xβ be a Fuzzy point of X and M be a Fuzzy quasi open set in 
X such that �(xβ) єM. Put A = ���(�). 
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 Then by (a), A is a Fuzzy quasi open set in X such that xβ and  �(A) ≤ M. 
 
  ac   Let M be a Fuzzy quasi open set in X  and xβ then  �(xβ) єM. 
 
 Now by (c) there is a Fuzzy quasi open set A in X such that xβ and �(A) ≤ M. 
 
 Then xβ є A ≤ ���(�). Hence by [4], ���(�) is Fuzzy quasi open in X. 
 

 da  Let xβ be a Fuzzy point of X and M be a quasi Q-neighbourhood of 
 �(xβ) then there is a Fuzzy quasi open set N such that �(xβ) єN ≤ M. 

 
 Now ���(�) is Fuzzy quasi open in X and xβ є ���(�) ≤ ���(�). 
 

 Thus, ���(�)is a quasi neighbourhood of xβ in X. 
 

 ed   Let xβ be a Fuzzy point of X and M be a quasi neighbourhood  
 of  �(xβ). 

 

             Then N= ���(�) is a quasi neighbourhood of xβ and �(�) = �(���(�)) ≤ M. 
 

ce  Let xβ be a Fuzzy point of X and M be a Fuzzy quasi open set such 
that �(xβ) єM then M is a quasi neighbourhood of �(xβ) so there is a 
quasi neighbourhood N of xβ in X such that xβ єN and �(N) ≤ M. 

 

 Hence, there exists a Fuzzy quasi open set A in X such that �(xβ) єA ≤ N and 
so �(A) ≤ �(N) ≤ M. 
 

 
fa   Let xβ be a Fuzzy point of X and M be a Fuzzy quasi open set in X  

  such that �(xβ) qM 
 
 Let A= ���(�). Then A is Fuzzy quasi open xβ qA, and 
 �(�) = �(���(�)) ≤ M. 
 

 
af    Let M be a Fuzzy quasi open set in X  and xβ є ���(�) 

 
 Clearly �(xβ) єM. 
 
 Choose the Fuzzy point xβ as ��

�(�) = 1 ��(�) then�(��
�) qM and so by 

(f), there exists a Fuzzy quasi open set A such that ��
��� and �(A) ≤ M. 
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 Now ��
��� → ��

�(�) + �(�) = 1 � + �(�) > 1 
 

                        →  �(�) > � → ��є� ≤ ���(�). 

 
 Hence, by [5], ���(�) is Fuzzy quasi open. 
 

gf    Let xβ be a Fuzzy point of X and M be a quasi Q-neighbourhood of 

�(xβ). Then there is a Fuzzy quasi open set U in X  such that 
�(xβ)qU ≤ M. 

 

 By hypothesis there is a Fuzzy quasi open set A in X such that xβqA and 
�(A) ≤ U. Thus xβqA ≤ ���(�) ≤ ���(�). 
 

 Hence, ���(�) is a quasi Q-neighbourhood of xβ. 
 

hg    Let xβ be a Fuzzy point of X and M be a quasi neighbourhood 

of  �(xβ). 
 

       Then N = ���(�) is quasi Q-neighbourhood of xβ and �(�) = �����(�)� ≤ M. 
 

fh    Let xβ be a Fuzzy point of X and M be a Fuzzy quasi open set such 

that �(xβ) qM. Then M is a quasi Q-neighbourhood of  �(xβ). So 
there is a quasi Q-neighbourhood N of xβ such that �(N) ≤ M. Now 
N being quasi Q-neighbourhood of xβ there exists a Fuzzy quasi 
open set A in X such that xβqA ≤ N. 

 

 Hence, qAx  and  �(A) ≤ �(N) ≤ M. 

 

 ib      Obvious. 
 

 
ji      Obvious. 

 

 ka    Obvious. 
 

 Theorem 3.2: Let (X, τ, σ), (X , τ , σ ) and (X , τ , σ ) be Fuzzy 
Bitopological spaces. If �: X → X  and �: X → X  are Fuzzy strongly quasi 
continuous mappings.  
 
 Then ���: X → X  is Fuzzy strongly quasi continuous. 
 

 Proof: Obvious. 
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 Theorem 3.3: Let (X, τ, σ) and(X , τ , σ ) be two Fuzzy Bitopological  
spaces and �: (X, τ, σ) → (X , τ , σ ) be a mapping if the graph mapping 
 �: (X, τ, σ) →  (X × X , τ ,  σ ) of � is Fuzzy strongly quasi continuous then � is 
Fuzzy strongly quasi continuous, where τ ,  σ  are the product topologies generated 
by τ and τ  (resp. σ and σ  ). 
 

 Proof: Let λ be a Fuzzy quasi open set in X . Then 1 × λ is a Fuzzy quasi 
open set in X × X . Since � is fuzzy strongly quasi continuous ���(1 × �) is fuzzy 
quasi open in �. 
 
 Now ���(λ) = 1 ���(λ) = ���(1 ×λ). 
 
 Hence,  ���(λ) is Fuzzy quasi open in X and f is Fuzzy strongly quasi 
continuous. 
 
 Theorem 3.4: Let �: (X, τ, σ) → (X , τ , σ ) be a Fuzzy strongly quasi 
continuous mapping and A is non empty subset of X. If �A is Fuzzy bi-open in X, 

then  
�

�
: (�, τ�, σ�) → (X , τ , σ ) is Fuzzy strongly quasi continuous. 

 
 Proof: Let λ be a Fuzzy quasi open set in X . Then ���(λ) is Fuzzy quasi 
open in X, because � is Fuzzy strongly quasi continuous. Therefore by [5], 

 (
�

�
)��(λ) = χ

�
���(λ) is Fuzzy quasi open in(�, τ�, σ�). Hence, 

�

�
  is Fuzzy 

strongly quasi continuous. 
 
4. Discussion and Conclusion 
 
 In this paper, we introduced the concept of Fuzzy strongly quasi continuity 
which is a generalization of Fuzzy quasi continuity. Fuzzy strongly quasi continuity 
is stronger than Fuzzy quasi continuity in Fuzzy Bitopological spaces. We also 
proved some theorems for Fuzzy strongly quasi continuous mappings in Fuzzy 
Bitopological spaces. 
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1. Introduction 
 
 A polymer is a large macromolecule consisting of many identical or similar 
building blocks, called its monomers, that are linked by bonds to form a chain. DNA 
and RNA are linear polymers and their monomeric units are called nucleotides. Each 
nucleotide consist of three subunits: a phosphate group and a sugar (ribose in case of 
RNA and deoxyribose in DNA) and nucleotide bases. There are four nucleotide bases 
of DNA strand-Adenine (A), Cytosine (C), Guanine (G) and Thymine (T) which are 
sometimes termed as DNA alphabets or Letters. In practice the nucleotides are 
represented by their bases. A sequence of three nucleotides forms a unit called codon. 
A codon encodes an amino acid. Proteins are chain of amino acids.  
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 A large number of nucleotides are linked by bonds to form a polynucleotide, 
a chain of DNA or RNA. These polynucleotide chains were transformed to ordered 
fuzzy sets for the purpose of sequence comparison as suggested by Sadegh Zadeh 
(2000). Further the author showed that a fuzzy polynucleotide is a unique point in a 
hypercube. The author equipped a metric with these set of polynucleotides to form a 
Fuzzy Polynucleotide Space. Using the same concept of Fuzzy Polynucleotide Space 
and simplifying the sequences to codons, Torres and Nieto (2003) tried to define a 12 
dimensional metric space which they have also called as Fuzzy Polynucleotide Space 
in order to compare fuzzy codons. Unfortunately this 12-dimensional metric space as 
suggested Torres and Nieto was studied and declared faulty by Zadeh (2007). 
Considering the topological groups under fuzzy setting, the properties of Fuzzy 
Topological groups and Semi groups were studied by Foster (1979). Ali and Phukan 
(2013) studied the algebraic and topological properties of the genetic code. 

 
 In this paper we have defined a new notion which we have named as fuzzy 

codon complements and discussed some algebraic and topological properties of these 
codon complements in fuzzy setting. In section 2, we have discussed some 
preliminaries to make our work self contained. In section 3, we have defined fuzzy 
codon complements and discussed some of their properties. 

  

2. Preliminaries 
 

 A fuzzy set A of a universal set �  is a function 
 

�� ∶ � → [0, 1] 
 
For each  � ∈ �, ��(�) is called the membership grade of x in �. For convenience, 
the fuzzy set as well as the corresponding membership function is represented by  �. 
  
 For a non empty set �, �� = { �: � → [0,1]}.  
 
 The elements of  �� are called fuzzy subsets of �. 0� and 1� are functions on 
� identically equal to 0 and 1 respectively. 
  
 Given two fuzzy sets � and �, their standard intersection � ∩ �, standard 
union � ∪ � and standard complement �� are defined for all � ∈ �  by the equations 
  

��∩�(�) = ���[ ��(�), ��(�) ] 

��∪�(�) = ���[ ��(�), ��(�) ] 

 ���(�) = 1 ��(�) 

                                         A ⊂ B if ��(�) ≤ ��(�)  ∀ � ∈ �     
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 For infinite collection of fuzzy subsets, min and max are respectively 
replaced by infimum and supremum.  
 

A fuzzy point on � is a fuzzy subset 
 

��
�(�) = � 

 �, ��  � = �  
0, �� � ≠ �

� 

 
 Definition 2.1: [5] Let � be a group and � be a fuzzy set in �. Then � is a 
fuzzy group in �  if the following two conditions are obeyed. For every �, � ∈ �,    
 

a)  �(� + �) ≥ min{�(�), �(�)}    
 

 b)  �( �) ≥ �(�)   
 

 If � satisfies only the first condition then it is a fuzzy semigroup. 
 
 Definition 2.2: [5] Let � be a ring and � be a fuzzy set in �. Then � is a 
fuzzy ring in � if for every  �, � ∈ �   
 

i) �(� �) ≥ min{�(�), �(�)}   
 
ii) �(�. �) ≥ min{�(�), �(�)}   

 
 These two conditions are equivalent to 
 

i) �(� + �) ≥ min{�(�), �(�)}   
 
ii) �(�. �) ≥ min{�(�), �(�)}   
 
iii) �( �) ≥  �(�)   

 
 Definition 2.3: [1] A fuzzy metric �� on � is a classical metric on �� (the set 

of all fuzzy point of  �), satisfying the additional condition �����
�, ��

�� = �����
�, ��

��.  

 
 Definition 2.4: [5] Let � be a mapping from a set � to �. Let B be a fuzzy 
set in �. Then the inverse image of �, written by ���(�), is the fuzzy set in � with 
membership function defined by    
       

���(�)(�) = �{�(�)} for all � ∈ �.   
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 Conversely, let  � be a fuzzy set in �. Then the image of �, written as �(�), 
is the fuzzy set in � with membership function defined by  

           

�[�](�) = �
sup

�∈���(�)
�(z),      if ���(�) is nonempty 

0,                           otherwise

� 

 
for all � ∈ �, where ���(�) = {�| �(�) = �}. 
 
 Definition 2.5: [5] A fuzzy topology on a set � is a family � of fuzzy sets in 
� which satisfies the following conditions: 
 
 i) For all � ∈ �, �� ∈ � 
 
 ii) If   �, � ∈ � then � ∩ � ∈ � 
 
 iii) If �� ∈ �  for all � ∈ �, then ∪�∈� �� ∈ � 

 
 The pair (�, �) is called a fuzzy topological space, or fts for short, and the 
members of � are called � open fuzzy sets, or, when there is no risk of confusion, 
simply open fuzzy sets. 
 

In the definition of a fuzzy topology by Chang, the condition i) is just 
��, �� ∈ �. 

 
 Definition 2.6: [5] Let � be a fuzzy set in � and � a fuzzy topology on �. 
Then the induced fuzzy topology on � is the family of fuzzy subsets of � which are 
the intersections with � of  � open fuzzy sets in �. The induced fuzzy topology is 
denoted by ��, and the pair (�, ��) is called a fuzzy subspace of (�, �). 
 
 Definition 2.7: [5] Let � be a fuzzy topology on a set �. A subfamily  of  �  
is base for �  if and only if each member of  � can be expressed as the union of 
members of . 
 
 Definition 2.8: [5] Let � be a fuzzy topology on a set � and ��, the induced 
fuzzy topology on a fuzzy subset � of �. A subfamily ′ of �� is base for �� if and 
only if each member of �� can be expressed as a union of members of ′. 
 
 Note: If  is a base for a fuzzy topology � on a set �, then � = {� ∩ �|� ∈ } 

is a base for the induced fuzzy topology �� on the fuzzy subset �. 
 

 Next we propose the following definition.  
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 Definition 2.9: Let � be a set. A non empty collection  of fuzzy subsets of 
� (called basis elements) is a basis for a fuzzy topology on � if the following two 
conditions holds:  
 

 i) For each � ∈ �, there is at least one basis element � such that �(�) > 0. 
 

ii) We have � such that ��(�) > 0 and ��(�) > 0 where �� and ��  
are basis elements. Then there exists a basis element �� such that 
��(�) > 0 and  �� ⊂ �� ∩ ��. 

 

 The fuzzy topology � generated by  is such that a fuzzy subset � of � is an 
element of � if for each �, for which �(�) > 0, there exists � ∈  such that 
�(�) > 0 and � ⊂ �. 
 

 Note:  Each basis element is itself an element of �. 
 

 Definition 2.10: [5] Let � be a mapping from a fts (�, �) to a fts (�, �). Let 
 be a base for �. Then � is fuzzy continuous if and only if for each � in , the 

inverse image ���(�) is in �. 
 

Let (�, ��) and (�, ��) be the fuzzy subspaces of fuzzy topological spaces 
(�, �) and (�, �) respectively. Let � be a mapping of (�, �) in to (�, �), then � is a 
mapping of (�, ��) into (�, ��) if �(�) ⊂ �. 

 

 Definition 2.11: [5] Let (�, ��) and (�, ��) be the fuzzy subspaces  
of fuzzy topological spaces (�, �) and (�, �) respectively. Then a mapping 
�: (�, ��) (�, ��) is relatively fuzzy continuous if and only if for each open 
fuzzy set � in ��, the intersection ���(�) ∩ � is in ��. 
 

 Proposition 2.12: [5] Let (�, ��)  and (�, ��)  be fuzzy subspaces of fuzzy 
topological spaces (�, �) and (�, �) respectively, and let � be a fuzzy continuous 
mapping of (�, �) into a (�, �) such that �(�) ⊂ �. Then � is relatively fuzzy 
continuous mapping of (�, ��) into (�, ��).   
 

 Definition 2.13: [5] Let � be a group and � a fuzzy topology on �. Let � be 
a fuzzy group in � and � be endowed with the induced fuzzy topology ��. Then � is 
a fuzzy topological group in � if and only if it satisfies the following two conditions: 

 

i) The mapping �: (�, �) → � + � of (�, ��) × (�, ��) into (�, ��)  is 
relatively fuzzy continuous. 

 

ii) The mapping �: � → � of  (�, ��) into (�, ��) is relatively fuzzy 
continuous.  
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 Note:  Suppose � is a fuzzy group in a group �. Let �: (�, �) → � + � be a 
mapping from � × � into � and �: � → � be a mapping of � into itself. Then 
�[� × �] ⊂ � and   �[�] ⊂ � [5].  
 

 If � is a fuzzy topology defined on �, then � acquires an induced  
fuzzy topology ��. Also (�, ��) is a fuzzy subspace of the fts (�, �), and 
 (�, ��) × (�, ��) a fuzzy subspace of (�, �) × (�, �). 

 
 Definition 2.14: [4] Let � be a ring and � be a fuzzy topology � such that  
 

i) The mapping �: (�, �) → � + � of (�, �) × (�, �) into (�, �) is fuzzy 
continuous. 

 
ii) The mapping �: (�, �) → �. � of (�, �) × (�, �) into (�, �) is fuzzy 

continuous. 
 
 iii) The mapping �: � → � of (�, �) into (�, �) is fuzzy continuous. 

 
 The pair (�, �) is called fuzzy topological ring. 
 
 We now propose the following definition. 
 
 Definition 2.15: Let � be a ring and � a fuzzy topology on �. Let � be a 
fuzzy ring in � and � be endowed with the induced fuzzy topology ��. Then � is a 
fuzzy topological ring in � if and only if it satisfies the following three conditions: 
 

i) The mapping � ∶ (�, �) → � + � of (�, ��) × (�, ��) into (�, ��) is 
relatively fuzzy continuous. 

 
ii) The mapping � ∶ (�, �) → �. � of (�, ��) × (�, ��) into (�, ��)  is 

relatively fuzzy continuous. 
 

iii) The mapping � ∶ � → � of (�, ��) into (�, ��) is relatively fuzzy 
continuous. 

 

 Definition 2.16: [5] Given a family ����, ����, � ∈ � be a family of fuzzy 

topological spaces, and we define their product ∏������, ��� to be the fts (�, �), 

where � = ∏�����  is the usual set product and � is the coarsest topology on � for 

which the projections �� of � on to �� are fuzzy continuous for each � ∈ �. The fuzzy 

topology � is product fuzzy topology on �, and (�, �)  is a product fts. 
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 Note: If ����, � = 1,2, … , �, be a finite family of sets and if �� be a fuzzy set in 

��. The product � = ∏���
� �� , � = 1,2, … , � is the fuzzy set on � = ∏���

� ��  that 

has membership function given by 
 

��(��, ��, … , ��) = �������
(��), ���

(��), … , ���
(��) � for all (��, ��, … , ��) ∈ �. 

 

  It also follows that if ����, � = 1,2, … , �, be a finite family of sets and if �� 

has fuzzy topology ��, � = 1,2, … , �, the product fuzzy topology � on � has a 

base, the set of product fuzzy sets of the form ∏���
� �� where �� ∈ ��, 

 � = 1, 2, … , �.    
       

3. Fuzzy Codon Complement 
 

Let  � = {�, �, �, �} be the set of nucleotide bases. The crisp codon with 
different nucleotide bases can be thought of as a set of three nucleotide bases. Then 
the complement of this crisp codon is a set with only one element or one base. When 
this complement is viewed as a characteristic function, the membership of the base 
contained in it has value 1.  

 
Now, if we consider this membership to be in the interval (0,1] by restricting 

the membership of other members in the base set � to be zero, we get a fuzzy point. 
Let us name it as fuzzy codon complement. 

 
For example, � = ��� �� {�, �, �} being a codon is a subset of 

 � = {�, �, �, �}. 
 

 Complement of �, �� = {�}. For this complement we can define a 
characteristic function  ���: � → {0,1} with membership values as follows: 

 
��� (�) = 0; 

��� (�) = 0; 

��� (�) = 1; 

��� (�) = 0. 

 Then �� is a crisp point. 
 

 Now, if we consider the membership of � to be in the interval (0,1], by 
restricting the membership of other remaining bases to be zero, then we will get a 
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fuzzy point corresponding to codons ���, ���, ���, ���, ���, ���.   For example, 
we can define ��: � → [0,1] where 

��(�) = 0; 

��(�) = 0; 

 �� (�) = 0.1; 

��(�) = 0. 

 
which is a fuzzy codon complement ��

�.�. 
 

This is a case, for example, when a base in the sequence is defective and may 
fit more than one fuzzy class or when a base is not identifiable with certainty or has 
not yet been identified [6]. 

 
The fuzzy codon complements are the only possible fuzzy points on the set 

of nucleotides � and so the set of all fuzzy codon complements will be denoted by ��. 
 

4. Properties of Fuzzy Codon Complements 
 
 4.1 Fuzzy codon complement as fuzzy group: Based on physio–chemical 
properties of DNA bases, there are two cyclic groups i) the primal and ii) the dual 
group, corresponding to the ordered sets {�, �, �, �} and {�, �, �, �} respectively [2].  
 

Table 1 ( �: Primal Algebra  �: Dual Algebra) 
 

� 

+ � � � � 

� 

+ � � � � 

� � � � � � � � � � 

� � � � � � � � � � 

� � � � � � � � � � 

� � � � � � � � � � 

     
Because we have considered the order arrangement of the primal group for 

defining fuzzy codon complements, we will restrict ourselves to primal algebra. Now 
for the case of primal group, if we consider a fuzzy set � then �(� + �) = �(�). 
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 If �(�) ≥ �(�) then ���{�(�), �(�)} = �(�) = �(� + �). 
  
 If �(�) ≤ �(�) then ���{�(�), �(�)} = �(�) ≤ �(�).  
 
 Thus, in any case, �(� + �) ≥ ���{�(�), �(�)}. 
 
 Similarly, �(� + �) ≥ ���{�(�), �(�)} and �(� + �) ≥ ���{�(�), �(�)}. 
 
 Let the following cases be true 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                              (4.1) 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                             (4.2) 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                              (4.3) 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                             (4.4) 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                              (4.5) 
 

�(� + �) = �(�) ≥ �(�) =  ���{�(�), �(�)}                              (4.6) 
 

 Then, from (4.1) to (4.6), we get 
 

�(�) ≥ �(�) and �(�) = �(�) = �(�)                                          (4.7) 
 

 We observe from (4.7) that � can be a fuzzy codon complement ��
�, � ∈

(0,1]. Thus, this codon complement will form a fuzzy semigroup with respect to 
primal group. In order to verify for other codon complements we consider the table 2 
on the next page. 
 

From Table 2, it is observed that the codon complement ��
� is the only fuzzy 

point in � which forms a fuzzy semi group in �. For this fuzzy codon complement 
 

��
� ( �) = ��

�(�), 
 

��
� ( �) =   ��

�(�), 
 

 ��
� ( �) = ��

�(�) = ��
�(�), 

 

 ��
� ( �) = ��

�(�) = ��
�(�) . 

 

 Hence, the fuzzy codon complement ��
� forms a fuzzy group.  
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Table 2 
 

s � � � + � ��
�(�) ��

�(�) 
��� 

{��
�(�), ��

�(�)} 
��

�(� + �) 

Whether 
���{��

�(�), ��
�(�)} 

≤ ��
�(� + �) 
( �/�) 

 

� 

� � � � � � � � 

� � � � 0 0 0 � 

� � � � 0 0 0 � 

� � � � 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 

� � � 0 0 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� 

� � � 0 0 0 0 � 

� � � 0 � 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � � � � 0 � 

� � � � 0 0 0 � 

� � � � 
 

0 
 

0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 

� � � 0 0 0 0 � 
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s � � � + � ��
�(�) ��

�(�) 
��� 

{��
�(�), ��

�(�)} 
��

�(� + �) 

Whether 
���{��

�(�), ��
�(�)} 

≤ ��
�(� + �) 
( �/�) 

 

� 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 � 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 
 

� � � 0 � 0 0 � 
 

� � � 0 0 0 0 � 

� � � � � � 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 

� 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 � 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 

� � � 0 � 0 0 � 

� � � 0 0 0 0 � 

� � � 0 � 0 0 � 

� � � � � � 0 � 

 
 * � stands for yes and � stands for no.  
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 4.2 Fuzzy codon complement as fuzzy ring: In order to prove that ��
� is a 

fuzzy ring, it is sufficient to show that  
 

���{��
�(�), ��

�(�)} ≤ ��
�(�. �). 

 
 The ring structure on � is given by the following composition table [2]:  

 
Table 3 

 

. � � � � 

� � � � � 

� � � � � 

� � � � � 

� � � � � 

 
 Again we consider the following table: 
 

Table 4 
 

� � �. � ��
�(�) ��

�(�) 
��� 

{��
�(�), ��

�(�)} 
��

�(�. �) 

Whether 
���{��

�(�), ��
�(�)} 

≤ ��
�(�. �) 

 

� � � � � � � � 

� � � � 0 0 � � 

� � � � 0 0 � � 

� � � � 0 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 

� � � 0 0 0 � � 

� � � 0 0 0 0 � 

� � � 0 0 0 0 � 
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 We see from the above table that the fuzzy codon complement ��
� also forms 

a fuzzy ring. 
 
 4.3 The set of all fuzzy codon complements forms a fuzzy metric space: 
The function �: �� × �� → [0, ∞) defined as �� ��

�� , ��
��� = |�� ��| where ��

��, ��
��  

are fuzzy codon complements is a fuzzy metric as  
 

i) �� ��
�� , ��

��� = |�� ��| ≥ 0 

 

ii) �� ��
�� , ��

��� + �� ��
�� , ��

��� ≥ �� ��
�� , ��

��� 

 
Since |�� ��| = |�� �� + �� ��| 

                                     ≤ |�� ��| + |�� ��|.     
            

iii) ����
�� , ��

��� = ����
�� , ��

��� as |�� ��| = |�� ��|. 

 

iv) ����
�� , ��

��� = ����
��, ��

���. 

 
 Hence,  � is a fuzzy metric and so (��, � ) is a fuzzy metric space. 
 
 4.4 A fuzzy topology on the set of bases �: Let us consider the following 
sets of collection of fuzzy points on �:  
 

�� = {��
�: � ∈ � and �ixed  � ∈ (0,1)}, 

 
 �′ = �� ∪ {��

�: � ∈ �}, 
 

� = �′ ∪ {��
�: � ∈ �}. 

 

 Thus, � = ���
�: � ∈ � ��� � ∈ {0, �, 1}� where � is an arbitrarily fixed value 

such that � ∈ (0,1). We see that � , which is the collection of fuzzy codon 
complements together with the set {��

�: � ∈ �} is a basis for a fuzzy topology  on �  
because 
 

i) For each � ∈ �, there exists atleast a fuzzy codon complement ��
� in �  such 

that ��
�(�) > 0. 

 

ii) Let � be such that ��
��(�) > 0 and ��

��(�) > 0. In any case, 

 ��
�� ∩ ��

�� = ��
��, (�� = � �� 1) which is a member of �  and ��

��(�) > 0. 
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 By considering the arbitrary union of elements of � , we find that �  
generates a fuzzy topology . Thus (�, ) is a fuzzy topological space. 
 
 4.5 Fuzzy codon complement ��

�  forms a fuzzy topological group: We 
know that � forms a group as given by composition table 1. Also (�, ) is a fuzzy 
topological space and the fuzzy codon complement ��

� forms a fuzzy group. The 

basis for  is given as  = � = ���
�: � ∈ � ��� � ∈ {0, �, 1}�. Let � = ��

� for 
some fixed �, � ∈ (0, �]. Then � is a fuzzy subspace with induced fuzzy topology 

�. Now,   
 ��

� ∩ ��
� = 0� = ��

�  
 
��

� ∩ ��
� = ��

�  
 
��

� ∩ ��
� = 0�, � ≠ � 

 
Also,  ��

� ∩ ��
� = ��

�   and   ��
� ∩ ��

� = ��
�, � �.  

 
 Thus, the basis for this induced fuzzy topology � is 
 

� = {��
�, ��

� for �ixed � ∈ ]0, �]}. 
 

 Now, let �: (�, �) → � + � be a mapping from � × � into � and � ∶ � → � 
be a mapping of � into itself. Then � and � are well defined and �[� × �] ⊂ � and  
�[�] ⊂ �. 
 
 (a) We will first show that the mapping � ∶ (�, �) → � + � of 
 (�, �) × (�, �) into  (�, �) is relatively fuzzy continuous. We choose 

��
��(�� = 0, �) from �. We will show that �������

��� ∩ (� × �)� is an open set 

in the product space  � × �. 
 
 We have, 
 

     �. �. �. = �������
��� ∩ (� × �)�(�, �)  

                     =  �������
����(�, �), ���{�(�), �(�)}� 

       = ������
��(� + �), �(�), �(�)� 

       = ������
��(�), �(�), �(�)� 

                     = �
�   if � = � = � = �, �� ≠ 0
0                             �� ������

�   
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 Again,  
       

�. �. �. = ���
�� × ��

��(�, �)  

                   = ������
��(�), ��

�(�)�  

                                       = �
 �    if  � = � = �, �� ≠ 0
  0                         �� ������

� 

 
 We have the following cases: 
 

Table 5 
 

����� � � � = � + � 
= � + �
= � + �

�� �. �. � �. �. � 

� � � � � � � 

�� � � � 0 0 0 

��� � � � � �� 0 0 0 

 �� � � � � �� 0 0 0 

� � � � � �� 0 0 0 

�� � � � � �� 0 0 0 

��� � � � � �� 0 0 0 

���� � � � � �� 0 0 0 

�� 
 

� � � � �� 0 0 0 

� 
 

� � � � �� 0 0 0 
 �� 

 
� � � � �� 0 0 0 

 
 We see that in all the cases �. �. �. = �. �. �.  
 

 Hence, we can take ������
��� ∩ (� × �) = ��

�� × ��
�. 

 
 Since  ��

��, ��
� are the open sets in �, ��

�� × ��
�  is a base for the product 

topology on � × � and so ��
�� × ��

� is an open set of � × �. Thus, the mapping 
�: (�, �) → � + � of (�, �) × (�, �) into (�, �) is relatively fuzzy continuous. 
 
 (b) We will now show that the mapping �: � → � of (�, �) into (�, �) 
is relatively fuzzy continuous. Since �[�] ⊂ �, it is sufficient to show that the 
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mapping �: � → � of  (�, ) into (�, ) is fuzzy continuous. We see that the basis 
for  is given as 

= ���
�: � ∈ � ��� � ∈ {0, �, 1}�. 

 

 Let us consider a basis element ��
� in . Then, we have, 

 

{���(��
�)}(�) = ��

�{�(�)} = ��
�( �). 

 

We have the following table: 
Table 6 

x � � ��
�( �) x � � ��

�( �) 

� 

� � � 

� 

� � 0 

� � 0 � � 0 
� � 0 � � � 
� � 0 � � 0 

 � 

� � 0 

� 

� � 0 

� � � � � 0 
� � 0 � � 0 
� � 0 � � � 

 
 We can see that ���(��

�) ∈ . Hence ���(��
�) is an element in . Thus 

�: � → � of (�, �) into (�, �) is relatively fuzzy continuous. Thus, the fuzzy 
codon complement  � is a fuzzy topological group. 
 

 4.6 Fuzzy codon complement ��
� forms a fuzzy topological ring: We 

know that � forms a ring as given by composition table 2. Also, (�, ) is a fuzzy 
topological space and the fuzzy codon complement ��

� forms a fuzzy ring. We know 
that � = ��

�  is a fuzzy subspace with induced fuzzy topology � and the basis for 
this induced fuzzy topology � is � = {��

�, ��
� for �ixed � ∈ (0, �]}.  

 

Let �: (�, �) → �. � be a mapping from � × � into �. Then � is well defined 
on  � × �. And we have, 

 

 �[� × �](�) = sup(��,��)∈���(�)[� × �](��, ��)  

                                                 = sup
(��,��)∈���(�)

���{�(��), �(��)}  

                                                 ≤ sup(��,��)∈���(�) �(��. ��)  

 
 Thus, �[� × �](�) ≤ �(�)  for every � ∈ �. 
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 Hence, � is well defined on � × � and  �[� × �] ⊂ �. It is sufficient to 
show that the mapping �: (�, �) → �. � of (�, �) × (�, �) into (�, �) is 

relatively fuzzy continuous. We choose ��
��(�� = 0, �) from �. We will show that 

�������
��� ∩ (� × �)� is an open set in the product space � × �. 

 

 We have,  �. �. �. = �������
��� ∩ (� × �)�(�, �) 

 

                             = ����������
���(�, �), (� × �)(�, �)�  

 

                             =  �������
����(�, �), ���{�(�), �(�)}�  

 

                              = ������
��(�. �), �(�), �(�)�  

 

                              = ������
��(�), �(�), �(�)�  

 

                              = �
�    if  � = � = � = �, �� ≠ 0
0                               �� ������

� 

 

 Again,  �. �. �. = ���
�� × ��

��(�, �) = ������
��(�), ��

�(�)�  
 

                          = �
 �   if  � = � = �, �� ≠ 0
0                    �� ������

� 

 
 We have the following cases: 

Table 7 

����� � � � = �. � �� �. �. � �. �. � 

� � � � � � � 

�� � � � 0 0 0 

��� � � � � �� 0 0 0 

�� � � � � �� 0 0 0 

� � � � � �� 0 0 0 

�� � � � � �� 0 0 0 

��� � � � � �� 0 0 0 

���� � � � � �� 0 0 0 

�� � � � � �� 0 0 0 

� � � � � �� 0  0 0 

�� � � � � �� 0 0 0 
 
 We see that in all the cases, �. �. �. = �. �. �.  
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 Thus, we can take  

������
��� ∩ (� × �) = ��

�� × ��
�. 

 
 Hence, the mapping �: (�, �) → �. � of (�, �) × (�, �) into (�, �) is 
relatively fuzzy continuous. Thus, the fuzzy codon complement � also forms a fuzzy 
topological ring. 
 
5. Observation 
 
i) We see that the only fuzzy codon complement which forms a fuzzy group is the 

fuzzy point ��
� in � with support base �. In fact it is also a fuzzy ring, too. The 

fuzzy codon complement �� 
� , � < 1 even forms a fuzzy topological group as well 

as fuzzy topological ring.  
 

ii) The crisp codons with different bases whose complement is the base � are the six 
codons as follows: ���, ���, ���, ���, ���, ���. We observe that 
 

� = {���, ���, ���, ���, ���, ���} 
 

forms a symmetric group (��,∘) and each of the codons codes  amino acids such 
that no two of the amino acids are same. In fact, the same is true if we consider 
the complement to be � or �. 
 

iii) The crisp codons with different bases whose complement is the base � is an 
exception because the two of them are stop codons although it do form a 
symmetric group. This group of crisp codon {���, ���, ���, ���, ���, ���} 
proves to be quite interesting as it involves start codons as well as stop codons. 
 

iv) On the other hand, the group of crisp codons {���, ���, ���, ���, ���, ���}  
happens to be interesting again as this is the only group where among the six 
different amino acids coded by the codons, three are hydrophobic and the other 
three are hydrophilic. 
 

6. Conclusion 
 

In this paper, we have defined fuzzy codon complements for the codons with 
different nucleotide bases and studied some of the properties they exihibit. We have 
defined the fuzzy codon complement as fuzzy points on the set of nucleotide bases. 
This set of fuzzy points even forms a fuzzy metric space when we define a suitable 
metric on it. By using these fuzzy points we have developed a fuzzy topology on the 
set of nucleotide bases. Because the fuzzy codon complement with support � forms a 
fuzzy group as well as fuzzy ring, it forms a fuzzy topological group as well as fuzzy 
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topological ring. We have developed some mathematical structures on the set of 
nucleotide bases which may or may not have direct connection to genetics but it 
suggests a new way of visualizing the tiny, but vital components of molecular 
biology. 
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Abstract: In this paper, we introduce the notion  of generalized  

  Geraghty contraction type maps and   Geraghty contraction type 

maps in the context of S-metric spaces and establish some fixed point 
theorems for such maps. Our results (with some modifications) extend the 
fixed point results of Cho et al. [8] in complete S-metric spaces. An 
example is also given to illustrate our result. 
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1. Introduction  
 

The Banach contraction principle is one of the most important and 
fundamental results in fixed point theory. The study of fixed point problems is indeed 
a powerful tool in nonlinear analysis and the fixed point theory techniques have very 
useful applications in many disciplines such as Chemistry, Physics, Biology, 
Computer Science, Economics, Game Theory and many branches of Mathematics. 
Due to this, several authors have improved, generalized and extended this basic result 
of Banach by defining new contractive conditions and replacing the metric space by 
more general abstract spaces. Among such results was an interesting result by 
Geraghty [10] which generalized the Banach contraction principle in the setting of a 
complete metric space by considering an auxiliary function.Then Amini-Harandi and 
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Emami [2] characterized the result of Geraghty in the context of a partially ordered 
complete metric space. Caballero et al. [6] discussed the existence of a best 
proximity point of Geraghty contraction. Gordji et al [11] defined the notion of  
ψ-Geraghty type contraction and obtained results extending the results of Amini-
Harandi and Emami [2]. Recently Samet et al. [25] defined the notion of  
α-ψ-contractive mappings and obtained remarkable fixed point results. Inspired by 
this notion of α-ψ-contractive mappings, Karapinar and Samet [16] introduced the 
concept of generalized α-ψ-contractive mappings and obtained fixed point results for 
such mappings. Very recently, Cho et al. [8] defined the concept of α-Geraghty 
contraction type maps in the setting of a metric space starting from the definition of 
generalized α-Geraghty contraction type maps and proved the existence and 
uniqueness of  fixed point of such maps in the context of a complete metric space.  

 
 In this paper, motivated by the results of Cho et al. [8], we define generalized 
�-Geraghty contraction type maps and �-Geraghty contraction type maps in the 
setting of S-metric spaces and obtain the existence and uniqueness of a fixed point of 
such maps. Our results (with some modifications) extend the fixed point results of 
Cho et al. [8] in complete S-metric spaces. We also give an example to illustrate our 
result.  
   
2. Preliminaries 
 
 In this section, we recall some basic definitions and related results on the 
topic in the literature. 
 

 Let  be the family of all functions    : 0, 0,1    which satisfies the 

condition    
 

 lim 1n
n

t


   implies   lim 0.n
n

t


  

 
 By using such a map, Geraghty proved the following interesting result. 
 
 Theorem 2.1: [10] Let (X, d) be a complete metric space and let 

:T X X  be a map. Suppose there exists    such that for all x, y ∈ X, 

 

      , , , .d Tx Ty d x y d x y
 

 

 Then T has a unique fixed point x X   and  nT x  converges to x  for 

each x X . 
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 Definition 2.2: [25] Let :T X X  be a map and : X X    be a 

function. Then T is said to be α-admissible if  , 1x y   implies  , 1Tx Ty  . 

 
 Definition 2.3: [14] A map :T X X  is said to be triangular α-admissible 
if  

(T1) T is α-admissible, 

(T2)   , 1x z   and  , 1z y   imply  , 1x y  . 

 
 Lemma 2.4: [14] Let :T X X  be a triangular α-admissible map. 

Assume that there exists 1x X  such that  1 1, 1x Tx  . Define a sequence {xn} by 

1n nx Tx  . Then we have  , 1n mx x   for all ,m n  with n < m.  

 
 Cho et al. [8] defined the concept of generalized α-Geraghty contraction type 
map in the setting of a metric space and proved the following Theorems 2.6., 2.7.  
and 2.8. 
 

 Definition 2.5: [8] Let (X, d) be a metric space and : X X   be a 

function. A map :T X X is called a generalized α-Geraghty contraction type map 

if there exists    such that for all ,x y X , 

 

           , , , , ,x y d Tx Ty M x y M x y    

where            , max , , , , , .M x y d x y d x Tx d y Ty   

 

 Theorem 2.6: [8] Let  ,X d  be a complete metric space, : X X     

be a function and let :T X X  be a map. Suppose that the following conditions 
are satisfied: 
   

(1) T  is a generalised  -Geraghty contraction type map;  

(2) T  is triangular  -admissible;         

(3) there exists 1x X  such that  1 1, 1;x Tx                   

(4) T  is continuous. 

                               

 Then T  has a fixed point x X  , and T  is a Picard operator, that is, 

 1
nT x converges to x . 
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 Theorem 2.7: [8] Let  ,X d  be a complete metric space, : X X     

be a function and let :T X X  be a map. Suppose that the following conditions 
are satisfied: 
   

(1) T  is a generalised  - Geraghty contraction type map;                            

(2) T  is triangular  - admissible;         

(3) there exists 1x X  such that  1 1, 1;x Tx 
 

(4) if  nx  is a sequence in X such that  1, 1n nx x    for all n and 

nx x X   as  n → ∞, then there exists a subsequence   n k
x  of 

 nx  such that   , 1
n k

x x   for all k. 

 

 Then T  has a fixed point x X  , and T  is a Picard operator, that is, 

 1
nT x converges to x .  

 

 For the uniqueness of a fixed point of a generalized  -Geraghty contraction 
type map , Cho et al. [8] considered the following hypothesis. 
 

   (H) For all , ( )x y Fix T , there exists z X  such that  , 1x z   and 

 , 1.y z   Here ( )Fix T  denotes the set of fixed points of T. 

 
 Theorem 2.8: [8] Adding condition(H) to the hypotheses of Theorem 

2.6.(resp. Theorem 2.7.), we obtain that x is the unique fixed point of T. 
 

We also recall S-metric space and some of its properties. 
 
 Definition 2.9: [24] Let X be a nonempty set. An S-metric on X is a function                        

 : 0,S X X X    that satisfies the following conditions, for each x, y, z, a ∈ X, 

 
 (S1)  S(x,y,z) ≥ 0,  

 (S2)  S(x,y,z) = 0 if and only if x = y = z, 

 (S3)  S(x,y,z) ≤ S(x,x,a) + S(y,y,a) + S(z,z,a). 
 

 The pair (X, S) is called an S-metric space. 
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 Example 2.10: [24] Let X be a nonempty set and d be an ordinary metric on 
X. Then S(x, y, z) = d(x, z) + d(y, z) is an S-metric on X. 
 
 Lemma 2.11: [24] In an S-metric space (X, S), we have S(x, x, y) = S(y, y, x) 
for all x, y ∈ X. 
 
 Definition 2.12: [24] Let (X, S) be an S-metric space. 
 

 (1) A sequence {xn} in X converges to x if and only if   , , 0n nS x x x   as 

 n → ∞, that is for each 0   there exists 0n  such that for all 

  0 , , ,n nn n S x x x    and we denote this by lim .n
n

x x


   

   
 (2) A sequence {xn} in X is called a Cauchy sequence if and only if 

  , , 0n n mS x x x   as n,m → ∞, that is for each 0  there exists 

 0n  such that for all  0, , , ,n n mn m n S x x x   . 

 
  (3) An S-metric space (X, S) is said  to be complete if every Cauchy sequence 

  is convergent. 
 
 Lemma 2.13: [24] Let (X, S) be an S-metric space. If the sequence {xn} in X 
converges to x, then x is unique. 
 
 Lemma 2.14: [24] Let (X, S) be an S-metric space. If the sequence {xn} in X 
 converges to x, then {xn} is a Cauchy sequence. 
 
 Lemma 2.15: [24] Let (X, S) be an S-metric space. If there exist sequences 
{xn} and {yn} in X  such that     
 

lim n
n

x x


    and     lim n
n

y y


 , 

then 
 

   lim , , , , .n n n
n

S x x y S x x y



 

 

 Lemma 2.16: [23] Let :T X Y  be a map from an S-metric space X  

to an S-metric space Y. The T is continuous at x X  if and only if nTx Tx  

whenever nx x .   
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3. Main Results 
 
 We now state and prove our main results. 
 
 We first introduce some definitions and lemmas. 
 

 Let Ω be the family of all functions    : 0, 0,1    which satisfies the 

following conditions 
 

 (1)   1t    for  0t  , and  

 (2)  lim 1n
n

t


   implies  lim 0n
n

t


 . 

 
 Remark 3.1: Here instead of the family  we are introducing a more refined 
family Ω. 
 

 Definition 3.2: Let :A X X  be a map and : X X X     be a 

function. Then A is said to be  -admissible if  , , 1x x y   implies 

 , , 1Ax Ax Ay  . 

 
 Definition 3.3: A map :A X X  is said to be triangular  -admissible if 

  
(A1) A is  -admissible, 

(A2)   , , 1x x z   and  , , 1z z y   imply  , , 1x x y  . 

 
 Lemma 3.4: Let :A X X  be a triangular  -admissible map. Assume 

that there exists 1x X  such that  1 1 1, , 1x x Ax  . Define a sequence {xn} by 

1n nx Ax  . Then we have  , , 1n n mx x x   for all ,m n  with n < m. 

  

 Proof: Since there exists 1x X  such that  1 1 1, , 1x x Ax  , we have from 

(A1)    2
2 2 3 1 1 1, , , , 1x x x Ax Ax A x   . By continuing this process, we get 

 1, , 1n n nx x x    for all n . 
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 Let us suppose that ,m n  with n m . Since  1, , 1n n nx x x    and 

 1 1 2, , 1n n nx x x     , from (A2), we get  2, , 1n n nx x x   . Again, since 

 2, , 1n n nx x x    and  2 2 3, , 1n n nx x x     , we deduce that  3, , 1n n nx x x   . 

Continuing the process in this way, we get  , , 1n n mx x x  . 

 

 Definition 3.5: Let  ,X S  be an S-metric space and let 

: X X X      be a function. Then a map :A X X  is called a generalized

 -Geraghty contraction type map if there exists    such that for all ,x y X  , 

 

        , , , , , ,x x y S Ax Ax Ay N x y N x y 
 

where          , max , , , , , , , ,N x y S x x y S x x Ax S y y Ay  . 

 

 Theorem 3.6: Let  ,X S  be a complete S-metric space, 

: X X X      be a function and let :A X X  be a map. Suppose that the 

following conditions hold: 
   

(i) A  is a generalized  -Geraghty contraction type map;                            

(ii) A  is triangular  -admissible;        

(iii) there exists 1x X  such that  1 1 1, , 1;x x Ax                  

(iv) A is continuous. 
 

Then A has a fixed point x*  X and {Anx1} converges to x*. 
 

 Proof:  Let 1x X  be such that  1 1 1, , 1.x x Ax  We construct a 

sequence of points  nx  in X such that 1n nx Ax   for n . If 1n nx x   for some n

 , then xn is a fixed point of A. Therefore, we assume that 1n nx x  for all n . 

 

 By hypothesis,  1 1 2, , 1x x x   and the mapping A is triangular 

 -admissible. Therefore by Lemma 3.4., we have 
 

 1, , 1n n nx x x  
  
for all n . 
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 Then, we have  
 

       1 1 2 1 1 1, , , , , , , ,n n n n n n n n n n n nS x x x S Ax Ax Ax x x x S Ax Ax Ax          

       1 1, ,n n n nN x x N x x    for all n .    (1) 

 
 Here, we have 
    

        1 1 1 1 1, max , , , , , , , ,n n n n n n n n n n nN x x S x x x S x x Ax S x x Ax        

              1 1 1 2max , , , , , .n n n n n nS x x x S x x x        

     

 If    1 1 1 2, , ,n n n n nN x x S x x x    , then from (1) and the definition 

of θ, we have 

   1 1 2 1 1 2, , , ,n n n n n nS x x x S x x x      , 

 
which is a contradiction.                                                                                                                                                         
 
 Thus, we have  
 

       1 1 2 1 1, , , ,n n n n n n nS x x x N x x N x x         

                                 1 1, , , ,n n n n n nS x x x S x x x     

                                          1, ,n n nS x x x                                                                                                                               

so that    

   1 1 2 1, , , ,n n n n n nS x x x S x x x     for all n . 

                                                                                                                                                                                                          

 Thus, the sequence   1, ,n n nS x x x   is nonnegative and nonincreasing.   

 

 Now, we prove that  1, , 0n n nS x x x    as n →∞. 

 

 It is clear that   1, ,n n nS x x x   is a decreasing sequence which is bounded 

from below. Therefore there exists 0r   such that  1lim , ,n n n
n

S x x x r


 . Let us 

assume that 0r  .  
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 We have  
 
 

  1 1 2
1

1

, ,
, , 1

, ,

n n n
n n n

n n n

S x x x
S x x x

S x x x
  





  .  

 
 Now by taking limit n   , we have  
 

  1lim , , 1.n n n
n

S x x x 



 

                                                                    
 By the property of  , we have 
   

 1lim , , 0n n n
n

S x x x r


  , which is a contradiction. 

 

 Therefore we have  1lim , , 0n n n
n

S x x x r


   .    (2) 

 

 Now we show that the sequence  nx  is a Cauchy sequence. Let us suppose 

on the contrary that  nx  is not a Cauchy sequence. Then there exists 0   such 

that, for all positive integers k , there exist k km n k   with 

          

     , ,
k k km m nS x x x  .     (3) 

  

 Let km  be the smallest number satisfying the conditions above. Then we 

have 

                 1 1, ,
k k km m nS x x x    .                (4) 

 
 By (3), (4) and (S3), we have  
   

   , ,
k k km m nS x x x     

        1 1 12 , , , ,
k k k k k km m m m m nS x x x S x x x     

      1 12 , ,
k k km m mS x x x        

that is ,      1 1, , 2 , ,
k k k k k km m n m m mS x x x S x x x       for all k  .   (5) 
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 Then in view of (2) and (5), we have  
          

            lim , ,
k k km m n

k
S x x x 


 .                             (6) 

 

 Again using (S3), we have  
         

      1 1, , 2 , , , ,
k k k k k k k k km m n m m m n n mS x x x S x x x S x x x     

                                                                  

                             1 1 1 1 12 , , 2 , , , ,
k k k k k k k k km m m n n n m m nS x x x S x x x S x x x      

 
and  

       1 1 1 1 1 1 1, , 2 , , 2 , , , ,
k k k k k k k k k k k km m n m m m n n n m m nS x x x S x x x S x x x S x x x         . 

 
 Taking limit as k    and using (2) and (6), we obtain   
 

 1 1 1lim , , .
k k km m n

k
S x x x   


  

     

 By Lemma 3.4., we get  1 1 1, , 1
k k kn n mx x x     . Therefore, we have  

   1 1 1, , , ,
k k k k k km m n m m nS x x x S Ax Ax Ax  

    

                                            1 1 1 1 1 1, , , ,
k k k k k kn n m n n mx x x S Ax Ax Ax        

                                             1 1 1 1, , .
k k k kn m n mN x x N x x      

 Here we have 
 

        
      

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

, max , , , , , , , ,

max , , , , , , , ,

k k k k k k k k k k k

k k k k k k k k k

n m n n m n n n m m m

n n m n n n m m m

N x x S x x x S x x Ax S x x Ax

S x x x S x x x S x x x

          

      





and we see that  

    

 1 1lim , .
k kn m

k
N x x  




 

                            (7)           

 Now we have   

              

 
 

  1 1

1 1

, ,
, 1.

,

k k k

k k

k k

n n m

n m

n m

S x x x
N x x

N x x
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 Then taking limit as k    in the above inequality and using (6) and (7), 
we obtain    
 

  1 1lim , 1.
k kn m

k
N x x  




 
                                         

 So,  1 1lim , 0 ,
k kn m

k
N x x  


   which is a contradiction. Hence,  nx  is a 

Cauchy sequence. Since X is complete, there exists x* X  such that 
*.nx x As A 

is continuous, we have 
*

nAx Ax  i.e. *
1lim n

n
x Ax


 and so * *.x Ax  

 
Hence, x* 

is a fixed point of A. 
 
 In the following Theorem, we replace the continuity of A by a suitable 
condition. 
 

 Theorem 3.7: Let  ,X S  be a complete S-metric space, : X X X     

be a function and let :A X X  be a map. Suppose that the following conditions 
hold: 
   

(i) A  is a generalised  -Geraghty contraction type map;                            

(ii) A  is triangular  -admissible;        

(iii) there exists 1x X  such that  1 1 1, , 1;x x Ax    

 (iv) if {xn} is a sequence in X such that  1, , 1n n nx x x    for all n  and      

nx x X  as ,n   then there exists a subsequence  
knx  of {xn} 

such that  , , 1
k kn nx x x   for all k.    

                           
 Then A has a fixed point x*  X and {Anx1} converges to x*.  
 
 Proof: The proof goes along similar lines of the proof of Theorem 3.6. We 

conclude that the sequence {xn} defined by 1n nx Ax  for all n , converges to a 

point say x*  X. By the hypothesis (iv) there exists a subsequence  
knx  of  nx  

such that  *, , 1
k kn nx x x   for all k. Now for all k , we have 
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* *
1 1

* *

* *

, , , ,

, , , ,

, ,

k k k k

k k k k

k k

n n n n

n n n n

n n

S x x Ax S Ax Ax Ax

x x x S Ax Ax Ax

N x x N x x





  





 

so that           

        * * *
1 1, , , ,

k k k kn n n nS x x Ax N x x N x x     

 
 On the other hand, we have      
   

         * * * * *, max , , , , , , , ,
k k k k k kn n n n n nN x x S x x x S x x Ax S x x Ax   

                         * * * *
1max , , , , , , , ,

k k k k kn n n n nS x x x S x x x S x x Ax   

                         
 We suppose that x*≠ Ax* so that S(x*, x*, Ax*) > 0.Taking limit k → ∞ in the 
above equality, we get 
 

   * * * *lim , , , .
kn

k
N x x S x x Ax


  

 Now we have 
 

 
 

  
*

1 1 *

*

, ,
, 1.

,

k k

k

k

n n

n

n

S x x Ax
N x x

N x x


 
 

 
 

 And taking limit k → ∞, we get 
 

  *lim , 1
kn

k
N x x


  which implies that  *lim , 0

kn
k

N x x


  i.e.  

 

 * * *, , 0.S x x Ax 
 

 

 This is a contradiction. Therefore we must have * *.x Ax   
 
 For the uniqueness of a fixed point of a generalized  -Geraghty contraction 

type map, we consider the following hypothesis: (G) For any two fixed points x and y 

of A, there exists zX such that  , , 1x x z  ,  , , 1y y z 
 
and  , , 1z z Az  . 
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 Here we are using a condition stronger than a condition analogous to the 
condition (H) of Cho et al. [8] because we observe that such a condition is not 
enough. 
 
 Theorem 3.8: Adding condition (G) to the hypotheses of Theorem 3.6.  
(or Theorem 3.7.), we obtain that x* is the unique fixed point of A. 
 
 Proof: Due to Theorem 3.6. (or Theorem 3.7.), we obtain that x*X is a 
fixed point of A. Let y*X be another fixed point of A. Then by hypothesis (G), there 

exists zX such that  * *, , 1x x z  ,  * *, , 1y y z 
 
and  , , 1z z Az  . 

 

Since A is  - admissible we get  

 

   * *, , 1nx x A z   and  * *, , 1ny y A z   for all n .      

                                                       
 Then we have 
 

       * * 1 * * * *, , , , , ,n n nS x x A z x x A z S Ax Ax AA z                                                                     

                                 , , , .n nN x A z N x A z n N       

 And we have 
 

         , max , , , , , , , ,n n n n nN x A z S x x A z S x x Ax S A z A z AA z        

               1max , , , , , , , ,n n n nS x x A z S x x x S A z A z A z       

             1max , , , , , .n n n nS x x A z S A z A z A z  
 

 By Theorem 3.6. (or Theorem 3.7.) we deduce that the sequence  nA z  

converges to a fixed point z X  . Then taking limit n → ∞ in the above 

equality,we get    lim , , , .n

n
N x A z S x x z   


  Let us suppose that .z x   Then 

we have 

 
 

  
* * 1, ,

, 1.
,

n

n

n

S x x A z
N x A z

N x A z
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 And taking limit n → ∞, we get   lim , 1.n

n
N x A z 


 This implies 

 lim , 0n

n
N x A z


  i.e.  , , 0,S x x z    which is a contradiction. Therefore we 

must have .z x  Similarly, we get .z y   Thus, we have .y x  Hence x  is 

the unique fixed point of A.    
  
4. Consequences 
 
 We start this section with the following definition. 
 

 Definition 4.1: Let  ,X S  be an S-metric space and let 

: X X X      be a function. Then a map :A X X is called a  -Geraghty 

contraction type map if there exists    such that for all ,x y X  , 
 

        , , , , , , , , .x x y S Ax Ax Ay S x x y S x x y 
 

                                   

 Theorem 4.2. Let  ,X S be a complete S-metric space, : X X X     

be a function and let :A X X  be a map. Suppose that the following conditions 
hold:  

 

(i) A is a  -Geraghty contraction type map   

(ii) A is triangular  -admissible       

(iii) there exists 1x X  such that  1 1 1, , 1x x Ax          

(iv) A is continuous. 
 

 Then A has a fixed point x X   and  1
nA x  converges to x . 

 

 Theorem 4.3: Let  ,X S  be a complete S-metric space, : X X X      

be a function  and let :A X X  be a map. Suppose that the following conditions 
hold:  
  
      (i) A is a  -Geraghty contraction type map                              

 (ii) A is triangular  -admissible       

 (iii) there exists 1x X  such that  1 1 1, , 1x x Ax     
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(iv) if  nx  is a sequence in X such that  1, , 1n n nx x x    for all n N  

and nx x X   as n   , then there exists a subsequence  
knx  of 

 nx  such that  , , 1
k kn nx x x   for all k .  

 

 Then A has a fixed point x X   and  1
nA x  converges to x . 

 

 For the uniqueness of a fixed point of a  -Geraghty contraction type map, 

we consider the following hypothesis (G1) which is weaker than hypothesis  
(G) : (G1) For any two fixed points x and y of A, there exists zX such that 

 , , 1x x z   and  , , 1y y z  . 

 
 Theorem 4.4: If we add condition (G1) to the hypotheses of Theorem 4.2. 
(or Theorem 4.3.), we obtain that x* is the unique fixed point of A. 
 
 Proof: Due to Theorem 4.2. (or Theorem 4.3.), we obtain that x*X is a 
fixed point of A. Let y*X be another fixed point of A. Then by hypothesis (G1), 

there exists zX such that  * *, , 1x x z   and  * *, , 1y y z  . 

 

 Since A is  - admissible we get  

 

 * *, , 1nx x A z   and  * *, , 1ny y A z   for all n . 

                                                         
 Then we have 
 

      * * 1 * * * *, , , , , ,n n nS x x A z x x A z S Ax Ax AA z                                                                      

                    , , , ,n nS x x A z S x x A z       

       
 , , nS x x A z    for all n . 

  

 Thus, the sequence   , , nS x x A z 
 is nonnegative and non-increasing. 

Therefore there exists 0r   such that  lim , , n

n
S x x A z r 


 . We show that r = 0. 

We suppose on the contrary that  r > 0.   
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 We have  
 
 

  
1, ,

, , 1.
, ,

n

n

n

S x x A z
S x x A z

S x x A z


  

 

 
 

 
 
 Now by taking limit n   , we have  
 

  lim , , 1.n

n
S x x A z  




 
 
 By the property of  , we have  
 

                               
 lim , , 0n

n
S x x A z 


 , which is a contradiction. 

 
 Therefore we have 0r  .        
 

 And this implies that lim n

n
A z x


 . 

 

 Similarly, we get lim n

n
A z y


 . Hence we have x y  . 

 
 Here we give an example to illustrate Theorem 4.3. 
 

 Example 4.5: Let  0,X    and let  , ,S x y z x z y z     for all 

, , .x y z X  Then (X, S) is a complete S-metric space. And let  
1

1
t

t
 


 for all 

0.t   Then   . Let a mapping :A X X  be defined by  
 

 

 

0 1 ,
5

5 1 .

x
x

Ax

x x


 

 
 

 

 
 And let a function : X X X      be defined by 

 

 
 1 0 , , 1

, ,
0 .

x y z
x y z

otherwise
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 Condition (iii) of Theorem 4.3. is satisfied with 1 1x  . And if  nx  be a 

sequence in X such that  1, , 1n n nx x x    for all n  and nx x X   as 

n   , then we must have  0,1 .x Therefore, by definition of the function   we 

must have  , , 1n nx x x  . Hence, the condition (iv) of Theorem 4.3. is satisfied. 

 

 Let ,x y X such that  , , 1.x x y    

 

 Then we have  , 0,1x y  and so    0,1 , 0,1Ax Ay   and therefore  

 

 , , 1.Ax Ax Ay   

 

 Further if  , , 1x x z   and  , , 1z z y  , then  , , 0,1x y z  . Therefore  

 

 , , 1x x y  . 

 
 Hence A is triangular  -admissible and so condition (ii) of Theorem 4.3. is 

satisfied. 
 
 We finally show that condition (i) of Theorem 4.3. is satisfied. 
 

 If 0 , 1x y  , then  , , 1x x y  and we have 

 

           
 
 
, ,

, , , , , , , , , ,
1 , , 5 5 5

S x x y x x y
S x x y S x x y x x y S Ax Ax Ay S

S x x y
 

 
    

  
  

 

                          
2

2
1 2 5 5

x y x y

x y


  

 
  

 

                           
 

 
8 4

0.
5 1 2

x y x y

x y

  
 

 
  

 Therefore we have  
 

         , , , , , , , ,x x y S Ax Ax Ay S x x y S x x y   for 0 , 1.x y   
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 And if 0 1, 1x y    or 0 1, 1y x    or 1, 1x y  , then 

 , , 0x x y   and we have         , , , , , , , ,x x y S Ax Ax Ay S x x y S x x y  . 

 
 Thus, all the conditions of Theorem 4.3. are satisfied and A has a unique 

fixed point 0.x   
 

 We also note that if  0,1X  , then X is not complete and A does not have a 

fixed point in X. 
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Abstract: In the present paper, we present a new method called Natural 
Decomposition Method. By using this method we solve linear and non-
linear differential equations and we also study the properties of Natural 
Transform. This method gives exact solutions in the form of a rapid 
convergence series. The Natural Decomposition Method (NDM) is an 
excellent method to solve non-linear differential equations especially initial 
and boundary value problems. 
 
Keywords: Natural Transform, Sumudu Transform, Laplace Transform, 

Non-linear Differential Equations. 
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1. Introduction 
 

Linear and Non-linear differential equations played important role in pure 
and applied mathematics. There have been many integral transform methods [5], [6], 
[7], [8], [9] and [10] exists in the literature for solving PDEs, ODEs and integral 
equations. The most used one is the Laplace transform [13]. The most recent methods 
used to solve ODEs and PDEs are the Sumudu transform [1] and Elzaki transform 
[5], [6], [7], [8], [9] and [10]. Fethi Belgacem and R. Silambarasan [2] used the  
N-Transform to solve the Maxwell’s equations. Zafar H. Khan and Waqar A. Khan 
[11] used the N-Transform to solve linear differential equations and they presented a 
table with some properties of the N-Transform of different functions. 
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In this paper, we use Natural Decomposition Method and apply it to find 
exact solution of linear and nonlinear ordinary differential equations. We solve some 
linear and nonlinear ordinary differential equations using Natural Decomposition 
Method. 

 
2. Definition of N-Transform and its Properties 
 
 2.1 N-Transform: The natural transform of the function �(�) for  
� ∈ ( ∞, ∞) is defined by  
 

�[�(�)] = �(�, �) � �����(��)
∞

�∞

�� ; �, �( ∞, ∞),      

 
 Here �[�(�)] is the natural transformation of the time function  �(�) and the 
variables � ��� � are the N-Transform variables. Note that the above equation can 
be written in the form: 
 

�[�(�)] = � �����(��)
∞

�∞

�� ; �, � ∈ ( ∞, ∞),  

 

               = �∫ �����(��)
�

�∞
�� ; �, � ∈ ( ∞, 0)�+ �∫ �����(��)

∞

�
�� ; �, � ∈ (0, ∞)�   

 
               = �-[�(�)] + N+[�(�)]   
                                                          
               =  �[�(�)� ( �)] + �[�(�)� (�)]    
 
               =  � -(�, �) + �+(�, �)     
                             
Here � (.) is the Heaviside function. 
 
     If the function �(�)� (�) is defined on the positive real axis, with � ∈ �, then 
we define the Natural transform (N-Transform) on the set 
 

� = ��(�):∃, ��, �� > 0 , ���  � �� |�(�)| < ��
|�|
�� ,

�� � ∈ ( 1)� × [0, ∞), � ∈ ��
�  

 

�[�(�)� (�)] = ��[�(�)] = ��(�, �) = � �����(��)
∞

�

�� ; �, � ∈ (0, ∞)   

 
Here � (.) is the Heaviside function.  
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 2.2 Properties of N-Transform (2.2.1) Linearity property: If � and � are 
any two constants and �(�) and �(�) are functions, then 
 

�{��(�) + ��(�)} = ��{�(�)} + ��{�(�)}  
 

 2.2.2) Change of scale property: 
 

 If �{�(�)} = �(�, �) then �{�(��)} =
�

�
�(�, �) 

 

 2.2.3) N-Transform of derivatives: 
 

 If �{�(�)} = �(�, �) then ��� ′(�)� =
�

�
�(�, �)

�(�)

�
 

 

 2.2.4) N-Transform of integrals: 
 

 If �{�(�)} = �(�, �) then � �∫ �(�)��
�

�
� =

�

�
�(�, �)  

 

3. Table of conversation of N-Transform to Laplace and Sumudu Transforms 
 

S. No. �(�) �[�(�)] �[�(�)] �[�(�)] 

1 1 
�

�
  1  

�

�
  

2 � 
�

��  �  
�

��  

3 ��� 
�

����
  

�

����
  

�

���
  

4 
�

�
sin (��)  

�

�������  
�

������  
�

�����  

5 cos ��  
�

�������  �

������  
�

�����  

6 cosh �  
�

�����  �

����  
�

� ��
  

7 
����

(���)!
 , � = 1, 2 

 
     �(���)�(��) 

 
�(���) 

 
�(��) 

8 
����

┌(�)
, � > 0  

 

�(���)�(��) 

 

�(���) 

 

�(��) 

9 cos � 
�

�����  �

����  
�

����
  

10 sin � 
�

�����  
�

����  
�

����
  



142 KRITIKA AND K. P. S. SISODIA  

4. Natural Decomposition Method 
 
 Taking the general nonlinear ordinary differential equation of the form: 
 
    �� + �(�) + �(�) = �(�),                                     (1) 
 
 Subject to the initial condition 
 
    �(0) = (� ),       (2)     
 
 Here � an operator of the highest derivative is, � is the remainder of the 
differential operator, �(�) is the homogeneous term and �(�) is the nonlinear term. 
 
 Suppose � is a differential operator of the first order, then by taking the  
N-Transform of the equation (1), we obtain: 
 

 
��(�,�)

�

�(�)

�
+ ��[�(�)] + ��[�(�)] = ��[�(�)].     (3)

  
 By substituting equation (2) into equation (3), then we get: 
 

  �(�, �) =
�(�)

�
+

�

�
��[�(�)]

�

�
��[�(�) + �(�)].       (4) 

 

 Taking the inverse of the N-Transform of equation (4), we have: 
 

                   �(�) = �(�) �� �
�

�
��[�(�) + �(�)]�,     (5) 

 

Here G (t) is the inventor term. 
 
 Now we consider that an infinite series solution of the unknown function 
�(�) of the form: 

�(�) = � ��(�).                                                            (6)

∞

���

 

 
 Putting equation (6) in equation (5) then we obtain: 
 

� ��(�) = �(�) ��� �
�

�
�� �� � ��(�) + � ��(�)

∞

���

∞

���

��,                          (7)

∞

���

 

 
Here ��(�) is an Adomain polynomial which represent the nonlinear term. 
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 Comparing both sides of equation (7), we can easily build the recursive 
relation as follows: 
 

��(�) = �(�),                                                                                                
 

��(�) = ��� �
�

�
��[���(�) + ��(�)]�,                                                  

 

��(�) = ��� �
�

�
��[���(�) + ��(�)]�,                                                  

 

��(�) = ��� �
�

�
��[���(�) + ��(�)]�,                                                  

 
 Finally, we have the general recursive relation as follows: 
 

����(�) = ��� �
�

�
��[���(�) + ��(�)]� , � ≥ 0                             (8) 

 
 Hence, the exact or approximate solution is given by:  
 

�(�) = � ��(�).                                                             (9)

∞

���

 

 
5. Solutions of Some Ordinary Differential Equations 
 
 Example 5.1: Solve the first order nonlinear differential equation of the 
form; 

���

���
+  �

��

��
�

�

+ ��(�) = 1 cos(�),                                     (2.1) 

 
 Subject to the initial conditions �(0) = 1, � ′(0) = 0.                                (2.2) 

 
 Solution: Now we precede the N-Transform to both sides of equation 
(2.1), we acquire: 
 

���(�, �)

��

��(0)

��

� ′(0)

�
+ �� ��

��

��
�

�

� + ��[��(�)] =
1

�

�

�� + ��
    (2.3) 
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 By exchange equation (2.2) into equation (2.3) we acquire: 
 

�(�, �) =
��

��

�

�� + ��

��

��
�� ��

��

��
�

�

+ ��(�)�                 (2.4) 

 
 Now by taking the inverse N-Transform of the equation (2.4), we acquire 
 

�(�) =
��

2!
+ cos(�) �� �

��

��
�� ��

��

��
�

�

+ ��(�)��                (2.5) 

 
 We now consider an infinite series solution of the unknown function �(�) of 
the unknown function �(�) of the form: 
 

�(�) = � ��(�)

∞

���

                                                           (2.6) 

 
 By using equation (2.6), we can re-write equation (2.5) as acquire 
 

� ��(�)

∞

���

=
��

2!
+ sin(�) ��� �

��

��
�� �� ��

∞

���

+ � ��

∞

���

��,          (2.7) 

 

 Where �� and ��are the Adomain polynomials of this nonlinear terms �
��

��
�

�
 

and ��(�) accordingly. 
 
 Comparing both sides of equation (2.1) we can drive the general reclusive 
relation as follows: 
 

                               ��(�) =
��

�!
+ cosh �                                                                   

                                   ��(�) = ��� �
��

�� ��[�� + ��]�,                          

                                   ��(�) = ��� �
��

�� ��[�� + ��]�,                          

                                   ��(�) = ��� �
��

�� ��[�� + ��]�,                          



 SOLUTION OF LINEAR AND NON-LINEAR ORDINARY DIFF. EQU. 145 

 Therefore, the general recursive relation is given by: 
 

                                 ����(�) = ��� �
��

�� ��[�� + ��]�,                                 (2.8) 

 
 Then by using the recursive relation derived in equation (2.8), we can 
compute the remaining components of the unknown function �(�) as follows: 
 

                       ��(�) = ��� �
��

�� ��[�� + ��]�,                          

 

   = ��� �
��

��
��[(�′�)� + (��)�]�,                          

 

= ��� �
��

��
��[1]� +                                       

 

= ��� �
��

��
� +                                                  

 

=
��

2!
+                                                                 

 
 Hence, by the cancellation of the extra terms that appears between ��(�) 
and��(�), we can see that the non-cancelled term of ��(�) still satisfies the given 
differential equation which obtains to an exact solution of the form: �(�) = cos(�). 
 
 Example 5.2: Solve the first order nonlinear differential equation of the 
form; 

���

���
+  �

��

��
�

�

+ ��(�) = � + cosh � ,                               (2.9) 

 
 Subject to the initial conditions  
 

�(0) = 1, � ′(0) = 0.                                              (2.10) 
 
 Solution: Proceeding as in the above manner (Example 5.1), the equation 
leads to an exact solution of the form: �(�) = cosh �. 
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7. Conclusion 
 
 In this research paper, the Natural decomposition Method was used to solve 
non-linear ordinary differential equations. This method is an excellent method to 
obtain the exact solutions of nonlinear differential equations. Using this method, we 
can find the exact solutions of initial and boundary value problems in the field of 
science and engineering. 
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